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Abstract

This paper presents a visualisation method, based on deep learning, to assist power engineers in the analysis of large amounts 
of power-quality data. The method assists in extracting and understanding daily, weekly and seasonal variations in harmonic 
voltage. Measurements from 10 kV and 0.4 kV in a Swedish distribution network are applied to the deep learning method to 
obtain daily harmonic patterns and their distribution over the week and the year. The results are presented in graphs that allow 
interpretation of the results without having to understand the mathematical details of the method. The inferences given by the 
results demonstrate that the method can become a new tool that compresses power quality big data in a form that is easier to
interpret.

1 Introduction

Utilities and industrial consumers perform continuous power 
quality (PQ) monitoring to obtain information on the supply 
and equipment performance [1]. Long-term PQ 
measurements result in a large amount of data. For instance, 
one year of continuous monitoring of 39 harmonics and 40 
interharmonics (3 voltages, 3 currents, 10-minute values) 
results in about 31 million data points per location.  Manual 
analysis of this data type is possible; however, it is too time-
consuming for multiple location measurements. Existing 
automatic methods to handle PQ data obtain indices such as 
the 95th percentile, average, or maximum values of the Total 
Harmonic Distortion (THD) over a given period [2, 3]. The 
representation of the PQ data in such indices is a very limited 
approach, as it does not allow obtaining typical variation 
patterns versus time. In order to assist the experts, new 
automatic tools are still needed to compress the PQ big data 
in an easier-interpretation form.

Artificial intelligence (AI) tools have been developed since 
the ’90s to identify patterns in power system data. Before 
2015, most of the tools were based on supervised learning 
which requires pre-labelled training data to predict the labels 
of the unseen data. The application of supervised learning 
was focused on the classification and recognition of events
[4].  Since 2015, there is a growth in deep learning (DL)
algorithms that can handle power system data without the 
need to pre-define features. Even with the possibility of 
automatic feature extraction, none of the approaches has 
provided a solution for the extraction of the harmonics
patterns. Faced with that, we provided in [5] an unsupervised 

method, briefly summarized in Section 2, based on DL to 
extract automatically patterns in daily variations of 
harmonics.

In Section 3, we show how the results from the method in [5] 
become a tool that assists power engineers in the analysis of 
PQ measurements. The automatic results given by DL are 
presented, in Section 4, for harmonics measurements in a 
Swedish distribution network. We concentrate the analyses 
on the visualization of the automatic results from a PQ 
viewpoint. The main objectives of this paper are: (1) to 
illustrate the inferences that can be obtained by the 
application of the method to PQ data; (2) to provide a guide 
for the power engineers in the interpretation of the automatic
results given by DL.

2 The Deep Learning Method

The DL method consists of an autoencoder (AE) followed by 
a clustering algorithm to obtain the principal features and 
main patterns of variations in PQ data as shown in Fig 1. The 
following describes each stage of the method. Mathematical 
descriptions can be found in [5].

The pre-processing consists of representing the time-series of 
a long period (input data) in individual daily samples. For 
instance, Fig. 1 shows a harmonic voltage time-series for an 
entire year, which results in 52560 samples (365 days x 144 
samples per day). The pre-processed data is obtained by 
reshaping the entire time-series in 365 data sequences with 
144 samples (10 min-values). 
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The AE consists of an encoder that maps the original data to 
a compressed format that contains the principal features. The 
decoder is a reverse structure of the encoder, which can 
reconstruct a representation of the original data by the 
principal features. Both encoder and decoder contain several 
layers of convolutional neural networks.

Principal
features

DecoderEncoder

Patterns spread Results relevanceReconstructed patterns

Input data

Clustering

Training Reconstruction

Results

Fig. 1 Block diagram of the DL method [5].

The AE training is performed to minimize the reconstruction 
error between the original and the decoded data. Through the 
training process, the principal features of the input data are 
obtained.  To analyse the possible underlying patterns of 
variation from the input, clustering is applied to group the 
principal feature vectors of data. The reconstructed patterns
are obtained by applying the cluster centres of the principal 
features on the trained decoder.

3. The Visualisation Method

The method results in three plots, shown in the lower part of 
Fig 1: reconstructed patterns, patterns spread, and results 
relevance. It is these plots that assist the power engineers.

3.1 Reconstructed patterns
This plot shows the two daily patterns that are most dominant 
in the data. In engineering terms, these could be described as 
“typical patterns”. In the method as applied here, only two 
patterns are assumed, but there is no limitation in the number
of clusters. Our experience is, however, that interpretation 
generally becomes more complicated with an increasing 
number of clusters. The differences and similarities between 
intraday variations of the two reconstructed patterns allow
making inferences for the magnitude and origin of a PQ
disturbance over a day. For instance, in Fig. 1 the 
reconstructed pattern 2 is higher than pattern 1 in terms of 
harmonic voltage during the whole day.  Then, pattern 2
represents high distortion days, while pattern 1 represents low 
distortion days. Even though the voltage magnitude is distinct 
for each pattern, the intraday variations are similar. For 

example, both patterns present steps at 8:00 and 16:00, and 
the highest values occur at the same time (between 6:00 and 
16:00). The similarity in the intraday variations indicates that 
the disturbance cause is the same.

3.2 Patterns spread 
This plot indicates, for each day of the year, which of the two 
typical daily patterns best fits the observed pattern for the 
day. The plot shows how the patterns are spread over the year 
and the occurrence of any weekly or seasonal variations. For 
instance, in Fig.1 the high-distortion days are in red (pattern 
2) and occur mostly on weekdays during spring and summer. 

3.3 Results relevance 
This graph is the result of an advanced mathematical 
transformation, the details of which are not relevant here, 
which shows how strong the clusters are. It can show, for 
example, if the patterns show a continuous change or if they 
form two or more distinct groups. For instance, in Fig. 1 the
two clustered patterns are reasonably well separated. It 
indicates that the data features obtained are effective to reveal 
distinctive patterns.

4 Study case and Results

PQ data sets from a continuous PQ measurement in a 
Northern Swedish distribution system over the year 2017 are 
applied to the proposed DL method. In each feeder, class A 
PQ monitors are installed in both MV and LV sides of the 
distribution transformers as shown in Fig. 2. 

130 kV 40 kV 10 kV 0.4 kVT10

T1

Power quality monitors 
Class A (IEC 61000-4-30)

Feeder 1

Feeder 10

Δ YMV LV

Fig. 2 Measurements setup in a Northern Swedish 
distribution system.

The measurement data consist of 10-min values according to 
IEC 61000-4-30 [6] for harmonics 2 through 50. To illustrate 
the visualization of the results, data sets from harmonics 
measurements in a feeder for both MV and LV are analysed 
in this paper. The forthcoming sections present the automatic 
plots for some odd harmonic orders in power networks. In 
order to guide the interpretation of the plots, analyses for the 
5th harmonics are presented in detail.  The inferences for 3th, 
7th, and 9th are summarized. The choice for these orders was
based on the meaningfulness of them in power systems 
analysis.
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4.1 Results and analysis for 5th harmonics

To analyze the daily variations of the 5th harmonics (H5), 
Fig. 3 shows the reconstructed patterns for 10 kV (a) and 0.4 
kV (b). For both voltage levels, there are two distinct patterns 
represented as ‘1’ (blue) and ‘2’ (red). Inferences can be 
made by visualizing the variation of the harmonic voltage 
during the 24-hour interval. For instance, one can note that 
pattern 2 has higher harmonic voltage than pattern 1, in both 
voltage levels. A possible inference is that the intraday 
variations are the same in the 10 kV and 0.4 kV, i.e. the 
patterns share a similar shape in both voltage levels. The 
highest values in patterns 1 and 2 occur during the day 
between 6:00 and 18:00. The steps around 6:00 and 18:00 are 
higher in pattern 2 than in pattern 1. 

a b
Fig. 3 Reconstructed patterns for H5: (a) 10 kV; (b) 0.4 kV.

To further analyze the distribution of original data sequences 
in these two patterns over the entire 1-year period, Fig. 4 
shows how the patterns are spread in terms of weekdays 
versus week numbers over 2017 for both voltage levels. The 
blue cells correspond to days classified in pattern 1, and the 
red cells correspond to data in pattern 2 (higher distortion). 
By the visualization of the plots, one can infer that the high-
distortion days occur mostly on weekdays during spring and 
summer for both voltage levels. The exception is from weeks 
29 through 32 and week 38 when only low-distortion days 
occur. An important conclusion that the same underlying 
phenomenon causes the 5th harmonics for both voltage levels 
as the daily variations of the patterns (Fig. 3) and spread over 
the year (Fig. 4) share the same trends. 

a b
Fig. 4 Patterns spread for H5: (a) 10 kV; (b) 0.4 kV. Blue 

cells correspond to pattern 1, red cells to pattern 2.

Finally, Fig. 5 shows the 2D scatter plot of high-dimensional 
clustered feature vectors to analyse the relevance of the 
results. For both voltage levels, one can see that the two 
clustered patterns are reasonably well separated. It indicates 

that the data features obtained from AE are effective to reveal 
distinctive patterns.

a B
Fig. 5 Results relevance for H5: (a) 10 kV; (b) 0.4 kV.

4.2 Results and analysis for 3rd harmonics

The two reconstructed patterns in 3rd harmonics at 10 kV 
present similar variations for some periods of the day, as 
shown in Fig. 6 (a). For instance, there are similar trends in 
the harmonic voltage between 4:00 and 7:00 and also 
between 19:00 and 24:00. Pattern 2 is higher than pattern 1 
during the day, the only exception is for a period around 
17:00 and 18:00.  Fig. 6 (b) shows that the two patterns also 
show similar variations during the day in 0.4 kV, for 
example, the highest peak in the evening and some lesser 
peaks during daytime. However, these intraday variations in 
0.4 kV are not the same as in 10 kV. 

a b
Fig. 6 Reconstructed patterns for H3: (a) 10 kV; (b) 0.4 kV.

The spread of the patterns is randomly and distinctly 
distributed in the two voltage levels as shown in Fig. 7. 
Similarly, the scatter plots in Fig. 8 do not show any 
separation in pattern clusters. 

a b
Fig. 7 Patterns spread for H3: (a) 10 kV; (b) 0.4 kV.

By Fig.7, one can see that summer days present more 
instances classified as low distortion days (pattern 1) in 0.4 
kV than 10 kV. In contrast, high distortion days (pattern 2) 
are more incident in 0.4 kV than in 10 kV for winter days 
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between weeks 1 and 15.  The only similarity in the voltage 
levels for the patterns spread is between the weeks 16 and 20, 
where the days were classified in majority to high-distortion 
days (pattern 2). However, the reconstructed patterns for 
pattern 2 in 10 kV and 0.4 kV do not show the same intraday 
variations in Fig. 6. Due to these differences in the patterns 
spread and reconstructed patterns, one could infer that the 3rd 
harmonic cause is not the same in both voltage levels, 
moreover that there is no propagation of the 3rd harmonics 
through MV/LV transformers.

A b
Fig. 8 Results relevance for H3: (a) 10 kV; (b) 0.4 kV.

4.3 Results and analysis for 7th harmonics

The reconstructed patterns for 10 kV and 0.4 kV of 7th
harmonic (H7) (Fig. 9) present similar daily variation as H5, 
the dependence on the time of the week and the time of year 
is also very similar (Fig. 10). This indicates the same origin 
for both harmonics in both voltage levels. The separation 
between the clusters for H7 (Fig. 11) is as clear as for H5.

4.4 Results and analysis for 9th harmonics

The two reconstructed patterns in 10 kV present distinct 
variations during the day, as shown in Fig. 12 (a). For 
instance, there is a slight increase in pattern 1 between 6:00
and 18:00 while in pattern 2 there is a decrease during the 
same period. In contrast, the two patterns in 0.4 kV present 
similar intraday variations, for instance, both present an 
evening peak.

A b
Fig. 9 Reconstructed patterns for H7: (a) 10 kV; (b) 0.4 kV.

a b
Fig. 10 Patterns spread for H7: (a) 10 kV; (b) 0.4 kV.

A b
Fig. 11 Results relevance for H7: (a) 10 kV; (b) 0.4 kV.

a b
Fig. 12 Reconstructed patterns for H9: (a) 10 kV; (b) 0.4 kV.

Fig. 13 also points out an opposite spread of the patterns 
between 10 kV and 0.4 kV; the high distortion days (pattern 
2) are more prominent in the summer and spring for 10 kV 
and the winter for 0.4 kV. The spread of the patterns is more 
homogenous in 0.4 kV; for instance, there are only two days 
classified as pattern 2 between weeks 20 and 26, while 10 kV 
shows both pattern 1 and pattern 2 during that period. Fig. 14 
also points out that the patterns are more separated in 0.4 kV 
than in 10 kV.

a b
Fig. 13 Patterns spread for H9: (a) 10 kV; (b) 0.4 kV.
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a b
Fig. 14 Results relevance for H9: (a) 10 kV; (b) 0.4 kV.

4.5 Discussion of the results

In order to confirm mathematically the inferences provided 
by the visualization of the DL results, Table 1 shows the 
correlations between the patterns for each harmonic and
between the spread over the year. H3 presents a moderate 
correlation between patterns 1 and 2 in 0.4 kV and in 10 kV, 
indicating a common cause. However, the correlation is 
negative between the low-distortion patterns (pattern 1) in 0.4 
kV and in 10 kV. The correlation is also negative between the 
high-distortion patterns (pattern 2). The correlation of 
patterns spread is also small (12.32 %). It points out that H3 
does not spread from one voltage level to the other. H5 and 
H7 presented a high correlation between the patterns, and
between the voltage levels. The correlation is also high for 
the spread of the patterns over the year. It confirms that these 
harmonics have the same source and that they propagate 
through MV/LV transformers. H9 presents higher correlation
of the patterns in 0.4 kV than in 10 kV, which points out that 
the patterns in 10 kV are not related to the same cause. The 
correlation is negative between the pattern in 0.4 kV and 10 
kV. The same holds for the spread of the patterns. This way, 
the inferences given by DL are aligned with PQ knowledge 
that harmonics 3 and 9 do not spread through MV/LV 
transformers. While H5 and H7 spread through a large part of 
the distribution.

Table 1 Correlations between the patterns for each harmonic

Correlation (%) H3 H5 H7 H9

Pattern 1 and 2 in 0.4 kV 67 93 92 74
Pattern 1 and 2 in 10 kV 
Pattern 1 in 0.4 kV and 10 kV
Pattern 2 in 0.4 kV and 10 kV
Spread in 0.4 kV and 10 kV

78
-51
-67
12

94
97
98
96

91
93
96
78

42
-72
-35
-68

4.6 Comparison between DL and traditional methods

Existing methods are limited to an expert to direct the 
analysis. For instance, an expert can decided to average the 
harmonic values according to temperature over a year: 
negative temperatures (autumn and winter), and positive 
temperature. By our method, the spread of patterns is 
obtained automatically. For instance, for the 5th harmonic, the 
plot of patterns spread (Fig. 4) revealed three weeks around 
week 30 with a pattern not related to weather conditions. 

Moreover, Fig. 15 shows that the quality of the daily patterns 
is also improved by DL for the 5th harmonic. DL can lead 
better with more severe days and reconstruct intraday 
variations in more detail then using simple values averaging. 

Fig. 15 Comparison between averaging and DL method.

5 Conclusion

This paper presented a method to extract automatically 
patterns from PQ data through DL. Through harmonics 
measurements in a distribution system, a guide for the 
interpretation of the automatic results given by DL was 
provided. It was shown that, even with without any pre-
knowledge of DL, inferences related to the daily variations, 
seasonality, origin, and propagation of harmonics could be 
obtained simply by the visualization of the DL results. The 
inferences given by the visualization were confirmed by the 
correlation between the patterns. Besides, the inferences 
given by DL were aligned with PQ theory. Overall, this paper 
showed that our method could become an additional tool to 
assist power engineers, which compresses big data from PQ 
measurements in a form that is easier to interpret.
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