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5G Synchronization, Positioning, and Mapping
from Diffuse Multipath

Fuxi Wen, Senior Member, IEEE and Henk Wymeersch, Senior Member, IEEE

Abstract—5G mmWave communication systems have the po-
tential to jointly estimate the positions of user equipment (UE)
and mapping their propagation environments using a single base
station. But such potential depends on the characteristics of the
reflecting surfaces, such as a deterministic specular nature, a
stochastic diffuse/scattering nature, or a combination of both. In
this letter, we proposed a 5G positioning and mapping algorithm
with unknown orientation and clock bias for single-bounce diffuse
multipath channel models. The method is able to accurately
localize, calibrate and synchronize the UE, even in the absence
of line-of-sight and specular components. This enables robust
positioning and mapping using only diffuse multipath.

Index Terms—5G mmWave, positioning and mapping, diffuse
components, tensor decomposition, orientation and clock bias
calibration

I. INTRODUCTION

5G mmWave communication systems provides new oppor-
tunities for improving the quality and robustness of commu-
nications, as well as for accurate user equipment (UE) posi-
tioning from a single base station (BS) [1]. Large bandwidth
and multiple antennas, at both the BS and UE sides, allows
for high resolution, with recent theoretical studies showing
the potential of simultaneous positioning the UE and mapping
the propagation environments utilizing the resolvable angle-
of-departures (AODs), angle-of-arrivals (AOAs), and time-of-
arrivals (TOAs) [2], [3]. However, this potential depends on
the characteristics of the objects in the environment, whereby
propagation paths may be of a deterministic specular nature,
or of a stochastic diffuse/scattering nature, or a combination
of both. In general, as the frequency increases, surfaces appear
rougher and lead to more diffuse scatterings [4], there is higher
path loss, and higher sensitivity to line-of-sight (LOS) block-
age. For non-LOS (NLOS) mmWave propagation, especially
for vehicle-to-everything communications in urban scenarios
[5], specular components together with single-bounce diffuse
components form a majority of the overall channel gain [4].
Diffuse multipath is often treated as a disturbance, though
geometry-based diffuse scattering channel models can also be
considered, where each surface contributes with a cluster of
paths, all with similar angles and delays [6], [7]. Such a model
was exploited in the positioning and mapping problem [7].
However, [7] did not consider the impact of the UE’s clock
bias and orientation, both of which are important practical
parameters. Joint localization and synchronization has been
treated in several studies [8]–[12]: an analysis based on
Fisher information theory in [8] showed that, under LOS,
joint localization, synchronization and orientation estimation

F. Wen and H. Wymeersch are with the Department of Electrical Engineer-
ing, Chalmers University of Technology, Sweden. This work was supported,
in part, by the Swedish Research Council under grant 2018-03701.

are possible and that NLOS paths do not negatively impact
the performance. [13] showed that NLOS paths from ideal
reflections can be harness to improve performance, while [9]
showed that the UE location and clock bias can be estimated
with a sufficient number of NLOS paths, even when the LOS
is blocked. In [10] a message passing method was proposed,
which requires a priori knowledge of the position and clock
bias. Furthermore, cooperative network synchronization [11]
and single-anchor localization and synchronization of full-
duplex agents [12] have also been proposed. Common among
all these works is that only specular multipath is considered,
while diffuse multipath is ignored.

In this letter, we extend [7] by using estimated diffuse
and specular multipath parameters to recover the UE position,
orientation, clock bias and the map of the propagation environ-
ment, for single-bounce channels. Our specific contributions
are as follows:
• We propose a low-complexity processing chain (requir-

ing only a 2D search) for estimating the UE position,
orientation, clock bias, and the map of the propagation
environment based on a single downlink transmission;

• We demonstrate that joint synchronization, positioning,
and mapping is possible even when both LOS and spec-
ular multipath are absent.

Notation: Scalars are denoted in italic, e.g., x. Lower case
boldface indicates a column vector, e.g., x. Upper case bold-
face denotes a matrix, e.g., X with IN representing an N×N
identity matrix, while upper case boldface calligraphic denotes
a tensor, e.g., X . Matrix transpose, conjugate transpose, and
inverse are indicated by superscript T, H and −1, respectively.
The Euclidean norm is denoted by ‖ · ‖, while the tensor
Frobenius norm is indicated by ‖·‖F . The expectation operator
is denoted by E{·} and the set of all complex numbers is
denoted by C.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a 3D scenario with a single transmitting BS
with known location pT = [xT, yT, zT]T and a receiving UE
with unknown location pR = [xR, yR, zR]T, as well as an
unknown clock bias expressed in meters βc (c is the speed
of light) and an unknown orientation α ∈ [0, 2π) with respect
to the vertical axis. There are R reflectors and each reflector
gives rise to Nr ≥ 1 rays [14], with the l-th ray corresponding
to an unknown and random incidence point (a scattering point
(SP)) on the rth reflecting surface in the environment, denoted
by prl = [xrl, yrl, zrl]

T, whose distribution on the surface
depends on the electromagnetic properties [15]. The LOS path,
if it exists, has index r = 0, with N0 = 1.
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The BS and UE both employ uniform rectangular arrays
(URAs) consist of sensors in a grid of size MT = M1 ×M2

and MR = M3 × M4, and transmit MIMO-OFDM signals
(other signals may be used provided they are compatible
with the signal model (3), to be defined later) with M5 sub-
carriers and sub-carrier spacing ∆f . The channel parameters
associated with incidence point prl are the 6-tuple of (i) AOD
in azimuth and elevation angles (φrl, ψrl) at the BS; (ii) AOA
in azimuth and elevation angles (θrl, ϕrl) at UE; (iii) the TOA
τrl; and (v) the complex channel gain γrl. The models for the
channel gains follows the standard path loss model for the LOS
path and specular components, while for diffuse components,
each gain has identical magnitude and uniform phase [7].

The downlink frequency-domain channel response for sub-
carrier fi is represented as Hi ∈ CMR×MT is expressed as

Hi =

R∑
r=0

Nr∑
l=1

γrle
−j2πfiτrlaR (θrl, ϕrl) aH

T (φrl, ψrl) , (1)

where aR (θrl, ϕrl) and aT (φrl, ψrl) are the antenna array
response vectors at the UE and BS, respectively [6], [16]. For
subcarrier i, Hi can be converted in a 4D tensor of suitable
dimension, Hi ∈ CM1×M2×M3×M4 [17]. The received signal
on subcarrier i is of the form Yi = HiSi + Ni, where Si
is a known pilot signal with orthogonality property (SiSH

i =
ρIMT

) and Ni is i.i.d. Gaussian noise. Then we have Xi =
1
ρYiS

H
i = Hi + 1

ρNiS
H
i = Hi + Wi, where Wi is also

i.i.d. Gaussian noise with a scaled covariance matrix.
Our objective is, given measurements Xi of the mmWave

channel, to determine pUE, B, α and a parametrization of
the K surfaces. This involves three steps: (i) estimation and
association of parameters of specular and diffuse multipath,
(ii) localization, synchronization, and orientation estimation;
(iii) mapping.

III. PROPOSED METHOD

A. Estimation and Association of Specular and Diffuse Mul-
tipath Parameters

Remark 1. While there are many mmWave channel estimation
methods, our application has two specific requirements. First
of all, for each estimated path, the AOA, AOD, and TOA should
be correctly matched. In other words, the channel estimator
should return 5D tuples, not unordered sets of angles and
delays. Secondly, the estimator should provide such tuples not
only for the specular paths, but also for diffuse components.
This is in contrast to the conventional approach, which treats
diffuse multipath as a random process without exploiting its
relation to the environment geometry. To the best of our
knowledge, tensor-ESPRIT (estimation of signal parameters
via rotational invariance techniques) [18] is unique in meeting
these two requirements and explained briefly here.

We exploit the R-D grid structure inherent in the data,
as well as the Vandermonde structure in angle and delay
domain to map from geometric channel parameters to spatial
frequencies. For subcarrier i, Xi and Wi are M3M4×M1M2

matrices. We convert these M5 matrices (one per subcarrier)
in a 5D tensor of suitable dimension, X , H and W ∈
CM1×M2×M3×M4×M5 . For the pth path (p = 1, 2, · · · , P
where P =

∑R
k=1Nk, where we have renumbered the paths

compared to (1)) and d-th dimension (d ∈ {1, 2, · · · , 5}), we
now introduce a(ω

(d)
p ) ∈ CMd×1, which is equivalent to the

uniform linear array steering vector composed of Md sensors,
and ω(d)

p is the spatial frequency, with [17]

ω(1)
p = π sin(φp) cos(ψp), ω(2)

p = π sin(ψp), (2a)

ω(3)
p = π sin(θp) cos(ϕp), ω(4)

p = π sin(ϕp), (2b)

ω(5)
p = 2π∆fτp. (2c)

For the pth path, the equivalent 5D array steering tensor can
be written as Ap = a(ω

(1)
p ) ◦ a(ω

(2)
p ) ◦ · · · ◦ a(ω

(5)
p ), where

◦ represents the outer product. This allows us to express the
observation as

X =

P∑
p=1

γpAp + W ∈ CM1×M2×···×M5 . (3)

This formulation directly allows us to apply tensor-ESPRIT
[18] for channel estimation with high resolution and limited
computational complexity. The basic idea of tensor-ESPRIT
is exploiting the multidimensional shift invariant structure of
Ap. Here, the spatial frequency estimates are obtained without
nonlinear optimization and without computing or searching
of any spatial spectrum. The number of signal components
is a prerequisite for subspace based methods, such as tensor-
ESPRIT. In the the CP decomposition model [19], tensor X is
decomposed into a sum of rank-one tensors, each component
corresponds to one path. Model order selection techniques [20]
can be used to detect the number of paths P̂ . In general,
the estimated P̂ � P for rough surfaces with hundreds
of closely located diffuse paths. The reason the number of
paths is underestimated is due to the finite resolution of the
receiver. The diffuse multipath is generated from a very large
number of scatter points on the surface of each object, densely
spaced to approximate the underlying continuous distribution.
The receiver can only resolve paths to the extent allowed
by its bandwidth (delay resolution) and array size (angular
resolution). Finally, the estimated spatial frequencies {ω̂(d)

k }
for d ∈ {1, 2, · · · , 5} and k ∈ {1, 2, · · · , P̂} are converted to
AOA, AOD and TOA, via (2). Additional details can be found
in [7]. Each of the P̂ estimated paths can be associated with
a 3D point on one of the R surfaces. We denote these points
as artificial SPs, since they will be be different from the P
physical SPs prl corresponding to the rays. Both the physical
SPs and the artificial SPs are random. However, the proposed
method does not require knowledge of their distributions.

B. Positioning, Synchronization, and Orientation Estimation

We make use of the following essential geometric relations.
For the LOS path, we introduce p01 as any point on the line
strictly between pT and pR, but not equal to either point. Then
the following relations hold for any path, i.e., ∀r, l:

τrl = ‖prl − pT‖/c+ ‖prl − pR‖/c+ β (4a)
θrl = π + atan2(yrl − yR, xrl − xR)− α (4b)
ϕrl = asin(zrl − zR)/‖prl − pR‖ (4c)
ψrl = asin(zrl − zT)/‖prl − pT‖ (4d)
φrl = atan2(yrl − yT, xrl − xT). (4e)
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Due to the presence of α and β, solving for the UE location is
not trivial. We propose a two-step approach. We first determine
an estimate of the UE location, assuming known orientation
and clock bias. This estimate is denoted by p̂R(α, β). Then we
optimize over all pairs (α, β) of orientations and clock biases.

1) Estimation of p̂R(α, β): The estimation problem is
challenging, due to the lack of knowledge on whether the LOS
path is present. We tackle the problem based on the methods
from [21], [22]. We first define

fT,k =

cos(φ̂k) cos(θ̂k)

cos(φ̂k) sin(θ̂k)

sin(φ̂k)

 , (5)

which points along the AOD of path k ∈ {1, . . . , P̂}; and
fR,k is defined equivalently for the AOA, pointing from the
UE towards the k-th artificial SP:

fR,k =

cos(φ̂k) cos(θ̂k + α− π)

cos(φ̂k) sin(θ̂k + α− π)

sin(−φ̂k)

 , (6)

where we recall that α is assumed known in this first step.
For each path k, we can establish the following relation:

pR = pT + cτ̃kξkfT,k + cτ̃k(1− ξk)(−fR,k), (7)

where τ̃k = τ̂k − β, where ξk ∈ [0, 1] is unknown and
represents the fraction of the delay τ̃k that is attributed to
the line from BS to a scatter point. Note that the value of ξk
is arbitrary for the LOS path (if it is present). Rearranging the
terms in (7) results in

pR = δk + ξkuk, k ∈ {1, . . . , P̂}, (8)

with δk = pT − cτ̃kfR,k and uk = cτ̃k(fT,k + fR,k). From
(8), we see that ξk‖uk‖2 = uT

k (pR − δk). Solving for ξk and
substituting back into (8) provides us with the following cost
function

C (pR) =

P̂∑
k=1

ζk
∥∥pR − (δk + ūT

k (pR − δk)ūk
)∥∥2, (9)

where ūk = uk/‖uk‖ and ζk ≥ 0 is the weight of the k-th
path, which can depend on the channel gain (amplitude) of
the path. Minimizing C (pR) yields a closed-form solution

p̂R(α, β) =
( P̂∑
k=1

ζk(I − ūkūT
k )
)−1 P̂∑

k=1

ζk(I − ūkūT
k )δk.

(10)

Note that the method does not require separation of specular
and diffuse paths, nor does it rely on knowledge of which path
is the LOS (or even presence of the LOS). The cost function
in (9) can be applied with all P̂ estimated paths, or only a
selected subset of paths (e.g., the strongest ones).

2) Estimation of (α, β): Substituting p̂R(α, β) back into
(9) yields a cost function over (α, β), i.e., C(α, β) =
C (p̂R(α, β)), (without depending on the unknown pR) from
which (α, β) can be found by solving

minimize C(α, β) (11a)
s.t. α ∈ [αmin,+αmax], (11b)

β ∈ [βmin,+βmax], (11c)

with a 2D grid search. Geometric constraints can be intro-
duced to limit the size of the search space [23]. Denoting the
solution to (11) by (α̂, β̂), the final estimate of the UE location
is p̂R(α̂, β̂).

Remark 2 (Intuition of the method). The UE state can
be estimated by noticing that each estimated artificial SP
provides 5 observations (1 delay and 4 angles), while being
parameterized by 3 unknowns (the artificial SP position).
Hence, the system is over-determined, so that with a sufficient
number of estimated paths, all unknowns can be estimated,
even if the artificial SP locations are unknown. Note that in
contrast to [9], a single sufficiently rough surface is sufficient
to provide an unambiguous UE state estimate in the absence
of LOS.

C. Mapping the Propagation Environment

Finally, we use the estimates of the UE state to determine es-
timates of the environment. Given p̂R(α̂, β̂), α̂ and β̂, we can
recover artificial SPs pk, k ∈ {1, . . . , P̂} as the intersection of
the lines pT + κTfT,k, κT ∈ R and pR + κRfR,k, κR ∈ R.
The least-squares solution is readily found to be

p̂k = (HT,k + HR,k)−1(HT,kpT + HR,kp̂R(α̂, β̂)), (12)

with HT,k = I − fT,kfT
T,k, HR,k = I − fR,kfT

R,k. Note
that p̂k need not correspond to any physical SP prl, due to
the limited resolution in angle and delay of the 5G mmWave
communication system.

In order to attach a meaning to the artificial SPs, a
post-processing step is needed. The artificial SPs are first
partitioned into clusters, say C1, C2, · · · , CK̂ using standard
clustering methods. Each cluster Cc ideally corresponds to
one surface and can then be represented by a mean µc and a
covariance Σc, given by

µc =
1

|Cc|
∑
i∈Cc

pi, (13)

Σc =
1

|Cc| − 1

∑
i∈Cc

(pi − µc)(pi − µc)T (14)

where | · | denotes the number of elements of the set. The
proposed algorithm is summarized in Algorithm 1. Note that
equations (5), (7)–(10) for positioning and (12) for mapping
are the same as in [7].

IV. NUMERICAL RESULTS

A. Simulation Setup

We consider a carrier frequency of 28 GHz, corresponding
to λ = 1.07 cm, a total bandwidth of 20 MHz with 100
subcarriers, of which 10 equally spaced subcarriers are used
for pilots. A cyclic prefix of length 7 is used. 64 pilot OFDM
symbols are sent, for a total duration of 3.52 ms. We set
the pilots as Si = IMT

, ∀i. The BS and UE are located
at pT = [20, 0, 8]T and pR = [0, 0, 2]T with unknown
orientation α = π/3 and clock bias βc = 4 m, respectively.
There two reflecting surfaces: one building facade and a
ground surface. The 10 m high and 20 m long building facade’s
center is at [10, 10, 5]T, with orientation [0, 1, 0]T (x-z plane).
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Algorithm 1: Summary of the proposed algorithm
Input: Channel tensor measurement X
Output: p̂R, α̂, β̂ and {µc,Σc}c=1,2,··· ,K̂
/* Geometric Channel Estimation */
• Estimate number of paths P̂ [20]
• AOA, AOD and delay for path k ∈ [1, P̂ ] [18]

/* UE Positioning and Calibration */

• Estimate UE orientation α̂ and clock bias β̂ (11)
• Estimate UE position p̂R by plugging α̂, β̂ into (10)

/* Mapping and Clustering */

• Estimate scattering points {p̂k}k=1,2,··· ,P̂ by (12)
• Cluster estimated scattering points
• Evaluate center µc (13) and spread Σc (14)

The second surface is at [10, 0, 0]T with orientation [0, 0, 1]T

(reflected from ground, x-y plane), surface dimension is 20 m
× 20 m. Both surfaces are described as rough surfaces with
one specular component each, using Nr = 50 scatter points
each. Directivity parameter αR = 10 and scattering coefficient
S = 0.6 are used to describe the roughness of the surface. The
BS and UE are equipped with URAs with (8 × 8) elements
and placed along y-z plane. The inter-element spacing is
0.5λ in both directions. and the origin is the array reference
point. The Matlab package Tensorlab [24] is utilized for tensor
computation.

B. Results

We assess the capability of the proposed algorithm to
estimate the positioning, clock bias and orientation using the
root-mean-square error (RMSE1), defined for the position as

RMSE =

√
E{‖pR − p̂R(α̂, β̂)‖2}, and similarly for the bias

and orientation, for different levels of signal-to-noise ratio
(SNR), which is defined as SNR = ‖X −N ‖2F /‖N ‖2F .
We consider four different combinations2 of utilizing the
LOS path, specular components (interpreted as the shortest
estimated path for each cluster) and diffuse paths, given by:
C1. LOS plus the two specular components (so that N0 = 1,

N1 = 1, N2 = 1).
C2. LOS plus the diffuse paths for each cluster (so that N0 =

1, N1 � 1, N2 � 1, no specular path).
C3. The specular components plus the diffuse paths (so that

N0 = 0, N1 � 1, N2 � 1).
C4. Only the diffuse paths for each cluster (so that N0 = 0,

N1 � 1, N2 � 1, no specular path).
Note that the definition of the SNR implies that the effective
transmit power in C4 will be larger than C3, which in turn
will be larger than C1 and C2.

1) Positioning: Fig. 1 shows the positioning performance
of the four combination. We also show two benchmarks:
B1. without estimating the orientation and clock bias (without

1Since the diffuse paths cannot be resolved and the artificial SPs are a side-
product of the channel estimation method itself, standard Cramér-Rao bounds
considering separated sources cannot be applied.

2Note that some combinations will have low signal power ‖X‖2F , so that
for a fixed SNR, the noise power ‖N‖2F will also be low.

8 10 12 14 16 18 20

10−1

100

101

SNR (dB)

R
M

SE
(m

)

B1. Diffuse paths (w/o cal.)
C1. LOS + specular paths
C2. LOS + diffuse paths
C3. Specular + diffuse paths
C4. Diffuse paths
B2. Diffuse paths (known α, β)

Fig. 1. UE positioning: RMSE versus SNR for different combinations of
availability of the LOS path and specular components.

8 10 12 14 16 18 20
0

0.5

1

1.5

SNR (dB)

R
M

SE
(m

)

C1. LOS + specular paths
C2. LOS + diffuse paths
C3. Specular + diffuse paths
C4. Diffuse paths

Fig. 2. UE clock bias estimation: RMSE versus SNR for different combina-
tions of availability of the LOS path and specular components.

calibration, meaning that the UE assumes (α, β) = (0, 0))
and B2. with known orientation and clock bias (α, β). All
variations use weights ζk = 1. The largest positioning error
occurs for benchmark algorithm B1. That is because the
incorrect orientation α and clock bias β is assumed in (10).
Sub-meter accuracy is achievable by using LOS and two
specular paths. The smallest positioning error occurs for B2,
indicating the importance of knowledge of the clock bias and
orientation. Among the four combinations C1–C4, the worst
performance is obtained when the diffuse paths are ignored
(C1). The combinations C2–C4 all yield similar RMSE, with
C2 providing the best performance. Giving a larger weight to
LOS and specular paths in (9) can provide additional gains,
but was not explored in this letter.

2) Synchronization and orientation estimation: Fig. 2
shows the corresponding results for the clock bias (without
the benchmarks, which are meaningless here), which largely
follows the positioning performance. In terms of orientation
estimation, Fig. 3, lower RMSE is achieved by utilizing the
resolvable diffuse paths. Slightly improvements are observable
by including the LOS and specular paths.

3) Mapping: Mapping performance at 20 dB SNR in terms
of the projection onto the x-y and x-z planes is shown in
Fig. 4. We observe relatively good performance for both
surfaces. Both the location and shape of the surfaces can be
recovered.
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8 10 12 14 16 18 20
0

2

4

6
·10−2

SNR (dB)

R
M

SE
(r

ad
)

C1. LOS + specular paths
C2. LOS + diffuse paths
C3. Specular + diffuse paths
C4. Diffuse paths

Fig. 3. UE orientation estimation: RMSE versus SNR for different combina-
tions of availability of the LOS path and specular components.

Fig. 4. Mapping results (projection onto the x-y and x-z planes), SNR =
20 dB, LOS is present, clock bias βc = 4m and orientation α = π/3 are
unknown.

V. CONCLUSIONS

We studied the problem of geometric parameter estimation
in mmWave MIMO communications with diffuse scattering
components, combined with UE orientation and clock bias
estimation. We proposed a positioning and mapping method
based on the estimated geometric channel parameters, and
demonstrate that accurate UE positioning and propagation
environment mapping is possible, even when the LOS path
is blocked and specular components are absent, the reflecting
surfaces are only characterized by diffuse scattering. More-
over, the method does not require identifying LOS or specular
signal components. Modifications are needed for multi-bounce
scenarios.
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