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Codes in the Presence of Noisy Stop Feedback
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Erik G. Ström, Senior Member, IEEE

Abstract—We present an upper bound on the error probability
achievable using variable-length stop feedback (VLSF) codes, for a
fixed size of the information payload and a given constraint on the
maximum latency and the average service time. Differently from
the bound proposed in Polyanskiy et al. (2011), which pertains to
the scenario in which the stop signal is sent over a noiseless feed-
back channel, our bound applies to the practically relevant setup
in which the feedback link is noisy. Numerical evaluation of our
bound suggests that, for fixed latency and reliability constraints,
noise in the feedback link may increase the minimum average ser-
vice time for the VLSF scheme considered in this paper, to the
extent that fixed-length codes without feedback may be preferable
in some scenarios.

I. INTRODUCTION

Variable-length stop-feedback (VLSF) coding schemes, i.e.,
schemes such as simple automatic repeat request (ARQ) and
hybrid automatic repeat request (HARQ), in which information
is transmitted until the reception of a positive acknowledgment
(ACK), are ubiquitous in modern wireless communication sys-
tems. This is because they offer a simple yet effective way to
adapt the transmission rate to the channel conditions and, hence,
reduce the error probability. The question investigated in this
paper is whether such schemes are suitable for ultra-reliable low-
latency communications (URLLC)—one of the new use cases
in next-generation wireless systems (5G).

From a physical layer perspective, the URLLC design problem
involves answering the following question: can a given informa-
tion payload be transmitted within a target latency requirement
at a desired reliability level? Unfortunately, classical approaches
to answering this question, which rely on large-blocklength
results in information theory, are unsuitable whenever the latency
requirement is stringent, such as in URLLC.

If the physical layer employs fixed-length coding schemes
without feedback, the URLLC design problem can be tackled
using the nonasymptotic information-theoretic bounds devel-
oped in [2] (see, e.g., [3]–[6]). Such bounds allow one to assess
for example how much frequency and spatial diversity should
be exploited to achieve a target reliability for a given latency
requirement.
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Less is known in the VLSF case. The nonasymptotic achiev-
ability bound provided in [7, Thm. 3], shows that, for a fixed
reliability target, the use of variable-length codes combined
with stop feedback, allows one to approach capacity much
faster in the (average) blocklength, compared to the scenario
in which fixed-blocklength codes with no feedback are used.
However, the achievability bound given in [7, Thm. 3] pertains
to the setup in which the acknowledgment sent on the feedback
channel is assumed instantaneous and error-free. As argued in,
e.g., [8], [9], these two assumptions are not suitable for URLLC.
The purpose of this paper is to generalize the analysis in [7,
Thm. 3] and determine if VLSF codes remain superior to fixed-
blocklength no-feedback codes once the feedback delay and the
presence of noise in the feedback link, which causes unreliable
acknowledgments, are accounted for.

Contributions: Assuming arbitrary noisy forward and feed-
back channels, we obtain an upper bound on the error probability
achievable using VLSF coding schemes, for a fixed size of the
information payload, and a given constraint on the maximum
latency and on the average service time. This last quantity is
defined as the average time it takes the transmitter to process an
information packet. Our bound pertains to the setup in which
there exists a constraint on the maximum number of transmission
rounds (which is imposed by the latency requirement), after
which an error is declared at the receiver. Also, our analysis
accounts for the presence of unreliable acknowledgments and
of undetected error events, which occur whenever the decoder
terminates transmission with an ACK, but its decision is erro-
neous.

The impact of unreliable acknowledgments can be mitigated
through coding on the feedback channel. However, this comes
at a cost in terms of a feedback delay that is captured by our
analysis. Undetected errors are typically neglected in the analysis
of HARQ protocols. We argue that this simplifying assumption
is unsuitable for the analysis of URLLC systems. In practical
systems, a cyclic redundancy check (CRC) is typically used to
detect errors at the receiver [10, Ch. 6.4]. Obviously, the longer
the CRC, the lower the undetected error probability. However,
for a given latency requirement, increasing the length of the CRC
results in a reduction of the rate of the inner channel code. Hence,
there is a fundamental trade-off that needs to be characterized
for the optimal design of URLLC systems. Our analysis, which
relies on a threshold-based decoding rule that allows one to trade
between reduction of service time and reduction of undetected
error probability, sheds lights on this trade-off.

Focusing on the the URLLC regime where both reliability and
latency requirements are stringent and the information payload
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is typically small, we use our bounds to analyze the performance
of VLSF coding schemes operating over practically relevant
wireless channels. Specifically, we consider transmissions over
i) a binary-input additive white Gaussian noise (bi-AWGN)
channel and ii) a block-memoryless Rayleigh fading channel,
for the practically relevant setup in which pilot symbols are used
to estimate the channel coefficients, and the receiver is equipped
with a mismatched decoder that treats the channel estimate as
perfect. In both cases, our bound suggests that the presence of
noise on the feedback link may cause a fundamental degradation
in the performance of the VLSF codes considered here. For
example, for the case of the bi-AWGN channel, when the size
of the information payload is 30 bits, the maximum latency
constraint is 400 channel uses, the packet error probability target
is 10−5, and both the forward and the feedback channel operate
at an SNR of 0 dB, our bounds result in an average-service-time
estimate of 106.6 channel uses if the feedback link is assumed
noiseless. This value increases to 141 channel uses if noise on
the feedback link is accounted for. For such a scenario, our
bound suggests that the performance of the VLSF coding scheme
considered in this paper is inferior to that of a fixed-blocklength
coding scheme without feedback, which has a (deterministic)
service time of 130 channel uses. On the contrary, for the case
of Rayleigh block fading, the performance of the VLSF coding
scheme considered in this paper is superior to that of a fixed-
length coding scheme without feedback, even when noise in the
feedback link of the VLSF coding scheme is accounted for. This
is because the VLSF scheme considered in this paper exploits
the diversity offered by the channel more effectively.

Prior Art: To put our contribution into perspective, we
survey next prior art on the analysis of the performance of point-
to-point communication schemes with feedback. Our review
will focus on nonasymptotic results; hence, the vast literature
that uses classical asymptotic information-theoretic metrics such
as mutual information to characterize the performance of such
systems will not be covered, since the results obtained following
this approach are often not relevant for the design of URLLC
systems.

One way to provide nonasymptotic performance analyses
of both fixed-length and variable-length coding schemes is
through the characterization of the reliability function, which
determines the speed at which the error probability vanishes as
a function of the blocklength for a fixed communication rate.
When no feedback is available, the reliability function in the
fixed-blocklength case is known to be no larger than the so-called
sphere-packing bound [11]. Furthermore, the sphere-packing
bound is achievable for all rates between the critical rate and
capacity [12]. For the case of symmetric discrete memoryless
channels (DMCs), it is known that the reliability function does
not exceed the sphere-packing bound even when noiseless full
feedback1 is available [13]. However, as recently shown in [14]
for the case of binary symmetric channels (BSCs), when the rate
is below the critical rate, the availability of full feedback, even
when noisy, allows one to operate above the best known lower
bound on the reliability function for the no-feedback case.

1By full feedback we mean that the transmitter has perfect causal knowledge
of the channel outputs at the receiver.

The use of variable-length codes together with the availability
of noiseless full feedback results in a much improved reliability
function compared to the fixed-length full-feedback case [15].
Such a significant improvement can be also observed in the
moderate-deviation regime, in which the rate tends to capacity
and the error probability tends to zero as the blocklength tends
to infinity [16].

The reliability function for the variable-length full-feedback
case remains above the sphere-packing bound even when the
full feedback is noisy [17]. As noted in [17], noise in the
feedback link may cause synchronization errors that need to be
accounted for in the analysis. This can be done, for example, by
using the framework for tracking stopping times through noisy
observations put forward in [18].

Variable-length codes combined with stop feedback rather
than full feedback were analyzed in [19], [20] where it is shown
that in the noiseless case, the reliability function exceeds the
sphere-packing bound.

For the fixed-blocklength no-feedback case, the recent work
by Polyanskiy et al. [2] has renewed interest in determining
nonasymptotic bounds on the minimum error probability that
are tighter than the ones obtainable through a reliability-function
analysis. The bounds provided in [2] allow one to obtain tight per-
formance characterizations also in the so-called normal regime,
where the transmission rate is close to capacity. Furthermore, in
this regime the bounds, which typically do not admit a closed-
form expression, can be efficiently approximated using a com-
pact expression commonly referred to as normal approximation.

As shown in, e.g., [2], [21], the normal approximation can
be used to analyze the non-asymptotic performance of simple
ARQ schemes. In particular, the authors of [21] studied a good-
put maximization problem for the case in which simple ARQ
is used over a Rayleigh block-fading channel and the stop
feedback is noisy. By leveraging the normal approximation, and
by employing a simple model for imperfect error detection, they
determine the blocklength required on both the forward and the
feedback channel in order to maximize the good-put.

The use of the normal approximation for the analysis of
general HARQ schemes (see, e.g., [22], [23]) is not entirely
satisfactory from a theoretical viewpoint. Indeed, such an ap-
proach does not guarantee the existence of a single mother code
that, when shortened to an arbitrary blocklength, achieves the
error probability predicted by the normal approximation.

A rigorous analysis of the error probability achievable using
general VLSF coding schemes was undertaken by Polyanskiy et
al. in [7]. Specifically, they provided in [7, Thm. 3] a nonasymp-
totic upper bound on the minimum error probability achievable
with VLSF coding schemes, which reveals that the maximum
coding rate achievable with VLSF coding schemes converges
faster to capacity as the blocklength increases, compared to
the fixed-blocklength, no-feedback case. The nonasymptotic
upper bound in [7, Thm. 3] relies on a VLSF coding scheme
in which the decoder computes the accumulated information
density corresponding to each possible codeword and sends
a stop signal whenever one of the accumulated information
densities exceeds a threshold. In this scheme, the number of
transmission rounds is unlimited, and an ACK/NACK bit is fed
back over a noiseless channel after the reception of each symbol.
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Fig. 1: Round ν of the VLSF transmission scheme. Here, W denotes the information message, Ŵ is its estimate at the receiver, Fν is the feedback
bit computed at the receiver, and F̂ν is its estimate at the transmitter.

An extension of this upper bound to the case in which the
number of transmission rounds is finite and the feedback bit is
transmitted only after a block of symbols can be found in [24],
[25]. Furthermore, feedback delay is accounted for in [26].
Finally, adaptations of [7, Thm. 3] to the case of random packet
arrivals and to the case of common-message transmission over
a broadcast channel are provided in [27] and [28], respectively.

A different approach to bounding the error probability of
VLSF coding schemes is presented in [29]. There, a random
coding bound is obtained for the setup in which a low-rate inner
code, used to provide incremental redundancy, is combined with
a high-rate CRC. The analysis provided in [29], which relies
on an error-exponent bound, pertains to the transmission of
binary antipodal coded symbols over a block-fading channel
and accounts for the presence of noise in the feedback link. The
authors, however, assume for simplicity that a NACK cannot
be interpreted as ACK by the transmitter—a simplification we
dispose with in our analysis. Finally, they present a comparison
between the bounds and the performance of actual VLSF coding
schemes relying on convolutional codes.

Notation: Upper case letters are used to denote random vec-
tors, e.g., X and their realizations are written in lower case, e.g.,
x. The probability distribution of X is written as PX . We use
superscripts to denote the concatenation of vectors of equal size,
e.g., Xν = [X1, . . . ,Xν ]. The distribution of a real Gaussian
random variable is denoted by N

(
µ, σ2

)
and the distribution

of a complex proper Gaussian random variable is denoted by
CN
(
µ, σ2

)
. Here, µ and σ2 are the mean and the variance of the

random variable, respectively. The Radon-Nikodym derivative
of a distribution P1 with respect to a distribution P2, where
P1 is absolutely continuous with respect to P2, is denoted by
dP1

dP2
. Finally, E[·] is the expectation operator, P[·] is used for

probabilities, 1{·} denotes the indicator function,Q(·) stands for
the Gaussian Q-function, and I(PX , PY |X) denotes the mutual
information between the random variablesX and Y , whose joint
distribution is PXPY |X .

II. SYSTEM MODEL

We consider a point-to-point communication system in which
information is transmitted using the VLSF coding scheme de-
picted in Fig. 1. Specifically, transmission occurs over a variable
number of rounds. Each round is divided into a data phase and a
feedback phase, not necessarily of equal duration. Throughout,
we assume that the number of transmission rounds does not
exceed the integer `m <∞.

In the data phase, a segment (spanning n channel uses) of
the codeword associated to the current information message
is sent to the receiver over the forward channel. This channel
is modeled as a sequence of conditional probability kernels
{PYν |Y ν−1,Xν}`mν=1, where the random vectors Yν and Xν ,
ν = 1, . . . , `m, take values from the sets Yn and Xn, respec-
tively.

For analytical tractability, we assume that the channel is block-
wise stationary and memoryless, i.e.,

PYν |Y ν−1,Xν (yν |yν−1,xν) = PY |X(yν |xν). (1)

At the end of each data phase, the receiver decides whether
to perform decoding based on the channel outputs received that
far, or to request an additional transmission. The outcome of this
decision—a single bit of information conveying the message
“stop”, which we denote by s or “continue”, which we denote by
c, is transmitted in the feedback phase over the feedback channel
using nf channel uses.2 We model the feedback channel as a
sequence of conditional probability kernels {PȲν |Ȳ ν−1,X̄ν}`mν=1,
where the random vectors Ȳν and X̄ν , ν = 1, . . . , `m, take
values from the sets Ȳnf and X̄nf , respectively. As for the
forward channel, we assume for simplicity that the feedback
channel is block-wise stationary and memoryless, i.e.,

PȲν |Ȳ ν−1,X̄ν (ȳν |ȳν−1, x̄ν) = PȲ |X̄(ȳν |x̄ν). (2)

This enables a single encoder/decoder pair to be used on the
feedback channel over consecutive transmission rounds.

Upon observing the output of the feedback channel, the
transmitter decides whether s or c was sent. This implies that
the feedback channel, together with the signaling scheme just
described, can be viewed as a binary asymmetric channel, with
crossover probabilities psc = P[s→ c] and pcs = P[c→ s],
which depend both on nf and on the encoder-decoder pair used
to transmit the binary message over the feedback channel.

Some remarks on our setup are in order. We allow for psc 6=
pcs since the s → c and the c → s events have a different
impact on performance. Indeed, the c → s event causes the
premature interruption of the transmission of the current message.
We assume, somewhat pessimistically, that this always results in
an error at the decoder. This error needs to be handled by higher
layers, often causing a violation of the latency requirement. On
the contrary, the s→ c event triggers an unnecessary additional

2The symbol s corresponds to an ACK, whereas the symbol c corresponds to
a NACK.
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(a) The message W = 5 is incorrectly decoded
as Ŵ = 9 after the first round; furthermore,
an s → c event causes the retransmission of
message W = 5. Note: an s → c event causes
the retransmission of W , even when there is no
decoding error.
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(b) A c → s event causes the transmitter to
remove message W = 5 from its buffer, and
move to the new message W = 7 after the
first round. The receiver observes a packet out
of sequence and declares an erasure.
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(c) The receiver declares an erasure after `m = 3
unsuccessful transmission rounds.

Fig. 2: Example of the three types of errors for `m = 3. Here, W is the transmitted message and Ŵ is the estimate of W at the receiver.
Furthermore, Fν is the feedback bit generated by the receiver in round ν, and F̂ν is its estimate at the transmitter.

transmission round, which causes only a moderate increase
in service time. Assuming that these two error events on the
feedback channel have different probability is in agreement with
current wireless standards, where one typically imposes that
pcs � psc. For example, in long term evolution (LTE), we
typically have psc = 10−2 and pcs ∈ [10−4, 10−3] [10, Ch.
10.4.2].

Note that an error on the feedback channel may result in the
transmitter and the receiver falling out of synchronization, i.e.,
operating on different messages. To prevent this, we assume
that each codeword segment contains a binary flag specifying
whether the segment is the first one of a new information-
message transmission or not. Through coding, one can ensure
that this flag is transmitted with a sufficiently high reliability,
to avoid synchronization issues. This will, however, consume
channel uses and, for a fixed n+ nf, result in a weaker channel
code for the forward payload transmission and the feedback
transmission. Throughout the paper, we assume for simplicity
that this flag is always received correctly at the decoder. From
a modeling perspective, this is equivalent to assuming that the
noisy estimate of the feedback bit produced at the transmitter is
known to the receiver. In Section V, we discuss how to generalize
our analysis to account for errors in the transmission of this flag.

To summarize, in our setup, a transmission error occurs if
• The receiver decides to perform decoding but produces the

wrong codeword estimate—an event typically referred to
as undetected error. This event is shown in Fig. 2a along
with an s → c event, which does not cause an error, but
increases the service time.

• A c→ s event occurs on the feedback channel, see Fig. 2b.
• The receiver is not able to perform decoding within the

available `m rounds, see Fig. 2c.
In the last two cases, the decoder declares an erasure, which we
denote by the symbol e.

A. Definition of a VLSF Code

Before providing a formal definition of a VLSF coding scheme
for the noisy feedback case, we introduce some additional
notation. We let Fν ∈ {s, c} be the feedback bit generated by

the receiver in round ν = 1, . . . , `m and F̂ν ∈ {s, c} its estimate
at the transmitter.

Note that in the presence of errors on the feedback link, the
number of rounds after which the receiver produces an estimate
of the transmitted message (or declares an erasure) does not
necessarily coincide with the number of transmission rounds
(see Fig. 2a).

As a consequence, the average service time at the transmitter,
which is the average number of transmission rounds after which
the current message is removed from the buffer at the transmitter,
does not generally coincide with the average latency at the
receiver, which is the average number of transmission rounds
needed by the receiver to produce a message estimate or to
declare an erasure.

From a system-level perspective, the average service time at
the transmitter is relevant in full-buffer scenarios, where one
is interested in maximizing the long-term throughput. Indeed,
according to the renewal-reward theorem, this quantity is given
by the ratio between the number of information bits per message
and the average service time at the transmitter. Minimizing the
average service time at the transmitter is also of interest whenever
an objective is to minimize the average energy consumption.
Hence, achieving a small service time is of interest also in
sporadic transmissions.

Throughout the paper, we shall focus mainly on the case in
which the average service time at the transmitter is the metric of
interest. However, we will also discuss how to adapt our analysis
to the case in which the metric of interest is the average latency
at the receiver.

The definition of a VLSF coding scheme provided below is
an adaptation to the noisy feedback case of the definition of a
VLSF coding scheme given in [7].

Definition 1: An (`a,M, ε, `m, n, nf)-VLSF coding scheme
whereM , `m, n, and nf are positive integers, `a is a nonnegative
real number, and ε ∈ (0, 1), consists of:

• A random variable U defined on a set U of cardinality
|U| ≤ 2 that is revealed to both the transmitter and the
receiver before the start of the transmission. This random
variable acts as common randomness and allows for the use
of randomized coding strategies.
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• A sequence of `m encoders for the forward channel fν : U×
{1, . . . ,M} → Xn, ν = 1, . . . , `m, defining the forward-
channel input

Xν = fν(U,W ) (3)

for a given message W , which we assume to be uniformly
distributed over {1, . . . ,M}.

• A sequence of `m decoders for the forward channel gν :
U × Ynν → {1, . . . ,M}, ν = 1, . . . , `m, providing an
estimate gν(U,Y ν) of the message W .

• A sequence of binary random variables Fν ∈ {s, c},
ν = 1, . . . , `m, each being the outcome of the evaluation
of a stopping rule defined on the filtration σ(U,Y1, . . .Yν).
These random variables are the binary messages transmitted
by the receiver on the feedback channel.

• An encoder for the feedback channel f̄ : {s, c} → X̄nf

defining the feedback-channel input X̄ν = f̄(Fν) at round
ν = 1, . . . , `m.

• A decoder for the feedback channel ḡ : Ȳnf → {s, c} that
produces the estimate F̂ν = ḡ(Ȳν) at round ν.

• Two stopping times, one at the transmitter τtx and one at the
receiver τrx, and a message estimate Ŵ ∈ {1, . . . ,M}∪ e,
all defined through the procedure detailed in Algorithm 1.
The stopping time τtx satisfies the average service-time
constraint

E[τtx] ≤ `a (4)

and the message estimate Ŵ satisfies the error probability
constraint

P
[
Ŵ 6= W

]
≤ ε. (5)

Some remarks are in order. Compared to the definition of
VLSF codes provided in [7], which involves a single stopping
time at the receiver, our definition involves two stopping times,
one at the transmitter and one at the receiver. This is needed
to account for errors on the feedback link. Also, the decoder
employs an erasure option, which is used if a c → s event
occurs, or if the stopping rule is not triggered after `m rounds.
Note that we measure the service time in transmission rounds.
Each transmission round involves n channel uses on the forward
channel and nf channel uses on the feedback channel.

Our definition can be readily adapted to the case in which the
average latency at the receiver is the metric of interest. Indeed,
it is sufficient to replace E[τtx] in (4) with E[τrx].

The random variable U , which also appears in the definition
of VLSF codes provided in [7], enables the use of randomized
coding strategies, which, as we shall see in the proof of our main
result, are needed to obtain bounds on (4) and (5) through a
random coding argument.

III. MAIN RESULT

We provide an achievability bound, i.e., an upper bound on the
error probability achievable using VLSF coding schemes defined
according to Definition 1, for a fixed number of messages M , a
fixed average service time `a, and a fixed latency requirement
`m.

Before presenting our bound, we characterize the pairs (psc =
P[s→ c] , pcs = P[c→ s]) that are achievable for a given choice
of the encoder for the feedback channel.

Algorithm 1 Procedure at the transmitter and the receiver to
compute the message estimate Ŵ , the transmitter stopping
time τtx, and the receiver stopping time τrx.

Initialize:
τtx = τrx =∞; F0 = F̂0 = c;

for ν = 1→ `m do
Transmitter:
if ν > 1 then

compute F̂ν−1 = ḡ(Ȳν−1)
end if
if F̂ν−1 = c then

transmit fν(U,W ) over the forward channel
if ν = `m then

set τtx = `m
end if

else
set τtx = ν − 1

end if
Receiver:
switch (Fν−1, F̂ν−1) do

case (s, s)
STOP

case (s, c)
set Fν = s

case (c, s)

set τrx = ν, Ŵ = e
STOP

case (c, c)
use stopping rule to compute Fν
if Fν = s then

set Ŵ = gν(Y ν , U) and τrx = ν
end if

end switch
if ν < `m then

send f̄(Fν) on the feedback channel
else

if τrx =∞ then
set Ŵ = e and τrx = `m

end if
end if

end for

Lemma 1: For a given nf and for a given encoder f̄ : {s, c} →
X̄nf for the feedback channel, all pairs (psc, pcs) in the convex
hull of the union on the following two sets are achievable⋃
γf∈R̄

(
P

[
dP (c)

dP (s)

(
Ȳ (s)

)
> γf

]
,P

[
dP (c)

dP (s)

(
Ȳ (c)

)
≤ γf

])
(6)

⋃
γf∈R̄

(
P

[
dP (c)

dP (s)

(
Ȳ (s)

)
≥ γf

]
,P

[
dP (c)

dP (s)

(
Ȳ (c)

)
< γf

])
. (7)

where R̄ = R ∪ {±∞}. Here, Ȳ (c) ∼ P (c) and Ȳ (s) ∼ P (s),
where P (c) = PȲ |X̄=f̄(c) and P (s) = PȲ |X̄=f̄(s).

Proof: The result follows from a direct application of the
Neyman-Pearson lemma [30].
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Next, we present our achievability bound, which general-
izes [7, Thm. 3] to the case of noisy feedback and of a finite
number of transmission rounds.

Theorem 1: Let (psc, pcs) be an achievable pair according to
Lemma 1 for a given choice of nf and encoder for the feedback
channel. Assume that 0 ≤ psc + pcs ≤ 1. Fix three integers
M , `m and n, and a real number γdec. Let (X1,X2, . . . ) be a
stationary memoryless stochastic process where Xν ∈ Xn for
every integer ν ≥ 1. Let PX denote its marginal distribution,
and assume that the mutual information I(PX , PY |X), where
PY |X is the channel law defined in (1), is strictly positive.

Also, let Yν ∼ PY |X=Xν
, ν ≥ 1, and consider a second

stationary memoryless stochastic process (X̃1, X̃2, . . . ) with
marginal distributionPX and independent of both (X1,X2, . . . )
and (Y1,Y2, . . . ). Finally define a sequence of information
density functions X νn × Yνn → R

ıν(xν ,yν) = log
dPY ν |Xν (yν |xν)

dPY ν (yν)
, ν = 1, 2, . . . (8)

and two stopping times

τ = inf{ν ≥ 1 : ıν(Xν ,Y ν) ≥ γdec}, (9)

τ̃ = inf{ν ≥ 1 : ıν

(
X̃ν ,Y ν

)
≥ γdec}. (10)

Then, there exists an (`a,M, ε, `m, n, nf)-VLSF code whose
average service time `a, is upper-bounded by

`a ≤
`m−1∑
ν=0

(Gν+1 −Gν) P[τ > ν] (11)

and whose average error probability is upper-bounded by

ε ≤
`m∑
ν=1

ξν

(
ανP[τ > ν] + (M − 1) P[τ ≥ ν, τ̃ = ν]

)
. (12)

Here, αν = pcs for ν = 1, . . . , `m − 1 and α`m = 1.
Furthermore, ξν = (1− pcs)

ν−1 and

Gν =

ν−1∑
k=1

kξkpcs+ξν

[
`m−1∑
k=ν

kpk−νsc (1−psc) +`mp
`m−ν
sc

]
(13)

for ν = 1, . . . , `m, whereas G0 = 0.
Proof: See Appendix A.

Some remarks about our achievability bound are in order.
As discussed in Appendix A, our bound is based on a decoder
that tracks the accumulated information density between each
codeword and the received signal. The stopping rule is triggered
whenever the accumulated information density exceeds the
threshold γdec. The random variable τ in (9) denotes the index
of the first round in which the information density corresponding
to the desired codeword exceeds the threshold, whereas τ̃ in (10)
denotes the index of the first round in which a codeword different
from the transmitted one exceeds the threshold. Clearly, the event
τ > τ̃ will correspond to an undetected error, provided that
τ̃ ≤ `m and no c→ s error has occurred in the previous rounds.
This is captured by the second term in the error-probability
bound (12). The first term in (12) captures instead the error
resulting from a c→ s event.

Note that one recovers the bound reported in [7, Thm. 3] from
the bound given in Theorem 1 by setting psc = pcs = 0 and

letting `m →∞.
As shown in Appendix B, the bound given in Theorem 1 can

be easily modified to account for the case in which the average
latency at the receiver is the metric of interest, and `a gives a
constraint on this quantity. One needs to replace (11) by

`a ≤ 1 +

`m−1∑
ν=1

ξνP[τ > ν] . (14)

In the URLLC literature, (see, e.g., [31]), it is common to
specify the latency t of a packet transmission as

t =

{
t′0 − t0, if packet delivered error-free
∞, otherwise

(15)

where t0 is the time instance the packet is made available to
the transmitter and t′0 is the time instance when the packet is
delivered error-free by the receiver (t′0 is not defined if the packet
is not delivered). The URLLC service requirement can then be
expressed as

P[t ≤ tmax] ≥ 1− εURLLC (16)

where tmax is the latency requirement and 1 − εURLLC is the
reliability requirement.

The VLSF scheme considered in this paper will satisfy the
requirement (16) if tmax ≥ `m(n + nf) channel uses and
εURLLC ≥ ε. However, in general, there is no simple relationship
between t as defined in (15) and τrx, since τrx is finite also when
there are transmission errors.

IV. NUMERICAL RESULTS

We show in this section how to use Theorem 1 to obtain guide-
lines on the design of a HARQ-based short-packet transmission
system operating over a wireless channel. Specifically, we are
interested in understanding the performance degradation due to
noise in the feedback link. Also, we seek prescriptions on how
to choose the size of the codeword segments, the size of the
repetition code that protects the feedback bit, the s→ c and the
c→ s probability, and—for the fading case—the number of pilot
symbols used to estimate the forward channel at the receiver.

Although our framework is general, we will consider for
simplicity only the following two scenarios: 1) both the forward
and the feedback channel are real-valued bi-AWGN channels
operating at possibly different SNR levels, 2) both the forward
and the feedback channel are Rayleigh block-memoryless fading
channels operating at the same SNR level.

A. The bi-AWGN scenario

We assume that the additive noise has unit variance and that
each transmit symbol belongs to the alphabet {−√ρ,√ρ}, where
ρ denotes the SNR on the forward link. We also assume that the
encoder for the feedback channel assigns the nf-dimensional
vector [

√
ρf, . . . ,

√
ρf] to the message s and the nf-dimensional

vector [−√ρf, . . . ,−
√
ρf] to c. Here, ρf denotes the SNR on

the feedback link. Under these assumptions, it follows from
Lemma 1 that for a given Neyman-Pearson threshold γf, the
probabilities psc and pcs can be expressed as

psc = Q(
√
nfρf + γf) (17)
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(a) Error probability vs. average service time: VLSF with noisy and
noiseless feedback and fixed-length no-feedback (FLNF).

(b) Optimal value of ntot.

(c) Optimal value nf. (d) psc and pcs for the optimal γf and nf for a VLSF coding scheme
with ρf = 0 dB.

Fig. 3: Optimal design of VLSF coding schemes for the bi-AWGN channel.

pcs = Q(
√
nfρf − γf) . (18)

Next, we evaluate the bound in Theorem 1 for a stationary
memoryless input process with marginal distribution uniform
over {−√ρ,√ρ}. For such a distribution, (8) reduces to

ıν(Xν ,Y ν) ∼
νn∑
i=1

log 2− log(1 + exp(−2Zi)) (19)

where the {Zi} are independent and N (ρ, ρ) distributed. Since
evaluating (12) directly is challenging, we use the following
upper bound on the probability term P[τ ≥ ν, τ̃ = ν] in (12):

P[τ ≥ ν, τ̃ = ν] ≤ P[τ̃ = ν] (20)
= E[exp(−ıν(Xν ,Y ν)) 1{τ = ν}] . (21)

The equality in (21) follows from a change-of-measure argument
(see [7, Eq. (110)]). Recall that the stopping time τ , defined in (9),
depends on the threshold γdec. The resulting expression can be
readily evaluated using Monte-Carlo methods.

In the numerical simulations that follow, we require `m and

ntot to be integers and fix a target maximum latency `mntot,
measured in channel uses, where ntot = n + nf. Then, for a
given number of information bits log2M , we use Theorem 1 to
obtain an upper bound on the error probability ε achievable for
a given constraint `antot on the average service time measured
in channel uses.3 The bounds on the error probability reported
in this section are optimized over the choice of the total number
of symbols per transmission round ntot, the Neyman-Pearson
threshold γf in (17) and (18), and the number of feedback sym-
bols nf, under the constraint that n+ nf = ntot and that `mntot

is equal to the targeted maximum latency. The optimization is
performed using a grid search algorithm. The VLSF bounds
reported in this section are obtained by time-sharing between
the VLSF scheme used to establish Theorem 1 and a scheme
in which the transmitter simply drops the packet, which results
in `a = 0 and ε = 1. Specifically, let q ∈ [0, 1] be the fraction of
messages sent with the VLSF scheme and, consequently, let 1−q

3Specifically, Theorem 1 guarantees that whenever the average-service-time
constraint (measured in number of rounds) is equal to the right-hand side of (11),
the error probability is smaller than the right-hand side of (12).
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be the fraction of messages that are dropped at the transmitter.
For each ε in Fig. 3, q is optimized to yield the smallest average
service time. Time sharing turns out to be helpful in the high
error-probability regime, i.e., when ε ≥ 10−1.

We start by considering the scenario in which the latency
requirement is `mntot = 400 channel uses, ρ = ρf = 0 dB,
and log2M = 30 bits. In Fig. 3a, we depict the upper bound
on the error probability given in Theorem 1 as a function of
the average-service-time constraint. For each error probability
value, we present in Fig. 3b the optimum value of ntot, in Fig. 3c
the optimum value of nf, and in Fig. 3d the optimum value of
psc and pcs. For comparison, we also depict in Fig. 3a an upper
bound on the error probability for the case in which the feedback
link is noiseless, which is obtained by letting ρf → ∞. Note
that, in this case, setting nf = 1 minimizes the error probability,
as illustrated in Fig. 3c. Finally, we plot an upper and a lower
bound on the error probability achievable using a fixed-length
no-feedback (FLNF) code, with blocklength `antot. Specifically,
the upper bound is the random-coding union bound [2, Th. 16],
and the lower bound is the max-min bound [2, Th. 27], evaluated
using the saddlepoint approximation as described in [32].

Our results in Fig. 3a illustrate the impact of noise on the
feedback channel on the error probability (estimated on the
basis of our upper bound) of the specific VLSF coding scheme
considered in the paper. Consider for example a target error
probability ε = 10−5. When the feedback link is noiseless, the
bound in Theorem 1 yields a minimum average service time
of 106.6 channel uses, an optimal value for ntot of 16 channel
uses, and an optimal value of nf equal to 1. However, when noise
in the feedback link is accounted for, the average service time
increases to 141 channel uses, the optimal value for ntot to 50
channel uses, and the optimal value of nf to 9 channel uses. The
resulting average service time is larger than the one required by
a FLNF coding scheme, which according to the achievability
bound depicted in the figure, requires 130 channel uses to operate
at ε = 10−5.4 The performance degradation of the VLSF coding
scheme is caused by the resources that need to be allocated to
the feedback link to decrease the frequency of c→ s and s→ c
errors. Specifically, as shown in Fig. 3d, to achieve ε = 10−5 it
is sufficient to choose γf = −1.65, which results in psc = 0.088
and pcs = 1.7 × 10−6. Note that the c → s event occurs with
much smaller probability than the s→ c event.

Observe that the optimal number of channel uses ntot allo-
cated on each round increases as the optimal number of feedback
symbols nf increases. This has the positive effect of reducing the
feedback signaling overhead; however, it has also the negative
effect of reducing the maximum number of transmission rounds
that are compatible with the given latency requirement.

The performance of the VLSF coding scheme for the case of
noisy feedback can be improved by increasing the SNR ρf on
the feedback link. This is illustrated in Fig. 4, where we plot the

4Although FLNF schemes are special cases of VLSF schemes, the bound in
Theorem 1 is not able to recover the FLNF achievability bound in Fig. 3a. This
is because the bound in Theorem 1 is based on a threshold decoder with a single
deterministic threshold γdec, which induces a probability mass function on τrx
that does not reduce, in general, to that of a FLNF coding scheme (a singleton).
Furthermore, the random-coding union bound, used for the FLNF case, relies
on optimal maximum likelihood decoding, whereas our VLSF bound assumes
suboptimal threshold decoding.
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Fig. 4: Average service time of a VLSF coding scheme as a function
of the SNR ρf on the feedback link. For reference, we illustrate the
average service time for the noiseless case ρf → ∞, for which setting
nf = 1 and ntot = 16 is optimal.

average service time `antot as function of the SNR ρf on the
feedback link. As in Fig. 3, we assume `mntot = 400 channel
uses, ρ = 0 dB, and log2M = 30 bits. Furthermore, we focus
on a target error probability ε = 10−5. The figure reveals that
increasing the SNR ρf to around 13 dB yields an average service
time close to that achievable in the noiseless-feedback case and
optimal values of ntot and nf as in the noiseless-feedback case.

B. The Rayleigh Fading Scenario

We consider a setup in which the transmission in each round is
through a quasi-static Rayleigh fading channel, i.e., the channel
gain, which is Rayleigh distributed, stays constant over the
transmission round. The fading coefficient is assumed to take
independent realizations over different transmission rounds,
according to our block-memoryless assumption. Specifically,
the input-output relation is given by

Yν = HνXν + Nν . (22)

Here, Xν ∈ Cn denotes the input and the output is Yν ∈ Cn.
The variable Hν ∼ CN (0, 1) denotes the Rayleigh fading and
Nν ∼ CN (0, In) denotes the AWGN. The random variables
{Hν} and {Nν} are assumed to be independent over ν.5 Fur-
thermore, they do not depend on {Xν}. No a priori knowledge
of the realizations of {Hν} is assumed at either the transmitter
or at the receiver.

We consider pilot-assisted transmission, which allows the re-
ceiver to acquire a noisy channel estimate. Specifically, similarly
to [26], we consider inputs of the form Xν = [x(p),X

(d)
ν ]

where x(p) ∈ Cnp , 1 ≤ np < n is a deterministic vector
containing pilot symbols with ‖x(p)‖2 = npρ, and X

(d)
ν ∈ X̃

contains the nd = n− np data symbols, drawn independently
from a quaternary phase shift keying (QPSK) constellation, i.e.,
X̃ = {√ρ exp

(√
−1kπ2

)
, k = 0, . . . , 3}nd . This choice is

5Independent fading realizations across transmission rounds can be achieved
through, e.g., frequency hopping.
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motivated by practical considerations. Better performance may
be obtained using more sophisticated signaling schemes, for
example based on the transmission of constant modulus vectors
that are uniformly distributed on the power sphere, but at the
price of higher receiver complexity.

Let y(p)
ν and y(d)

ν denote the received vectors corresponding to
the pilot and the data symbols respectively. Given x(p) and y

(p)
ν ,

the receiver computes the maximum likelihood (ML) estimate
of the fading realization as

ĥν =
1

npρ
(x(p))Hy(p)

ν . (23)

We assume that the decoder treats the channel estimate as per-
fect and computes for each codeword the following mismatched
accumulated decoding metric

ν(xν ,yν) =

ν∑
k=1

nd∑
i=1

log
q(x

(d)
k,i , y

(d)
k,i )

E
[
q(X, y

(d)
k,i )
] (24)

ν = 1, . . . , `m.6 Here, x(d)
k,i denotes the ith element of x

(d)
k ,

and q(x(d)
k,i , y

(d)
k,i ) is the scaled nearest-neighbor (SNN) decoding

metric

q(x
(d)
k,i , y

(d)
k,i ) = exp

(
−|y(d)

k,i − ĥkx
(d)
k,i |

2
)

(25)

and X in (24) is uniformly distributed over X̃ . Substituting (25)
into (24), we obtain

ν(xν ,yν) =

ν∑
k=1

nd∑
i=1

−|y(d)
k,i − ĥkx

(d)
k,i |

2

− log E
[
exp(−|y(d)

k,i − ĥkX|
2)
]
. (26)

To adapt Theorem 1 to this mismatched-decoding setup, it is
sufficient to replace iν in (9) and (10) with ν in (26). As in the
bi-AWGN case, evaluating P[τ ≥ ν, τ̃ = ν] in (12) directly is
challenging. Hence, we resort to the following upper bound:

P[τ ≥ ν, τ̃ = ν] ≤ P[τ̃ = ν] ≤ exp(−γdec). (27)

The proof of the last inequality can be found in Appendix C.
We model the feedback link in each transmission round as

a quasi-static Rayleigh fading channel that is independent of
the forward channel. The input-output relation in round ν =
1, 2, . . . , `m is given as

Ȳν = H̄νX̄ν + N̄ν (28)

where X̄ν ∈ X̄nf denotes the input to the feedback channel
in round ν and Ȳν ∈ Ȳnf denotes the corresponding output.
As before, H̄ν ∼ CN (0, 1) denotes the Rayleigh fading and
N̄ν ∼ CN (0, Inf

) denotes the additive white Gaussian noise
(AWGN). Again, {H̄ν} and {N̄ν} are mutually independent
and also independent over ν, and do not depend on {X̄ν}.
Furthermore, no a priori knowledge of the realizations of {H̄ν}
is assumed at the transmitter and at the receiver. Throughout this

6The logarithmic term in (24) is a special case of the generalized information
density defined in [33, Eq. (3)]. Indeed, this term can be obtained from [33,
Eq. (3)] by setting s = 1. We use the simpler expression provided in (24) to
avoid performing an optimization over s, which is time consuming.

section, we assume that the forward and the feedback channels
operate at the same SNR ρ.

Since the channel is not known, we assume that the receiver
uses on-off keying to signal the feedback bit. Specifically, the
c and s messages are mapped to the nf-dimensional vectors
[0, . . . , 0] and [

√
ρ, . . . ,

√
ρ], respectively. Also in this case,

our choice is motivated by practical considerations; better-
performing signaling schemes may be devised at the cost of
higher complexity. To perform binary-hypothesis testing based
on the received vector ȳν , the transmitter uses the noncoherent
metric7

log
PȲ |X̄

(
ȳ|f̄(c)

)
PȲ |X̄

(
ȳ|f̄(s)

) = log(1 + ρnf)−
ρ

1 + nfρ

∣∣∣ nf∑
i=1

ȳi

∣∣∣2. (29)

Hence, we have that

psc = PȲ |X̄=f̄(s)

[∣∣∣ nf∑
i=1

Ȳi

∣∣∣2 ≤ γf

]
(30)

= 1− exp

(
− γf

nf(nfρ+ 1)

)
(31)

and

pcs = PȲ |X̄=f̄(c)

[∣∣∣ nf∑
i=1

Ȳi

∣∣∣2 > γf

]
(32)

= exp(−γf/nf) . (33)

We consider again the scenario in which `mntot = 400
channel uses and log2M = 30. The SNR in both the forward
and the feedback links is set to 10 dB. We optimize the bound on
the error probability over ntot, nf, γf, and also over the number
of pilot symbols np. Furthermore, as in the bi-AWGN case,
we utilize a time-sharing strategy to tighten the achievability
bound for high error probabilities. We depict in Fig. 5a the
error probability of the VLSF coding scheme as a function of
the average service time. For comparison, we also illustrate
the error probability for the case of noiseless feedback, and an
achievability bound on the error probability for the FLNF case
based on [33, Th.1]. To obtain the FLNF curve, we assume that,
for a fixedntot, a fixed-length scheme is used over `a consecutive
coherence intervals, with `a being an integer. The final curve is
obtained by optimizing over ntot.

We see in Fig. 5a that the presence of noise in the feedback link
causes again a significant degradation of the error probability,
estimated on the basis of our upper bound. For example, for
the case of noiseless feedback, the minimum average service
time required to achieve ε = 10−5 is 71 channel uses when
ntot = 50 (see Fig. 5b). The average service time increases to
89.4 channel uses, achieved again for ntot = 50, when noise in
the feedback link is taken into account. The minimum number of
channel uses required by an FLNF scheme is 144 channel uses,
which is achieved for ntot = 16. Differently from the bi-AWGN
case, this is significantly larger than the one achievable with the
VLSF scheme, even when noise in the feedback link is taken
into account.

The reason behind the superior performance of the VLSF
scheme in the fading case is its implicit rate-adaptation capabil-

7In what follows, we omit the index ν to keep notation compact.
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(a) Error probability vs. average service time: VLSF with noisy and
noiseless feedback and FLNF.

(b) Optimal value of ntot.

(c) Optimal values of nf and np. (d) psc and pcs for the optimal γf and nf for a VLSF coding scheme
with ρf = 10 dB.

Fig. 5: Optimal design of VLSF coding schemes for the block-memoryless Rayleigh fading channel.

ity [34]. Specifically, in the FLNF case, one needs to choose the
number `a of coherence intervals to code over in a conservative
way, to mitigate the impact of deep fades. On the contrary, in
the VLSF setup, this choice is made adaptively on the basis of
the instantaneous fading realizations.

In Fig. 5c, we illustrate the optimal number of pilot symbols
and feedback symbols. We see that the number of pilot symbols
increases as the target error probability decreases for both noise-
less and noisy feedback. Furthermore, this number is essentially
the same in both the noiseless-feedback and the noisy-feedback
cases.

In Fig. 5d, we plot psc and pcs for the optimal choice of γf

and nf. Observe that, for ε > 5 × 10−2, the probability pcs is
actually greater than the target error probability ε. This is because,
when ε > 5 × 10−2, a single transmission round suffices and
a c symbol is never transmitted on the feedback channel. As
the target error probability ε decreases, retransmissions become
necessary and, consequently, pcs becomes smaller than ε.

V. CONCLUSION

We have generalized the achievability bound for VLSF coding
schemes presented in [7, Thm. 3] to the case in which the
feedback channel is noisy and the feedback delay is accounted
for. Numerical results based on the bound provided in Theorem 1
suggest that the estimate on the minimum average service time
obtainable by using [7, Thm. 3] may be optimistic when noise
in the feedback link is accounted for. For example, in the bi-
AWGN case, when the SNR is 0 dB, the maximum latency
is 400 channel uses, and the target packet error probability
is 10−5, Theorem 1 yields an estimate of the average service
time achievable with VLSF coding schemes that is larger than
that achievable with FLNF coding schemes, once noise in the
feedback link is accounted for (see Fig. 3). In the fading case,
however, under the same latency and reliability requirements,
Theorem 1 suggests that VLSF coding schemes are preferable to
FLNF schemes even when the feedback link is noisy (see Fig. 5).
The intuition is that VLSF schemes utilize the available diversity
more efficiently from a service-time perspective.
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Hence, our analysis suggests that care must be exercised in uti-
lizing simplifying assumptions such as perfect acknowledgment
reception in the design of URLLC systems.

As illustrated in Fig. 3c and Fig. 3d, to compensate for noise
in the feedback link, which makes (uncoded) acknowledgments
unreliable, Theorem 1 suggests that one has to allocate additional
resources to the feedback channel. This implies that fewer
resources are available on the forward channel, which yields
an overall performance degradation for small values of the
average service time. As shown in Fig. 4, one can compensate
for such losses by transmitting the acknowledgments at a higher
power level. This, however, may be unfeasible in bidirectional
nonsporadic communications, where the acknowledgments are
typically piggybacked on packets transmitted on the reverse data
link.

We hasten to add that our observations are entirely based
on an upper bound on the error probability achievable using
VLSF codes, whose tightness we are not able to assess. Indeed,
obtaining a tight converse bound for the case of noisy stop
feedback is an open problem. In fact, even for the case of a
noiseless feedback link, no VLSF converse result is known to
the authors beyond the one obtainable by assuming full feedback.
This implies in particular that the tightness of [7, Thm. 3]—which
is the bound we generalized in this paper—is also difficult to
assess.

For the case of a noiseless feedback link with `m = ∞ and
n = 1, Theorem 1 is known to be tight up to second order as the
average blocklength grows large [7, Th. 2]. Investigating whether
a similar result can be established for the noisy-feedback case
is left for future work.

Our analysis is based on the simplifying assumption that the
decoder is perfectly aware of whether each codeword segment
contains a new information message or just incremental redun-
dancy. One way to relax this assumption is to protect the binary
flag conveying this information using a repetition code. Then,
the probability that the transmitter and the receiver fall out of
synchronization can be computed using Lemma 1. An extension
of Theorem 1 to account for such an error event is nontrivial and
is left for future work.

APPENDIX A
PROOF OF THEOREM 1

Similar to [7, Thm. 3], we start by defining a random variable
U on the set 8

U = X∞ × · · · × X∞︸ ︷︷ ︸
M times

(34)

with probability mass function

PU = PX∞ × · · · × PX∞︸ ︷︷ ︸
M times

(35)

where PX∞ denotes the distribution of the stationary memory-
less stochastic process {X1,X2, . . . }. Each realization ofU pro-
duces M infinite-dimensional codewords [C1(w),C2(w), . . . ],
w = 1, . . . ,M where each codeword segment Cν(w) belongs

8Similar to [28, Section II] (see also [7, Thm. 19]), one can reduce the
cardinality of this random variable to 2.

to Xn, ν = 1, 2, . . . . The encoder fν maps the message w to
the codeword segment Cν(w).

We shall next follow the so-called random coding approach
and characterize the average error probability and the average
service time, averaged over all codebooks constructed according
to this procedure. Note that, contrary to the common application
of the random coding approach, establishing an upper bound
on the average service time and the average error probability
averaged over all codebooks does not imply the existence of a
single codebook in the ensemble that satisfies both constraints.
This problem is solved by the introduction of the random variable
U , which enables the use of randomized coding strategies: each
time a new message is transmitted, a new codebook is drawn
from the ensemble. As shown in [28, Section II] (see also [7,
Thm. 19]), it turns out sufficient to perform randomization across
two codebooks. This implies that the cardinality of the set
over which U is defined can be reduced to 2. In practice, one
could implement randomization across the two codebooks by
equipping the transmitter and the receiver with a pseudo number
generator, and by ensuring that the generators are initialized
using the same seed.

We now continue with the proof. As detailed in Algorithm 1,
the transmitter is also equipped with a stopping rule, which
defines a stopping time τtx as follows:

τtx = min{`m,min{ν : F̂ν = s}}. (36)

Here, we use the convention that the minimum of an empty set
is∞.

At the decoding side, we consider the following stopping rule:
stop at round ν if ıν(Cν(w),Y ν) ≥ γdec for some w. Let now

τw=min{ν : ıν(Cν(w),Y ν) ≥ γdec} (37)

and let

τdec = min{τ1, . . . , τM} . (38)

Finally, let9

τrx = min{τdec, τtx + 1, `m} (39)

be the stopping time at the decoder. If τrx = τdec, the decoder
sets Ŵ = max{w : τw = τdec}. Otherwise it sets Ŵ = e.
In words, an erasure is declared if no codeword results in a
threshold crossing or if a c → s error occurs. Otherwise, the
index of the codeword that resulted in a threshold crossing is
taken as the message estimate. If a threshold crossing occurs
for two or more codewords, the codeword with the largest index
is chosen. Note that differently from [7, Thm. 3], where one is
interested in characterizing the expected value of τdec, in our
setup the quantity of interest is the expected value of τtx, whose
dependence on τdec will be made explicit next.

Assume that the transmitted codeword has index w′. Since
both the input process and the channel law are stationary
and block memoryless, the accumulated information density
ıν(Cν(w′),Y ν), ν = 1, 2, . . . describes a random walk. Fur-
thermore, since E[ıν(Cν(w′),Yν)] = I(PX , PY |X) > 0 for all

9Recall that the decoder is assumed to know the feedback bit estimate at the
transmitter.
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ν ≥ 1, this random walk drifts to +∞ [35, Thm. 2.8.2]. As a
consequence, we conclude that

P[τdec <∞] ≥ P[τw′ <∞] (40)
= 1− P[ıν(Cν(w′),Y ν) < γdec, ∀ν] (41)
= 1.

Here, the first inequality follows from (38) and the last equality
follows because the random walk drifts to +∞ [35, Thm. 3.1.1].

We next prove that E[τtx] can be upper-bounded as in (11).
Set G0 = 0 and Gν = E[τtx|τdec = ν]. One can show that for
ν = 1, . . . , `m − 1, the conditional expectation Gν takes the
form given in (13), whereas for ν ≥ `m

Gν = `m(1− pcs)
`m−1 +

`m∑
k=1

k(1− pcs)
k−1pcs. (42)

Note that this quantity does not depend on ν. We next evaluate
E[τtx] as follows

E[τtx] =

∞∑
ν=1

GνP[τdec = ν] (43)

= lim
`→∞

(∑̀
ν=1

Gν
(
P[τdec > ν − 1]− P[τdec > ν]

))
(44)

= lim
`→∞

(
`−1∑
ν=0

(Gν+1 −Gν)P[τdec > ν]−G`P[τdec > `]

)
(45)

=

`m−1∑
ν=0

(Gν+1 −Gν)P[τdec > ν] . (46)

In the last step we used (40) and thatGν+1 = Gν for all ν ≥ `m
as a consequence of (42). Note now that G1 > G0 by definition.
Furthermore, standard algebraic manipulations reveal that, for
ν = 1, . . . , `m − 1,

Gν+1 −Gν =
(1− psc − pcs) (1− pcs)

ν−1 (
1− p`m−νsc

)
1− psc

. (47)

This implies that Gν+1 −Gν ≥ 0 whenever psc + pcs ≤ 1. To
obtain the desired result, we notice that

P[τdec > ν] ≤ 1

M

M∑
w=1

P[τw > ν|W = w] = P[τ > ν] (48)

where τ is defined in (9).

We now prove (12). First note that, since if threshold crossing
occurs for more than one codeword, the one with largest index
is chosen,

ε =
1

M

M∑
w=1

P
[
Ŵ 6= w|W = w

]
(49)

≤ P
[
Ŵ 6= 1|W = 1

]
(50)

=

`m∑
ν=1

P
[
τrx = ν, Ŵ 6= 1|W = 1

]
. (51)

Next, we decompose each term on the right-hand-side of (51).
For ν = 1, the error probability coincides with the probability

that an undetected error occurs in round 1, i.e.,

P
[
τrx = 1, Ŵ 6= 1|W = 1

]
= P

[
τdec = 1, Ŵ 6= 1|W = 1

]
. (52)

For ν = 2, . . . , `m − 1, we have

P
[
τrx = ν, Ŵ 6= 1|W = 1

]
= P

[
τtx = ν − 1, τdec > ν − 1, Ŵ 6= 1|W = 1

]
+P
[
τtx ≥ ν, τdec = ν, Ŵ 6= 1|W = 1

]
(53)

= P[τtx = ν − 1|τdec > ν − 1,W = 1]

×P[τdec > ν − 1|W = 1]

+P
[
τtx ≥ ν|τdec = ν, Ŵ 6= 1,W = 1

]
×P
[
τdec = ν, Ŵ 6= 1|W = 1

]
. (54)

The first term on the right-hand side of (54) is the probability
that an erasure is declared at step ν because of a c→ s event at
step ν − 1 and the second term on the right-hand side of (54)
corresponds to the probability of an undetected error. Observe
now that

P[τdec > ν − 1|W = 1] ≤ P[τ > ν − 1] . (55)

Furthermore,

P
[
τdec = ν, Ŵ 6= 1|W = 1

]
= P

[
∪Mm=2{τ1 ≥ ν, τm = ν} |W = 1

]
(56)

≤ (M − 1) P[τ1 ≥ ν, τ2 = ν|W = 1] (57)
= (M − 1) P[τ ≥ ν, τ̃ = ν] (58)

where τ̃ is defined in (10). Finally, we have that

P
[
τtx ≥ ν|τdec = ν, Ŵ 6= 1,W = 1

]
= (1− pcs)

ν−1 (59)

and that

P[τtx = ν − 1|τdec > ν − 1,W = 1] = (1− pcs)
ν−2

pcs. (60)

For ν = `m, the error probability is given by the sum of the
terms in (54) computed for ν = `m, and the additional term

P[τtx ≥ `m|τdec > `m,W = 1] P[τdec > `m|W = 1]

≤ (1− pcs)
`m−1 P[τ > `m] . (61)

This term describes the probability that no codeword causes a
threshold crossing within `m transmission rounds and no errors
occurred on the feedback channel. We obtain the desired bound
by substituting (55), (58), (59), and (60) into (52) and (54) and
then (52), (54), and (61) into (51).

APPENDIX B
UPPER BOUND ON E[τrx]

Let τrx be defined as in (39). Furthermore, let Vν =
E[τrx|τdec = ν] for ν = 1, 2, . . . and V0 = 0. The steps to
bound E[τrx] are analogous to the ones used to bound E[τtx] in
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Appendix A. First, note that V1 = 1. Next, we write

E[τrx] =

∞∑
ν=0

(Vν+1 − Vν) P[τdec > ν] (62)

where

Vν = νP[τtx ≥ ν|τdec = ν]

+

ν∑
k=2

kP[τtx = k − 1|τdec = ν] (63)

= ν(1− pcs)
ν−1 +

ν∑
k=2

k(1− pcs)
k−2pcs (64)

for, ν = 2, . . . , `m, and

Vν = `m(1− pcs)
`m−1 +

`m∑
k=1

k(1− pcs)
k−2pcs (65)

for ν > `m. Note that V1 > V0 and Vν+1 − Vν = 0 for ν ≥ `m.
Finally, for ν = 1, . . . , `m − 1, we have

Vν+1 − Vν = (1− pcs)
ν−1. (66)

Hence, we conclude that Vν+1 − Vν > 0 and that

E[τrx] ≤ 1 +

`m−1∑
ν=1

(1− pcs)
ν−1P[τ > ν] . (67)

APPENDIX C
PROOF OF (27)

By using Jensen’s inequality in (24), we have that

E
[
ν(X̃ν ,Y ν)

]
≤ 0. (68)

Since ν(X̃ν ,Y ν) is a sum of ν independent and identically
distributed random variables, we conclude that each random
variable has a negative mean. Such a property allows us to use
Wald’s identity [36, Cor. 9.4.4] and conclude that

P[τ̃ = ν] ≤ P
[
ν(X̃ν ,Y ν) ≥ γdec

]
(69)

≤ exp(−β∗γdec) (70)

Here, β∗ is the positive solution of

κ(β) = log E
[
exp
(
β1(X̃1,Y1)

)]
= 0. (71)

Substituting (26) in (71) we find that β∗ = 1. Substituting this
value in (70), we obtain the desired result.
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