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Abstract
Conventional analysis of fluorescence recovery after photobleaching (FRAP)
data for diffusion coefficient estimation typically involves fitting an analytical or
numerical FRAPmodel to the recovery curve data using non-linear least squares.
Depending on themodel, this can be time consuming, especially for batch analy-
sis of large numbers of data sets and if multiple initial guesses for the parameter
vector are used to ensure convergence. In this work, we develop a completely
new approach, DeepFRAP, utilizing machine learning for parameter estimation
in FRAP. From a numerical FRAP model developed in previous work, we gen-
erate a very large set of simulated recovery curve data with realistic noise levels.
The data are used for training different deep neural network regression models
for prediction of several parameters, most importantly the diffusion coefficient.
The neural networks are extremely fast and can estimate the parameters orders
of magnitude faster than least squares. The performance of the neural network
estimation framework is compared to conventional least squares estimation on
simulated data, and found to be strikingly similar. Also, a simple experimen-
tal validation is performed, demonstrating excellent agreement between the two
methods. We make the data and code used publicly available to facilitate further
development of machine learning-based estimation in FRAP.

KEYWORDS
confocal laser scanning microscopy, deep learning, deep neural network, diffusion, fluores-
cence recovery after photobleaching, machine learning, regression

1 INTRODUCTION

Fluorescence recovery after photobleaching (FRAP) is a
powerful technique for characterization of different diffu-
sion processes and is used on a regular basis in materi-
als science, pharmaceutics, food science and cell biology.1
Diffusive transport processes are indeed important for
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the understanding of material properties and function-
ality, in everything from simple viscous liquids to het-
erogeneous, spatially and temporally fluctuating environ-
ments with obstruction effects and interactions with a
matrix such as binding effects.2 FRAP has been used
for estimation of local diffusion coefficients since the
1970s.3
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In a typical FRAP experiment, fluorescent particles are
photobleached by a high-intensity laser in a bleach region
(also referred to as region of interest, ROI) that is typi-
cally either circular or rectangular. Unbleached particles
will move into the bleach region, leading to a recovery of
the fluorescence intensity within the bleach region. Under
the assumption that all particles are mobile and that the
fraction of bleached particles in the whole sample is neg-
ligible, the fluorescence will eventually recover to the pre-
bleach intensity. The rate of recovery is mainly determined
by the diffusion coefficient, but also by the size of the
bleach region, the amount of bleaching and other param-
eters. In most FRAP experiments today, a confocal laser
scanning microscope (CLSM) is used to image the time
evolution of the recovery, using a far lower laser intensity
for the imaging than for the bleaching. Quantitative infor-
mation is obtained by fitting a model for the fluorescence
intensity as a function of time, and possibly also of space,
to the experimental data.
The case of free diffusion is often generalized to dif-

fusion with binding interactions governed by reaction-
diffusion-type equations involving on and off binding
rate constants, that is, association and disassociation
rate constants which are frequently used in cell biol-
ogy and biomaterials applications.4–10 Other cases involv-
ing complex dynamics have also been investigated such
as anomalous diffusion,11, 12 dynamics in phase-separated
protein condensates,13 modelling the recovery as a super-
position of the recovery by several different physical
processes.14 Finally, FRAP has been combined with other
techniques to gain new insights, for example, fluorescence
correlation spectroscopy,15, 16 selective plane illumination
microscopy,17 atomic force microscopy18 and single-point
illumination for highly localized, single-molecule FRAP.19
However, more complex dynamics beyond free diffusion
and integration of FRAP with other techniques is out of
the scope of this work.
The physical and mathematical assumptions of the

FRAP models and estimation methods as such vary
between different approaches, and result in analytical
and numerical models of very different complexity. We
provide a brief overview of the literature and refer the
reader to the review in Ref. 1 for a detailed account.
First, many models limit themselves to a circular bleach
region and the theoretically sound assumption of a uni-
form intensity in the bleach region (and outside of it)
directly after bleaching. Already at this stage, the assump-
tions may be violated in complex real-world samples such
as cells; the most common approach is to find a rea-
sonably homogeneous region in a heterogeneous sample
and proceed after performing a background subtraction.
The average intensity in the bleach region as a function
of time after bleaching (i.e. the recovery curve) can be

expressed using Bessel functions.20, 21 If the uniform cir-
cular disk is approximated with a Gaussian intensity pro-
file, a closed-form expression for the full diffusion equa-
tion, that is, the spatiotemporal evolution of the fluores-
cence intensity can be found.22 Second, there are multiple
common methods for parameter estimation. The conven-
tional estimation paradigm is recovery curve-based estima-
tion where a model curve is fit to the experimental recov-
ery curve. Less conventionally, some approaches utilize
models for the full spatiotemporal solution to the diffu-
sion (or reaction-diffusion) equation and fit them to the
intensity values of all individual pixels in the FRAP image
sequence, known as pixel-based estimation.22–27 Another
approach is Fourier-domain models that can be useful for
anomalous or spatially dependent diffusion.12 Third, least
squares is used for the most part, implying the assump-
tion of normal distributed noise with constant variance.
Some approaches more realistically model the noise as in
part proportional to the image intensity and/or Poisson
distributed.21, 26–28 Lastly, several important additions to
the modelling have been accounted for, such as arbitrary
bleach region shapes,29 multiple bleach frames,30 diffu-
sion during the bleaching phase,31 finite bleach resolution
(because of a non-uniform laser beam),8, 21, 26, 32 bleaching
during imaging33 and the raster scan motion of the laser
beam during both bleaching and imaging.9, 34
In previous work, we developed a new numerical model

based on spectral methods that incorporates many of the
aforementioned features, such as arbitrary bleach region
shapes, finite bleach resolution, multiple bleach frames,
bleaching during imaging and both recovery curve-based
estimation and pixel-based estimation.35 The downside of
many accurate FRAP models including this one is the
computational workload. This is for three reasons, namely
because of (i) the comparably long execution time of per-
forming a single least squares fit, (ii) the benefit of using
multiple initial guesses (up to ten or more) for the param-
eter vector to ensure convergence to the global optimum
when analysing a single dataset and (iii) the fact that it is
often useful to make several measurements for determin-
ing a single diffusion coefficient in order to robustly assess
variability/uncertainty.
In this work, we develop a completely new approach

for FRAP analysis based on machine learning for param-
eter estimation, that we refer to as DeepFRAP. Using the
numerical FRAP model developed in Ref. 35, we gener-
ate a very large set of simulated recovery curves with
realistic noise levels covering a broad range of diffusion
coefficients, image intensities, amounts of bleaching and
noise levels. We treat parameter estimation as a non-linear
regression problem and use the data for training deep neu-
ral network (deep learning) regression models for predic-
tion of the parameters. We implement two different neural



Wåhlstrand SKÄRSTRÖM et al. 3

network architectures; first, a fully connected network for
estimation of all parameters jointly, and second, a set of
separate fully connected networks for estimation of indi-
vidual parameters. The latter is shown to give better per-
formance. The neural networks are extremely fast and can
estimate the parameters orders of magnitude faster than
least squares. This provides for obtaining, for example,
diffusion coefficients as soon as possible, spending mini-
mal time on data analysis. In this fashion, the proposed
method facilitates efficient use of the experimentalist’s
time which is the main motivation to our approach. The
performance of the neural network estimation compared
to least squares estimation is assessed, and the estima-
tion errors as a function of noise level are strikingly sim-
ilar. This implies that the neural network estimates can
be used as very good initial guesses for the least squares
estimation in order to provide a considerable speed-up for
the latter. We also perform an experimental validation in
simple solutions which demonstrates excellent agreement
between the twomethods.We emphasize that although the
networks are trained on a particular set of parameters, this
work is intended as a proof of concept that can straightfor-
wardly be extended to new cases. Finally, wemake the data
and code used herein publicly available to encourage and
facilitate further development of machine learning-based
estimation in FRAP.36

2 METHODS

2.1 Numerical FRAPmodel

In a typical FRAP measurement for measuring free dif-
fusion, fluorescent particles are photobleached in a spec-
ified bleach region of specified shape. This yields a net
flux of unbleached particles into the bleach region at a
rate governed by the diffusion coefficient. In turn, this
leads to recovery of the fluorescence intensity in the bleach
region through the time evolution of the concentration of
the (still) fluorescent particles. In Ref. 35, we developed
a detailed numerical model for the spatiotemporal con-
centration profile 𝑐(𝑥, 𝑦, 𝑡) of fluorescent particles. If the
bleach region is sufficiently extended in the axial dimen-
sion, for example, by means of a small numerical aperture,
it can be approximated by an infinite cylinder elongated in
the axial dimension. Thus, it follows that there is negligi-
ble net diffusion in the 𝑧 direction, that is, orthogonal to
the focal plane. Making this approximation is a common
practice and it implies that only two-dimensional motion
has to be considered, although the validity of the approx-
imation varies with samples and experimental settings.1
Let the concentration initially be 𝑐(𝑥, 𝑦) = 𝑐0 everywhere.
Directly after the first bleach frame, the concentration pro-

file is

𝑐(𝑥, 𝑦) =

{
𝑐0𝛼, (𝑥, 𝑦) ∈ Ω

𝑐0, (𝑥, 𝑦) ∉ Ω
, (1)

where 𝛼 is a bleaching parameter and Ω is the bleach
region, centred in (𝑥𝑐, 𝑦𝑐). Note that in contrast to many
othermodels, the bleaching parameter is interpreted as the
relative decrease in intensity due to bleaching rather than
the amount of bleaching. The bleach region can have any
shape but is typically either circular with radius 𝑟 or rect-
angular with dimensions 𝑙𝑥 and 𝑙𝑦 . If more than one bleach
frame is used, expressing the concentration profile directly
after bleaching in general requires numerical computation
and cannot be easily stated here, but the principle is simi-
lar. Also, Equation (1) is never observed due to the fact that
the first postbleach frame is acquiredwith some delay after
the bleaching. The evolution of the concentration 𝑐(𝑥, 𝑦, 𝑡)
is described by the standard diffusion equation

𝜕𝑐

𝜕𝑡
= 𝐷∇2𝑐, (2)

for a diffusion coefficient𝐷.We develop a numerical solver
based on spectral methods to generate simulated FRAP
pre- and post-bleach images of size 𝑁 ×𝑁 pixels (𝑁 =

256 throughout this work). We solve the diffusion equa-
tion in a two-dimensional domain with periodic bound-
ary conditions and size (𝑁 + 2𝑀) × (𝑁 + 2𝑀) grid, where
𝑀 is the padding (we use𝑀 = 128). Time stepping is per-
formed in the Fourier domain, and bleaching is performed
in the spatial domain. The numerical solution can be com-
puted for arbitrary numbers of prebleach frames 𝑛prebleach,
bleach frames 𝑛bleach and postbleach frames 𝑛postbleach,
with time lag Δ𝑡 between consecutive frames. Bleaching
is represented by element-wise multiplication of the con-
centration with an (𝑁 + 2𝑀) × (𝑁 + 2𝑀) matrix which is
1 outside the bleach region and 𝛼 inside. Time stepping
is performed in the following fashion. The concentration
𝑐(𝑥, 𝑦, 𝑡), with 𝑡 corresponding to an arbitrary pre-bleach,
bleach or post-bleach frame, is transformed to its spectral
representation 𝑐(𝜉, 𝜂, 𝑡) using the two-dimensional Fast
Fourier Transform (FFT). In the spectral domain, the sin-
gle PDE in Equation (2) becomes (𝑁 + 2𝑀)2 independent
ODEs of the form

𝜕𝑐(𝜉, 𝜂, 𝑡)

𝜕𝑡
= −

(
𝜉2 + 𝜂2

)
𝐷𝑐(𝜉, 𝜂, 𝑡) (3)

for each grid point (𝜉, 𝜂). A closed-form solution is avail-
able for any time (step), and because we always want to
make a jump Δ𝑡 in time, it takes the form

𝑐(𝜉, 𝜂, 𝑡 + Δ𝑡) = 𝑒−(𝜉
2+𝜂2)𝐷Δ𝑡𝑐(𝜉, 𝜂, 𝑡). (4)
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(A) (B) (C)

(D)

F IGURE 1 An illustration of the FRAP experiment, using sim-
ulated data from the model used herein, showing (A) a pre-bleach
frame with a circular bleach region indicated (black ring), (B and C)
two different post-bleach frames, and (D) the recovery curve, com-
puted as the average intensity within the bleach region

After time-stepping, we use inverse FFT to obtain
𝑐(𝑥, 𝑦, 𝑡 + Δ𝑡). The numerical solver is implemented in
MATLAB (The Mathworks, Natick, MA). More features
are implemented in the solver than mentioned here but
are not used in the present work, that is, accounting for an
immobile fraction of particles, bleaching during imaging,
finite bleach and finite imaging resolutions and reaction–
diffusion models for diffusion with binding.
It is a standard assumption in FRAP that the sample and

the acquisition parameters are such that the fluorescence
intensity is proportional to the concentration. Because of
that and of linearity of Equation (2), particle concentration
and fluorescence/image intensity can be used interchange-
ably although they are not the same. The notations 𝑐 and 𝑐0
will be used to denote dimensionless fluorescence intensi-
ties, corresponding to rescaled concentrations. In Figure 1,
we illustrate the FRAP experiment with simulated FRAP
data from the model.

2.2 Noise models

The most common assumption in FRAP is that the exper-
imental noise is normal distributed and independent
between pixels, that it has zero mean, and that the vari-
ance 𝜎2(𝑐(𝑥, 𝑦, 𝑡)) for a concentration 𝑐(𝑥, 𝑦, 𝑡) is generally
of the form

𝜎2(𝑐(𝑥, 𝑦, 𝑡)) = 𝑎 + 𝑎′𝑐(𝑥, 𝑦, 𝑡), (5)

where 𝑎 represents constant noise and 𝑎′ represents noise
proportional to the mean intensity (reflecting the underly-
ing Poisson nature of the photon counts).21, 26–28 If 𝑎′ > 0,
it would be preferable to estimate 𝑎 and 𝑎′ from inde-
pendent calibration data from a homogeneous fluorescent
solution, with varying laser intensities, otherwise using
settings identical to those for the FRAP experiment.27 We
assume, as ismostly done, that 𝑎′ = 0 and that the assump-
tion of constant noise is sufficiently accurate; in particular
if the amount of bleaching is not too large, that is, if 𝛼 is
not too small.

2.3 Conventional parameter estimation

As mentioned above, it is possible to fit a model for
𝑐(𝑥, 𝑦, 𝑡) using the intensity values of all individual pix-
els in the FRAP image sequence (pixel-based estimation).
In this work, we are only concerned with the simpler
and faster recovery curve-based estimation, which is the
conventional and most frequently used approach. Fur-
ther, training neural networks on recovery curve data
is a much simpler task than training on the full image
data (especially considering the high dimensionality of
image sequence/video data). First, from a measurement
we obtain the concentration profile 𝑐exp(𝑥, 𝑦, 𝑡) and com-
pute the experimental recovery curve 𝐹exp(𝑡) by

𝐹exp(𝑡) =
∑
𝑥,𝑦

𝑚(𝑥, 𝑦)𝑐exp(𝑥, 𝑦, 𝑡). (6)

Here, 𝑚(𝑥, 𝑦) is a normalized indicator function (matrix)
of the bleach region, such that Equation (6) produces the
average intensity inside the bleach region (because of the
finite resolution of the computational grid, the edges of
the bleach region are somewhat smoothed as represented
by the indicator function). The model recovery curve 𝐹(𝑡)
is computed analogously. The parameters are estimated by
nonlinear least squares,

𝜃̂ = min
𝜃

(
𝐹exp(𝑡) − 𝐹(𝑡)

)2
, (7)

where 𝜃̂ is the value of the parameter vector 𝜃 that corre-
sponds to the global minimum of the sum of squares on
the right-hand side (we suppress that 𝐹(𝑡) depends on 𝜃 in
the notation). In the most general free diffusion case cov-
ered by the model in Ref. 35, 𝜃 will contain the diffusion
coefficient𝐷, the mobile fraction, the initial concentration
𝑐0, the bleaching parameter 𝛼, imaging bleach parameter
and a bleach and imaging resolution parameter. In prac-
tice, several of these are eliminated by the experimental
design (e.g. by ensuring that laser levels are sufficiently
small as to avoid imaging bleach). In this work, we are
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only concernedwith 𝜃 = (𝐷, 𝑐0, 𝛼). Contrary to some other
FRAP models, both pre- and post-bleach data are used for
estimation. The estimation procedure is implemented in
MATLAB (The Mathworks) using lsqnonlin.

2.4 Non-linear regression and neural
networks

The conventional least squares fitting above is essentially a
type of curve fitting or nonlinear regression. The problem
of estimating the parameters can be viewed as nonlinear
regression in another sense, namely, as a supervised learn-
ing problem in machine learning: Given a set of inputs 𝐱
(recovery curves) and the corresponding set of outputs or
targets𝐲 (parameter vectors of the FRAPmodel), the aim is
to learn a representation of themapping 𝐲 = 𝑓(𝐱). Assum-
ing that 𝑁 samples are available, the classical approach to
regression in this setting is to model the 𝑖:th target as

𝐲𝑖 = 𝑓(𝐱𝑖;𝐰) + 𝝐𝑖, (8)

where 𝑓 belongs to some class of mappings with parame-
ters𝐰. Further, 𝝐𝑖 is normal distributed, zero-mean noise,
naturally implying that we should minimize a (weighted)
mean squared error (MSE) loss,

MSE(𝐱, 𝐲;𝐰) =
1

3𝑁

𝑁∑
𝑖=1

𝜁𝑖|𝐲𝑖 − 𝑓(𝐱𝑖;𝐰)|2, (9)

for all parameters jointly, where the factor 1/3 comes from
the fact that we herein will consider target vectors of 3
parameters. For the 𝑗th parameter individually, the same
loss becomes

MSE
(
𝐱, 𝐲(𝑗);𝐰

)
=

1

𝑁

𝑁∑
𝑖=1

𝜁𝑖

(
𝐲
(𝑗)
𝑖

− 𝑓(𝐱𝑖;𝐰)(𝑗)
)2
. (10)

Here, 𝜁𝑖 is a weight that depends on 𝝐𝑖 . With MSE (from
here on, with MSE we mean weighted MSE), the regres-
sion effectively becomes non-linear least squares as in the
conventional estimation, but with respect to the parameter
vector of the FRAP model rather than the recovery curves
themselves. Many different regression models can be used
to find a good approximation for 𝐲 = 𝑓(𝐱). Artificial neu-
ral networks (ANNs) that we use in this work are one of
the most versatile paradigms for representing highly non-
linear functions in supervised learning, whether the ulti-
mate goal is regression or classification.
One of the fundamental ANNs is the perceptron,37

where the function representation 𝑓 is chosen such that

𝐲 = 𝑓(𝐱) = 𝑔(𝐰𝖳𝐱 + 𝐛), (11)

where𝐰 are the representationweights, 𝐛 is called the bias
or threshold and 𝑔 a non-linear activation function. If 𝑔 is
chosen as a linear function, this would constitute ordinary
linear regression. A multilayer perceptron (MLP) or fully
connected neural network, is a chain of multiple layers of
maps as defined in Equation (11). An MLP with 𝑛 layers
may be defined iteratively as

𝐲 =𝑔𝑛(𝐡𝑛), (12)

𝐡𝓁 =𝐰𝖳
𝓁
𝑔𝓁−1(𝐡𝓁−1) + 𝐛𝓁, 𝓁 = 2,… , 𝑛 − 1, (13)

𝐡1 =𝐰𝖳
1 𝐱 + 𝐛1, (14)

where 𝐡𝓁 is known as the hidden state of layer 𝓁, 𝓁 =

1,… , 𝑛. The final activation function 𝑔𝑛 is usually the iden-
tity function in regression problems. The combination of a
non-linear activation function andmultiple network layers
grants neural networks the theoretical capacity to approx-
imate arbitrarily complex functions, sometimes known as
the universal approximation theorem.38, 39
Finding the optimal function representation in terms

of the parameters 𝐰𝓁, 𝐛𝓁, 𝓁 = 1,… , 𝑛 is usually done by
variations of the stochastic gradient descent (SGD) algo-
rithm for optimization and backpropagation.40 Although
the choice of activation function is not key to the theoret-
ical approximation capabilities of a network, historically
popular choices such as the hyperbolic tangent and other
sigmoid activations may lead to saturation of the gradient
and thus lowered performance of the optimizer. State-of-
the-art methods conventionally use a variation of the rec-
tified linear unit (ReLU),

ReLU(𝑥) = max(𝑥, 0) =

{
𝑥, 𝑥 > 0

0, 𝑥 ≤ 0
, (15)

which is non-differentiable at the origin, but leads to less
saturation.41

3 RESULTS AND DISCUSSION

For both simulated and experimental data, we limit the
investigation to settings that accommodate many normal
experimental use-cases in which we perform FRAP, which
typically involve free diffusion in liquids or diffusion in
gels. We stress that the principles are equally valid in
any other setting in which high-quality FRAP measure-
ments can be performed, such as in cells, which would
require smaller fields of view and bleach regions. As we
shall elaborate on below, the neural network-based
estimation can be adapted to new settings in a
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F IGURE 2 Schematic overview of the estimation workflow to illustrate the differences between conventional FRAP and our DeepFRAP
approach

straightforward manner. We use a resolution of 𝑁 ×𝑁 =

256 × 256 pixels, pixel size Δ𝑥 = 0.7598 µm (providing a
field of view of 194.5 × 194.5 µm), and time lag Δ𝑡 = 0.265

s between consecutive frames. Further, we use a circular
bleach region with 30 µm diameter, centred in the field of
view (also, disregarding a finite bleach resolution since the
impact on such a large bleach region would be insignifi-
cant). We use 𝑛prebleach = 10 pre-bleach frames, 𝑛bleach = 4

bleach frames and 𝑛postbleach = 100 post-bleach frames.
We assume that there is no bleaching during imaging
and that the mobile fraction is 1, that is, that there are no
immobile particles. Further we assume that the system
is homogeneous and isotropic and hence that the initial
concentration before bleaching is a constant 𝑐0. Finally,
we use the common assumption that the noise variance is
constant, that is, no intensity-proportional noise.
To illustrate the differences between conventional FRAP

and our DeepFRAP approach, we give a schematic
overview in Figure 2. After performing ameasurement, we
obtain experimental data, typically through some prepro-
cessing steps (like background subtraction, and computa-
tion of the recovery curve from the image data). Then, in
the conventional FRAP, we feed the experimental data to
a non-linear least squares optimizer, that uses the numer-
ical FRAP model to find the model recovery curve that is
closest to the experimental recovery curve, in terms of the
sum of squared residuals between the two. From the fitted
recovery curve, parameter estimates are obtained. In con-
trast, in the proposed DeepFRAP approach, a neural net-

work is trained using simulated data from the numerical
FRAP model with realistic noise levels, typically prior to
themeasurement. The neural network is trained to predict
parameters directly rather than finding the model recov-
ery curve closest to the experimental recovery curve. A
model recovery curve can then be reconstructed from these
parameters, but it is not explicitly part of any fitting. For
bothmethods, the noise variance 𝑎 is estimated afterwards
using the residuals between the experimental and model
recovery curves. We elaborate on the DeepFRAP approach
in the subsections below.

3.1 Data generation

Wegenerate a training set for training the neural networks,
a validation set for hyperparameter optimization of the
neural networks, and finally a test set for final assessment
of performance. Each data set consists of a large set of ran-
dom input vectors (recovery curves) and random output
vectors (parameter values) representative of the parame-
ter domain in which the neural networks will be trained.
The dataset sizes are 220 (1,048,576) for the training set and
218 (262,144) each for the validation and test sets. Data are
generated using the settings above and for random val-
ues for each of the parameters of interest, which are the
diffusion coefficient 𝐷, the initial concentration 𝑐0, the
bleach parameter 𝛼 and the noise variance 𝑎. In Table 1,
the distributions for random sampling of parameter
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TABLE 1 Distributions of parameter values in the generated
data

Parameter Distribution
𝐷 Log-uniform in [10−12, 10−9]m2/s
𝑐0 Uniform in [0.5, 1]
𝛼 Uniform in [0.45, 0.95]
𝑎 Log-uniform in [10−4, 10−2]

values are given.The interval of diffusion coefficients cov-
ers a range of biologically relevant molecules such as short
DNA molecules (∼ 10−12 m2/s),42 bovine serum albumin
(∼ 6 × 10−11m2/s),43 𝛽-lactoglobulin (∼ 10−10m2/s)44 and
sodium flourescein (∼ 4 × 10−10 m2/s).45 The reason why
𝐷 is chosen log-uniformly distributed (i.e. log10 𝐷 is uni-
formly distributed in [−12, −9]) is that considering the
broad range of values over three orders of magnitude, a
log-uniform distribution provides a good means of prior-
itizing small and large diffusion coefficients equally in the
data set (otherwise, ∼ 90% of the randomly picked diffu-
sion coefficients will be larger than 10−10 m2/s). We argue
similarly for the noise variance𝑎, where the range is picked
approximately centred around typical experimental values
in log scale. The range for 𝑐0 is motivated by the fact that
it is desirable to be close to 1 for an optimal signal-to-noise
ratio, but not too close as to avoid saturation in any pixels.
(It would be possible to normalize all data with respect to
the average prebleach intensity to get, say, 𝑐0 = 1, thereby
avoiding to estimate 𝑐0. However, the post-bleach intensi-
ties also contain information about 𝑐0 which would then
be lost, and given that 𝑐0 is by far the simplest parame-
ter to estimate, including it has little impact on the accu-
racy of other estimates.) The range of 𝛼 is motivated from
both a data standpoint and a physics standpoint: The value
should not be too close to 1 to ensure good contrast in the
post-bleach images, and not too small as to avoid nonlin-
earities in the bleaching. Internally in the numerical code,
the diffusion coefficient is specified in units of pixels2/s,
avoiding the SI units for numerical reasons. In the neural
network workflow, we similarly use 𝐷⋆ = log10 𝐷 (for 𝐷
in units of pixels2/s). The distribution of 𝐷⋆ is uniform in
∼ [0.2386, 3.2386], hence with a range in the same order as
for 𝑐0 and 𝛼.
For each sample in the datasets, FRAP image data is sim-

ulated using the numerical algorithm presented in Meth-
ods. Normal distributed random noise with variance 𝑎 is
added to the data, and the recovery curve is extracted from
the image sequence by computing the average intensity
in the bleach region for each point in time as described
in Equation (6). For the 𝑖th sample, the resulting data
is a 110-dimensional vector 𝐱𝑖 (merging pre- and post-
bleach data), which constitutes one sample of the input
data for the neural networks. The target data are the three-

dimensional parameter vector 𝐲𝑖 = (𝐷⋆
𝑖
, 𝑐0,𝑖 , 𝛼𝑖) (analo-

gous to least squares, 𝑎𝑖 can be computed after estima-
tion using the experimental recovery curve and the fitted
model). In Figure 3, we show some examples of the gener-
ated recovery curves. As can be seen, there is a very broad
distribution of behaviour among the shown curves. For
example, some curves are not even close to recovering to
their prebleach intensity within the experimental time, but
this is a deliberate choice in order to cover the range of dif-
fusion coefficients that are reasonable to estimate using the
chosen experimental parameters with a generous margin.
It is worth pointing out that this does not imply that the
neural networks will be able to learn to utilize data from
recovery curves with incomplete recovery better than least
squares, but including the data will improve the perfor-
mance of the network.
The benefit of using simulated data for a machine learn-

ing task is that because the simulation mechanism is the
same, the data for training, validation, and test will be
identically distributed. Further, because different random
seeds are used, the datasets will be independent. Hence
data leakage, that is, overestimated performance as a result
of the optimizer having access to the validation set during
training, is avoided.

3.2 Neural networks

We optimize neural networks with respect to MSE loss
as per Equations (9) and (10). In the first attempts, we
did not introduce any weights 𝜁𝑖 in the loss functions; the
consequence was that the loss function prioritized errors
for small and large noise variances equally, as a conse-
quence focusing primarily on the errors for large noise
variances because they effectively become outliers. A bet-
ter approach is to use the fact that the variance of parame-
ter estimates in conventional estimation, like least squares
(or maximum likelihood), are approximately linearly pro-
portional to the variance, or noise, in the data. Because the
MSE is related to the variance of the parameter estimates,
it makes sense to select the weights 𝜁𝑖 such that 𝜁𝑖 ∝ 1∕𝑎𝑖
(and normalized such that the sum of all weights in each
dataset is 1). This drastically improves estimation perfor-
mance of the neural networks for lower noise variances,
and the possibility of introducing such a weighting is the
main reason for working with the assumption of constant
normal distributed noise.
Before training of neural networks, we perform least

squares estimation on 216 (65,536) samples generated from
the samedistribution of parameters as for the training data,
and compute the MSE in the same manner. This provides
benchmark values that are useful for assessing the perfor-
mance of the neural networks. In Table 2, the MSE for
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(A) (B) (C)

F IGURE 3 Examples of simulated recovery curves from the training data for different parameters, varying one parameter at a time. In
(A), recovery curves for 𝑐0 = 0.75, 𝛼 = 0.70 and 𝐷 values 5 × 10−12 m2/s (blue), 5 × 10−11 m2/s (red) and 5 × 10−10 m2/s (yellow) are shown. In
(B), recovery curves for 𝐷 = 5 × 10−11 m2/s, 𝛼 = 0.70 and 𝑐0 values 0.5 (blue), 0.7 (red) and 0.9 (yellow) are shown. In (C), recovery curves for
𝐷 = 5 × 10−11 m2/s, 𝑐0 = 0.75 and 𝛼 values 0.5 (blue), 0.7 (red) and 0.9 (yellow) are shown

TABLE 2 MSE losses for least squares estimation, showing
results for all parameters jointly and individually

Parameter MSE
All 4.0011 × 10−5

𝐷⋆ 1.0429 × 10−4

𝑐0 2.0511 × 10−8

𝛼 1.5723 × 10−5

all parameters jointly and for the individual parameters
are shown for least squares estimation (note that the fac-
tor 1∕3 in Equation (9) is the reason why the joint MSE
is smaller than the largest individual MSE).These losses
give an approximate indication of the lowest attainable loss
for any neural network. As we shall see, the MSE losses
for least squares do not constitute sharp lower bounds. Of
course, the noticeable differences inMSE for the individual
parameters (several orders of magnitude) reflect the dif-
ficulty of estimating the different parameters (the impact
of having non-standardized parameter ranges in Table 1
is found to be negligible in comparison; hence we do not
introduce standardized parameter ranges). The difficulty
of estimation essentially reflects the information content
of the recovery curve which boils down to the Fisher infor-
mation of the corresponding likelihood function.
The neural networks are implemented in Tensorflow

2.1.0.46 The conventional SGD is selected as the opti-
mizer (found to perform better in this case than the Adam
optimizer47). In the first step, we consider using fully con-
nected neural network architectures for estimation of all
three parameters jointly.We performhyperparameter opti-
mization with respect to the optimizer and the network
architecture. For the optimizer, we vary batch size, learn-
ing rate and momentum. For the network, we vary the
number of layers, the number of nodes per layer, and the

F IGURE 4 Minimum validation loss over 200 epochs, averaged
over 20 runs for each number of layers, as a function of the number
of layers

activation function. We use batch size 1024 and momen-
tum 0.99. Further, we find that the exponential linear unit
(ELU) activation,48

ELU(𝑥) =

{
𝑥, 𝑥 > 0

𝛾 (exp(𝑥) − 1) , 𝑥 ≤ 0
, (16)

with 𝛾 = 1, yields slightly better results than the more typ-
ical ReLU or tanh activations. We investigate the influence
of the number of nodes per layer and the number of lay-
ers. We find that there is no discernible gain with more
than 128 nodes per layer. As for the number of layers, we
investigate using 1 to 16 layerswith 128 nodes per layer. This
investigation is performed with a constant learning rate of
10−3. In Figure 4 we show the obtained minimum valida-
tion loss when training for 200 epochs (iterations over the
whole data set), averaged over 20 runs for each number of
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TABLE 3 MSE losses for the best-performing network for
prediction of all three parameters jointly, showing results for all
parameters jointly and individually for the training, validation and
test sets

MSE
Parameter Train Val Test
All 3.6782 × 10−5 3.7809 × 10−5 3.8842 × 10−5

𝐷⋆ 9.4660 × 10−5 9.7368 × 10−5 1.0038 × 10−4

𝑐0 6.3904 × 10−8 6.4715 × 10−8 6.4995 × 10−8

𝛼 1.5623 × 10−5 1.5994 × 10−5 1.6081 × 10−5

layers. Although the validation loss continues to decrease
slightly even for very deep networks, the returns of adding
more layers are rapidly diminishing. Given that the execu-
tion time for a single epoch of training is approximately
linearly proportional to the number of layers, eight lay-
ers is selected as a reasonable trade-off. The final learning
rate schedule is optimized after fixing all other hyperpa-
rameters, using an initial increase followed by a step-wise
decay: First, for 50 epochs, the learning rate 𝜂 is linearly
increased from 10−3 to 10−1. Learning rates higher than
10−1 otherwise resulted in a diverging loss. Second, we use
a step-wise decay, where the learning rate is decreased in a
log-linear fashion such that log10 𝜂 is −1,−1.25, −1.5, ...,
with 8000 epochs for each value. To account for seed sensi-
tivity, that is, the dependence on the random initialization
of the network and random shuffling of data, four indepen-
dent networks are trained, using Glorot (uniform) weight
initialization. The training is performed on a dual AMD
Epyc 7542 with 128 threads, and is run for 7 days (168 h),
after which slightlymore than the first 6 of the 8,000 epoch
sections were done (48,000 epochs). The network yielding
the lowest validation loss for any epoch is selected for test-
ing. In Table 3, the results for training, validation, and test
sets are shown, both for theMSE for all parameters and for
the individual parameters.Importantly, the MSE losses for
least squares do not constitute sharp lower bounds as can
be seen by comparing Tables 3 and 2. Indeed, the joint test
MSE and the individual test MSE for 𝐷⋆ are both lower
for the neural network than for least squares. The reason
why this is possible is that least squares estimation does
not optimize the fit with respect to this loss and not even
with respect to the parameter values per se; it optimizes the
fit with respect to the sum of squared differences between
the recovery curve data and the recovery curve model, see
the schematic overview in Figure 2. In contrast, in a com-
parison between least squares and neural networks with
respect to the sum of squared residuals for the recovery
curve, least squares would be superior by definition (pro-
vided the global optimum is foundwhich is not guaranteed
in non-linear least squares). For 𝑐0 and 𝛼, the networks are
not able to surpass least squares in terms ofMSE, although

TABLE 4 MSE losses for the best-performing network for
prediction of all three parameters separately, showing results for all
parameters jointly and individually for the training, validation and
test sets

MSE
Parameter Train Val Test
All 3.6496 × 10−5 3.8068 × 10−5 3.9192 × 10−5

𝐷⋆ 9.3943 × 10−5 9.8320 × 10−5 1.0160 × 10−4

𝑐0 2.9811 × 10−8 2.9829 × 10−8 2.9864 × 10−8

𝛼 1.5517 × 10−5 1.5854 × 10−5 1.5950 × 10−5

the existence of a neural network representation that can
is guaranteed as per the universal approximation theorem.
Albeit, finding the correct weights of this neural network
is non-trivial.
That the neural network yields better results specifically

for the parameter for which the individual loss is largest
is no surprise. Indeed, optimization with respect to the
MSE is bound to prioritize reducing the largest prediction
errors. Also, with the chosen network architecture which
has 130,179 weights, 129,792 of them are actually shared
between the three parameters (all weights except for the
final layer). Hence, there will unavoidably be a trade-off
between the loss of the different parameters. This intro-
duces an implicit weighting between the parameters for
which there is no direct counterpart in least squares and,
inevitably, 𝐷 will be prioritized in the current setting. One
manner in which to further approach the least squares
estimation would be to introduce different weights for the
parameters in the MSE to account for the vastly different
magnitudes of the individual losses. Instead, we suggest
to train separate networks for the three individual param-
eters, using an architecture identical to the original net-
work except for the final layer, where two output values
are removed in each network. These networks are trained
using the same settings and training time as above. Once
again, to account for seed sensitivity, four independent net-
works (for each parameter) are trained. The training of all
(16) networks are executed in parallel. The three identi-
fied optimal networks are then merged into a single neu-
ral network for faster execution when calling TensorFlow.
This merged network, which is not a fully connected net-
work but rather constitutes three fully connected blocks
executed in parallel, has 389,763 weights, and all weights
are optimized with respect to the single parameter scalar
output only. In Table 4, the results for training, validation
and test sets are shown, both for theMSE for all parameters
and for the individual parameters.Separate training with
respect to the different parameters removes the implicit
weighting of the parameters, and indeed, the losses for
𝑐0 and 𝛼 have decreased, and the relative magnitudes
of the losses match least squares estimation somewhat
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(A) (B)

(C) (D)

F IGURE 5 Loss curves (black) for (A) the joint network, (B) the 𝐷⋆ network, (C) the 𝑐0 network and (D) the 𝛼 network, showing the
cumulative minimum of the validation loss rather than the loss itself. In all four cases (A)–(D), the least squares benchmark value for the loss
is shown (blue). Further, for the three networks for individual parameters in (B)–(D), the corresponding loss for the joint network but for each
individual parameter is shown (red). In (B), the point where the obtained loss becomes lower than the least squares benchmark value for the
loss is shown (vertical, dashed, black line)

better. In Figure 5, the validation loss curves are shown
for the best of the four types of networks trained. We actu-
ally show the cumulative minimum of the validation loss
rather than the loss itself, because the latter becomes hard
to visualize when the number of epochs is very large. One
noticeable feature of the loss curve for 𝐷⋆ is that already
after approximately 4000 epochs (approximately 12 h), the
network performs better than least squares. This indicates
that reasonable results should be attainable with far less
training time. Interestingly, the loss for 𝐷⋆ has increased
although this new network should have somewhat larger
information capacity with regard to all parameters, includ-
ing𝐷⋆.We noticed this behaviour for all optimizer settings
studied, and there are at least three possible explanations:
(i) seed sensitivity, although such a consistent behaviour is
probably not caused by this alone, (ii) the weights of the
joint network are already focused on prediction of 𝐷⋆ to
a large extent anyway and (iii) the loss landscape will be
completely different (in terms of the location of local min-
ima) for the joint network and the separate 𝐷⋆ network,
whichmay somehow lead to easier convergence of the joint
network with respect to estimation of 𝐷⋆. Nevertheless,
the true explanation remains elusive.

Although none of the differences in the results between
Table 3 and Table 4 are crucial for any practical purposes,
they illustrate the interesting point that the combined loss
does not prioritize the parameters equally. In the rest of this
work, we use the (parts of) networks that provide the best
performance for each parameter separately, i.e. we extract
the 𝐷⋆ part from the joint network and merge it with the
separate 𝑐0 and𝛼 networks to obtain a single final network.

3.3 Comparison of estimation methods

We perform a comparison of least squares and the neu-
ral network by generating large numbers of simulated
data sets for each of a number of distinct parameter
values. Using the same parameters as above otherwise,
we generate 256 recovery curves for each of the 𝐷 val-
ues {10−11.5, 10−11, 10−10.5, 10−10, 10−9.5} m2/s (we return
to linear scale and SI units from here on), for 𝑐0 = 0.75

throughout, for the 𝛼 values {0.50, 0.60, 0.70, 0.80, 0.90},
and for the 𝑎 values {10−4, 10−3.5, 10−3, 10−2.5, 10−2}. Let
𝐷̂(ls) and 𝐷̂(nn) be the estimates for 𝐷 from the least
squares and the neural network, with similar notation for
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(A) (B) (C)

F IGURE 6 MAPE error for 𝐷 and for least squares (blue) and the neural network (red) as functions of the noise variance 𝑎, showing (A)
𝐷 = 10−11.5 m2/s and 𝛼 = 0.5, (B) 𝐷 = 10−10.5 m2/s and 𝛼 = 0.7 and (C) 𝐷 = 10−9.5 m2/s and 𝛼 = 0.9

the other parameters. The estimation methods are com-
pared in terms of mean absolute percentage error (MAPE).
For example, for 𝐷 and for the neural network, MAPE is
computed as

MAPE
(
𝐷̂(nn)

)
=

1

𝑁

∑
𝑖

||||||
𝐷̂
(nn)
𝑖

− 𝐷

𝐷

|||||| × 100%, (17)

for some combination of true values of 𝐷, 𝛼 and 𝑎. In
Figure 6, a comparison of MAPE errors for 𝐷̂(ls) and 𝐷̂(nn)

as a function of 𝑎 and for three different combinations of
𝐷 and 𝛼 values is shown. The general appearance is repre-
sentative of all 25 combinations, although the magnitudes
differ. The MAPEs for 𝐷̂(ls) are in the range 0.05%–22.57%
and the MAPEs for 𝐷̂(nn) are in the range 0.05%–24.02%.
They also follow each other rather closely (𝜌 ≈ 0.999), fur-
ther indicating that the two methods use the information
in the recovery curves almost equally well. The MAPEs
for 𝛼̂(ls) are in the range 0.005%–5.07% and the MAPEs
for 𝛼̂(nn) are in the range 0.006%–4.41%. Again, they fol-
low each other rather closely (𝜌 ≈ 0.997). Interestingly, for
4 of the 125 parameter combinations, the neural network
obtained a smaller MAPE for 𝐷 than least squares, and
similarly for 7 out of 125 for 𝛼. However, in the few cases
where the neural network performs somewhat better, the
difference is very small. The neural network inherits all the
limitations of the numerical model and, as stated before,
by definition cannot be better than least squares in terms
of the residual sum of squares. Nevertheless, it could in
principle be better in terms of MAPE (in some parts of the
parameter space). That the data indicate this may actually
be coincidental though, due to, for example, a finite data
set size. With that in mind, we do not claim that the neural
network performs better anywhere in the parameter space,

but rather that its performance is strikingly similar to least
squares. For 𝑐0, all MAPEs are below 0.11%. Estimation of
neither 𝑐0 nor other parameters is very dependent on the
true value of 𝑐0, therefore sticking to 𝑐0 = 0.75 provides a
representative picture.

3.4 Evaluation on experimental data

To illustrate the performance of the method on real data,
we perform an experimental validation on two samples
of 100 ppm (0.01 w/w%) sodium fluorescein salt (Sigma-
Aldrich, St. Louis, MO) sucrose-water solutions. In water,
the diffusion coefficient of sodium fluorescein at ambient
conditions is approximately 4 × 10−10 m2/s.35, 45 49, 50 The
sodium fluorescein is dissolved in sucrose-water solutions
with 32 w/w% sucrose and 56 w/w% sucrose. In this man-
ner, we obtain samples with two different diffusion coeffi-
cients that are approximately 10−10m2/s and 10−11m2/s at
ambient conditions.
The two samples are prepared by placing 7 µl of the

solutions in SecureSeal spacers with thickness 120 µm
(Grace Bio Labs, Bend, OR). Measurements are performed
at ambient conditions on a Leica SP5 CLSM (Leica, Hei-
delberg, Germany) using a Leica HCX APO 20x/0.50
water immersion lens with pinhole size 6 Airy units. For
imaging, a 488 nm laser at 10% power and 1% AOTF
(acousto-optic tunable filter) is used. Detection is per-
formed with a PMT (photo-multiplier tube) detector with
gain 436 V and detection range 500–650 nm. For bleach-
ing, 458, 476, 488, 496 and 514 nm lasers were set at 15%
AOTF. Image acquisition is performed at zoom 4, yielding
a field-of-view of 194.5× 194.5 µm. The acquired image size
is 256× 256 pixels with pixel size 0.7598 µm stored in 16-bit.
The scan rate is 1000Hz, yieldingΔ𝑡 = 0.265 s. Further, we
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F IGURE 7 Example of a 32 w/w% sucrose data set and the corresponding fits, showing (A) the pre-processed postbleach image data at
different points in time, (B) the recovery curve (black dots) and the least squares fit (blue line) and (C) the recovery curve (black dots) and the
neural network fit (red line). The two fits are plotted in different figures for clarity because they overlap almost perfectly

use a circular bleach region with 30 µm diameter, centred
in the field of view. We use 10 prebleach frames, 4 bleach
frames and 100 postbleach frames. For each of the samples,
20 replicate measurements are done in different parts of
the sample.
Before analysis, the data are pre-processed in the follow-

ing manner. Firstly, the 16-bit data are rescaled to range
[0, 1]. Secondly, background subtraction is performed by
pixel-wise subtraction of a Gaussian filtered (𝜎 = 5 pix-
els) average prebleach frame from all pre- and post-bleach
frames, followed by addition of the average prebleach
intensity back again. The pre-processing is the same for
least squares and neural network estimation.
Least squares estimation is performed with 30 random

initial guesses for the parameter vector for each data set
to ensure convergence to the global optimum. Random
guesses are uniformly distributed in the ranges 2 × 10−11 ≤

𝐷 ≤ 5 × 10−10m2/s (for the 32w/w% sucrose data sets), 2 ×
10−12 ≤ 𝐷 ≤ 5 × 10−11 m2/s (for the 56 w/w% sucrose data
sets), 𝑐0 in the intensity range of the prebleach data with a
±0.05margin, and 0.01 ≤ 𝛼 ≤ 1. The best fit is selected for
each data set. Neural network estimation is performed in
the same manner. In Figure 7, one example of a 32 w/w%
sucrose dataset and the corresponding fits are shown.
The estimated diffusion coefficients for the 32 w/w%
sucrose datasets are (mean value and 95% confidence
intervals) 8.84 × 10−11 ([8.75 × 10−11, 8.93 × 10−11]) m2/s
for least squares and 8.95 × 10−11 ([8.80 × 10−11, 9.10 ×

10−11]) m2/s for neural networks. The estimated diffu-
sion coefficients for the 56 w/w% sucrose data sets are
(mean value and 95% confidence intervals) 9.39 × 10−12

([9.24 × 10−12, 9.54 × 10−12]) m2/s for least squares and
9.28 × 10−12 ([9.12 × 10−12, 9.43 × 10−12]) m2/s for neural
networks. A detailed comparison of the results for least

squares and neural networks is found in Figures 8 and 9
for the two measurement series. The differences are strik-
ingly small, and indeed, a series of t-tests indicates no sig-
nificant difference of the means for any of the parame-
ters or measurement series (𝑝 > 0.2 in all cases). The vari-
ance is noticeably larger for the neural network estimate
of 𝐷 in Figure 8, and an F-test indicates significant differ-
ence (𝑝 ≈ 0.04). It is worth pointing out that for experi-
mental data, the observed differences between the meth-
ods are not only due to how well they cope with data that
satisfy the model assumptions, but also due to how they
cope with the small deviations from the model assump-
tions that inevitably occur in real data. The values of 𝑎
obtained are roughly 3 × 10−3 and hence within the range
covered by the training data. As can be seen, the esti-
mated recovery curves from least squares and the neu-
ral network coincide almost perfectly. As we pointed out
earlier though, in terms of the residual sum of squares,
the least squares fit is by definition optimal, and indeed,
we can confirm that the neural network fits to the recov-
ery curves are slightly worse although the difference in
most cases is very small. Finally, we inspect the distribu-
tion of residuals between the fitted models and the data
on the pixel level. In all cases, the residuals are almost
perfectly normal distributed, verifying that the assumption
of constant normal distributed noise is reasonable in this
setting.

3.5 Computational speed

The computational speed of the entire workflow is not
straightforward to quantify in a practical and precise way,
since the least squares estimation and neural network
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F IGURE 8 Comparison of least squares (LS) and neural network (NN) estimates for the 20 measurements performed on the 32 w/w%
sucrose data sets, showing error bars with 95% confidence intervals for (A) 𝐷, (B) 𝑐0 and (C) 𝛼

(A) (B) (C)

F IGURE 9 Comparison of least squares (LS) and neural network (NN) estimates for the 20 measurements performed on the 56 w/w%
sucrose datasets, showing error bars with 95% confidence intervals for (A) 𝐷, (B) 𝑐0 and (C) 𝛼

estimation procedures are notably different. Moreover, the
computations include data pre-processing, for example,
rescaling and background subtraction, followed by extrac-
tion of the recovery curve, as described in the validation
on experimental data. For effective comparison, we mea-
sure the separate and cumulative execution times for pre-
processing the data by background subtraction, extracting
the recovery curve and the actual estimation procedure.
The data are simulated using the same parameter distribu-
tion as for the training data, after which the background
is subtracted (although this is not necessary for simulated
data, it is part of the workflow for experimental data) and
the recovery curve is extracted. For least squares, a sin-
gle fit is performed for each dataset, with initial guesses
for the parameters selected randomly from the same dis-
tributions as before. As for the neural networks, the exe-
cution time of the actual prediction is measured, but not
the initialization and loading of the weights since this does
not have to be performed every time. Similarly, loading
data and saving results are excluded from the measure-
ment in both cases. The procedure is repeated 1,000 times,

executed serially on a dual AMD Epyc 7542 with 128
threads. In Figure 10, the mean execution time for both
cases are presented, split up between the three steps as
described above. As can be seen, the time required for
pre-processing and recovery curve extraction is actually
considerableed to the time required for the neural net-
work estimation. For least squares estimation, in con-
trast, these steps are insignificant compared to the esti-
mation. It is worth emphasizing once again that in this
comparison, only a single least squares fit is performed,
but in non-linear least squares fitting it is good prac-
tice to perform multiple fits to ensure convergence to the
global optimum. If instead 10 fits were performed, the dif-
ference would increase by one order of magnitude, fur-
ther increasing the difference between the neural net-
work and least squares. We stress that for the neural net-
work, there is no counterpart to multiple fits because
its output for a given set of input data is deterministic.
The difference between the methods will become partic-
ularly noticeable for batch analysis of large numbers of
data sets.
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F IGURE 10 Mean execution time for least squares estimation
with a single fit vs. neural network estimation, divided into prepro-
cessing (blue), recovery curve extraction (red) and actual estimation
(yellow). Note the logarithmic scale on the y axis

Implementation bias and performance differences
between programming languages can of course impact
the comparison. On that note, it is worth pointing out
that the Matlab code relies heavily on the Optimization
Toolbox and FFT transforms, both of which use very fast
low-level implementations. Long execution times for the
least squares fitting is due to the complexity and detail of
the model, not due to a slow implementation per se.

4 CONCLUSION

We have implemented a neural network approach for fast
parameter estimation in FRAP, DeepFRAP, which to our
knowledge is the firstmachine learning-based acceleration
of FRAP analysis. Using a previously developed numeri-
cal model, we generate a very large set of simulated recov-
ery curves with realistic noise levels covering a broad
range of diffusion coefficients, image intensities, amounts
of bleaching and noise levels. We use the neural networks
to performnon-linear regression for parameter estimation.
We implement two different neural network architectures;
first, a fully connected network for estimation of all param-
eters jointly, and second, a set of separate fully connected
networks, trained separately, for estimation of individual
parameters. The latter approach is shown to give better per-
formance for two of the three parameters; for the diffusion
coefficient, the joint network gives better performance.We
split and merge the networks and parts of networks that
give the best performance for each parameter individually.
The resulting, final neural network is comprehensively
validated against least squares using both simulated and
experimental data, and is found to perform very well, and
be very fast compared to least squares. This implies that

the neural network estimates can be used as very good ini-
tial guesses for least squares estimation in order to make
the latter converge much faster than it otherwise would.
The fact that the neural networks are very fast provides
for obtaining, for example, diffusion coefficients as soon as
possible, spending minimal time on data analysis. Indeed,
recalling the three reasons mentioned in the Introduction
as to why least squares can be computationally heavy (long
execution time of a single fit, using multiple initial guesses
to ascertain convergence, and using several measurements
to assess variability), the neural network approach allevi-
ates the first two: a single estimation is orders ofmagnitude
faster than for least squares, and there is not even a coun-
terpart to using an initial guess, so a single run suffices. In
this fashion, the proposed method facilitates efficient use
of the experimentalist’s time which is the main motivation
to our approach.
The neural networks could be optimized further, by

exploring the hyperparameter space with respect to differ-
ent architectures like fully connected networks and con-
volutional networks, other activation functions, dropout,
batch normalization, rescaling of inputs and outputs, and
using even larger datasets. Even though it remains an
open question what the best choices are, the comparison
between least squares and the neural network indicates
that very little improvement is even possible. The train-
ing is fairly time-consuming in the current setting, so the
most interesting effort would be to shorten the training
time. For this particular problem, the unusual situation
arises that benchmark values for the loss are accessible
by comparison to the performance of least squares estima-
tion. Therefore, it is possible to monitor the training and
stop early when an acceptable loss, relative to the least
squares loss, has been reached. Indeed, in our setting, the
loss with respect to the diffusion coefficient surpassed least
squares after approximately 12 h of training, and this may
be sufficient for practical purposes. If desired, the neural
network estimate can be used as an initial guess for least
squares estimation, accelerating the numerical optimiza-
tion step considerably.
Although the neural network is trained on a specific

set of experimental parameters, such as bleach region
size, field of view and number of pre-bleach, bleach and
post-bleach images, a similar network can be trained to
cope with other parameters. The same goes for the ranges
of sample parameters such as diffusion coefficients cov-
ered by the training data. In fact, if, for example, the
time step Δ𝑡 would change, the estimated diffusion coef-
ficients could just be rescaled accordingly. Further, it is
plausible that a neural network can perform similarly to
least squares also for estimating the parameters of more
complex processes than free diffusion, such as reaction-
diffusion, sub-diffusion, and convective flow, provided that
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an FRAP model for that case is available such that real-
istic data can be simulated. Indeed, if the combination
of experimental setup and FRAP model is such that least
squares produces good estimation results, the same can
be expected of a well-trained neural network. It is worth
pointing out though, that the attainable performance of a
neural network as well as of least squares will always be
limited by the complexity of the model (e.g. an increas-
ing number of parameters is increasingly hard to esti-
mate), noise levels, the number of collected data points,
and whether the intensity inside the bleach region has
fully recovered during the experiment. All in all, this is a
proof-of-concept that can be tailored to a set of specific use-
cases in a straightforward manner, either by training from
scratch or by using the network(s) already trained herein
for transfer learning.
In addition, one direction for future work would be to

develop a neural network model that uses the entire spa-
tiotemporal image sequence as input. This could poten-
tially produce better estimates in the same manner that
it does so for least squares estimation. The downside
would be increased complexity of the model and a signif-
icant increase in the estimation time, the computational
resources required for training, and the storage space
required for training data compared to a neural network
trained on merely temporal data.
Finally, we make the data and code used herein publicly

available36 to encourage and facilitate further development
of machine learning-based estimation in FRAP.
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