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Integrated Product and Process Design for Mass Customization:  

A Road Towards Realization of Individualized Pharmaceutical Therapy 

Rydvikha Govender 

Department of Chemistry and Chemical Engineering 

Chalmers University of Technology 

Abstract 

Individualized pharmaceutical therapy strives to attain optimal health outcomes a priori 

in all patients treated with pharmaceutical products by tailoring these products to each 

patient’s holistic needs. However, existing mass-produced pharmaceutical products are 

not available in sufficient variety to enable adequate tailoring to the diverse needs of 

individuals. Consequently, this thesis has, firstly, recognized a potential alternative 

production approach designed for the provision of affordable variety, namely, mass 

customization. Thereafter, key product and process design requirements for 

establishing mass customization opportunities in the pharmaceutical value chain were 

identified and demonstrated. The foundation and key contribution of this thesis is a 

proposed patient-centric framework of design requirements for individualization of 

each oral dosage form feature. Additionally, an overarching product requirement for 

multifunctional individualization was determined, i.e., the simultaneous, independent 

individualization of multiple product features, which had not been addressed prior to 

this thesis. With a primary focus on product modularization, this thesis demonstrates 

that multifunctional individualization and the enhanced product variety crucial for 

affordable individualization may be achieved through reconfigurable modularization. 

Hot melt extrusion and fused deposition modelling were collectively deemed high-

potential technologies for the fabrication of individualized products. However, this 

thesis reveals key material and manufacturing trade-offs between material diversity, 

dispensing precision, and geometric design flexibility, arising due to strict product and 

process requirements, which remain unsolved. Throughout, a systems approach is 

demonstrated to tackle existing interdependencies and, in future, navigate change on 

the road towards realization of accessible individualized therapy. 

Keywords: individualized therapy, mass customization, modularization, integration, patient-

centric product design, reconfiguration, pharmaceutical manufacturing, hot melt extrusion, fused 

deposition modelling, polymeric solid dispersion 
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API   active pharmaceutical ingredient 

HME   hot melt extrusion 

FDM   fused deposition modelling 

FEL   felodipine 
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MS   metoprolol succinate 
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NAP   naproxen 
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PVA   polyvinyl acetate 

IM   injection moulding 
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1 
Introduction 

In 1946, the Constitution of the World Health Organization formally declared that “the 

enjoyment of the highest attainable standard of health is one of the fundamental rights 

of every human being without distinction of race, religion, political belief, economic or 

social condition” 1. Improvements in health status, to fulfil this right and promote 

wellbeing, constitute the primary aim of healthcare systems and the treatments they 

provide 2. Furthermore, the impact of medicines has been recognized to extend beyond 

clinical benefits for specific patients to offset direct and indirect costs to society 

associated with disease 3, 4. Figure 1 depicts selected examples of medicines providing 

value to patients and society through increased life expectancy, improved quality of life, 

disease prevention, reduced healthcare costs, and improved productivity 3, 5-12.  

Fig. 1. Examples of the patient and societal value provided by medicines. The years and countries in 

which each study was conducted are included in parentheses, with the study reference in square 

brackets. 
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However, there is considerable heterogeneity in the magnitude of these contributions 

across different types of medicines, pathologies, healthcare delivery systems, 

socioeconomic regions, and patient groups 13-17. Consequently, despite substantial 

progress in medicine and healthcare, unmet medical needs persist. Although this is a 

worldwide, multifaceted public health concern involving, inter alia, disease burden, 

healthcare system costs, lack of resources for timeous access to interventions, scientific 

roadblocks, and prevalent diseases without existing treatment, unmet medical needs 

also exist despite treatment with pharmaceutical products.  

 

The global patient population contains an extensive array of heterogeneous medicine-

related needs, which originate from unique biological, behavioural, and environmental 

characteristics as well as patient preferences 18-25. Collectively, these influence 

therapeutic outcomes when a patient is treated with a pharmaceutical product 23, 26-38. 

Suboptimal therapeutic outcomes at the patient-product interface may therefore be 

attributed to inadequate tailoring of treatment to meet this heterogeneous needs-base. 

Consequently, individualized therapy strives to optimize therapeutic responses a priori 

in all patients who are treated. It is based upon the premise that intra- and inter-

individual variability in response to treatment occurs, not merely due to the 

heterogeneity that characterizes patients and their medicine-related needs but, more 

specifically, because existing pharmaceutical products are not available in sufficient 

variety to enable adequate tailoring to the diverse needs of individuals (Figure 2) 39. The 

success of individualized pharmaceutical therapy therefore relies upon the provision of 

sufficient product variety to support selection of a specific treatment that satisfies an 

individual patient’s holistic needs. 

 

Currently, pharmaceutical products are produced by mass production, which is 

characterized by high production volumes and low product variety in order to drive 

productivity and cost effectiveness via economies of scale. During individualization, 

patients are stratified into progressively smaller segments of the population, each with 

unique needs from the pharmaceutical product. This requires not only progressively 

enhanced product variety but also progressively smaller production volumes for each 

product variant 39-42. Eventually, this is expected to surpass what is technically and/or 
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economically feasible with any technology in a mass production context, rendering 

individualized products either inaccessible or unaffordable. There is therefore a need 

for alternative production approaches, which can concurrently promote variety 

provision for individualized therapy and harness the cost effectiveness of mass 

production. This thesis proposes mass customization as such an alternative, owing to 

its potential for cost-effective variety provision for individualized therapy.  

Fig. 2. Existing vs. future pharmaceutical products showing that differences in variety in the product 

offering may contribute to differences in health outcomes in diverse patient populations. 

Generating a product offering characterized by enhanced variety requires first 

establishing the manner in which products should vary to promote individualization. 

This specifically pertains to identifying the product attributes which require 

individualization and exploring how they could be designed to enable individualization. 

Explicit and holistic requirements on the design of pharmaceutical products for 

individualized therapy, which systematically integrate patient needs and preferences, 

had not yet been established prior to the commencement of this thesis. Furthermore, 

although several current and emerging manufacturing technologies claim suitability for 

individualized therapy 43-50, they have not yet been designed in the context of a holistic 

patient needs-driven framework for individualization and/or in the context of an 

economically feasible production approach to drive accessibility to individualized 

medicines 51. Therefore, in addition to alternative production approaches for promoting 

the provision of affordable variety, product design concepts and associated 

manufacturing concepts are required, which can both facilitate patient-centric 

individualization and support consistent, reliable access to individualized medicines.  
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1.1. Purpose, Overarching Aim, and Key Research Questions 

The purpose of this thesis is to promote the development of individualized 

pharmaceutical products that are both functional and accessible so that it may steer 

individualized therapy closer to realizing the ambition of safety, effectiveness, and 

acceptability for all patients who are treated with pharmaceutical products. 

 

The overarching aim is to identify and demonstrate key design requirements for 

establishing mass customization opportunities in the pharmaceutical value chain 

during individualized single-drug and multidrug therapy. To fulfil this aim, this thesis 

is constructed around several key research questions:  

i. What are the pharmaceutical product design requirements for patient-centric 

individualization? 

ii. Which production approaches and principles could support affordable access to 

individualized pharmaceutical products by diverse patients? 

iii. What are the manufacturing process requirements for fabrication of 

individualized pharmaceutical products with acceptable performance? 

iv. What are the implications of implementing alternative production principles for 

the design and manufacture of individualized pharmaceutical products? 

 

1.2. Thesis Structure, Scope, and Research Strategy 

This thesis comprises four appended articles, which are preceded by a composite 

summary. Beyond this introduction (Chapter 1), this summary consists of a series of 

additional chapters (Chapters 2-7) dedicated to key elements of the unified product–

process–production approach to individualized therapy. Included within these chapters 

are their theoretical considerations in brief, followed by the principal contributions of 

this thesis. These contributions, which respond to specific gaps identified in current 

research and/or practice, are introduced using italicized phrases within each chapter. 

Key findings from each of the appended articles and insights from the confluence of all 
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the articles are summarized within each chapter. The aforementioned research 

questions are collectively answered through analysis and/or demonstration in each of 

the appended articles that comprise this thesis. In the thesis summary, research 

questions i and ii are primarily addressed in Chapters 3 and 4, research question iii is 

addressed in Chapters 5 and 6, and research question iv is addressed in Chapter 7. The 

specific article(s) on which each chapter is based can be found described within the 

chapters themselves. These chapters are followed by brief concluding remarks in 

Chapter 8. Since the integrated design and development of products and processes into 

a pharmaceutical mass customization context is still in its infancy, Chapter 8 also 

provides and an outlook on future research directions. This outlook will highlight 

important required contributors to the eventual realization of patient-centric 

individualized therapy. 

 

Determinants of health and contributors to health outcomes upon intervention are 

multifaceted, however this thesis focuses solely on health outcomes associated with 

pharmaceutical therapy at the patient–product interface. Although several dosage form 

types exist, which can be delivered via several administration routes, this thesis is 

limited in scope to oral dosage forms containing small molecule active pharmaceutical 

ingredients (APIs). Henceforth in this thesis, the word “product” refers to the dosage 

form and excludes its packaging. For the fabrication of the solid oral dosage form 

components in this thesis, melt-based processing, primarily by hot melt extrusion 

(HME) and fused deposition modelling (FDM), are in focus. Consequently, the solid 

dispersion material systems in this thesis correspond solely to melt-extruded drug–

polymer solid dispersions. These include felodipine (FEL) in ethyl cellulose (EC) in 

Article II, metoprolol succinate (MS) in polyethylene glycol 1500 (PEG 1500) and 

polyvinylpyrrolidone-vinyl acetate (VA64) in Article III, and both FEL in VA64 and 

naproxen (NAP) in VA64 in Article IV. These material systems are summarized in Table 

1, together with the articles in which they are fabricated and investigated. The rationale 

for the selection of each manufacturing process and each material system, in accordance 

with individual study aims, can be found in the appended articles and in Chapters 5 and 

6 of the thesis summary, respectively. Beyond the manufacturing process, an extension 

to manufacturing networks and the associated requirements for scale-up and stability 



Chapter 1 

6 

testing under conditions applicable to product storage and transport are beyond the 

scope of this thesis.  

 

Table 1. Drug–polymer solid dispersions studied in this thesis. Drugs include felodipine (FEL), 

metoprolol succinate (MS), and naproxen (NAP). Polymers include ethyl cellulose (EC) and 

polyvinylpyrrolidone-vinyl acetate (VA64). 

Drug Polymer(s) Article 

FEL EC II 

MS PEG 1500 and VA64 III 

NAP VA64 IV 

FEL VA64 IV 

 

The specific product design features that were in scope for each article in this thesis are 

depicted in Figure 3. Article I proposed the patient-centric framework of product design 

requirements for individualized therapy, upon which the subsequent articles were 

based. From Article II to Article IV a progressively increased product design complexity 

was targeted towards the holistic, integrated individualization of the entire product. 

 Fig. 3. Scope of product design features for each article in the context of the overarching research 

strategy employed in this thesis. 

Furthermore, the articles also mark a progression from single-drug therapy towards 

multidrug therapy considerations for individualization. At each stage, key 

opportunities, requirements, and challenges for mass customization of pharmaceuticals 

are probed in order to eventually broaden applicability to fully multifunctional products 

for individualized therapy. 
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1.3. Thesis Statement 

Global provision of and access to patient-centric individualized pharmaceutical therapy 

relies upon a shift from the currently dominant pharmaceutical mass production 

paradigm towards mass customization strategies, which are integrated into both the 

design of individualized products and their associated manufacturing technologies, in 

response to holistic, individual patient needs.  
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2 
Personalized Medicine 

Personalized medicine is characterized by the practice of tailoring therapies to 

individual patient needs and arose in response to inter- and intra-patient variability in 

drug response. Observations of extensive variability in drug response date back to at 

least the 1950’s 52-54, during which time they were primarily attributed to genetic 

diversity amongst patients. With its origins in pharmacogenetics and subsequently 

pharmacogenomics, it is unsurprising that the mapping of the human genome in the 

early 2000’s coincides with an acceleration in research and development in the field of 

personalized medicine 52, 55, 56. Figure 4 shows the results of a Scopus database document 

search conducted in December 2020 for the number of publications containing 

personalized medicine and related terms in the title, abstract, or keywords. This search 

was conducted in an identical manner to the search for trends in personalized medicine 

reported in Article I. Details on the search method and conditions may be found in 

Article I.  

Fig. 4. Trends in the field of personalized medicine from 2000-2020. The data for 2020 does not 

include publications yet to be indexed by the database.  

Although it may be argued that the practice of personalized medicine long precedes its 

establishment as a dedicated field of research, it was not until the developments of the 

20th century that a greater extent of personalization has been triggered than was 

previously deemed necessary to implement or possible to achieve 52, 55, 57-62. Whilst these 
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developments include field-specific advances in genetics, molecular, cellular, and 

structural biology, biochemistry, diagnostics, and digitalization to name a few, it is the 

confluence of these and other advancements that have propelled the field of 

personalized medicine into popularity in the 21st century.  

 

One contribution of this thesis is founded on the observation that this popularization 

is not merely an acceleration but also an evolution in the concept of personalized 

medicine. Despite the initially reductionist association between personalized medicine 

and genetic variability, there has been growing evidence of the contribution of non-

genetic factors to variability in drug response, some of which are significant enough to 

potentially mask the contribution of genetic variability to therapeutic response 54. This 

growing multidimensionality of personalized medicine has given rise to a multitude of 

alternative terminologies, which are defined and addressed in Article I 59, 63-76. A 

significant implication is that consensus definitions for personalized medicine have 

proven challenging to adopt. In this thesis, personalized medicine is primarily referred 

to as individualized therapy, a generic description that strives to avoid exclusive 

connotations with the strictly genetic aspects long associated with personalized 

medicines. With this view, any reference to either individualization or personalization 

in this thesis describe the act of tailoring therapy without intended distinction between 

the terms nor restriction to the various terms and definitions existing in current 

literature.  

 

This thesis explores the expansion of the concept of personalized medicine to encompass 

all known aspects of patient variability (beyond only the genetic) and the implications this 

holistic view has on the design of individualized pharmaceutical products (beyond only 

the API and its dose).  
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3 
Product Design for Individualized Pharmaceutical Therapy 

3.1. Patient-Centric Pharmaceutical Drug Product Design 

Patient-centric pharmaceutical drug product design has been defined as “the process of 

identifying the comprehensive needs of individuals or the target patient population and 

utilizing the identified needs to design pharmaceutical products that provide the best 

benefit to risk profile for that target patient population over the intended duration of 

treatment” 72. As such, it is a key enabler of individualized therapy. Scrutinizing the 

comprehensive needs of individuals reveals a broad range of patient characteristics, 

which either individually or collectively, determine a patient’s response to treatment 23-

38, 77. Such characteristics could be genetic, physiological, psychological, lifestyle-

related, and so forth. Not only do these characteristics vary between individuals but 

many vary within the same individual over time. This diversity in individual patient 

characteristics is often accompanied by an unpredictable, often undesirable, diversity 

in drug product usability and/or in vivo performance and therapeutic response. 

Therefore, patient-centricity, in an effort to mitigate this, inevitably implies and 

demands individualization.  

 

Current knowledge on inter- and intra-patient variability in therapeutic response is vast, 

as are associations between patient characteristics and specific product design features, 

which determine therapeutic response 21, 55, 78-94. Some product design features are 

universally patient-centric due to a shared requirement amongst all individuals 

throughout the population (Article I). Such requirements include, for example, 

portability and product stability throughout usage. Within the same product, other 

design features require tailoring to the needs of the individual (Article I). These include, 

amongst others, the API, dose strength, drug release functionality, composition, sensory 

attributes, and dosage form appearance. In these cases, associations between patient 

characteristics and specific product design features influencing therapeutic response 
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encompass, for example, the need to tailor the dose to account for drug–drug 

interactions with other medications in the therapeutic regimen or to account for the 

influence of genetic polymorphisms in drug metabolizing enzymes on the required dose 

79, 80, 86, 88, 94. They also include the need to tailor the type or size of a dosage form to aid 

swallowability 91, 95-101, the flavour of a formulation to improve palatability 38, 93, 100, 102-104, 

and so forth. For a comprehensive discussion of further key drivers for individualization 

of each product feature and for the entire dosage form, with supporting literature, the 

reader is referred to Article I and the references contained therein. Figure 5 depicts an 

overview of individual patient characteristics requiring translation into design 

requirements for specific pharmaceutical product features, based on the analysis of 

patient needs performed in Article I. Although associations between patient 

characteristics and specific product features influencing therapeutic response may be 

vast, their translation and collation into a framework of explicit, holistic, patient-centric 

drug product design requirements for individualized therapy was lacking by 

comparison. 

Fig. 5. An overview of individual patient characteristics requiring translation into design requirements 

for specific pharmaceutical product features. Further details of the patient characteristics and product 

features at play at the patient–product interface may be found in Article I, with selected highlights in 

section 3.2. of the thesis summary.  

Furthermore, during patient-centric drug product design, associations between patient 

characteristics and drug product features relevant to individualization are frequently 

made in relation to special population subgroups, for example, paediatrics or geriatrics 

22, 25, 38, 81, 84, 87, 105-113. These subgroups arise upon stratification of the patient population 

on the basis of one or more differentiating patient characteristics. Whilst stratification 

provides a firm basis for individualization and reveals special subgroup specific 

considerations, caution should be exercised regarding the number and variety of patient 

characteristics that were used to differentiate one subgroup from another and the extent 

of stratification (i.e. how broadly or narrowly the subgroups are defined). Insufficient 
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stratification could run the risk that an individual subgroup is not sufficiently 

homogeneous in the characteristics influencing therapeutic response, which is expected 

to have direct implications on the success of individualized therapy.  

 

In this thesis, product design for individualized therapy is extended across all patient 

characteristics, which include but are not limited to those of specific population 

subgroups. As such, in the context of pharmaceutical product design for individualized 

therapy, the contribution of this thesis is a proposed framework of patient-centric product 

design requirements for individualization, accompanied by a demonstration of how under-

explored product design opportunities may be leveraged to meet these requirements and 

drive patient access to individualized therapies (research question i.).  

 

3.2. Pharmaceutical Product Design Requirements for Patient-Centric Individualization 

To generate a patient-centric framework of design requirements for pharmaceutical 

products for individualization, primary sources of scientific information were collected 

on resulting health outcomes after treatment with mass-produced oral pharmaceutical 

products in a wide range of therapeutic areas. The relationship between patient 

characteristics and specific product design features, which influence health outcomes 

at the patient–product interface, were subsequently translated into a set of specific 

product design requirements for individualized therapy. Examples spanning 

therapeutic areas and types of oral dosage forms provided a means to qualitatively 

validate the generic pharmaceutical product design requirements that were developed. 

Figure 6 summarizes patient-centric requirements on each pharmaceutical product 

feature for the provision of individualized therapy. Together, Figures 5 and 6 serve as a 

summary of the patient-centric framework of product design requirements proposed in 

Article I. For specific examples of the translation of patient needs into pharmaceutical 

product design requirements, along with key drivers and references, the reader is 

referred to Article I. 
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Fig. 6. A summary of pharmaceutical product design requirements for oral dosage form 

individualization. For specific examples of the translation of patient needs into pharmaceutical product 

design requirements, along with key drivers and references, the reader is referred to Article I. The 

connector lines above selected product features exemplify interdependencies. 

3.2.1. Single-Drug Therapy 

API and Composition 

During single-drug therapy, API individualization entails selection of a discrete dosage 

form containing the API of choice. Since this thesis is limited in scope to drug product 

individualization and not drug substance discovery, design, or synthesis, the capacity 

for API individualization is limited to approved products containing the desired API. 

Under the paradigm of mass production, the development of dosage forms of a given 

API with a variety of alternative excipients, based on individual patient requirements, 

or the change of excipients in approved dosage forms, although permitted within certain 

conditions 114, 115, are not common practice for the purpose of individualization. 

However, in the case of excipient-related allergies or intolerances, interchangeability of 

excipients may be a desirable design feature for individualized therapy.  

Dose Strength 

The dose strength is one of the product features that leads to considerable manipulation 

by patients, caregivers, or healthcare providers to compensate for the lack of dose 

strength variety provided by mass production in achieving a desirable administered 

dose. In the case of solid oral dosage forms, this is exemplified by the splitting or 
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crushing of dosage forms or administration of multiple dosage units, sometimes of 

different dose strengths, all leading to increased regimen complexity 38, 116. In turn, this 

may result in decreased adherence or dosing inaccuracies in some cases, which may be 

detrimental to health outcomes. Consequently, the provision of individualized therapy 

demands an availability of more dose strengths within a fixed, pre-established dose 

range. This can facilitate accurate dosing via administration of a single dosage form (as 

a target best case scenario) that delivers a safe and effective dose for the individual 

patient, circumventing challenges with handling and adherence. For further details on 

the design of flexible-dose products and the implications they have for required drug 

contents and product performance at a fixed dosage form size, the reader is referred to 

Article II. 

Drug Release Functionality 

Drug release, absorption, and resulting bioavailability, are influenced by several 

gastrointestinal parameters encountered after oral administration. These include pH, 

transit time, motility, fluid volume, fluid composition, gut microbiota, enzymes, 

mucous layer thickness and composition, food effects, and pre-systemic metabolism in 

the intestinal epithelium 82, 117. These gastrointestinal variables are subject to large intra- 

and inter-individual variability 29, 92, 118. In particular, depending on the release 

mechanism of the formulation, drug release and transit time may be differently 

susceptible to variations in vivo. Individualized therapies therefore require the dosage 

form to have formulation-driven release trigger mechanisms that not only facilitate 

variety provision for individualization but that also keep the target in vivo release profile 

as desired between individual patients and within one individual on different occasions. 

In doing so, in vivo release and uptake are both individualized and robust against 

variable gastrointestinal conditions. For a demonstration of how product design may be 

utilized to obtain a variety of dosage form release profiles for individualization, 

independent of the dose and size of the dosage form, the reader is referred to Article III. 

Appearance and Sensory Properties 

In addition to visual attributes, the appearance of a dosage form includes the size of 

solid oral dosage forms, the volume of liquid oral dosage forms, and the type of dosage 
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form. The latter refers to monolithic solids, multiparticulates, liquids, and so forth. 

Unlike other dosage form attributes, which demand an increased variety, the size of 

solid oral dosage forms or volume of liquid oral dosage forms need to be optimized for 

both swallowing and handling and are therefore limited to an acceptable range 87. These 

product attributes signify constraints on the design of pharmaceutical dosage forms for 

individualization. The dosage form sensory attributes refer specifically to the 

organoleptic properties of taste, texture, and smell. Both appearance and sensory 

properties are subjective, preference-driven characteristics, which are often 

unpredictable. Consequently, studies on patient preferences indicate that availability of 

each drug in a range of dosage form types, where possible, could be beneficial to 

facilitate individualization 87, 89, 91. For example, increasing the number of flavour 

variants that can be incorporated into dosage forms, at the request of the specific 

patient, or employing taste masking, may assist in improving the acceptability of oral 

formulations and, in doing so, potentially improve adherence.  

3.2.2. Multidrug Therapy 

The requirements stipulated in Figure 6 and section 3.2.1. remain true for single-drug 

and multidrug therapy alike, however, multidrug therapy demands further product 

design requirements for individualization. An ideal case for individualized multidrug 

therapy is the concurrent administration of multiple APIs in a single dosage form, which 

is designed to reduce polypharmacy and facilitate adherence. In this case, a change in 

API to suit the needs of an individual patient, for example due to differences in genes 

encoding drug-metabolising enzymes, or drug interactions, will require 

interchangeability of APIs within a combination product and the manufacture of a 

greater number of combinations based on available APIs. Currently, a change of API 

within a mass-produced combination product, with limited or no variants, reverts to 

separate administrations of each drug or necessitates re-development. Furthermore, for 

typical regimens containing multiple medications, a patient is often required to 

administer these medications on several occasions during a day. When moving towards 

individualization, manufacturing each drug with tailored drug release functionalities to 

achieve their target in vivo release profiles, whilst allowing the patient to reduce the 

total number of daily administrations, or at least administer their drugs at the same 
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time, is required. The goal in this case should be synchronized administration of 

multiple drugs with independently controlled release of each drug 119. Ideally, this 

should be achieved in a single combination product or, at least, as discrete dosage forms 

with synchronized administration. Each API in multidrug therapy will still need to 

satisfy requirements for dose individualization and release individualization. Within 

combination products, this will require interchangeability of not just the API but each 

API’s dose and release as required by an individual patient. This makes enhanced 

flexibility in combination dosage forms a key factor in the provision of individualized 

multidrug therapy. For a comprehensive introduction to and discussion of design 

considerations for individualized multidrug therapy and how to expand the design 

window for APIs of varying characteristics, the reader is referred to Article IV.  

3.2.3. Holistic, Integrated Individualization During Single-Drug and Multidrug Therapy 

Product features for individualization co-exist within the same dosage form. 

Consequently, beyond attribute-specific design requirements for individualized 

therapy, consideration of the interplay between product features is crucial to enabling 

holistic individualization of the entire dosage form . One commonly encountered 

interdependency involves the relationship between the dose and size of dosage forms 

(Article II). Increasing or decreasing the dose strength of a dosage form is often met 

with a corresponding increase or decrease, respectively, in the size of a dosage form. 

This perceived dose flexibility might intend to promote optimal health outcomes 

through individualized dosing. However, without considering the size constraints of 

dosage forms to facilitate handling or swallowability, this approach may ultimately 

hinder treatment outcomes via reduced acceptability. Consequently, the constraint of a 

fixed dosage form size is applied to all dosage form concepts investigated and 

demonstrated in Articles II, II, and IV in this thesis. Other interdependencies include 

the relationship between the dose strength and drug release kinetics at a fixed dosage 

form size (Article III) or the relationship between the API and the drug release 

performance (Article IV). Product design for individualized therapy therefore demands 

individualization of a given product feature according to the design requirements stated 

in sections 3.2.1 and 3.2.2. without hindering individualization of other product features 

in a dosage form. This corresponds to an overarching product design requirement for 
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individualized therapy being simultaneous, independent individualization of each 

product feature (multifunctional individualization), i.e., the ability to individualize each 

product attribute as required without adversely impacting the ability to individualize 

other attributes. As described in section 1.2 and depicted in Figure 3, Articles II, III, and 

IV were each based on distinct requirements for different product features from the 

framework of design requirements proposed in Article I. However, they were all in the 

context of multifunctional individualization with a progression towards higher product 

complexity and full multifunctionality from Article II to IV. To enable the provision of 

individualized products to patients, this overarching product design requirement on an 

individual product level is embedded into the requirement for enhanced product variety 

in the total product offering. 

 

During individualization, each subgroup of the patient population, and upon further 

stratification, potentially each individual, will possess a distinct set of needs to be met 

by the product. Effectively targeting these needs will require provision of a diverse 

product offering (i.e. increased product variety) at smaller production volumes, 

consistent with the specific subgroup or specific individual instead of the population 

average 40, 41, 116. This requirement for enhanced variety provision is at the heart of access 

to individualized therapy, where the production platform is expected to play a pivotal 

role.  
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4 
Production Platforms for Individualized Pharmaceutical Therapy 

4.1. Mass Production 

Mass production is defined as “the production of large quantities of the same kind of 

product for a sustained or prolonged period of time” 120. It has existed for over a century, 

since 1913 121-123, reaching its peak in 1955 122, 123. Initially, mass production arose in 

response to an expanding global population and improved standards of living, which 

led to a large, predictable, continuous demand of commodities from the end-user and a 

need for enhanced productivity 120, 123.  

 

As a production approach characterized by economies of scale, i.e., the cost-effective 

provision of large volumes of standardized products, mass production creates value for 

the end-user by promoting affordability and timely, reliable access to high quality 

standardized products. Economies of scale are also well-suited to assuring productivity 

and cost feasibility for the manufacturer. These attributes are satisfied via several 

means: fixed and specialized production lines designed to suit standardized processes 

and materials, specialized machining equipment primarily arranged sequentially to 

promote rapid, large volume production of the same product within tight tolerances for 

variations between identical products, well-defined operations, high quality standards, 

and high inventories due to a made-to-stock approach 124. Interchangeable part 

production and moving assembly lines are key enablers of mass production 120, 121, 125.  

 

The efficiency and economies of scale of mass production explain its place as the 

currently dominant production paradigm in the pharmaceutical industry, where its 

success is rooted in driving population-wide patient access to pharmaceutical products. 

Amidst a growing need for individualized pharmaceutical products, key attributes of 

mass production, i.e., the requirement for high quality, affordable products delivered in 

a timely manner, persist. However, the demand originating from predefined patient 

populations is required to be sufficiently large and represent sufficiently homogeneous 
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needs over time for mass production to be suitable. This is not the case during 

individualization. Increased overall product variety at smaller production volumes for 

stratified patient groups is a critical challenge for production approaches intending to 

support provision of individualized therapy 39, 40, 42. The current paradigm of mass 

production employed in the pharmaceutical industry is characterized by the opposite, 

i.e., high production volumes and low product variety, to drive productivity 121. Whilst 

efficiency and cost-effectiveness are indeed desirable attributes during 

individualization, as is the fact that they are employed to drive patient access, mass 

production currently offers inadequate flexibility and product variety 39, 126 to meet the 

requirements of individualization.  

 

Consequently, this thesis explores the necessary shift towards alternative production 

approaches that may support the provision of individualized products whilst maintaining 

the benefits of mass production. This is accompanied by the implications such a shift 

might have for product design and manufacturing (research questions ii and iv). 

4.2. Mass Customization 

Mass customization is defined as a “paradigm for developing, producing, marketing and 

delivering affordable goods responding to the needs and demands from the individual 

customer” 121, 127-129. Mass customization emerged in the late 1980’s due to a demand for 

higher variety 121, 126, 129. The term was coined by Davis 130, 131 but later popularized by Pine 

129, with automotive and electronics manufacturers being early adopters 132. Unlike mass 

production, mass customization is driven by a heterogeneous and volatile demand 123, 

133 and need for high variety. Mass customization is therefore characterized by 

economies of scope, with its primary value proposition for the end-user being access to 

affordable, personalized products 123, 130, 133, 134. Table 2 summarizes and contrasts mass 

production and mass customization on the basis of their fundamental drivers, 

overarching principles, characteristic traits, and the evolving role of the end-user. 

 

The contribution of this thesis in the context of pharmaceutical production is, firstly, to 

suggest mass customization as an alternative to mass production on the basis of its 

potential suitability for the provision of individualized therapy and subsequently, 
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demonstrate how mass customization principles may be translated into the 

pharmaceutical value chain (research question ii).  

Table 2. Summary and comparison of key differentiators between mass production and mass 

customization. 

Although mass customization is a well-established production concept in other 

manufacturing industries, attempts at translation to the pharmaceutical value chain are 

minimal 42, 135, leading to an underexplored opportunity for making individualized 

products a reality. Figure 7 emphasizes the contrast between the number of publications 

in the field of personalized medicine (total of 115768 hits), as reported in Figure 4, 

compared to publications mentioning “mass customization”, “mass personalization”, or 

“mass individualization” within this search (total of 15 hits).  

Fig. 7. Contrast between the overall research activity in the field of personalized medicine with that of 

mass customization in personalized medicine. 

Key Differentiators Mass Production Mass Customization 

Drivers Predictable, consistent demand Heterogeneous, volatile demand 

 Need for productivity Need for variety 

Overarching principle Economies of scale Economies of scope 

Characteristic traits Standardization  

(of products and processes) 

Combined standardization and 

differentiation  

(of products and processes) 

 Made-to-stock  

(using high inventories) 

Made-to-order  

(using delayed differentiation)  

End-user role Recipient of products Selector of products 



Chapter 4 

22 

The first article by Pallari et al in 2010 136 involved mass customization of foot orthoses 

using selective laser sintering. Note that articles referring to these terms only within 

their reference lists were excluded. Furthermore, this search contains the indexed 

articles appended in this thesis as well as articles that transiently mention mass 

customization within a single introductory or concluding sentence without an 

evaluation or demonstration of mass customization for individualized pharmaceutical 

therapy. The 15 articles mentioning mass customization in personalized medicine are 

therefore an overestimate of actual activity in this field. This confirms a considerable 

gap despite the potential of mass customization for individualized therapy, which this 

thesis aims at beginning to fill.  

 

The heterogeneous customer base that drives the need for mass customization outside 

of the pharmaceutical industry parallels the heterogeneity in patient populations, 

whereby the satisfaction of individual patient needs depends on the alignment of 

product attributes with these individual needs 137. This is consistent with the patient 

needs-driven product design described in the previous chapter, rendering mass 

customization a promising production paradigm for the provision of individualized 

pharmaceutical products. During individualization, patients are stratified into 

progressively smaller segments, each with unique needs from the pharmaceutical 

product. Figure 8 depicts the increasing heterogeneity of the customer base in each 

production scenario during stratification, which is accompanied by a need for 

progressively increased product variety at progressively smaller production volumes, 

corresponding to subsets of the patient population. This highlights the required 

progression from mass production towards mass customization and potentially to 

individuals under a full customization paradigm. This progression is met by the evolving 

role of the typical end-user (Table 2). 

 

Unlike traditional mass production where the end-user is a recipient of a product, mass 

customization considers the end-user integrated into the design and development 

process through active involvement 123, 138. This facilitates selection of the product most 

suited to their needs and preferences. 
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Fig. 8. Progression of production paradigms required to support the provision of increased product 

variety at decreasing production volumes. 

Personalized production has occasionally been described as a successor to mass 

customization, where it is primarily differentiated from mass customization by the 

extent of customer involvement, where the customer chooses the product during mass 

customization but designs the product during personalization 122, 125, 126. In other 

literature, “personalization” has been distinguished from mass customization, mass 

personalization, and mass individualization by its association with increasing costs 139. 

Neither mass customization nor personalized production are represented in the 

mainstream pharmaceutical production landscape. It therefore becomes imperative to 

consider whether the aforementioned distinctions applied in other industries are 

translatable to a pharmaceutical production context.  

 

Pharmaceutical end-users are patients who, unlike the end-users in nonpharmaceutical 

branches of industry, arrive at an individualized treatment scenario in consultation with 

healthcare providers. Patients and healthcare providers alike represent crucial resources 

during the integration of individual needs and preferences into the design of products 

for individualized therapy. Currently, neither of their roles involve the autonomous 

design or selection of the pharmaceutical treatment. Furthermore, the pharmaceutical 

product also differs from typical personalized consumer goods in that its function is not 

only driven by the specifications of the customer but relies upon the competencies and 

design inputs of several stakeholders in the healthcare system for its successful use. 

Consequently, in this thesis, mass customization refers to a strategic research direction 

encompassing the entire mass customization system, which collectively includes mass 

customization and/or mass individualization and/or mass personalization. All are 
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geared towards affordable variety provision. To avoid confusion, the descriptors full 

customization or fully personalized production are used to describe the provision of 

high product variety at high cost, similar to the craft production of the pre-mass 

production era.  

 

In order to prevent the typically high costs associated with variety provision, mass 

customization intends to harness the flexibility and variety of full customization whilst 

retaining the efficiency and economies of scale of mass production. Facilitating access 

of individualized pharmaceuticals to patients through the provision of affordable variety 

may be achieved through mass customization’s key principles of modularization of the 

product and process, process flexibility, postponement (a delayed point of product 

differentiation in the supply chain), and supply chain integration 123, 126, 132, 135, 137, 140-148. 

The articles comprising this thesis primarily explore product modularization. 

 

Modularization has been defined as “the extent to which the components of a product 

can be separated and recombined in order to make variants of the same product” 149. As 

per this definition, in the context of pharmaceutical products for individualization, 

product features (including the API, dose strength, drug release functionality, 

appearance, etc.) can be considered discrete functional modules, existing as module 

variants, which can be combined in varying configurations to achieve overall product 

design modularity and variety. In order for modularization to be harnessed for mass 

customization, it is important to distinguish product modularization for mass 

customization from product modularization for mass production or full customization. 

Modular products are ubiquitous on the market and in pharmaceutical academic 

research as granules, pellets, layered dosage forms, and compartmentalized structures 

39, 102, 119, 150-165. However, they typically lack reconfiguration either due to fixed assembly 

of module variants to generate a final dosage form or due to the existence of identical 

modules comprising a dosage form. Consequently, without reconfigurability, they are 

not designed for the provision of affordable variety characteristic of mass customization. 

For further details on theoretical considerations for pharmaceutical product 

modularization and the design and performance demonstration of a modular product 

based on reconfigurable assembly, the reader is referred to Article III.  
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4.2.1. Mass Customization Opportunities for Enabling Access to Individualized Therapies  

Product modularization is used in this thesis to not only promote the provision of 

affordable variety but also to meet specific patient-centric product design requirements 

for individualization such as the overarching product design requirement for 

multifunctional individualization. The modular dosage form concepts described in this 

thesis contain unique functional modules which may, in turn, consist of smaller 

building blocks, called components, from which each module is constructed. This 

results in a hierarchy of length scales in order of decreasing size from dosage forms ˃ 

modules ˃ components.  

 

Article III demonstrates how reconfigurable modularization can enable multifunctional 

individualization, enhance product variety, and potentially facilitate both process 

flexibility and postponement. For details on the design of the product concept and its 

fabrication, the reader is referred to the appended Article III. This work was based upon 

a modular dosage form comprising any combination of two module variants from three 

available module variant designs. These module variants contain smaller components 

called the core, cup, and lid. Figure 9 shows the drug release kinetics of each module 

variant.  

Fig. 9. Mean % drug release vs. time from single modules of three variants (green, red, and blue solid 

lines). Faded areas indicate the range in % drug release from duplicate experiments. Adapted with 

permission from https://doi.org/10.3390/pharmaceutics12080771 (Article III), © 2020 Govender et al. 

licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode).  

https://creativecommons.org/licenses/by/4.0/legalcode
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All three module variants depicted in Figure 9 had identical drug-containing, rapidly 

erodible cores with an identical dose fraction of MS (40% w/w MS: 20% w/w PEG 1500: 

40% w/w VA64). The reader is referred to Table 1 in Section 1.2. of this thesis summary 

for a reminder of the material systems used in this thesis and their abbreviations. All 

three module variants also had identical water-insoluble polylactic acid (PLA) cups 

enclosing the bottom and sides of the core, allowing the surface area available for drug 

release to be controlled by the top surface of each core. The presence and/or type of lid 

provided each module variant with its unique drug release kinetics and was the only 

component that was not standardized between modules. The module variant without a 

lid (green line) provided rapid drug release. The module variant with a water-soluble 

polyvinyl acetate (PVA) lid (blue line) provided an initial lag period corresponding to 

the lid dissolution time, followed by rapid drug release from the core. The module 

variant with a water-insoluble PLA lid with central orifice provided a reduced surface 

area for initial hydration of the core and consequently, initially slower drug release 

kinetics. These three single modules release kinetics were sufficiently distinct such that 

they could be reconfigured into a final dosage form, which comprised two module 

variants in this study.  

 

Figure 10 shows the resulting dosage form release kinetics, upon combining two 

identical or two unique modules to represent a dosage form. Regardless of whether 

identical modules (Figures 10A, 10B, and 10C) or unique modules (Figures 10D, 10E, and 

10F) are combined, the composite dosage form release kinetics was a predictable net 

effect of that of its constituent modules. In modular dosage forms that only contain 

identical modules and therefore do not enable reconfiguration, only three dosage from 

release profiles would result from three module variants (Figures 10A, 10B, and 10C). 

Therefore, combining unique modules together to enable reconfiguration is crucial to 

obtain enhanced product variety. In this case, enhanced variety in dosage form release 

kinetics was obtained independent of the dose and size of the dose form, with six dosage 

form release profiles obtained from only three module variants. This is one of the main 

design considerations that differentiates this modular product design approach from 

conventional modular product archetypes typically encountered on the market, for 

example, granules, pellets, or minitablets.  
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Fig. 10. Mean dose released vs. time from dosage form variants combining either two identical modules 

(10A, 10B, and 10C) or two distinct modules (10D, 10E, and 10F). Faded areas indicate the range in the 

dose released at each time point from duplicate experiments. Mean dose released vs. time from single 

modules used to construct the dosage form are indicated with a dashed line in each frame. Adapted 

with permission from https://doi.org/10.3390/pharmaceutics12080771 (Article III), © 2020 Govender et 

al. licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode). 

Articles II and IV complement this demonstration in Article III by exemplifying how the 

core of such a construct could also be modularized to facilitate reconfiguration and 

enhanced variety in the dose alongside the drug release. Whilst Article III has 

demonstrated enhanced variety from a conceptual level, Articles II and IV explore key 

technical challenges encountered when extending modular product concepts towards 

extremes, with the aim of individualizing the dose (Article II), the release (Article III) 

and the API (Article IV) simultaneously and independently of each other using 

reconfigurable modularization. Furthermore, having distinct module variants in a 

dosage form does not inherently allow reconfiguration unless the product design allows 

for varying combinations of modules during assembly. Consequently, this proposed 

modular product design is also differentiated from modular combination products that 

are based on fixed assembly, which are not designed for reconfigurability. 

 

The ability of modularity to promote the provision of affordable variety, as required for 

individualized therapy, depends on at least two characteristics, namely, a correlation 

https://creativecommons.org/licenses/by/4.0/legalcode
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between the physical and functional architecture of the product and the minimization 

of interactions amongst the physical components of a modular product 144. Interestingly, 

these are the same characteristics that allow reconfigurable modularization to meet the 

overarching patient-centric product design requirement for individualized therapy, 

namely, simultaneous and independent individualization of multiple product features 

in a controlled and predictable manner. In addition to the promotion of product variety, 

these characteristics may lead to a number of additional benefits associated with 

reconfigurable modularization. These include, amongst others, economies of scale at 

the component level, ease of product change, and flexibility in use 144. In this thesis, 

these theoretical opportunities have been demonstrated via several design choices that 

were integrated into a single modular product concept for reconfiguration in Article III, 

some of which are listed below. 

▪ Economies of scale at the component level was achieved by a balance 

between standardization and differentiation in components. Most components 

were standardized (core and cup) with only one unique component (lid). 

Furthermore, the number of module variants will play a key role in achieving 

economies of scale and was limited to three variants in Articles II and III. In 

addition to economies of scale at the component level, modularization also 

enables process- and quality-control at the component level.  

▪ Enhanced product variety was achieved through a lack of interactions between 

modules, allowing various combinations of module variants to be assembled into 

a final dosage form. Article IV builds upon enhanced variety by exploring a higher 

degree of product modularity than Article III and a widened applicability of the 

concept to APIs of varying characteristics. 

▪ Flexibility in use, i.e., multifunctional individualization, was achieved by spatial 

separation of the dose-controlling and release-controlling functionalities, each 

of which were denoted by a specific dose-controlling or release-controlling 

structural component.  

▪ Potential for process flexibility was enabled by a design that facilitates 

independent fabrication of each component prior to assembly, allowing parallel 

component manufacturing to occur, if desired.  
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▪ Potential for postponement, was enabled by allowing the unique component 

(the lid) to be the last component to be assembled. 

 

Product design strategies may be used to harness and integrate a wide assortment of 

mass customization opportunities to meet the requirements of individualized therapy. 

In addition to harnessing these mass customization opportunities, key mass 

customization challenges will also be encountered, of which the co-development of 

product, process and production 123 is the major challenge addressed in Chapter 7 of this 

thesis. To this end, Chapters 3 and 4 have together explored integrated development of 

the product design and production approach. The next chapter will introduce and 

evaluate the process considerations that are critical to the realization of individualized 

therapy.  
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5 
Manufacturing Technologies for Individualized Pharmaceutical Therapy 

Modern manufacturing networks comprise the manufacturing plants, suppliers, and 

dealers responsible for producing and delivering final products to the market 166. 

Manufacturing networks are beyond the scope of this thesis. However, specific 

manufacturing technologies have a pivotal role to play during individualized therapy. 

Generating the intended product design for individualization is only one contribution 

of the manufacturing technology. To drive patient access to individualized therapies, 

the manufacturing technology also needs to abide by and/or enact the principles of the 

production approach. In this dual role, the manufacturing technologies act as the bridge 

between product and production. Manufacturing technologies based on continuous 

manufacturing 167-172 and additive manufacturing 49, 173-186 principles have gained 

attention in recent years. Current literature reveals that several technologies 

incorporating either or both principles are associated with potential for 

individualization (Article I).  

 

The contribution of this thesis, beyond elucidating the dual role of the manufacturing 

process in enabling individualized therapy, includes providing a generic list of 

manufacturing process requirements for individualized pharmaceutical products, 

evaluating current and emerging manufacturing technologies for their existing suitability 

for individualization, and elucidating key material and manufacturing trade-offs 

encountered, which form the basis for suggested future developments in this space 

(research question iii). 

5.1. Manufacturing Process Requirements for Individualization  

Once design requirements for various pharmaceutical product features were established 

based on key patient-centric drivers (Article I and Chapter 3 of this thesis summary), 

various manufacturing technologies were then evaluated for their ability to deliver 

individualization according to the requirements stipulated in Chapter 3 of this thesis. 
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Manufacturing technologies associated with the field of personalized medicine were 

identified using the Scopus scientific database search described in Article I. The choice 

of database was determined by the need for a comprehensive, multidisciplinary 

collection of literature spanning all scientific disciplines relevant to this thesis e.g. 

medicine, pharmaceutical sciences, materials science, and engineering. The selection of 

manufacturing technologies for evaluation was based upon their relative prevalence in 

the database search results and the fact that they represent a broad design space in 

terms of varying degrees of use in pharmaceutical applications, varying manufacturing 

and material principles, and applicability to different product concepts. Shortlisted 

technologies included HME 171, 187-194, injection moulding (IM) 171, 194-199, FDM 48, 176, 178, 196, 

197, 200-207, drop-on-demand additive manufacturing technologies 44, 45, 208-211, and particle 

replication in non-wetting templates 151, 212-216. For a description of each technology and 

their implementation in pharmaceutical applications, the reader is referred to Article I.  

 

Regardless of the processes eventually selected for demonstrating product concepts for 

individualized therapy in this thesis, certain manufacturing process requirements for 

individualization of each product feature need to be satisfied, which are collated in 

Table 3. Some manufacturing process requirements are of specific importance for the 

tailoring of a certain product feature, for example, payload flexibility for dose tailoring, 

however, Table 3 reveals that many process requirements are common for 

individualization of several product features. In fact, since these product features co-

exist within the same product, all manufacturing process requirements for 

individualization need to be satisfied for holistic, integrated individualization of the 

entire dosage form and to promote independent, multifunctional individualization. To 

assess suitability for individualization, processes in solid oral dosage form mass 

production were used as references in a delta analysis of each selected technology, since 

they are the current state of the art in pharmaceutical production. This suitability 

analysis revealed that, whilst these technologies did improve flexibility of many of these 

features, no single technology could inherently satisfy all requirements concurrently. 

This indicates that, in future, adapted, hybrid or new technological development will be 

crucial for achieving individualized therapy. 
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Table 3. Manufacturing process requirements for individualized pharmaceutical products. 

Product Feature Manufacturing Process Requirements for Individualization 

API and 
composition 

Material diversity 

Equivalent capability to process various APIs and excipients with a wide range of 

properties.  

Dose strength Payload flexibility 

Feedstock drug content homogeneity across a wide drug loading range. 

Precision dispensing  

Large volume and small volume precision dispensing is required, the latter of 

which is crucial to create small feature size geometries and fine tune the dose. 

Drug release 
functionality 

Material diversity 

Equivalent capability to process various API and excipient combinations with a 

wide range of properties.  

External design flexibility 

Ability to generate different geometries before or during final dosage form 

assembly. 

Internal design flexibility 

Ability to fabricate internal compartments at different length scales e.g. an 

ability to incorporate channels within an oral dosage form or an ability to 

control porosity through structural design. 

Precision dispensing  

A co-requirement that accompanies material diversity and external and internal 

design flexibility for precise control of release through material selection and/or 

geometry. 

Appearance Material diversity 

Equivalent capability to process materials with a wide range of properties to 

generate a variety of dosage form types. 

External design flexibility 

Ability to generate different geometries that dictate final dosage form shape and 

size. 

Precision dispensing  

Small volume precision dispensing is required for small feature size geometries 

and optimal surface finish in final dosage forms. 

Sensory properties Material Diversity 

Equivalent capability to process materials with a wide range of properties.  

External Design Flexibility 

Coating capability for taste masking. 
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Nevertheless, of the manufacturing process requirements listed in Table 3, FDM and IM 

offered unique capabilities of compartmentalizing and coating, with FDM’s freeform 

fabrication indicating particular benefits for both interior and exterior design flexibility 

with high geometric complexity 119, 154, 160, 178, 185, 205, 217, 218. Without this capability, 

complete requirements for appearance, sensory properties, and especially the drug 

release functionality, would not be achievable. Therefore, FDM was selected as one 

process warranting further investigation in this thesis. However, conventional FDM 

typically requires upstream processing by HME for its operation. Incidentally, per the 

suitability analysis, maintaining a homogeneous melt during deposition from the FDM 

nozzle is dependent on the generation of homogeneous melts by HME, particularly at 

small length scales relevant for fine tuning product features such as the dose. HME was 

also expected to allow greater API payloads to be incorporated into its filament 

extrudates. Together, FDM and HME may be viewed as complementary with respect to 

the product features they are suited to individualize. This contributed to their rational 

selection as the focal process technologies in this thesis.  

5.1.1. Additive Manufacturing of Pharmaceuticals (Technology in Focus: FDM) 

Additive manufacturing is characterized by layer-by-layer deposition of materials to 

generate a three-dimensional object, based on a virtual computer aided design (CAD) 

model or a scan 186, 219, 220. Several additive manufacturing process categories have been 

described by ISO/ASTM 52900, which defines a common set of standards on additive 

manufacturing 221. These process categories include material extrusion, material jetting, 

binder jetting, powder bed fusion, VAT polymerization, directed energy deposition, and 

sheet lamination 182, 222, of which only the first five in this list have applications in the 

pharmaceutical research setting thus far. The earliest additive manufacturing 

technologies date back to the 1980’s and were introduced as a means to achieve rapid 

prototyping. Since then, applications of additive manufacturing have been extended to 

include rapid tooling and rapid manufacturing of components of products or entire 

products 222. Although additive manufacturing has been employed in several 

engineering and biomedical applications, as well as in a few clinical pharmaceutical 

applications, it is not yet a routine manufacturing technology across the entire 

pharmaceutical industry 186. Nevertheless, growing research activity in additive 
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manufacturing of pharmaceuticals is often attributed to advantages such as process 

flexibility, reduced material waste, the generation of complex parts, and the ability to 

introduce product variety through altered CAD models 220, 223. Such advantages make 

additive manufacturing approaches promising for the manufacturing of dosage forms 

tailored to individual patient needs 173, 186. As described above, of the additive 

manufacturing process categories, this thesis focuses on the material extrusion-based 

additive manufacturing process, FDM.  

 

FDM is currently the most widely investigated additive manufacturing technology for 

pharmaceuticals in the research setting and the most dominant additive manufacturing 

technology for oral formulations 48, 177, 178, 196, 201-207, 224. For specific remarks on current 

and ongoing research on FDM in pharmaceutical applications, the reader is referred to 

the appended Articles I, II, and III, and the references contained therein. In addition to 

the affordability and availability of FDM printers for lab-scale use, its benefits are 

analogous to those of additive manufacturing technologies in general, and therefore 

largely attributed to complex product design capability and process flexibility. Like 

additive manufacturing technologies in general, FDM is based on digitally controlled 

deposition of successive layers of material to generate a three-dimensional object from 

a digital model. Specifically, FDM conventionally involves the feeding of a thermoplastic 

polymeric filament into a heated chamber leading into a heated nozzle through which 

the molten or softened polymer is extruded and deposited onto a platform, where it 

solidifies (Figure 11) 178. FDM is preceded by HME in order to generate the filament 

feedstock required for subsequent printing.  

Fig. 11. FDM process from filament feedstock input to solid three-dimensional object output. 
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5.1.2. Hot Melt Extrusion  

HME generally involves feeding of thermoplastic material via a hopper into a heated 

barrel containing either a single screw or two co-rotating or counter-rotating screws 

(Figure 12). Upon feeding, exposure to heat from the barrel and shear stress from 

rotating screws subject the material to melting, conveying, mixing, and ejection through 

a die 48, 187, 190, 191. HME, when applied to pharmaceutical materials, involves the use of 

an API in a polymeric carrier in a minimum of a binary system. HME occurs upstream 

of the FDM process when applied to the generation of filaments for FDM, with both 

processes typically operating as discrete unit processes instead of in continuous mode. 

Unlike FDM, which currently lacks widespread industrial-scale applications for 

pharmaceutical solid oral dosage forms, HME is, in fact, one of the most utilized 

industrial-scale solid dispersion manufacturing processes 187, 225-228. The following 

section summarizes the suitability of HME and FDM with regards to each of the 

manufacturing process requirements for individualization.  

Fig. 12. HME process from raw material (API and thermoplastic polymer) input to solid dispersion 

output. 

5.2. Suitability of Hot Melt Extrusion and Fused Deposition Modelling for Meeting 

Manufacturing Process Requirements for Individualization  

5.2.1. Material Diversity 

The range of processible APIs and excipients by HME and FDM are comparable and 

currently narrower than the total range of approved APIs and excipients, therefore 

absolute multifunctionality is not yet possible with either technology. The range of APIs 

are limited to those that are not thermosensitive 225 and excipients used are restricted 
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to thermoplastics. Regardless, unlike direct compression and wet granulation 

commonly employed in solid oral dosage form mass production, HME and FDM may 

remain advantageous for oxygen-sensitive, moisture-sensitive, and poorly water-soluble 

APIs 191. Furthermore, their modular designs, with separate hoppers, barrels, and exit 

die configurations for HME and multiple nozzles for FDM, may allow interchangeability 

of excipients and APIs and simultaneous processing of multiple APIs.  

5.2.2. Payload Flexibility 

Due to its ability to achieve dispersive and distributive mixing, HME can potentially 

incorporate APIs across a wide drug loading range, whilst maintaining homogeneity of 

the drug in the polymer(s). Material compatibility plays a key role in payload flexibility 

regarding solubility or miscibility of the API in the selected polymer(s) and potential 

API–polymer interactions. The incorporation of high drug loads is of critical importance 

since restriction to filaments with low drug loads could result in unacceptably large 

dosage forms or an unacceptably high pill burden, depending on the required dose. 

Since HME provides mixing and the resulting feedstock for downstream processing by 

FDM, FDM payload flexibility is primarily derived from that of HME.  

5.2.3. Precision Dispensing 

The ability to accurately and precisely dispense both small and large volumes through 

nozzles and dies, which requires appropriate material rheological properties 211, 229, is 

critical to fine tuning product features such as the dose. Precision dispensing from the 

HME die is largely dependent upon which downstream processes are available for 

sectioning of the extrudate. Varying shapes and diameters of the extruder dies may 

allow the thickness or diameter of the extrudates to be adjusted. When higher drug 

loads are incorporated into the resulting extrudate during HME, in the case of drugs 

remaining in crystalline form, there may be a hindrance to ejection through the FDM 

nozzle. FDM processing temperatures can typically reach higher values than required 

for melting pharmaceutical materials, therefore, this depends largely on the window 

between the melting temperature and degradation temperature of the API. Small 

volume dispensing precision depends on printer resolution 230 and the ability to eject 

materials, which have different viscosities, through the nozzle 231. Nevertheless, complex 
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layered or compartmentalized structures have been demonstrated previously with 

FDM, allowing the API layer or compartment to contain a polymer with lower viscosity 

upon melting surrounded by a structurally supportive polymer 218, 232, 233.  

5.2.4. External and Internal Design Flexibility 

External and internal design flexibility are required primarily for the dosage form 

appearance and for the tailoring of drug release, where both materials and geometry 

play a key role 163, 234, 235. In this thesis, compartmentalizing capabilities are favoured for 

independent control of different product features through their spatial separation 

(Article III). Despite an ability to produce a variety of shapes through varying exit die 

configurations, for example, granules or pellets, HME lacks compartmentalizing 

capabilities 190, 236. Furthermore, there is a reliance on downstream processing to 

generate the final dosage form. FDM, which represents a potential downstream process, 

is capable of freeform fabrication of a wide variety of sizes and shapes with varying 

geometric complexities. FDM is particularly advantageous for the simultaneous 

processing of several materials into the final product or module geometry, allowing 

coated, multi-layered, or compartmentalized dosage forms to be generated. However, 

the lower limit for printing smaller sizes is subject to the same considerations described 

in Section 5.2.3.  

 

Interestingly, the process requirements for individualization are also the key 

manufacturing process challenges for individualization as technologies are applied to a 

wider spectrum of materials. This indicates that process requirements are not only 

intrinsic to the process capabilities but often depend on the materials that are being 

processed. The next section highlights some of these material and manufacturing trade-

offs encountered in this thesis.  

5.3. Material and Manufacturing Trade-Offs 

Despite the apparent suitability for HME and FDM in meeting the aforementioned 

manufacturing process requirements for individualization, this thesis unveiled key 

material and manufacturing trade-offs, which need to be addressed in order to enhance 

the full technology potential for individualization. This section focuses on FEL in EC 
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(Article II), PLA (Article III), and PVA (Article III), at the material–manufacturing 

technology interface.  

5.3.1. Dispensing Precision and Material Diversity During FDM 

Figure 13, which presents the percentage relative standard deviations (% RSD) in mass 

during FDM dispensing of various materials at comparable print volumes, shows that 

FDM dispensing precision is not an intrinsic technological capability but rather shows 

a strong dependence on the specific material being processed.  

Fig. 13. % RSD in mass during FDM dispensing of various materials at comparable volumes including 

PLA, 25 mm3, n=20; PVA, 32 mm3, n=20; and FEL in EC, 25 mm3 (hollow bar) and 39 mm3,(solid grey 

bar), n=29. 

Figure 13 shows that the drug-containing filament has a considerably lower dispensing 

precision than pre-manufactured PLA and PVA filaments at the volumes dispensed 

from the FDM nozzle. Despite an acceptable precision in dispensing both PLA and PVA 

within 5% RSD in mass, PVA showed a lower dispensing precision (4.6% RSD) than PLA 

(1.8% RSD) at similar printing volumes. Two considerations are important for 

dispensing precision at the material–technology interface. Firstly, material 

compatibility with the feeding system and secondly, deposition from the nozzle. The 

typical FDM feeding system, as shown in Figure 11, consists of a feed mechanism 

comprising two drive gears whose rotation drives the filament downwards towards the 

heated nozzle. The filament feedstock acts as the piston, which pushes the molten or 

softened material out of the heated nozzle onto the platform. Filament mechanical 

properties are therefore crucial for feeding through the drive gears 237. The FEL in EC 

system forms a highly brittle feedstock with insufficient flexibility to withstand 

compression by the drive gears. The imprecision shown for the FEL in EC system reflects 
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a reliance on manual feeding in this study (Article II) to circumvent the lack of 

feedability through the drive gears. For such systems, inclusion of plasticizers or 

polymer blends may improve mechanical properties to facilitate consistent, automated 

feeding 201, however, this may involve further trade-offs with final product performance 

or stability. Suboptimal feeding of drug-containing filaments can indeed reduce the 

overall material diversity of FDM. Notably, the pace of technological evolution in this 

area has, since the process design suggestions put forth in Article I and since the 

execution of these studies in this thesis, resulted in modified feeding mechanisms to 

those of typical FDM that can avoid the need for filament feedstocks altogether 238-240. 

The FEL in EC bar in Figure 13 represents the average dispensing precision for three 

drug loads, namely, 5% w/w FEL in EC, 30% w/w FEL in EC, and 50% w/w FEL in EC. 

Although different material viscosities for each of these compositions were expected to 

influence dispensing precision from the nozzle, no correlation was noted between the 

dispensing precision and the drug load in the filament. In this case, the reliance on 

manual feeding had a more prominent influence on dispensing precision, which could 

have masked any imprecision arising from material viscosity differences at the nozzle 

end.  

 

In comparison, PLA and PVA exhibited considerably improved dispensing precision. 

They were both commercially available, prefabricated filament feedstocks amenable to 

consistent, automated feeding through the FDM drive gears. Here, material viscosity 

differences at the nozzle end are expected to contribute more to dispensing precision. 

Provided the temperature processing windows are wide enough, nozzle temperature 

can be adjusted to allow extrusion through the nozzle without degradation and without 

deformation of the filament between feeding gears. Although temperature adjustments 

are expected to contribute significantly to the materials’ melt viscosities and feedability, 

the feasibility of using fine adjustments in temperature to modulate viscosity effects at 

the nozzle end requires consideration of the heat distribution in the filament over the 

short residence times at the nozzle. Feedability can also be related to other material 

properties, like hygroscopicity in stored filaments. Taken together, this trade-off reveals 

a multidimensional material influence on dispensing precision, potentially exacerbated 

at low printing volumes.  
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5.3.2. Dispensing Precision and Internal/External Design Flexibility 

Figure 14, from right to left, shows a gradual increase in % RSD in mass with a decreasing 

print volume (corresponding to a decline in dispensing precision with decreasing print 

volumes), eventually reaching a sharp increase in % RSD in mass beyond a certain low-

volume threshold with the FEL–EC system investigated in Article II.  

Fig. 14. % RSD in mass during FDM dispensing of FEL in EC filaments at progressively smaller print 

volumes, n≥27. Adapted with permission from https://doi.org/10.1007/s11095-019-2720-6 (Article II), © 

2019 Govender et al. licensed under CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/legalcode). 

These measurements are in agreement with an observed over-deposition of residual 

molten or softened material from the nozzle end at the end of the print. Even with 

materials that feed consistently and automatically, like PLA and PVA, this over-

deposition at the end of the print may still occur, contributing to potential dispensing 

imprecision at small feature sizes. Figure 15 shows X-ray micro-computed tomography 

images, highlighting the over-deposition occurring for both PVA and PLA to varying 

extents (Article III). These may not be significant at large print volumes, corresponding 

to final dosage form sizes, but become critical at the small volumes associated with 

modular products and small feature size geometries. Due to the patient-centric size 

constraint on solid oral dosage forms to be swallowed intact, modularization inevitably 

demands small volume dispensing precision. Small feature sizes are also found in 

geometrically complex, non-modular dosage form designs and are important for 

achieving optimal surface finish. This trade-off is therefore not exclusive to modular 

product designs, although they are the focus of this thesis.  

https://doi.org/10.1007/s11095-019-2720-6
https://creativecommons.org/licenses/by/4.0/legalcode
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Fig. 15. X-ray micro-computed tomography images showing over-deposition from the FDM nozzle in 

printing PLA and PVA. Adapted with permission from https://doi.org/10.3390/pharmaceutics12080771 

(Article III), © 2020 Govender et al. licensed under CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/legalcode). 

Importantly, these trade-offs occur as a consequence of the process technologies’ 

current abilities to individualize products according to the patient-centric product 

design requirements for individualized therapy. They are neither introduced by mass 

customization nor modularization as a product design strategy to meet these 

requirements. As indicated previously, several of the apparent benefits of the process 

technologies for individualization are not merely intrinsic to the technology and largely 

depend on the material system being processed. This emphasizes the need for an 

integrated co-evolution of product–process–production approaches for individualized 

therapy, which will be discussed further in Chapter 7. Even when these trade-offs are 

appropriately managed, in order to bring promising manufacturing technologies closer 

to industrial realization of individualized pharmaceutical therapy, in addition to 

optimized process capabilities that respond to established patient needs, a systems 

perspective is required to consider factors such as cost, speed, reliability, and quality of 

produced parts 222, 223, 241. So far, the discussions in this thesis have progressed from the 

product to the production approach to the process. In light of the material and 

manufacturing technology trade-offs highlighted in this section, the following chapter 

comes full circle and returns to the product dimension to explore the material systems 

in focus in this thesis.  

 

 

https://creativecommons.org/licenses/by/4.0/legalcode
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6 
Melt-Extruded Polymeric Solid Dispersions in Individualized Pharmaceutical 

Therapy 

The phrase “solid dispersions” has been used to broadly describe formulations of a drug 

finely dispersed in a carrier 242-245. In this thesis, these carriers are also solids. Solid 

dispersions may be classified as crystalline or amorphous solid dispersions depending 

on the solid-state form of the drug and carrier (Figure 16).  

Fig. 16. Solid dispersions of drug molecules (green) in polymeric carrier (grey). Solid solution of 

molecularly dispersed drug in polymer (A); solid dispersion with amorphous drug aggregates (B); solid 

dispersion with crystalline drug aggregates (C). 

Figure 16A depicts that solid solutions are a category of solid dispersion whereby the 

drug and carrier exist as a molecularly homogeneous single-phase system 246, 247. Solid 

dispersions are not a specific requirement for individualized therapy per se. However, 

since individualized therapy demands applicability to a broad range of APIs, these 

include currently challenging API categories such as those with poor aqueous solubility. 

Poor aqueous solubility of a large proportion of new drug candidates remains one of the 

major challenges encountered during oral dosage form development since it often 

results in poor oral bioavailability and consequently, poor therapeutic effect. This has 

popularized solid dispersions, particularly solid solutions and solid dispersions with the 

drug in amorphous form, which provide a means to capitalize on the increased apparent 

solubility of the amorphous form, improving the dissolution rate and bioavailability of 

poorly water-soluble drugs 242, 245-257. This is achieved either by dissolving the drug on a 

molecular level (Figure 16A) or maintaining the drug in amorphous form (Figure 16B), 

which reduces the energy barrier for dissolution when compared to drugs in crystalline 
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form (Figure 16C) 245, 254. Not only can this approach improve bioavailability but 

improving the apparent aqueous solubility in this way could, in turn, allow reduced 

dosage form sizes, which incorporate an effective dose. Consequently, the eventual 

success of individualized therapy relies on surmounting major pharmaceutical hurdles 

in developing products which can elicit optimal health outcomes.  

 

Incidentally, HME lends itself to the formation of solid dispersions and is in fact, one of 

the major processes employed for the manufacture of amorphous solid dispersions of 

APIs with poor aqueous solubility 226, 227, 244, 258, 259. In order to exploit solid dispersions 

for their advantages in individualized therapy, the APIs and polymers contained therein 

are required to possess suitable material characteristics such as appropriate API–

polymer miscibility, glass transition temperatures, and degradation temperatures 236, 252, 

258, 260-266. The physicochemical and thermal characteristics dictate stability against 

recrystallization during storage and in vivo, ability to obtain the target exposure, 

processability, and applicability to a wide range of APIs with varying 

thermosensitivities, which are all critical to the development of an individualized 

pharmaceutical product.  

 

Whilst the entire solid dispersion research space is not within scope of this thesis, there 

are some benefits that are common to the field of individualized therapy and key 

findings with direct implications for individualized therapy. There are two major 

benefits of melt-extruded solid dispersions during individualization, namely, achieving 

a homogeneous distribution of the drug in the carrier at low and high payloads and 

achieving a process-induced change in the solid-state form of the API from crystalline 

to amorphous. The latter is only strictly required for APIs with poor aqueous solubility. 

Of all the product features for individualization, the benefit of amorphization pertains 

specifically to the release performance of the product or module. The following 

subsections highlight findings and considerations related to these benefits for the 

material systems studied in this thesis, namely, FEL in EC (Article II), MS in PEG 1500 

and VA64 (Article III), FEL in VA64 (Article IV), and NAP in VA64 (Article IV).  
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6.1. FEL in EC 

Typically, the aggregation tendency of drugs increases with their concentration in the 

polymer 248. This could impact both drug content homogeneity and stability against 

recrystallization. Article II demonstrates that this is crucial since, within the scope of 

solid dispersions, the use of APIs at high drug loads, is a prerequisite for achieving 

pharmaceutically relevant dose flexibility for APIs with intermediate to high doses. 

Payload flexibility is a key requirement that was achieved with regards to drug content 

homogeneity with the FEL in EC solid dispersions studied in Article II. Figure 17 shows 

that not only was drug content uniformity maintained between 10% w/w and 50% w/w 

API, but it was achieved at module sizes ranging from 1.6 to 39.3 mm3. Note that Figure 

14 in Chapter 5 displayed % RSD in mass, not drug content. Since FEL in EC solid 

dispersions showed high variability in FDM dispensing precision, the results presented 

in Figure 17 reflect drug content normalized to the mass of each printed disc.  

Fig. 17. Mean FEL content as a % of target FEL content in FDM discs at each composition and disc size 

(normalized to disc mass). Error bars indicate standard deviations of n=4 discs. Adapted with 

permission from https://doi.org/10.1007/s11095-019-2720-6 (Article II), © 2019 Govender et al. licensed 

under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode). 

This drug content uniformity reflects homogeneity in the feedstock at an equivalent or 

smaller length scale than the desired module size. In this regard, usually, the higher 

drug loads at which a solid solution can be achieved, the better for homogeneity. Figure 

17 shows drug content uniformity within 10% RSD regardless of module size or drug 

load. The lower drug loads are necessary for fine tuning the dose, with the lowest dose 

indicating the smallest increment that can technically be fine-tuned. In this study that 

increment was demonstrated at approximately 50 µg based on the mean disc mass and 

https://doi.org/10.1007/s11095-019-2720-6
https://creativecommons.org/licenses/by/4.0/legalcode
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mean drug content in the smallest disc at the lowest drug load. This could be decreased 

further towards the inclusion of placebo modules. The highest required payload is 

determined by the upper dosing limit in the clinical range and the size constraint of the 

dosage form, regardless of whether or not modular product designs for reconfiguration 

are used. However, employing a modular design for reconfiguration imposes stricter 

requirements on the extent of homogeneity required at each payload in lieu of the fact 

that homogeneity should be assured on the length scale of a single module to harness 

the full potential of reconfigurability. As a hypothetical example, for a standard tablet 

containing 50 mg of API, this 50 mg can be distributed homogeneously on the length 

scale of a whole tablet without a strict requirement for each quarter of the tablet to 

contain 12.5 mg API each. However, designing for reconfigurable modularization 

demands that each module at a given payload contains an identical dose fraction of the 

drug.  

 

This strict requirement on homogeneity is based upon patient-centric requirements for 

individualized dose and release at an appropriate dosage form size. Although it is not 

introduced by modular design strategies for reconfiguration, such strategies 

nonetheless need to surmount this challenge en route to individualizing therapy. 

Notably, conventional non-modular solid oral dosage forms, or even modular dosage 

forms comprising identical modules, may have a less strict requirement for 

homogeneity, as described in the hypothetical example above. However, such products 

are neither designed for multifunctional individualization nor for the provision of 

affordable variety as required for individualized therapy. Moreover, they are not entirely 

exempt from the homogeneity requirements posed by the need for payload flexibility. 

This is because many of these current pharmaceuticals are often treated as “modular” 

by patients or healthcare providers resulting in splitting or crushing of dosage forms to 

administer a portion of the dose, despite uncertainties regarding the length scales of 

homogeneity in such products 86, 88, 267-269.  

 

Drug release was beyond the scope of this early investigation in Article II, however, both 

differential scanning calorimetry (DSC) and Raman spectroscopy on HME filaments 

revealed that FEL was converted to the amorphous form after HME and remained 
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amorphous for at least 2 weeks at ambient conditions. Figure 18 shows an absence of 

melting endotherms in melt extruded filaments at 10-50% w/w FEL in EC during the 

first heat cycle of DSC, indicating the formation of amorphous solid dispersions at each 

drug load by HME processing.  

Fig. 18. DSC traces (endotherm up) of raw materials and extruded filaments at varying FEL drug loads 

during the first heat cycle. Adapted with permission from https://doi.org/10.1007/s11095-019-2720-6 

(Article II), © 2019 Govender et al. licensed under CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/legalcode). 

Figure 19 shows the Raman spectra of raw materials and the same melt extruded 

filaments subjected to the DSC analysis shown. Once the presence of FEL in each 

filament was confirmed at expected drug loads, the lattice mode region of their Raman 

spectra was used to distinguish between the solid-state forms of FEL. 

Fig. 19. Raman spectra of crystalline FEL powder, amorphous FEL, EC powder, and melt-extruded 

filaments at 10-50% w/w FEL in EC in the lattice mode region. Adapted with permission from 

https://doi.org/10.1007/s11095-019-2720-6 (Article II), © 2019 Govender et al. licensed under CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/legalcode). 
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In agreement with DSC, the Raman spectra confirmed a process-induced change in FEL 

from crystalline to amorphous during HME and a lack of FEL crystallinity maintained 

in the melt-extruded filaments for 2 weeks after HME when the Raman spectra were 

collected. This is shown by the absence of the characteristic sharp FEL band at 96 cm−1 

270 in amorphous FEL or in melt-extruded filaments at each composition. 

Methodological details for both the DSC and Raman analysis can be found in the 

appended Article II. 

6.2. MS in PEG 1500 and VA64 

Since MS has a high aqueous solubility, it was not a requirement to induce a change 

from crystalline to amorphous form during HME. Instead the melt-extruded solid 

dispersion was intended to ensure sufficient homogeneity for reproducible drug-

containing components to be generated. To encourage homogeneity and reduce the 

likelihood of phase separation at length scales that would compromise homogeneity, 

materials with comparable solubility parameters were chosen. The system was also 

processed below the melting point of the drug to form a stable crystalline solid 

dispersion with the MS that is not solubilized by the carriers. In Article III, MS content 

in the cores of the fabricated modules was targeted at 40% w/w. Measured MS content 

along the length of the melt extruded filament was 39.4% ± 1.3% w/w, indicating high 

accuracy and precision at an approximately 6-fold smaller length scale (approximately 

5 mg) than that required for the drug-containing core components of the resulting 

dosage form (approximately 30 mg). As the DSC trace in Figure 20 shows, crystallinity 

indeed remains in this filament despite some solubilization that occurs in the carriers.  

 

For drugs with a high aqueous solubility, further additions of drug towards even higher 

payloads are acceptable even if they remain in crystalline form. However, the higher the 

drug load, the more crystalline or amorphous aggregates could contribute to a loss of 

homogeneity at smaller length scales. Although processing above the melting 

temperature can be used to solubilize MS at higher drug loads, the size and distribution 

of aggregates (crystalline or amorphous) relative to the desired size of the module will 

remain a key contributor to homogeneity of modular dosage forms for reconfiguration.  
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Fig. 20. DSC traces (endotherm up) of MS-containing filament for heat cycle 1 (green) with reference 

traces (black) for PEG 1500, VA64, and MS powder shown above. Adapted with permission from 

https://doi.org/10.3390/pharmaceutics12080771 (Article III), © 2020 Govender et al. licensed under CC 

BY 4.0 (https://creativecommons.org/licenses/by/4.0/legalcode). 

6.3. FEL in VA64 and NAP in VA64 

Article IV extends the modular product concept for reconfiguration in at least two 

manners compared to Articles II and III. Firstly, it extends the concept to include the 

release performance of poorly water-soluble APIs, in addition to the dose, on a single 

module level. Secondly, it extends the concept towards multidrug therapy. During 

multidrug therapy, the administration of separate dosage forms corresponds to a higher 

pill burden than the comparable dose of single-drug therapy. When administered as 

combined dosage forms with modular architecture, i.e., polypills, for improved patient 

acceptability, a lower product volume is available per API to administer the same clinical 

dose as the single-drug therapy equivalent. This requires higher payloads to be 

incorporated into each API module, which may or may not be feasible for all types of 

API. With a focus on poorly water-soluble APIs, the dose and release performance of 

NAP and FEL were compared, with NAP having a higher inherent recrystallization 

tendency from amorphous form than FEL. This was anticipated to contribute to greater 

variability in drug release kinetics at a single module level, especially at high drug loads. 

Reproducibility in dose and release performance at a single module level is crucial to 

achieving the overarching product design requirement for individualization of 

simultaneous, independent individualization of multiple product features in a 

controlled and predictable manner. 
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For FEL in VA64 and NAP in VA64 at 50% w/w API, precise module fabrication (3.60 

mg ± 0.05 mg in mass) and drug content homogeneity (within 1.5% RSD for FEL content 

and 5.0% RSD for NAP content) was achieved. Furthermore, both NAP and FEL were 

amorphous in the solid state. Under sink conditions with respect to crystalline 

solubility, with 50 mM sodium dodecyl sulphate (SDS) added to 0.1 M hydrochloric acid 

(HCl) at 37 °C, this precision fabrication and drug content homogeneity translated to 

reproducible dose fractions and drug release kinetics from both 50% w/w FEL and 50% 

w/w NAP modules, regardless of the recrystallization tendency of each API. Figure 21 

shows that FEL and NAP exhibited comparable variability in the amount of drug 

released at T10 and T40 for 50% w/w drug load. Complete drug release was used to 

quantify the dose fraction in the module. 

Fig. 21. % RSD in the amount of drug released from FEL and NAP 3.6 mg modules containing 50% w/w 

API (n=5) at T10 and T40 and % RSD in the dose fraction (quantified after complete release). The 

release medium is 0.1M HCl with 50 mM SDS at 37 °C. 

Despite the low variability in release performance, the high drug load led to 

recrystallization at the surface of the module upon hydration for both FEL and NAP, 

which inhibited drug release under non-sink conditions with respect to the crystalline 

solubility of each API. Crystallization on the module surface upon hydration did not 

occur at 5% w/w of either API. The reader is referred to Article IV for drug release profiles 

of 5% w/w and 50% w/w compositions under varying tests conditions. With regards to 

higher payloads, without optimal polymer selection to inhibit this crystallization in the 

solid state and throughout dissolution, when non-sink conditions are encountered, 

lower drug loads may be needed for robust dose and release performance, which may 



Chapter 6 

51 

hinder applicability to individualized multidrug therapy. Importantly, payload 

flexibility encompasses both dose and release performance but has different 

implications depending on the properties of the API. For highly water-soluble APIs, 

payload flexibility requires precision fabrication and drug content homogeneity in 

single modules at a wide drug loading range regardless of the solid-state form. Robust 

release performance for poorly water-soluble APIs additionally requires the drug to be 

maintained in amorphous form both in the solid state and throughout dissolution. 

Recrystallization of poorly water-soluble APIs at higher payloads reveals a potential 

trade-off between payload flexibility and material diversity, which was due to the 

material system in this study and therefore differs from the material and manufacturing 

trade-offs presented in Chapter 5. Importantly, amorphization was achieved in the solid 

state using HME at 5% w/w and 50% w/w FEL or NAP in VA64, with sufficiently precise 

sectioning of the filaments to generate each module.  

 

Payload flexibility is a critical challenge that needs to be addressed in order to meet 

individual patient needs for dose and drug release at an acceptable dosage form size, 

both for single-drug therapy and especially, for multidrug therapy via combination 

products. Whilst solid dispersions do exhibit key benefits for individualized therapy, 

fully exploiting these benefits require dedicated research efforts to incorporate varying 

drug loads with robust, reproducible performance. This challenge is faced by 

reconfigurable modular dosage forms for individualization and by conventional mass 

produced pharmaceutical solid oral dosage forms alike. It is therefore evident that 

whilst modularization does not introduce these challenges into product development, 

as a design approach for individualized therapy, it is obliged to fulfil stricter 

requirements to elicit predictable, desired performance.  
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7 
Integrated Product and Process Design for Mass Customization 

This section holistically summarizes the previous chapters of this thesis to affirm the need 

for an integrated approach in the realization of individualized therapy and the existing 

drawbacks or risks associated with inadequate integration (research question iv).  

 

In the context of eventual realization of individualized therapy, Figure 22 depicts the 

major challenge faced in delivering high product variety at low production volumes 

relevant for individualization.  

Fig. 22. The individualized therapy challenge faced at progressively lower production volumes and 

progressively higher number of product variants. Adapted with permission from 

https://doi.org/10.1016/j.ejpb.2020.01.001 (Article I), © 2020 Elsevier B.V. 

The green curve illustrates that the progressively reduced production volume during 

individualization, for niched patient segments and, eventually, for individuals in an 

extreme “market-of-one” scenario, is accompanied by a considerable increase in the 

number of required product variants. The shaded areas correspond to current product 

and production capability, with patient needs being met at the intersection between the 

two, i.e., the cross-hatched region in Figure 22. Whilst some product variety is indeed 

provided currently, to take advantage of economies of scale, this provision of variety is 

restricted to higher production volumes and larger patient segments. 

https://doi.org/10.1016/j.ejpb.2020.01.001
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Providing enhanced variety for individualization requires both product and production 

capabilities to traverse the white area in Figure 22, which is not yet achieved. This could 

be due to a lack of technical capabilities and/or feasibility and/or that the requirements 

for closing this gap are not yet fully understood. Importantly, only pushing the 

capabilities of the pharmaceutical product towards an increased number of variants 

without also pushing production capabilities towards lower production volumes, will 

not achieve an overlap between product and production capabilities in the white area 

(cross-hatching) and therefore still restrict applicability to larger patient segments only. 

This means that, in a mass production context, even when a large number of product 

variants can technically be designed and developed for individualization, this is not 

sufficient if the production system cannot deliver affordability and efficiency at small 

production volumes. Co-development of both product and production in an integrated 

manner is therefore essential to successful individualization. This was one of the major 

insights from Article I, which reflects learnings in non-pharmaceutical branches of 

industry where mass customization has been explored or established 271. Yet, the lack of 

pharmaceutical mass customization systems examples was recognized in Article I. In 

response to this gap, articulating the need for and demonstrating an integrated 

approach to realizing individualized therapy was identified as an important research 

and development direction in this thesis and onwards.  

 

In this thesis, integration describes the combination of elements in a system to form a 

unified whole. The system elements addressed in this thesis are depicted in Figure 23 as 

patient, process, product, and production. These individual system elements are 

systems themselves. For example, the patient system element comprises the biological, 

behavioural, and environmental dimensions as well as patient preferences. Analogous 

to how these dimensions co-exist and interact within each patient, the system elements 

(patient, process, product, and production) also co-exist and interact. In fact, successful 

integration relies upon managing the interdependencies at the interfaces between these 

system elements 143. For a system which delivers individualized pharmaceutical therapy, 

integration of the patient into the product–process–production system is a crucial first 

step. Patient integration relies upon scrutinizing individual patient needs and 

preferences and their link to therapeutic outcomes. 
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Fig. 23. System elements at play during integrated product and process design for mass customization 

based on individualized patient needs. Interdependencies are highlighted with arrows between system 

elements and key thesis contributions are indicated in the text fields.  

At the patient–product interface (Figure 23, arrow 1), integration of the comprehensive 

needs and preferences of diverse individuals led to the patient-centric framework of 

product design requirements for single-drug and multidrug therapy. This is a major 

contribution and foundation of this thesis. This framework, as presented in Chapter 3 

of this thesis summary, was proposed in Article I and technically verified and 

demonstrated in Articles II, III, and IV. Specifically, an overarching requirement for 

multifunctional individualization in pharmaceutical products arose, i.e., simultaneous, 

independent individualization of multiple product features in a controlled and 

predictable manner. At this patient–product interface, suboptimal integration of 

individual patient needs into the design and development of pharmaceutical products 

is a known contributor to suboptimal therapeutic outcomes in a proportion of the 

patient population during treatment with existing pharmaceutical products 23, 26-38. 

Even during existing product design for individualization, fundamental examples of 

dose adjustments by adjusting the size of the dosage form, without consideration of 

patient limitations in handling and swallowability, reflect insufficient integration of 

patient needs into product design. Appropriately capturing patient needs in 

pharmaceutical products for individualized therapy is therefore one crucial aspect to 

contribute to overcoming the challenge of unmet medical needs.  
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Article I also addresses that, despite individualization being central to value-based and 

patient-centric care, the wider integration of the patient into the manufacturing and 

provision of pharmaceuticals had been little addressed prior to this work. Concurrent 

integration of the patient system element into both the product and production system 

elements highlights the need for a production approach that supports equitable access 

to individualized therapies (Figure 23, arrow 2). As Chapter 4 describes, both mass 

production and mass customization are designed for affordable access to 

pharmaceutical products. However, scrutinizing the product–production interface 

(Figure 23, arrow 3) reveals that the production approach utilized for individualized 

therapy must also support the provision of enhanced variety in the product offering. 

Therefore, mass customization, designed for both affordable, equitable access and high 

variety, was identified as the production context into which all other system elements 

would be integrated in this thesis.  

 

The need for high variety in the product offering arises at the interface between product 

and production and is therefore not a direct patient requirement. The individual patient 

requirement is only that a specific product suited to their needs is available and 

accessible. The need for high variety at low production volumes for segments of the 

patient population, or individuals, is a means to cater to the heterogeneity in the patient 

population and is what enables a patient to obtain the product variant best suited to 

their individual needs. Without multidimensional integration of patient–product–

production, full customization may emerge as attractive to meet patient needs at the 

patient–product interface and mass production may emerge to meet patient needs at 

the patient–production interface. An integrated approach is therefore essential to 

capture direct and indirect patient needs. Insufficient integration may explain why 

design for full customization or design for mass production approaches are still 

favoured in the research setting for individualized pharmaceutical therapy. Together, 

the first three arrows in Figure 23 already highlight the importance of an integrated 

approach to appropriately characterize the required system capabilities. Importantly, 

patient and societal benefits from individualized therapies can only be derived if their 

associated pharmaceutical products are designed, manufactured, and made accessible 

to patients and healthcare providers (Article I). This was addressed in Chapter 4 of this 
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thesis summary and Article I, with product modularization for mass customization 

forming the primary context of technical product design explorations and in Articles II, 

III, and IV.  

 

The analysis of patients’ medicine-related needs did not reveal any specific 

requirements that patients have of the manufacturing process. Instead, the process is 

required to meet patient needs indirectly via the ability to fabricate individualized 

products with high quality and performance (Figure 23, arrow 4) and via process design 

for a mass customization context (Figure 23, arrow 5). The latter is expected to involve 

integration of the entire manufacturing network into the supply of individualized 

products, which is beyond the scope of this thesis. Nevertheless, process design is 

expected to play a key role in achieving modularization, process flexibility, and 

postponement for mass customization. As such, a demonstration of reconfigurable 

modularization, as a product design approach in Article III, highlighted how product 

design can in turn enable process design for mass customization. For example, 

postponement may be facilitated through a product design that allows the module that 

provides differentiation to be assembled last and a process design that allows this to 

occur. In addition, a product design that enables the manufacturing of parts in parallel, 

instead of in a sequence of unit operations, was also discussed in Article III. Chapter 5 

and Articles II and III revealed key material and manufacturing trade-offs at the 

product–process interface regarding material diversity, precision dispensing, and 

geometric flexibility. These trade-offs arise from required individualization of the 

product, with inherently stricter requirements to be met at the module level in modular 

dosage forms for reconfiguration compared to at the dosage form level for non-modular 

products or products comprising identical modules. The implication of integrating the 

process into the rest of the system depicted in Figure 23, is that regardless of what 

manufacturing type is used, e.g. continuous and/or additive manufacturing, its benefits 

for individualized therapy cannot be realized until it is designed for a production 

approach that can drive affordable access to a high variety of individualized products.  

 

The combination of elements in a system to form a unified whole is equally applicable 

between system elements, as described above, and within each system element. Within 



Chapter 7 

58 

the product element (Figure 23, arrow 6), the integration of different length scales from 

component to module to dosage form, exhibits a strong likeness to the concept of 

modularization 272 to obtain dosage forms of predictable and predefined individualized 

performance. In this thesis, product modularization is not only a potential enabler of 

mass customization but also an example of integration between different length scales 

in the product system element. During integration between and within system 

elements, knowledge of the length scale at which integration is performed could provide 

essential guidance to the expected interdependencies at play.  

 

As long as interdependencies exist in complex systems, co-development of system 

elements will remain crucial to the success of the overall system. Furthermore, the 

impact of specific interventions on the success of individualization can only be 

accurately determined once the effect of the intervention on interacting system 

elements are also known. Integration is also an approach to manage change in systems 

with interdependent elements. For example, despite the fact that the system elements 

depicted in Figure 23 are equally relevant for a mass production or mass customization 

production paradigm, a shift towards mass customization will demand managing 

changes within and across system elements. In this chapter and throughout the thesis, 

integration was largely addressed conceptually, with a few technical demonstrations in 

Articles II, III, and IV, of how successful integration may be achieved. Notably, 

successful integration is not achieved yet and will require that strategic/conceptual 

integration is accompanied by operational integration to industrialize and realize 

individualized therapy. In addition, further integration of the system elements depicted 

in Figure 23 with system elements belonging to the greater healthcare context will also 

require addressing in future 273-275.  

 

A few key contributions of this thesis are described at each arrow in Figure 23, showing 

that most are not constrained within each system element but rather arise at the 

interface between interdependent system elements. Without sufficient integration, 

there exists a risk of having a fragmented and uncoordinated approach to individualized 

therapy. In the best case, this may delay realization of individualized therapy, with more 

frequent corrective adjustments needed along the way, or, in the worst case, this may 
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prevent realization of individualized therapy entirely. Altogether, this chapter 

emphasizes that, in order to realize individualized therapy and therefore maximize the 

value medicines bring to patients and society, an integrated approach is not only 

beneficial, but essential.  
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8 
Concluding Remarks and Outlook 

Individualized pharmaceutical therapy strives to optimize therapeutic responses a priori 

in all patients who are treated. Through combatting currently unmet medical needs, it 

has the potential to enhance the value of medicines for individuals and, by extension, 

society. This value reaches beyond improvements in health status to include wider 

social and economic benefits. However, it is crucial that the potential added value of 

individualized therapies is equitably distributed in society. Universal access is a major 

strategic priority in healthcare. It is here where pharmaceutical mass customization 

plays a pivotal role in ensuring equitable access to individualized therapies. 

Consequently, this thesis has provided the scientific and strategic foundation for 

elevating the prominence of pharmaceutical mass customization in upcoming research 

agendas. Emerging digital technologies, biotechnologies, advanced materials, and so 

forth, have the potential to solve several global challenges, of which unmet medical 

needs due to insufficient individualization is just one challenge. In order to leverage 

advancing science and technology for its potential benefits in individualized therapy, 

integration into the overall patient–product–process–production system and greater 

healthcare context is necessary to realize the ambition of individualized therapy without 

creating or widening inequalities in access to such therapies and to healthcare in 

general.  

 

The patient-centric framework of product design requirements for individualization 

developed in this thesis, although based on oral dosage forms, provides a generic, 

systematic approach, which can be extended to various alternative product concepts as 

a means to translate patient needs into specific product design requirements in the 

context of mass customization. This framework is not intended to be a static collection 

of requirements but instead provides a foundation to be built upon and evolve as further 

insights into the patient experience and contributors to variability in health outcomes 

are gathered. A key gap area encountered in this thesis is the medical knowledge gap 
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regarding what constitutes individualized drug release, particularly for single-drug 

therapy where the need for concurrent administration of multiple medications is not a 

factor.  

 

An overarching patient-centric requirement for multifunctional individualization was 

addressed and demonstrated, which applies regardless of the type of product the 

framework of design requirements is adapted to. Based on fulfilling a dual need for 

multifunctional individualization on a per product basis and the provision of affordable 

variety in the total product offering, a design concept based on reconfigurable 

modularization was demonstrated. Using this concept revealed how a wide assortment 

of mass customization opportunities may be harnessed and integrated to meet the 

requirements of individualized therapy. These opportunities include enhanced product 

variety, flexibility in use, economies of scale on the component level, and potential for 

process flexibility and postponement. Adaptation from a generalized concept to a 

specific product can therefore be facilitated by adopting similar design strategies to 

translate key mass customization principles, such as modularization, to the 

pharmaceutical value chain for the realization of individualized therapy. To this end, 

alternative dosage form types and routes of administration need to be evaluated to 

establish how far these generic design principles and benefits of reconfigurable 

modularization may be extended.  

 

Key generalized manufacturing process requirements for individualized therapy were 

assembled. Despite the existence of high-potential technologies for individualization, a 

single manufacturing technology which exhibits all process requirements for 

individualization has not been encountered yet. An adaptation from concept to 

realization will further rely on addressing the key materials and manufacturing trade-

offs highlighted in this thesis. In a rapidly evolving technological landscape, 

characterizing the extent of these challenges in patient-centric individualization of 

pharmaceutical products, provides a first step in directing design and engineering 

solutions that may enable individualization. In order to harness the full potential of 

these and other processes for individualized therapy, further research efforts dedicated 

to managing or diminishing these trade-offs will be essential. In addition, product and 
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process optimization for scale-up and automation as well as translation to clinical 

applicability via biopharmaceutical considerations for individual patients, are intuitive 

next steps.  

 

Regardless of the processes eventually employed, a fundamental overarching 

consideration is that patient integration into the design of individualized 

pharmaceutical products requires a systems approach, involving concurrent 

development of product, process, and production platforms, which can drive access of 

individualized pharmaceutical therapies to patients. In this regard, this thesis served to 

lay the foundation for future design efforts towards the realization of accessible, 

affordable, individualized therapy.  

 

Regardless of the choice of product design, process, or production approach, products 

for individualized therapy are subject to the same high quality and safety standards that 

apply to current pharmaceutical products. This thesis acknowledges but does not 

analyse the impact that mass customization may have on how quality is evaluated for 

products for individualized therapy. In this regard, progressing modular product design 

approaches will require quality requirements to be defined, at a minimum, for the 

dosage form, the modules, and the sub-modular components as well as appropriate 

methods to reliably evaluate these quality requirements.  

 

In addition to satisfying process requirements for individualized product design, the 

manufacturing system, in its entirety, is also required to support mass customization in 

order to drive patient access to individualized therapies. An evaluation of the existing 

manufacturing and supply network to establish either suitability, future adaptations, or 

redesign for mass customization will be necessary to support the provision of and access 

to individualized pharmaceutical therapy. Mass customization as a strategic direction 

towards individualized therapy was selected to favour cost-effectiveness during variety 

provision. However, a cost analysis and health economics assessment were beyond the 

scope of this thesis. Nevertheless, they are expected to be crucial elements driving 

accessibility to patients when concepts for individualized therapy are closer to 

realization.  
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Finally, individualized pharmaceutical therapy is based in a health systems context and, 

as such, will inevitably rely upon a multi-stakeholder undertaking for its realization. 

This will include governments and policy makers, health insurance payers, regulatory 

bodies, scientific researchers, technical specialists in varying disciplines, healthcare 

providers, and of course, patients from all walks of life. A re-evaluation of the traditional 

roles of individual stakeholders throughout the pharmaceutical value chain and in 

society at large, together with increasing knowledge exchange to encourage 

development and cross-fertilization of competencies, can be anticipated on the road 

towards realization of accessible, affordable individualized therapy.  
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Appendix 

Table A1. Definition of contributor roles obtained verbatim from the Consortia Advancing Standards in 

Research Administration Information (https://casrai.org/credit/) as at January 2021. 

Contributor Role Definition 

Conceptualization Ideas; formulation or evolution of overarching research goals and aims. 

Data curation  Management activities to annotate (produce metadata), scrub data and 

maintain research data (including software code, where it is necessary for 

interpreting the data itself) for initial use and later re-use. 

Formal analysis  Application of statistical, mathematical, computational, or other formal 

techniques to analyse or synthesize study data. 

Funding acquisition Acquisition of the financial support for the project leading to this 

publication. 

Investigation Conducting a research and investigation process, specifically performing 

the experiments, or data/evidence collection. 

Methodology Development or design of methodology; creation of models. 

Project administration Management and coordination responsibility for the research activity 

planning and execution. 

Resources Provision of study materials, reagents, materials, patients, laboratory 

samples, animals, instrumentation, computing resources, or other 

analysis tools. 

Software Programming, software development; designing computer programs; 

implementation of the computer code and supporting algorithms; testing 

of existing code components. 

Supervision Oversight and leadership responsibility for the research activity planning 

and execution, including mentorship external to the core team. 

Validation Verification, whether as a part of the activity or separate, of the overall 

replication/reproducibility of results/experiments and other research 

outputs. 

Visualization Preparation, creation and/or presentation of the published work, 

specifically visualization/data presentation. 

Writing – original draft  Preparation, creation and/or presentation of the published work, 

specifically writing the initial draft (including substantive translation). 

Writing – review & 

editing  

Preparation, creation and/or presentation of the published work by those 

from the original research group, specifically critical review, commentary 

or revision – including pre- or post-publication stages. 
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