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Abstract: This paper focuses on the construction of the Jacobian matrix required in tomographic
reconstruction algorithms. In microwave tomography, computing the forward solutions during the
iterative reconstruction process impacts the accuracy and computational efficiency. Towards this
end, we have applied the discrete dipole approximation for the forward solutions with significant
time savings. However, while we have discovered that the imaging problem configuration can
dramatically impact the computation time required for the forward solver, it can be equally beneficial
in constructing the Jacobian matrix calculated in iterative image reconstruction algorithms. Key to
this implementation, we propose to use the same simulation grid for both the forward and imaging
domain discretizations for the discrete dipole approximation solutions and report in detail the
theoretical aspects for this localization. In this way, the computational cost of the nodal adjoint
method decreases by several orders of magnitude. Our investigations show that this expansion is a
significant enhancement compared to previous implementations and results in a rapid calculation
of the Jacobian matrix with a high level of accuracy. The discrete dipole approximation and the
newly efficient Jacobian matrices are effectively implemented to produce quantitative images of the
simplified breast phantom from the microwave imaging system.

Keywords: nodal adjoint method; Jacobian matrix; discrete dipole approximation; computational
efficiency; microwave tomography; breast imaging

1. Introduction

Microwave imaging is an emerging technology that is beginning to see increased clinical
use for a number of applications. These include breast cancer imaging [1–4], stroke diagno-
sis [5,6], bone imaging [7] and others. For these applications, there is usually a significant
endogenous contrast that can be exploited for imaging. For breast cancer imaging, there
is a substantial property contrast between benign and malignant tissue [8–10]; for stroke
diagnosis, there is a large contrast between blood and normal brain tissue [11]; for bone, there
is a significant correlation between the dielectric properties and bone density [7]. In addition,
the dielectric properties can be exploited to recover functional information such as temperature
monitoring during thermal therapy [12,13] due to their temperature dependence [14].

The most widely applied area for microwave imaging has been in the area of breast
cancer imaging. The three most prominent microwave imaging techniques include radar,
holography and tomography or inverse problems. Radar approaches can be either in a
backscatter or transmission mode, where broadband signals are transmitted and received
by either the same antenna or others in an array. The signals are time shifted so as
to focus the composite signals at a particular pixel in the field of view and the sum of
these components is recorded. This procedure is repeated for all points in the domain

Sensors 2021, 21, 729. https://doi.org/10.3390/s21030729 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5223-1917
https://orcid.org/0000-0002-9858-1688
https://orcid.org/0000-0001-9578-9996
https://orcid.org/0000-0002-3852-5203
https://doi.org/10.3390/s21030729
https://doi.org/10.3390/s21030729
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030729
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/729?type=check_update&version=1


Sensors 2021, 21, 729 2 of 16

until an image is produced. The work by Fear and Stuchly [4] is a good example of the
reflection-based technique which has been used in simulation, phantom and limited patient
exams. The Craddock group at the University of Bristol has produced good results with
their transmission-based system which has been used in clinical trials [1,15]. Microwave
holography generally assumes that the broadcast signal and those transmitted through
and reflected back from the target are spherical waves which can be decomposed into
a superposition of plane waves through a Fourier transform [16]. Each of these can
be back propagated to the target and re-transformed into the spatial domain for target
identification and characterization. These algorithms are effective in both 2D and 3D.
The most prominent effort in this area is by the Nikolova group at McMaster University
which has implemented a system that has advanced to phantom studies [17]. For the
tomographic approach, numerous groups have produced simulation studies [18–21] on
both classic conical structures and with data from actual MR exams [22]. Several approaches
have advanced to phantom and animal studies [12,23–26] and there have been several
patient studies by the Dartmouth College group—particularly in breast cancer neoadjuvant
chemotherapy monitoring [2]. This paper focuses entirely on the tomography approaches
since these are the ones that require construction of a Jacobian matrix as part of their image
reconstruction process.

One of the consistent complaints about microwave tomography is the long compu-
tation times. This is due primarily to heavy resources needed for the multiple forward
solution calculations at each iteration. These times have generally ranged from several
minutes for some 2D implementations [27] to many hours and even days for larger 3D
reconstructions that often require parallelized multi-processors and graphical processing
units (GPUs) to accelerate the computation speed [18,23,24]. In fact, the EMTensor group is
exploring massively parallel, cloud computing to solve the computational issues for their
portable and computationally expensive system [28]. These concerns have been somewhat
ignored because there are such significant challenges in just recovering a diagnostically
relevant image. Problems have most often revolved around the issues of convergence
to local minima [29], the need for a priori information by some systems [21,30], and the
amount of measurement data necessary for reconstructing viable images and the associated
hardware requirements to meet this need [31]. In most cases, it was generally assumed that
the computational issues could be addressed later—especially since computer power has
consistently improved by factors of two or so every 18 months for several decades now
according to Moore’s Law [32].

While the forward solution computation costs are the most substantial, there are
other aspects of these formulations which also contribute to the slow overall computation.
One critical component of most microwave tomographic imaging techniques, and for that
matter most inverse problems, is the Jacobian matrix [33]. While not called this exact term
in many microwave formulations, the net result is similar for all techniques. In essence,
the terms of the Jacobian are the change in the field registered by the jth receiver due to
a small change in the permittivity at a single node in the parameter reconstruction mesh
while illuminated by the ith transmitter [34]. These gradient terms provide direction to
the iteration process during Newton-like reconstruction processes. The overall size of the
matrix is (Nt × Nr)× Np, where Nt, Nr, and Np are the number of transmitters, number of
receivers per each transmitter, and the number of parameter values being reconstructed,
respectively. In this sense, the matrix can be quite large and its formation can impose a
significant impact on the overall computation times.

Cui et al. [35] introduced a Green’s function with an integral formulation technique
to effectively form the Jacobian matrix which is subsequently incorporated into a dis-
torted Born approximation inverse solution. The technique has been shown to work well
with low contrast and small scatter problems when the starting property distribution
estimate is that of the surrounding background. This approach is subsequently utilized
by Shea et al. [18] and further by Karadima et al. [23]. Zakaria et al. [36] used the finite
element contrast source inversion method for microwave imaging and reported in detail
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on the gradients of the cost function. Van den Berg and Kleinman [37] also devised a
contrast source inversion method to solve the inverse problem. While this did not explicitly
compute a Jacobian matrix, it does compute the gradients of the cost function which are
in the form of Frechet derivatives, called the Polak–Ribiere conjugate gradient directions.
This approach is further used by Gilmore et al. [25] which expands upon this concept by
adding a multiplicative regularization. The contrast source inversion technique is also used
by Rubaek et al. [38] which expands the concept to a log-transformed version, similarly
to that used in Meaney et al. [39]. The conversion of the complex Jacobian terms to the
log-transformed counterpart involves only minor algebraic operations. Joachimowicz et al.
utilizes an iterative variation scheme derived from a classical Newton procedure [40].
The solution was derived for the 2D TM situation and the computation of the Jacobian
matrix is a Green’s function formulation applied to a Method of Moments technique for
the forward solution. Efforts by Souvorov et al. [34] utilized an iterative Fourier inver-
sion method where the forward solution was based on integral equations. The Jacobian
matrix formulation was quite similar to that of Cui et al. [35]. Later efforts by Bindu and
Semenov [41] utilized the distorted Born approximation with an FDTD forward solution
and similar Jacobian formulation. In none of these cases did the groups actually call their
matrices the Jacobian matrix.

More recently, the discrete dipole approximation (DDA) has been introduced as a
means of dramatically reducing the forward solution computation time and the associated
memory requirements [42]. This has the potential to reduce the forward solution time of a
2D imaging problem by an order of magnitude or more. Interestingly, the uniform grid
configuration informed our understanding of the Jacobian formulation to the point where
its construction is now reduced to a low number of vector–vector multiplications. In a
more rigorous analysis, this new derivation originates from the nodal adjoint technique
introduced by Fang et al. [43]. The net result is that each element of the matrix is created by
the multiplication of two complex numbers and a pre-computed scalar term. The adjoint
method is an exact method for computing the Jacobian matrix and relies largely on the
principle of reciprocity. It is widely used in multiple imaging modalities including optical
coherence tomography and electrical impedance tomography in addition to microwave
imaging [44–48]. This approach is quite general for the 2D problem and can be readily
extrapolated to the 3D situation.

The paper focuses on the calculation of the Jacobian matrix as an expansion of the
nodal adjoint technique with respect to its accuracy and computational cost. A comparison
between Jacobian matrices formed via the finite element-type (FE) and the discrete dipole
approximation-based (DDA) tomographic image reconstruction algorithms is performed.
Our goal is to retain the efficiency embedded in the DDA forward solver and does not allow
the Jacobian matrix formation to undermine the capabilities of the fast forward solver. In
this study, we present an approach which utilizes the DDA forward solution configuration
with the nodal adjoint formulation of the Jacobian matrix allowing us to preserve both
performance and accuracy. The accuracy of the Jacobian matrix is investigated with respect
to our FE-based version. Additionally, experimental data acquired using the microwave
breast imaging system at Chalmers University of Technology is used to image a tissue-like
phantom to validate our algorithm.

The following sections describe the mathematical underpinnings of the method and
show examples of Jacobian matrix construction in comparison to an existing finite element-
based formulation together with reconstructed images employing the described technique.
The paper is organized in the following format: Section 2 describes the nodal adjoint method
used for calculation of the Jacobian matrices of the FE and the DDA forward solvers together
with investigations of their computational costs from a mathematical point of view; Section 3
shows simulated numerical results from the Jacobian matrices of the FE and DDA solvers,
the computation times for these methods as well an image reconstruction validation by
phantom experiment; Section 4 discusses the results and concludes the study.
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2. Methods

Beginning with the finite element representation of the dual mesh-based nodal adjoint
method derivation of the Jacobian matrix [43], Figure 1 shows the overlapping forward
solution mesh (red) and the parameter mesh (blue). For the 2D case, all of the forward
solution and parameter mesh elements are triangles. This discussion is readily extended to
the 3D case by replacing the triangles with tetrahedrons and expanding the forward solu-
tion from this scalar problem to the necessary 3D vector forward distributions. In previous
implementations, the size of the forward solution mesh elements was noticeably smaller
than that for the parameter mesh because the former’s size is dictated by the sampling
requirements to achieve an accurate forward solution [49].

Figure 1. Overlapping forward solution and parameter meshes corresponding to the nodes and elements.

In this case, a single term of the Jacobian associated with the sth source antenna,
the rth receive antenna and the τth parameter mesh node can be written as follows:

J((s, r), τ) = − ∑
n∈Ωτ

∑
e∈Ωn

1
jωµ0|Jr|

Ae

M
φτ(~pn)Es(~pn)Er(~pn) (1)

where Es(~pn) and Er(~pn) are the electric field values due to sources from both antennas
s and r at the nodal location ~pn, and φτ(~pn) is the parameter mesh basis function (In this
situation, we utilize linear basis functions over each triangular element where its value is 1
at the designated node and transitions linearly to zero at the other two nodes and along the
edges between these two nodes) due to node τ in the parameter mesh and evaluated at node
n in the forward solution mesh. Ωn is the region composed of forward solution elements
immediately associated with node n (i.e., for the region where the forward solution basis
function for node n is non-zero) (Figure 2). e is one of the forward solution elements within
Ωn, Ae is the area of element e and M is the number of vertices in a triangle (3). ω is the
angular frequency, µ0 is the free space magnetic permeability, Jr is the amplitude of a signal
transmitted by the receive antenna r, and j is the imaginary unit. ∑e∈Ωn( ) is essentially a
numerical integration of the associated terms over element e. Ωτ is the region composed
of parameter elements immediately associated with node τ (i.e., for the region where the
parameter basis function for node τ is non-zero) (Figure 3). It should be noted that forward
solution node n must lie within Ωτ .
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Figure 2. Forward solution mesh nodes; example of node n and corresponding region Ωn is sketched.

Figure 3. Parameter mesh nodes; example of node τ and corresponding region Ωτ is sketched.

As can be seen from Figure 2, φτ is non-zero for all seven forward solution nodes in
Ωn. Therefore, these summations in Equation (1) need to be performed explicitly. However,
an interesting observation is made if both the forward solution and parameter meshes
overlap exactly (Figure 4).

In this case, there are six parameter mesh elements surrounding node τ and only
seven forward solution mesh nodes within Ωτ . In fact, for the integration (summations)
which is performed over just the six τ-associated elements, the terms are only non-zero
for node τ and zero for all the surrounding ones (Again, this is true for the linear basis
functions used in this derivation). In this case, the inner summation can be reduced:

1
jωµ0|Jr|

1
M ∑

e∈Ωn

Aeφτ(~pn)Es(~pn)Er(~pn) =
1

jωµ0|Jr|
Es(~pτ)Er(~pτ) ∑

e∈Ωn

Ae

M
(2)

For the situation where the mesh is effectively uniform, the new summation becomes a
constant, where A is the sum of the area in Ωτ. This ultimately reduces the Jacobian term to

J((s, r), τ) =
−1

jωµ0|Jr|
A
M

Es(~pn)Er(~pn) (3)
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This means that each term in the Jacobian is reduced to a simple multiplication of the
two forward solutions due to sources from antennas s and r at node τ and also multiplied
by a constant, 1

jωµ0|Jr |
A
M . It should be noted that for an entire row of the Jacobian matrix

(i.e., where s and r do not change), each element of the matrix is a similar multiplication
at different nodes of the mesh. This implies that an entire row of the Jacobian can be
computed as a vector–vector multiplication of the two field distributions times a constant:

J(s, r) =
−1

jωµ0|Jr|
A
M

~Es~Er (4)

Figure 4. Forward solution mesh and parameter mesh overlap exactly.

Thus, computation of the entire Jacobian matrix can be reduced to ns × nr vector–
vector (np long) multiplications where ns and nr are the number of transmitting antennas
and the number of receiving antennas per each transmitter, and np is the number of
nodes in the parameter mesh. In comparison, the computation for a single element of
the Jacobian matrix using the nodal adjoint method is the product of two n f long vectors
and a corresponding diagonal matrix, where n f is the number of nodes in the forward
solution mesh. This amounts to 2× n f computations for a single element and 2× n f × np
computations for a complete row. Therefore, the new approach has a factor of 2× n f fewer
computations—corresponding to several orders of magnitude faster construction. This is
a general relationship and it can be easily demonstrated that it holds for other geometric
configurations such as rectangular grids used in finite difference time domain and the
discrete dipole approximation.

3. Results
3.1. Comparison of Jacobian Matrix Row Distributions with That of Known Reconstruction Algorithm

Figure 5 shows a schematic diagram of a typical 2D imaging system arrangement.
In this case, the monopole antennas are positioned on a 15.2 cm diameter circle, with an-
tenna #1 being the lowest centered one and the subsequent ones ordered in a clockwise
configuration. Each antenna broadcasts a signal for which the complementary 15 antennas
act as receivers. This process is repeated for each antenna transmitting individually to
produce a total of 240 measurements (16 transmitters × 15 receivers per transmitter).
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r = 7.6 cm

Homogeneous
Background
εr,b = 22

σb = 1(S/m)

Antenna # 1

Antenna
# 5

Antenna # 9

Antenna
# 13

Figure 5. Schematic representation of imaging domain together with the antenna array.

Figure 6a shows the imaging zone for the discrete dipole approximation (DDA)
method where the circular imaging zone is approximated by a subset of the uniform grid
used for computing the forward solution. In this case, the complete grid is comprised of
64 × 64 squares for a total forward solution zone of 25 × 25 cm2 and each single cell is a
3.9 mm square.
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(a) DDA mesh (b) FE mesh-fine (c) FE mesh-coarse

Figure 6. Representation of imagining domain with respect to the meshes used for forward solutions
(a,b) and property reconstruction (a,c).

with diameters of 14.5 cm. It should be noted that for the forward solution, the region outside of the
meshes is represented using the boundary element method comprised of the homogeneous medium
and having outer boundaries extending to infinity [50]. The fine mesh (forward solution) has 3903
nodes and 7804 triangular elements while the coarse one (reconstruction) has 559 nodes and 1044
elements. The average node spacing for these two meshes is 2.25 mm and 6.08 mm, respectively.

Figure 7 shows the plots of several rows of the Jacobian matrix using the DDA algorithm on
the 1085 node grid corresponding to different transmit and receive antenna pairs at 1300 MHz and
homogeneous bath properties of εrb = 22 and σb = 1 (S/m). These calculations all assume that this is
the first iteration of a reconstruction problem where the starting distribution of the imaging zone is
homogeneous utilizing the known values of the bath.

In this case, the complex values are transformed into their effective log magnitude and phase
values via their transformation relationships described in Meaney et al [39] for viewing their
distributions. The different cases include: (a) transmitting at antenna #1 and receiving at antenna
#8, (b) transmitting at antenna #5 and receiving at antenna #13, and (c) transmitting at antenna #6
and receiving at antenna #12, respectively. For the magnitude plots, there is a cigar-like yellow and
red zone extending straight between each of the associated antennas and decreasing rapidly and
oscillating about zero in the orthogonal direction to both sides with respect to the main axis of the
band. Given that each matrix term is the change in the field measured at the receiver with respect to a
change in the properties at a pixel for a signal broadcast at a transmitter, these distributions effectively
represent sensitivity maps for the given transmit/receive pair antennas. It is important to note that
these distributions are reciprocal - i.e. the distribution for transmitting from antenna A to B is the same
as that for transmitting from B to A. Reciprocity is a key feature in exploiting the adjoint technique.
The corresponding phase plots show a similar but wider main band extending between the associated

Figure 6. Representation of imagining domain with respect to the meshes used for forward solutions
(a,b) and property reconstruction (a,c).

The imaging zone is a step-wise circle consisting of 1012 squares and 1085 vertices
(i.e., the number of unknowns) with an effective diameter of 14.0 cm. Figure 6b,c show the
corresponding finite element (FE) meshes used in our FE-based reconstruction algorithm.
As with the DDA approach, the antennas are configured on a circle concentric with the
centre of the imaging zone. The meshes for the dual mesh approach (one for the forward
solution and one for the property reconstruction) are both inside the antenna array with
diameters of 14.5 cm. It should be noted that for the forward solution, the region out-
side of the meshes is represented using the boundary element method comprised of the
homogeneous medium and having outer boundaries extending to infinity [50]. The fine
mesh (forward solution) has 3903 nodes and 7804 triangular elements while the coarse one
(reconstruction) has 559 nodes and 1044 elements. The average node spacing for these two
meshes is 2.25 mm and 6.08 mm, respectively.

Figure 7 shows the plots of several rows of the Jacobian matrix using the DDA
algorithm on the 1085 node grid corresponding to different transmit and receive antenna
pairs at 1300 MHz and homogeneous bath properties of εrb = 22 and σb = 1 (S/m). These
calculations all assume that this is the first iteration of a reconstruction problem where the
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starting distribution of the imaging zone is homogeneous utilizing the known values of
the bath.

(a) Transmitter #1
Receiver #8

Magnitude

row 13

Phase

row 14

(b) Transmitter #5
Receiver #13

row 135 row 136

(c) Transmitter #6
Receiver #12

row 161 row 162
Figure 7. Plots of the effective log magnitude (left) and phase (right) distributions for various rows
of Jacobian matrix (m2), corresponding to multiple transmitter/receiver pairs, for the discrete dipole
approximation (DDA)-based algorithm. The distributions are presented on the DDA grid. Note that
the plotting algorithm smoothed the imaging zone shape with triangles around the sharp edges of
the reconstruction grid.

In this case, the complex values are transformed into their effective log magnitude
and phase values via their transformation relationships described in Meaney et al. [39]
for viewing their distributions. The different cases include: (a) transmitting at antenna
#1 and receiving at antenna #8, (b) transmitting at antenna #5 and receiving at antenna
#13, and (c) transmitting at antenna #6 and receiving at antenna #12, respectively. For the
magnitude plots, there is a cigar-like yellow and red zone extending straight between
each of the associated antennas and decreasing rapidly and oscillating about zero in the
orthogonal direction to both sides with respect to the main axis of the band. Given that each
matrix term is the change in the field measured at the receiver with respect to a change in
the properties at a pixel for a signal broadcast at a transmitter, these distributions effectively
represent sensitivity maps for the given transmit/receive pair antennas. It is important
to note that these distributions are reciprocal—i.e., the distribution for transmitting from
antenna A to B is the same as that for transmitting from B to A. Reciprocity is a key feature
in exploiting the adjoint technique. The corresponding phase plots show a similar but
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wider main band extending between the associated antennas. Extending outwards in the
orthogonal direction from this main band, the phase values increase from negative values
and then oscillate about zero outwards while diminishing in amplitude.

Figure 8 shows the corresponding distributions for the FE-based algorithm plotted on
the associated 559 node mesh. The overall effective magnitude and phase distributions are
quite similar. The overall scaling is slightly different because the individual values of the
Jacobian matrix terms are with respect to the effective grid area immediately surrounding
each pixel in the imaging zone. For the FE-based arrangement, the area is 96.0 mm2 while
that for our uniform grid/DDA configuration, it is 60.8 mm2.

(a) Transmitter #1
Receiver #8

Magnitude

row 13

Phase

row 14

(b) Transmitter #5
Receiver #13

row 135 row 136

(c) Transmitter #6
Receiver #12

row 161 row 162
Figure 8. Plots of the effective log magnitude (left) and phase (right) distributions for various rows
of Jacobian matrix (m2), corresponding to multiple transmitter/receiver pairs, for the finite element
(FE)-based algorithm. The distributions are presented on the coarse FE-mesh.

Other than this scaling factor, the results are essentially identical.
Figure 9 shows the maps of each row of a FE-based Jacobian matrix divided by the

associated DDA rows (both effective log magnitudes and phases).
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(a) Transmitter #1
Receiver #8

Magnitude

row 13

Phase

row 14

(b) Transmitter #5
Receiver #13

row 135 row 136

(c) Transmitter #6
Receiver #12

row 161 row 162
Figure 9. Plots of the effective log magnitude (left) and phase (right) distributions for ratios of
Jacobian matrices calculated with DDA and FE-based schemes. The distributions are presented on
the DDA grid.

In these cases, the FE-based distributions were first mapped to the DDA-based grid
using a linear interpolation and divided pixel-by-pixel by the DDA distributions. The re-
sults are nearly uniform distributions across the domain except for large and isolated
perturbations along arcs outside of and following the trajectory of the main bands within
both the associated magnitude and phase distributions. The two distributions differ by a
scaling factor which is related to the fact that the local area in the imaging zone is different
because the number of nodes is different for each implementation. This area term has an
immediate impact as can be seen in Equation (1). These jumps are caused by instances
where the values in the DDA-based distributions are near zero (along the loci of points
where the distributions cross zero) while the mapped version of the FE-based distribution
is slightly altered spatially (still crossing zero), resulting in these disruptions. In spite of
these aberrations, which are minor, the overall uniform distributions confirm the excellent
match between the Jacobian calculations for the two methods.

3.2. Computation Time

For the computation time, we only considered the recurring steps at each iteration.
For instance, the computation time for the weighting factors that only needed to be calcu-
lated once and stored in memory was not counted. For the FE-based approach, the code
was written in FORTRAN77 and was compiled with gfortran (v. 7.5.0) and running on a
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single 4-core Xeon E3-1270 3.60 GHz processor with hyperthreading enabled and 32 GBytes
of DDR4 2133 MHz RAM running the Ubuntu (18.04 LTS) operating system. For the
DDA-based algorithm, the software code was written in MATLAB (v. R2019b MathWorks,
Inc., Natick, MA, USA) and ran on the same machine. The average time (averaged over
20 iterations) for computing the FE-based Jacobian matrix was 1.08 s. The corresponding
time for the DDA-based code was 0.0055 s. It is important to note that the sizes of these
two matrices are different. While the number of rows for each is the same (16 transmit
antennas × 15 receive antennas per each transmitter), the number of nodes in the field
of view (i.e., the number of columns of the matrix) is different. For the FE-based scheme,
the number of columns was 559 while that for the DDA-base method was 1085. Even with
this considerable difference, the new DDA-based approach was substantially faster.

3.3. Experimental Validation

The 2D DDA forward solver and the corresponding Jacobian matrix are embedded in
the log-magnitude and phase format reconstruction algorithm. The fundamental aspects
of the reconstruction algorithm and the 2D DDA were previously investigated by the
authors [27,42,51,52] and are employed for this study.

The microwave breast imaging system at Chalmers University of Technology [53] is
comprised of an imaging tank filled with a coupling medium, i.e., mixture of glycerin and
water (80:20 ratio) and a surrounding circular antenna array comprised of 16 monopole
antennas. The lossy mixture is a tissue mimicking medium and resembles the breast tissue for
purposes of imaging. The 4 cm diameter cylindrical phantom filled with 84:16 glycerin–water
mixture is positioned in front of antennas #6 and #7, shown in Figure 10. The scattering
parameters of the system were measured via the Vector Network Analyzer (Rohde & Schwarz
ZNBT8) connected to the antenna array, and are provided as the measurement data to
the reconstruction algorithm in form of two sets of 240 (16 transmitter × 15 receiver per
transmitter) measurements (magnitude and phase parts of the electric fields).

Figure 10. The photograph of the measurement setup for the case that a cylindrical inclusion is
positioned close to antennas #6 and #7.

At 1500 MHz, the dielectric properties for the 80:20 water–glycerin mixture used
in the imaging tank was measured such that the relative permittivity εr,bath = 20.9 and
conductivity σbath = 1.35 (S/m). The corresponding values for the 84:16 water–glycerin
mixture used in the cylindrical phantom (object) are εr,obj = 16.9, σobj = 1.15 (S/m).

Figure 11 shows the reconstructed relative permittivity and conductivity images as
a function of iteration number. The circular object is visible in both permittivity and
conductivity images in all iterations at an off-centered position (a circle is drawn to show
the exact location of the object). The sequence of images illustrates how the algorithm
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recovers the object in the first few iterations and then gradually refines it. We observe that
the reconstructed permittivity images are more accurately recovered compared to those
of the conductivity, especially the conductivity images have more artefacts surrounding
the phantom position while the permittivity images are not as affected by the artefacts
and are smoother. This observation is in line with previous investigations assessing image
quality [24,54].

iteration
1

iteration
5

iteration
10

iteration
15

iteration
18

Figure 11. Images of reconstructed relative permittivity (top row) and conductivity (S/m) (bottom row) at 1500 MHz as a
function of iteration number.

To confirm the convergence of the reconstruction algorithm, we compare the field
calculations with the actual measured data. The field projections refer to the calibrated data
as the measured data for the homogeneous imaging tank (without the phantom) subtracted
from the inhomogeneous measured data (containing the phantom). Figure 12 shows the
computed magnitude and phase projections due to a single transmitter at selected iterations
compared with that of the actual measured data. The projections are of similar shapes as
the measured data at all iterations and monotonically converge towards them.
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Figure 12. Comparison of calculated magnitude and phase projections of the signals transmitted from Antenna 1 for
multiple iterations as a function of receiver number. The actual measurement projection is also shown.



Sensors 2021, 21, 729 13 of 16

Figure 13 shows the error of the optimization process for image reconstruction. The rela-
tive error (normalized to the first iteration) decreases monotonically with increasing iterations.
In this case, the error decreased from 1 to 0.135 in 18 iterations. The stopping criterion is met
when the decrease in error from one iteration to the next is less than 1 × 10−3.
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Figure 13. Computed relative L2 norm error of projections for the experimental study as a function
of number of iterations.

4. Discussion and Conclusions

For microwave tomographic type imaging algorithms, construction of the Jacobian
matrix contributes significantly to the overall computation time. It is computed at each
reconstruction iteration, so its time impact is important. Previous imaging techniques
have employed the adjoint method which exploits reciprocity to dramatically reduce the
computation time. For those implementations, the reconstruction algorithm was finite
element based, such that computing the Jacobian meant performing numerous integrations
over the various triangular elements and sub-elements within the imaging zone just to
calculate a single value within the matrix. The net consequence was that the time was still
substantial. In this formulation, we exploit the observation that the distributions of rows of
the Jacobian produce effective sensitivity maps with respect to the pair of transmitting and
receiving antennas. Inspection of the adjoint-based algorithms used to produce the matrix
shows that when the parameter mesh overlaps exactly with the forward solution mesh,
the net effect is that the sensitivity distributions are simplified to simple multiplications of
the field vectors due to sources at both the transmit and receive antennas. This allows each
row of the matrix to be computed as a simple vector–vector product of the two forward
solutions which is a dramatically smaller computation task than before.

It should be noted that this approach could be adapted to situations where the forward
solution mesh is not identical to the parameter reconstruction mesh. In those situations,
the rows of the Jacobian could be computed using this approach as if with the assumption
that the two meshes are the same. Subsequently, this distribution could then be mapped from
the one mesh to the other utilizing a simple matrix-vector multiplication. While this would
involve extra computational steps compared to this preferred implementation, it would most
likely be more efficient than existing methods for computing the Jacobian matrix.

For many algorithms, the computation time for constructing the Jacobian matrix
usually consumes the second most amount of time behind that for computing the forward
solutions. However, with the advent of the discrete dipole approximation approaches,
the forward solution times are reduced dramatically—to the point where the times for
constructing the Jacobian matrix may become comparable. In keeping with reducing the
overall time, it is imperative that this task not be ignored. Our new treatment allows the
Jacobian matrix computation to be substantially reduced and has a direct impact on the
overall image reconstruction time without sacrificing accuracy.

The reconstructed images from the experimental study confirm that the simple and
efficient calculation of the Jacobian matrices from our new approach and the DDA forward
solutions produce high quality images in a highly efficient manner.
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