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SUMMARY
Aerobic glycolysis, or preferential fermentation of glucose-derived pyruvate to lactate despite available
oxygen, is associated with proliferation across many organisms and conditions. To better understand that
association, we examined the metabolic consequence of activating the pyruvate dehydrogenase complex
(PDH) to increase pyruvate oxidation at the expense of fermentation. We find that increasing PDH activity im-
pairs cell proliferation by reducing the NAD+/NADH ratio. This change in NAD+/NADH is caused by increased
mitochondrial membrane potential that impairs mitochondrial electron transport and NAD+ regeneration.
Uncoupling respiration from ATP synthesis or increasing ATP hydrolysis restores NAD+/NADH homeostasis
and proliferation even when glucose oxidation is increased. These data suggest that when demand for NAD+

to support oxidation reactions exceeds the rate of ATP turnover in cells, NAD+ regeneration bymitochondrial
respiration becomes constrained, promoting fermentation, despite available oxygen. This argues that cells
engage in aerobic glycolysis when the demand for NAD+ is in excess of the demand for ATP.
INTRODUCTION

Cell growth and division impose increased energetic and biosyn-

thetic demands, and thus, proliferating cells exhibit a distinct

metabolism relative to non-proliferating cells. Under aerobic

conditions, most cells reduce oxygen to water via respiration

to support the oxidation reactions used to derive energy from

nutrients. When oxygen is limiting, cells instead ferment carbo-

hydrates to generate awaste product, such as lactate or ethanol,

as an alternative, less carbon efficient way to derive energy from

nutrients. However, some cells, including many rapidly prolifer-

ating cells, exhibit high rates of fermentation, even when oxygen

is abundant, a metabolic phenotype known as aerobic glycol-

ysis. Aerobic glycolysis has been associated with tumors (Kop-

penol et al., 2011; Warburg, 1924, 1956), but this phenotype is

not unique to cancer. Aerobic glycolysis is exhibited by some

proliferating microorganisms, including species of yeast and
Molecular Cell 81, 691–707, Feb
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bacteria, and many proliferating non-transformed mammalian

cells, including lymphocytes and fibroblasts (Brand et al.,

1986; Hume et al., 1978; Lemoigne et al., 1954; Munyon and

Merchant, 1959; Wang et al., 1976). Select non-proliferative

cells, such as pigmented epithelial cells of themammalian retina,

also engage in aerobic glycolysis (Chinchore et al., 2017; Krebs,

1927). Despite being a phenotype found in many different cells

and organisms, what drives aerobic glycolysis andwhy it is asso-

ciated with proliferation has never been fully explained (Liberti

and Locasale, 2016).

Aerobic glycolysis produces less ATP per mole of glucose

than does complete glucose oxidation to CO2, raising the ques-

tion of why some cells engage in ametabolic program that is less

efficient with respect to ATP generation (Koppenol et al., 2011;

Liberti and Locasale, 2016; Vander Heiden et al., 2009). This

paradox is particularly apparent in cancer and led to the hypoth-

esis that tumors have defects in mitochondrial respiration
ruary 18, 2021 ª 2020 The Authors. Published by Elsevier Inc. 691
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(Warburg, 1956). Others have suggested that this phenotype is

caused by tumor-associated hypoxia (Gatenby and Gillies,

2004); however, aerobic glycolysis is a feature of many cells

without a precedent oxygen limitation (Vander Heiden et al.,

2009). Tumors also retain functional mitochondria (Koppenol

et al., 2011;Weinhouse, 1956) and require mitochondrial respira-

tion for growth, progression, and metastasis (LeBleu et al., 2014;

Tan et al., 2015; Viale et al., 2014; Weinberg et al., 2010). Collec-

tively, these findings argue against mitochondrial damage or

oxygen limitation as the primary driver of this phenotype.

Furthermore, it is a common misconception that aerobic glycol-

ysis involves suppression of oxidative phosphorylation (Yao

et al., 2019). Aerobic glycolysis is best characterized by

increased fermentation with continued respiration, resulting in

a shift in metabolism in which more glucose is fermented relative

to that which is oxidized.

Several other models have been proposed to explain why aer-

obic glycolysis is observed in proliferating cells. One is that

increased flux through glycolysis can shunt biosynthetic precur-

sors into anabolic reactions that branch from this pathway,

contributing to production of nucleosides, lipids, and/or proteins

(Boroughs and DeBerardinis, 2015; Cairns et al., 2011; Hume

and Weidemann, 1979; Levine and Puzio-Kuter, 2010; Vander

Heiden et al., 2009). Although the idea that inefficient ATP pro-

duction is a trade-off for supporting anabolic reactions is attrac-

tive, glycolytic intermediates are not necessarily elevated in

proliferating cells (Lunt et al., 2015; Williamson et al., 1970),

and many proliferating cells excrete the majority of consumed

glucose carbons as lactate. In fact, amino acids, rather than

glucose, account for most new carbon biomass in proliferating

cells (Hosios et al., 2016). Another proposed benefit of the

Warburg effect is increased ATP production because ATP can

be generated with faster kinetics by aerobic glycolysis than it

can by oxidative phosphorylation (Pfeiffer et al., 2001). It has

also been suggested that aerobic glycolysis arises because of

constraints on metabolism caused by molecular crowding (Vaz-

quez et al., 2010; Vazquez and Oltvai, 2011) or that the energetic

cost of synthesizing glycolytic enzymes is less than that of syn-

thesizing components needed for respiration, such that ATP pro-

duction by glycolysis confers a fitness advantage to cells (Basan

et al., 2015). Nevertheless, why aerobic glycolysis is engaged in

some, but not all, rapidly proliferating cells is not fully explained

by existing models.

The end product of glycolysis is pyruvate, which can be fer-

mented to lactate or further oxidized by a series of reactions

that depend on mitochondrial respiration, in which electrons

released by glucose oxidation are disposed of via the reduction

of oxygen to water. The first step in pyruvate oxidation is cata-

lyzed by the pyruvate dehydrogenase complex (PDH), which

converts pyruvate to acetyl coenzyme A (acetyl-CoA) in a reac-

tion that is irreversible under physiological conditions. PDH ac-

tivity is suppressed by a low NAD+/NADH ratio (Pettit et al.,

1975) and regulated further by pyruvate dehydrogenase kinases

(PDKs) and pyruvate dehydrogenase phosphatases (PDPs),

which modulate PDH by inhibitory phosphorylation (Kolobova

et al., 2001; Korotchkina and Patel, 2001). Thus, PDH regulation

influences the extent to which cells engage in aerobic glycolysis

(Grassian et al., 2011; Kim et al., 2006; Papandreou et al., 2006).
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Activation of PDH, either by PDK inhibition or PDP activation,

suppresses aerobic glycolysis and can slow cancer cell prolifer-

ation and tumor growth (Hitosugi et al., 2011; Kaplon et al., 2013;

McFate et al., 2008).

To investigate how aerobic glycolysis supports cell prolifera-

tion, we studied the consequence of suppressing fermentation

in cells by increasing PDH activity. We find that promoting pyru-

vate oxidation impairs cell proliferation by limiting NAD+ avail-

ability for oxidation reactions because interventions that regen-

erate NAD+ restore proliferation despite PDH activation. We

further find that the reduced NAD+/NADH ratio in those cells re-

sults from increased mitochondrial membrane potential that im-

pedes NAD+ regeneration by mitochondrial electron transport.

Uncoupling electron transport frommitochondrial ATP synthesis

relieves the increased mitochondrial membrane potential and in-

creases NAD+ regeneration via respiration. Furthermore,

increasing cellular ATP consumption rescues proliferation

when PDH is activated, suggesting that ATP synthase insuffi-

ciency can be an endogenous constraint on NAD+ regeneration

by coupledmitochondrial respiration. Lastly, endowing cells with

alternative means of NAD+ regeneration suppresses aerobic

glycolysis in both mammalian and yeast cells, without affecting

the proliferation rate. These data argue that cells engage in

aerobic glycolysis when the NAD+ demand for oxidation reac-

tions exceeds the demand for ATP, creating a situation in

which mitochondrial respiration is insufficient to support NAD+

regeneration.

RESULTS

PDK inhibition activates PDH, suppressing aerobic
glycolysis and cell proliferation
To better understand why proliferating cells engage in aerobic

glycolysis, we sought to suppress this phenotype by increasing

glucose oxidation relative to fermentation. Flux through PDH, the

first committed step for mitochondrial glucose oxidation, is

negatively regulated by PDK, and PDK inhibition can suppress

aerobic glycolysis in various contexts (Hitosugi et al., 2011; Ka-

plon et al., 2013; McFate et al., 2008; Michelakis et al., 2010). We

used AZD7545, a potent and selective inhibitor of PDK1, PDK2,

and PDK3 (Kato et al., 2007; Morrell et al., 2003), to promote py-

ruvate oxidation (Figure 1A). Exposing cancer cells to AZD7545

decreased inhibitory phosphorylation of the E1a subunit of

PDH (Figure 1B), confirming functional PDK inhibition by this

small molecule. We next assessed PDH activity in cells with

and without PDK inhibition by measuring incorporation of car-

bons from 13C-labeled glucose into citrate.We observed kinetics

consistent with elevated PDH activity in cells treated with

AZD7545 at multiple concentrations (Figures 1C and S1A). Oxy-

gen consumption rate (OCR) was also increased upon AZD7545

treatment in some, but not all, cells examined (Figures 1D and

S1B). However, AZD7545 treatment decreased the rate of

lactate excretion per glucose molecule consumed in all tested

cells (Figure 1E), confirming that PDK inhibition increases PDH

activity, promoting pyruvate oxidation at the expense of fermen-

tation, which represents a shift away from aerobic glycolysis.

We next tested the effects of AZD7545 on cell proliferation

and found that suppressing aerobic glycolysis decreased
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proliferation of cancer cells (Figure 1F), non-transformed C2C12

myoblasts, and primary murine pancreatic stellate cells (PSCs)

(Figure 1G). AZD7545 also suppressed proliferation of activated

primary human CD4+ T cells and primary mouse T cells (Figures

1H, 1I, S1C, and S1D) but had minimal effect on the expression

of T cell activation markers (Figure S1E). These data demon-

strate that PDH activation impairs proliferation in both cancer

and non-cancer settings.

To confirm that AZD7545 inhibits cell proliferation as a result of

PDK inhibition, rather than another effect of this compound, we

disrupted PDK1 expression in 143B cells using CRISPR interfer-

ence (CRISPRi) (Figure S1F) and found that genetic PDK1 sup-

pression slowed cell proliferation (Figure 1J). Furthermore, high

PDH activity is selected against for tumor growth in mice

because 143B cells with PDK1 knockdown displayed impaired

tumor formation relative to control cells (Figure 1K). Of note,

when PDK1 knockdown cells formed tumors, some of those

tumors grew at a rate similar to tumors derived from control cells

(Figure S1G); however, tumors derived from PDK1 knockdown

cells regained PDK1 expression (Figure 1L). Furthermore, control

and PDK1 knockdown tumors expressed higher levels of PDK1

than did the cells from which they were derived (Figure 1L).

Taken together, these data are consistent with numerous studies

showing enhanced PDH activation specifically (Kaplon et al.,

2013;McFate et al., 2008;Michelakis et al., 2010), and suppress-

ing aerobic glycolysis more generally (Fantin et al., 2006; Le

et al., 2010; Xie et al., 2014) can slow cell proliferation and tumor

growth.

PDH activation decreases proliferation by decreasing
the NAD+/NADH ratio in cells
Understanding how increased pyruvate oxidation suppresses

cell proliferation could provide insight into why proliferating cells

engage in aerobic glycolysis. One potential explanation is that
Figure 1. Activation of PDH suppresses aerobic glycolysis and prolifer

(A) Pyruvate has several fates in cells, including metabolism to lactate by lactate d

CoA for entry into the tricarboxylic acid (TCA) cycle. PDH is negatively regulated

compound AZD7545.

(B) Western blot to assess S293 phosphorylation of the PDH-E1a enzyme subuni

PDH-E1a expression was also assessed.

(C) Kinetic labeling of citrate from 13C-labeled glucose to assess PDH flux with

incubated for 5 h in medium containing 5 mM unlabeled glucose with vehicle or 0.5

M+2 citrate was measured by liquid chromatography-mass spectrometry (LCMS

(D) Oxygen consumption rate (OCR) of cells treated with vehicle or 0.5 mM AZD7

(E) Lactate excretion into culture medium normalized to glucose consumption of

(F) Proliferation rate of 143B, H1299, and HeLa cells treated with vehicle or AZD

(G) Proliferation rate of C2C12 myoblasts or mouse pancreatic stellate cells (PSC

(H) Proliferation of primary human CD4+ T cells cultured in vehicle or 5 mM AZD7

nimidyl ester) before stimulation with anti-CD3/CD28 Dynabeads, and CFSE fluor

shown from three biological replicates of primary human CD4+ T cells collecte

unstimulated cells (light gray) that did not proliferate are also shown.

(I) Proliferation of primary mouse T cells cultured in vehicle or 5 mM AZD7545. M

antibodies, and CFSE fluorescence was assessed by flow cytometry after 2 days

(J) Proliferation rate of 143B cells in which CRISPR interference (CRISPRi) was us

(sgRNA) targeting PDK1 (two independently targeted lines) or a non-targeting co

(K) Histogram indicating the number of weeks at which the cell lines described in

(L) Western blot analysis to assess PDK1 expression in the cells shown in (J) when

after 34 days.

Values in (C)–(G), and (J) denote means ± SD. p values were calculated by unpa
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altering the ratio of glucose oxidation to lactate fermentation

can affect the oxidative capacity of cells. The NAD+/NADH ratio

is critical for many metabolic reactions, including those involved

in central carbon metabolism, nucleotide synthesis, lipid meta-

bolism, and amino acid metabolism (Hosios and Vander Heiden,

2018), andNAD+ regeneration can be limiting for cell proliferation

and tumor growth (Birsoy et al., 2015; Gui et al., 2016; Sullivan

et al., 2015; Titov et al., 2016). The reaction catalyzed by PDH

consumes NAD+ to produce NADH, and shunting pyruvate

away from lactate production prevents NAD+ regeneration by

lactate dehydrogenase (LDH) (Figure 2A). Thus, PDK inhibition

is expected to favor a more reduced NAD+/NADH ratio, and

indeed, AZD7545 treatment lowered the NAD+/NADH ratio in

cells (Figures 2B and S2A).

We next questionedwhether sensitivity to PDK inhibition could

be changed by altering the intracellular NAD+/NADH ratio.

Pyruvate is rapidly reduced by LDH, and providing exogenous

pyruvate increases the NAD+/NADH ratio in cells (Birsoy et al.,

2015; Gui et al., 2016; Sullivan et al., 2015). We found that

pyruvate supplementation restored the NAD+/NADH ratio in

AZD7545-treated cancer cells (Figure 2C), enhanced baseline

cell proliferation, and suppressed the anti-proliferative effects

of AZD7545 and of the genetic suppression of PDK1 (Figures

2D, 2E, and S2B). Pyruvate also increased the proliferation of

non-transformed C2C12 myoblasts and primary mouse PSCs

treated with AZD7545 (Figure 2F), as well as of activated primary

human CD4+ T cells (Figures 2G, S2C, and S2D) and primary

mouse T cells (Figures 2H, S2E, and S2F). These data argue

that exogenous pyruvate suppresses the anti-proliferative

effects of PDH activation.

Lactate can serve as a nutrient for cells, including cancer cells

(Faubert et al., 2017; Hui et al., 2017; Kennedy et al., 2013; Son-

veaux et al., 2008). Lactate metabolism first requires conversion

to pyruvate, serving as an electron donor for the LDH reaction
ation

ehydrogenase (LDH) or oxidation by pyruvate dehydrogenase (PDH) to acetyl-

by pyruvate dehydrogenase kinase (PDK) enzymes, which are inhibited by the

t in HeLa, 143B, and H1299 cells treated with vehicle or AZD7545 for 2 h. Total

and without PDK inhibition by AZD7545. HeLa, 143B, and H1299 cells were

mMAZD7545; after which, 20 mM [U-13C6]glucose was added. The fraction of

) after the addition of 13C-labeled glucose (n = 3).

545 for 5 h (n = 4).

cells treated with vehicle or 0.25 mM AZD7545 for 48 h (n = 5).

7545, as indicated (n = 3).

s) cultured in vehicle or AZD7545 as indicated (n = 3).

545. Human CD4+ T cells were stained with CFSE (carboxyfluorescein succi-

escence was assessed by flow cytometry after 4 days. Representative data are

d from different donors and analyzed as independent experiments. Stained,

ouse T cells were stained with CFSE before stimulation with anti-CD3/CD28

. Stained, unstimulated cells (light gray) that did not proliferate are also shown.

ed to repress PDK1 expression. Cells were transduced with single-guide RNA

ntrol (NTC) as indicated (n = 3).

(J) formed xenograft tumors larger than 50 mm3 in nude mice (n = 15).

cultured in vitro (TC) or after being isolated from the xenografts described in (K)

ired, two-tailed Student’s t test (n.s. = not significant).
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Figure 2. PDK inhibition slows cell proliferation by reducing the NAD+/NADH ratio

(A) PDK inhibition by AZD7545 decreases the NAD+/NADH ratio by promoting flux through NAD+-consuming pathways, including PDH and the TCA cycle and by

limiting pyruvate conversion to lactate by LDH.

(B) The NAD+/NADH ratio of 143B and H1299 cells cultured in vehicle or 5 mM AZD7545 for 5 h (n = 4).

(C) The NAD+/NADH ratio of 143B and H1299 cells treated with vehicle, 5 mM AZD7545, or 5 mM AZD7545 with 1 mM pyruvate (n = 4).

(D) Proliferation rate of 143B andH1299 cells cultured in vehicle (V) or the indicated concentration of AZD7545 in the presence (dark blue) or absence (light blue) of

1 mM pyruvate (n = 3).

(legend continued on next page)
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that converts NAD+ to NADH (Figure 2A), and exogenous lactate

further decreased the NAD+/NADH ratio of AZD7545-treated

cells (Figures 2I and S2G). Exogenous lactate also suppressed

cell proliferation and exacerbated the effect of AZD7545 treat-

ment in 143B and H1299 cells (Figure 2J), but not HeLa cells (Fig-

ure S2H). Altering extracellular lactate relative to extracellular py-

ruvate can titrate the cellular NAD+/NADH ratio (Hung et al.,

2011), and we found that lower extracellular lactate to pyruvate

ratios suppressed the ability of AZD7545 to impair proliferation

(Figure S2I). These data support NAD+ depletion as an explana-

tion for why increasing pyruvate oxidation slows proliferation.

Tomore directly test whether changes in the NAD+/NADH ratio

mediate the anti-proliferative effects of PDK inhibition, we tested

whether orthogonal pathways that regenerate NAD+, but are not

involved in glucose, pyruvate, or lactate metabolism, affect

sensitivity to AZD7545. Duroquinone permits NAD+ regeneration

via the quinone reductase NQO1 (Merker et al., 2006) (Figure 3A),

and duroquinone raises the NAD+/NADH ratio and can rescue

cell proliferation in conditions in which NAD+ is limiting (Gui

et al., 2016). We found that duroquinone suppressed AZD7545

sensitivity (Figures 3B and S3A), consistent with a decreased

NAD+/NADH ratio slowing proliferation of PDK-inhibited cells.

Another orthogonal method for increasing the cell NAD+/

NADH ratio is expressing NADH oxidase from Lactobacillus bre-

vis (LbNOX) (Titov et al., 2016) (Figure 3C). Thus, we engineered

cells to express either LbNOX or an empty vector (E.V.) as

another way to assess the effect of increasing NAD+ regenera-

tion in cells (Figure S3B). LbNOX expression conferred resis-

tance to the anti-proliferative effects of AZD7545 (Figures 3D

and S3C), further demonstrating that increasing NAD+ regenera-

tion can permit rapid proliferation despite increased pyruvate

oxidation.
Changes in NAD+/NADH account for how PDH activation
affects cell metabolism
NAD+ is necessary to support oxidation reactions in cells, and

thus, changes in the NAD+/NADH ratio impacts many metabolic

pathways, including those important for cell growth and prolifer-

ation (Hosios and Vander Heiden, 2018). For example, the NAD+/

NADH ratio can affect aspartate synthesis (Birsoy et al., 2015;

Sullivan et al., 2015). Aspartate is essential in making proteins,

as well as purine and pyrimidine nucleotides, and acquiring

aspartate can be limiting for tumor growth (Garcia-Bermudez

et al., 2018; Rabinovich et al., 2015; Sullivan et al., 2018).
(E) Proliferation rate of 143B cells in which CRISPRi was used to repress PDK1. C

and grown in the presence or absence of 1 mM pyruvate (n = 3).

(F) Proliferation rate of C2C12 myoblasts and pancreatic stellate cells (PSCs) in m

(n = 3).

(G) Proliferation of primary human CD4+ T cells treated with 5 mM AZD7545 with o

stimulation with CD3/CD28 Dynabeads, and CFSE fluorescence was assessed

biological replicates of primary human CD4+ T cells collected from different dono

gray) that did not proliferate are shown.

(H) Proliferation of primarymouse T cells treatedwith 5 mMAZD7545with or withou

anti-CD3/CD28 antibodies. CFSE fluorescence was assessed by flow cytometr

are shown.

(I) The NAD+/NADH ratio of 143B and H1299 cells cultured in vehicle, 5 mM AZD

(J) Proliferation rate of 143B and H1299 cells treated with vehicle (V) or AZD7545

Values in (B)–(F), (I), and (J) denote means ± SD. p values were calculated by un
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Therefore, to determine whether one method by which PDK inhi-

bition impairs proliferation is by affecting aspartate availability,

we measured aspartate levels in cells cultured in the presence

of vehicle or AZD7545. Consistent with AZD7545 treatment

reducing the cell NAD+/NADH ratio, PDK inhibition decreased

intracellular aspartate (Figure S3D), and increasing the NAD+/

NADH ratio with exogenous pyruvate, duroquinone, or LbNOX

expression restored aspartate levels (Figures S3E–S3G). These

data suggest that suppressing aerobic glycolysis limits the

capacity of cells to carry out oxidation reactions important for

biomass production.

To further study how PDH activation affects metabolism, we

performed untargeted metabolomics and observed that despite

increasing PDH activity (Figures 1C and S1A), AZD7545 treat-

ment decreased intracellular citrate levels and increased intra-

cellular palmitate levels (Figures S3H and S3I). This could reflect

a metabolic state in which forcing citrate production from pyru-

vate elicits a compensatory increase in lipid synthesis, which

consumes NADPH to make NADP+, potentially as an alternative

means to regenerate oxidizing equivalents (Liu et al., 2020). We

also observed that AZD7545 treatment affected levels of many

other intracellular metabolites and that either duroquinone or

expression of LbNOX suppressed some of those changes (Fig-

ures S3J–S3M). Of note, duroquinone or LbNOX expression

restoredmany of the samemetabolites in AZD7545-treated cells

(Figure S3N). Because duroquinone and LbNOX alter NAD+/

NADH ratios via different mechanisms, the finding that both

agents similarly restored alterations to the global metabolome

caused by PDH activation argues that an effect on cell redox

state is a major consequence of increased pyruvate oxidation

and further supports the notion that a major metabolic conse-

quence of suppressing aerobic glycolysis is NAD+ depletion.
PDH activation increases dependency on mitochondrial
complex I for NAD+ regeneration
Because PDK inhibition reduces the cellular NAD+/NADH ratio,

interventions that limit NAD+ regeneration are predicted to

potentiate the anti-proliferative effects of PDK inhibitors. To

test that hypothesis, we assessed the sensitivity of cancer cells

to the biguanide metformin, which limits NAD+ regeneration and

decreases NAD+/NADH ratio via inhibition of mitochondrial com-

plex I (Gui et al., 2016; Wheaton et al., 2014) (Figure 3E). The

combination of metformin and AZD7545 reduced cell prolifera-

tion more than either compound alone (Figures 3F and S4A),
ells were transduced with sgPDK1 (two independently targeted lines) or sgNTC

edia with vehicle (V) or AZD7545 supplemented with or without 1 mM pyruvate

r without 1 mM pyruvate. Human CD4+ T cells were stained with CFSE before

by flow cytometry after 4 days. Representative data are shown from three

rs and analyzed as independent experiments. Stained, unstimulated cells (light

t 1mMpyruvate. Mouse T cells were stainedwith CFSE before stimulationwith

y after 2 days. Stained, unstimulated cells (light gray) that did not proliferate

7545, or 5 mM AZD7545 with 10 mM lactate (n = 4).

with or without 1 mM or 10 mM lactate as indicated (n = 3).

paired, two-tailed Student’s t test (n.s. = not significant).
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Figure 3. Interventions that alter NAD+ availability can modulate the antiproliferative effects of PDK inhibition

(A) Duroquinone increases NAD+ regeneration via the enzyme NAD(P)H dehydrogenase, quinone 1 (NQO1), which reduces duroquinone to durohydroquinone

using NADH as a cofactor.

(B) Proliferation rate of 143B and H1299 cells treated with vehicle (V) or AZD7545 in the absence or presence of duroquinone (20 mM for 143B and 100 mM for

H1299 cells; n = 3).

(C) Schematic illustrating the reaction catalyzed by the NADH oxidase from Lactobacillus brevis (LbNOX).

(D) Proliferation rate of 143B and H1299 cells transduced with empty vector (E.V.) or an LbNOX expression vector and treated with vehicle (V) or AZD7545.

Doxycycline (500 ng/mL) was included in all conditions (n = 3).

(E) Schematic illustrating the redox consequences of metformin treatment.

(F) Proliferation rate of 143B and H1299 cells treated with 500 mMmetformin, AZD7545 (5 mM for 143B, 3 mM for H1299 cells), and 1mMpyruvate as indicated (n = 3).

Values in (B), (D), and (F) denote means ± SD. p values were calculated by unpaired, two-tailed Student’s t test (n.s. = not significant).
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and AZD7545 treatment decreased the half-maximal inhibitory

concentration (IC50) of metformin by more than 30% in both

A549 and HeLa cells (Figures S4B and S4C). The anti-prolifera-

tive effect of AZD7545 and metformin was completely abolished

by pyruvate supplementation (Figures 3F and S4A–S4C), further

arguing that these drugs impair proliferation by promoting a

more-reduced NAD+/NADH ratio.
Electron acceptor availability can be limiting for tumor growth

in some mouse models of cancer (Gui et al., 2016), suggesting

that inhibiting NAD+ regeneration with the combination of

AZD7545 and metformin may have a larger effect on tumor

growth than either drug alone. We found that metformin inhibited

tumor growth, as previously reported (Gui et al., 2016; Schöckel

et al., 2015;Wheaton et al., 2014), and although AZD7545 had no
Molecular Cell 81, 691–707, February 18, 2021 697
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Figure 4. PDK inhibition induces mitochondria hyperpolarization and limits NAD+ regeneration by respiration

(A) Schematic illustrating the mitochondrial electron transport chain and how FCCP (trifluoromethoxy carbonylcyanide phenylhydrazone) uncouples electron

transfer from NADH to O2 from ATP production by the FoF1-ATP synthase (complex V). DJ denotes the mitochondrial membrane potential.

(legend continued on next page)
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effect alone, PDK inhibition appeared to improve the efficacy of

metformin in this model (Figure S4D).

The finding that AZD7545 treatment did not decrease tumor

growth as a single agent might be expected from the pharmaco-

kinetics of this compound, as well as the fact that AZD7545 im-

pairs, but does not prevent, cell proliferation. Three hours after

dosing, we found AZD7545 levels in tumors and in plasma that

could impair cell proliferation in culture (Figures S4E and S4F),

but the compound was not detected in plasma after 24 h (Fig-

ure S4E). This argues that more-frequent dosing of AZD7545

may bemore effective toward inhibiting tumor growth as a single

agent. Nevertheless, once-a-day dosing of AZD7545 was suffi-

cient to improve the anti-tumor effects of metformin, supporting

the notion that PDK inhibition increases dependency on

mitochondrial complex I to regenerate NAD+ and support

proliferation.

Increased mitochondrial membrane potential
downstream of pyruvate oxidation impairs NAD+

regeneration by the mitochondrial electron
transport chain
The decreased NAD+/NADH ratio observed in PDK-inhibited

cells suggests that NAD+ regeneration by mitochondrial respira-

tion is insufficient to support maximal proliferation when pyru-

vate oxidation is increased. This result is unexpected because

these cells are cultured at atmospheric oxygen and exhibit

increased oxygen consumption upon AZD7545 treatment (Fig-

ure 1D). Thus, we sought to better understand how NAD+ regen-

eration by mitochondrial respiration was impaired in PDK-in-

hibited cells because this could explain why proliferating cells

engage in aerobic glycolysis.

The oxidation-reduction reactions of the mitochondrial elec-

tron transport chain (ETC) are coupled to proton pumping from

the mitochondrial matrix into the intermembrane space to

generate an electrochemical gradient across the inner mitochon-

drial membrane and support ATP production via the FoF1-ATP

synthase (Figure 4A). This process, collectively referred to as

oxidative phosphorylation, occurs at near equilibrium, meaning

that the rate of respiration is a function of both substrate and

product availability (Brown, 1992). The shift toward a more

reduced NAD+/NADH ratio suggests NADH is more readily

available in those cells, but one possibility is that the availability

of oxygen, another major substrate for oxidative phosphoryla-
(B) Mitochondrial membrane potential, as reflected by TMRE (tetramethylrhodami

AZD7545, or 5 mM AZD7545 with 500 nM FCCP.

(C) Mitochondrial membrane potential, as reflected by TMRE fluorescence, in H1

with or without 500 nMFCCP. TMRE fluorescence of 50,000 cells was quantified b

(D) The NAD+/NADH ratio of 143B and H1299 cells cultured in vehicle or AZD75

(E) The NAD+/NADH ratio of 143B and H1299 cells treated with vehicle, 5 mMAZD

(F) Aspartate levels in 143B and H1299 cells cultured in vehicle, 2 mM AZD7545,

(G) Proliferation rate of 143B and H1299 cells treated with vehicle (V) or AZD754

(H) Proliferation rate of 143B cells in which CRISPRi was used to repress PDK1 exp

or sgNTC and cultured with or without 750 nM FCCP (n = 3).

(I) Proliferation of primary mouse T cells cultured in vehicle, 5 mM AZD7545, or 5

T cells were stained with CFSE before stimulation with anti-CD3/CD28 antibodies

unstimulated cells (light gray) that did not proliferate are shown.

Values in (D)–(G) denote means ± SD. p values were calculated by unpaired, two-t

significant).
tion, becomes limiting for electron transport. However, these

cells were cultured at 21% oxygen, and mitochondrial respira-

tion can function at oxygen levels as low as 0.5% (Chandel

et al., 1996; Rumsey et al., 1990). Furthermore, expression of

LbNOX, which requires oxygen as a substrate, suppressed the

anti-proliferative effect of AZD7545 (Figure 3D), arguing against

oxygen availability constraining NAD+ regeneration in PDK-in-

hibited cells.

Another possibility is that an imbalance develops between the

ability of the mitochondrial ETC to pump protons into the inter-

membrane space and the activity of processes that carry pro-

tons back across the membrane. This imbalance would be

reflected in an increased mitochondrial membrane potential

(DJ) (Figure 4A). To test that possibility, we used the cationic

dye tetramethylrhodamine ethyl ester (TMRE), which is taken

up by the mitochondria in proportion to DJ (Perry et al., 2011).

We found that PDK inhibition increases TMRE accumulation

in cancer cells (Figure 4B) and activated primary mouse T cells

(Figure S5A) and that this effect is reversed when respiration is

uncoupled from ATP production by the ionophore FCCP (trifluor-

omethoxy carbonylcyanide phenylhydrazone). FCCP allows pro-

tons to equilibrate across membranes, thus FCCP uncouples

NAD+ regeneration by the ETC fromDJ generation and prevents

use of DJ for ATP production. These data are consistent with

PDH activation increasing DJ, and increased TMRE accumula-

tion depends on the concentration of AZD7545 (Figure 4C) in a

way that matches the dose-dependent reduction in the NAD+/

NADH ratio observed upon PDK inhibition (Figures 4D and

S5B). Taken together, these data suggest that NAD+ regenera-

tion by respiration is constrained by DJ because it becomes

thermodynamically unfavorable for the mitochondrial ETC com-

plexes to pump protons across a hyperpolarized membrane.

If high DJ limits NAD+ regeneration by respiration, collapse of

DJ should restore NAD+/NADH homeostasis to cells with acti-

vated PDH. Indeed, FCCP exposure was sufficient to increase

the NAD+/NADH ratio (Figure 4E), aspartate levels (Figures 4F

and S5C), and proliferation rate (Figures 4G and S5D) of PDK-in-

hibited cells. FCCP treatment also suppressed the proliferation

defect observed in cancer cells in which PDK1 expression is

suppressed using CRISPRi (Figure 4H). Additionally, FCCP treat-

ment rescued the proliferation rates of AZD7545-treated primary

mouse T cells (Figure 4I) but not primary human T cells. These re-

sults are consistent with DJ limiting mitochondrial NAD+
ne, ethyl ester) fluorescence, in 143B andH1299 cells treated with vehicle, 5 mM

299 cells that had been treated with the indicated concentration of AZD7545,

y flow cytometry and normalized to the vehicle-treated conditionwithout FCCP.

45 for 5 h (n = 4).

7545, or 5 mMAZD7545 with the indicated concentration of FCCP for 5 h (n = 4).

or 2 mM AZD7545 with 250 nM FCCP for 5 h as measured by LCMS (n = 4).

5 with or without 500 nM FCCP as indicated (n = 3).

ression. Cells were transducedwith sgPDK1 (two independently targeted lines)

mM AZD7545 with 500 nM FCCP was assessed by CFSE dye dilution. Mouse

and CFSE fluorescence was assessed by flow cytometry after 2 days. Stained,

ailed Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001; n.s. = not
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regeneration. In addition, the finding that FCCP increases respi-

ration (Figure S1B) confirms that the mitochondrial ETC machin-

ery is functional and that sufficient oxygen is available to support

increased respiration in these cells. Taken together, these data

argue that mitochondrial NAD+ regeneration becomes limited

by an increase in DJ when pyruvate oxidation is increased.

NAD+ regeneration is limited by insufficient ATP
hydrolysis when PDK is inhibited
A physiological function of DJ is to support ATP synthesis

because conversion of ADP to ATP by the FoF1-ATP synthase

is coupled to dissipation of DJ (Figure 4A). Thus, insufficient

ATP turnover could limit ADP availability, limiting mitochondrial

NAD+ regeneration by oxidative phosphorylation in cells with

high pyruvate dehydrogenase activity. The observation that

FCCP treatment promotes proliferation of PDK-inhibited cells

by uncoupling mitochondrial NAD+ regeneration from ATP syn-

thesis is consistent with this model.

To better characterize potential FoF1-ATP synthase insuffi-

ciency after PDK1 inhibition, we measured intracellular ATP/

ADP ratios and found that they were unchanged by AZD7545

treatment (Figure S5E). This observation is consistent with exist-

ing notions that ATP is only made as needed because thermody-

namic constraints prevent ATP storage in cells (Bonora et al.,

2012). To test whether the FoF1-ATP synthase is unable to dissi-

pate DJ because of reduced ADP availability, we next tested

whether increasing the ATP-to-ADP conversion in cells could

reverse themetabolic and anti-proliferative effects of PDK inhibi-

tion. Promoting cellular ATP consumption stimulates mitochon-

drial respiration by increasing the demand for ADP-to-ATP con-

version (Bertholet et al., 2019; Brown, 1992). The toxin

gramicidin D is a classic way to increase ATP consumption in

cells by increasing cell membrane permeability to Na+ and K+

ions, driving increased ATP hydrolysis by Na+/K+-ATPase and

thus increasing ATP-coupled mitochondrial respiration (Buttger-

eit and Brand, 1995; Nobes et al., 1989; Vander Heiden et al.,

1999). We first confirmed that increasing cellular ATP consump-

tion with gramicidin D reversed mitochondrial membrane hyper-

polarization caused by PDK inhibition (Figure 5A). Exposing

PDK-inhibited cells to gramicidin D also resulted in a more

oxidized NAD+/NADH ratio (Figure S5F). These data are consis-

tent with gramicidin D increasing mitochondrial ATP production,

which in turn, promotes increased respiration and NAD+ regen-

eration. Of note, gramicidin D also rendered both cancer cells

and non-cancer cells more resistant to AZD7545 treatment (Fig-

ures 5B and 5C). Taken together, these data support a model in

which mitochondrial NAD+ regeneration via respiration is con-

strained by insufficient ATP synthase activity when pyruvate

oxidation is increased. These findings also suggest that cells

may engage in aerobic glycolysis under conditions in which the

demand for NAD+ regeneration exceeds the rate of ATP

consumption.

The demand for NAD+ regeneration can supersede the
requirement for ATP in proliferating cells
To begin to test whether amismatch in demand formitochondrial

NAD+ regeneration relative to demand for mitochondrial ATP

production could drive aerobic glycolysis, we used oligomycin,
700 Molecular Cell 81, 691–707, February 18, 2021
a selective inhibitor of the Fo-subunit of the mitochondrial FoF1-

ATP synthase. Oligomycin inhibits mitochondrial ATP production

and prevents respiration by increasing DJ (Brand and Nicholls,

2011). Culturing PDK-inhibited cells with oligomycin further in-

creases DJ beyond that observed with AZD7545 treatment

alone (Figure 5D). Therefore, oligomycin is expected to further

decrease the capacity for NAD+ regeneration via mitochondrial

respiration. We found that oligomycin potentiates the prolifera-

tion defect and the reduced NAD+/NADH ratio caused by PDK

inhibition (Figures 5E and 5F). FCCP treatment, which collapses

DJ and suppresses ATP synthesis by the mitochondrial FoF1-

ATP synthase, restores the NAD+/NADH ratio and the prolifera-

tion of cells treated with both oligomycin and AZD7545. These

data suggest that mitochondrial respiration to allowNAD+ regen-

eration can be more important than mitochondrial ATP produc-

tion in some proliferating cells, including cells that otherwise

engage in aerobic glycolysis.

The finding that uncoupling mitochondrial respiration from

ATP production can rescue proliferation of PDK-inhibited cells

argues that insufficient FoF1-ATP synthase activity can limit

NAD+ regeneration by respiration. Consistent with the demand

for NAD+ regeneration exceeding the demand for mitochondrial

ATP synthesis to support proliferation in some cells that engage

in aerobic glycolysis, we find FCCP can dose-dependently in-

crease cell proliferation in the absence of any other interventions

(Figure 6A). These data suggest that insufficient FoF1-ATP syn-

thase activity can impair NAD+ regeneration and proliferation

even in standard culture conditions with abundant oxygen and

argue that coupling between mitochondrial respiration and

ATP synthesis limits the extent to which respiration can support

NAD+ regeneration and proliferation. Thus, cells may engage in

aerobic glycolysis when the demand for NAD+ to support oxida-

tion reactions is greater than the ATP turnover rate.

Cellular NAD+ availability determines whether cells
engage in aerobic glycolysis
If increased fermentation in proliferating cells is driven by NAD+

demand in excess of ATP demand, orthogonal pathways that

promote NAD+ regeneration would be expected to suppress

the degree to which cells engage in aerobic glycolysis despite

the same redox and ATP requirements to support proliferation.

Indeed, duroquinone can suppress the rate of lactate excretion

by both cancer cells and non-transformed cells (Figures 6B

and S6A) despite similar rates of proliferation and glucose up-

take (Figures S6B and S6C). LbNOX expression did not affect

lactate excretion in the cells studied but increased pyruvate

excretion as previously reported (Titov et al., 2016) (Figure S6D),

which reflects decreased NAD+ regeneration by LDH. Addition-

ally, FCCP administration decreased lactate excretion by acti-

vated mouse T cells (Figure 6C) without changing the prolifera-

tion rate (Figure S6E). Thus, increasing NAD+ regeneration,

either by providing exogenous electron acceptors or by uncou-

pling mitochondrial respiration from ATP synthesis, suppresses

aerobic glycolysis without decreasing proliferation rate. These

data support the hypothesis that demand for NAD+ is what drives

aerobic glycolysis in these rapidly proliferating mammalian cells.

Aerobic glycolysis is linked to rapid proliferation across many

biological contexts. To test whether a mismatch in the demand
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Figure 5. NAD+ regeneration by respiration is limited by the rate of mitochondrial ATP production

(A) Mitochondrial membrane potential, as reflected by TMRE fluorescence, of 143B cells cultured in vehicle, 2 mMAZD754, or 2 mMAZD754 with 5 nM gramicidin

D for 5 h.

(B) Proliferation rate of 143B, H1299, and A549 cells treated with vehicle (V) or AZD7545 in the presence or absence of 0.5 nM gramicidin D (n = 3).

(C) Proliferation rate C2C12 myoblasts or pancreatic stellate cells (PSC) cultured with vehicle (V) or AZD7545 with or without 1 nM gramicidin D (n = 3).

(D) Mitochondrial membrane potential, as reflected by TMRE fluorescence, of 143B cells cultured for 5 h with vehicle, 2 mMAZD7545, 1 nM oligomycin, and 1 mM

FCCP, as indicated.

(E) The NAD+/NADH ratio of 143B, H1299, and A549 cells in vehicle, 5 mM AZD7545, 0.5 nM oligomycin, and 1 mM FCCP, as indicated (n = 4).

(F) Proliferation rate of 143B, H1299, and A549 cells in vehicle, 5 mM AZD7545, 0.5 nM oligomycin and 1 mM FCCP, as indicated (n = 3).

Values in (B), (C), (E), and (F) denote means ± SD. p values were calculated by unpaired, two-tailed Student’s t test (n.s. = not significant).
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Figure 6. Aerobic glycolysis reflects cellular NAD+ availability

(A) The proliferation rate of 143B cells treated with FCCP, as indicated (n = 3).

(B) Relative lactate excretion of cells cultured with or without duroquinone (4 mM, 16 mM, 8 mM, and 64 mM for 143B, H1299, C2C12, and PSC cells, respectively;

n = 3).

(C) Relative lactate excretion of primary mouse T cells stimulated with anti-CD3/CD28 antibodies in the presence or absence of 250 nM FCCP for 1 day (n = 5).

(D) The relationship between ethanol production and proliferation rate in S. cerevisiae as determined by altering glucose concentration in culture medium.

(E) Relative ethanol production rate by S. cerevisiae expressing empty vector (E.V.) or LbNOX in standard medium containing 3% glucose (n = 3).

(F) Relative ethanol production rate by S. cerevisiae treated with vehicle or 2 mM FCCP in standard medium containing 3% glucose (n = 3).

Values denote means ± SD. p values were calculated by unpaired, two-tailed Student’s t test (n.s. = not significant).
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for NAD+ and ATP contributes to aerobic glycolysis in another

system, we considered Saccharomyces cerevisiae, a yeast in

which glucose fermentation to ethanol accompanies rapid prolif-

eration, even in aerobic conditions (De Deken, 1966). We

confirmed that glucose availability can affect the proliferation

rate and ethanol production in batch cultures of S. cerevisiae,

even in aerated cultures (Figures S6F and S6G). We found a

linear relationship between proliferation and fermentation rates

(Figure 6D), confirming that aerobic glycolysis is correlated

with proliferation in this yeast. To test whether fermentation is

driven by the increased NAD+ demand of rapid proliferation in

S. cerevisiae, we assessed the effect of LbNOX expression on

both proliferation and aerobic glycolysis. LbNOX expression

decreased ethanol production without altering the proliferation

rate (Figures 6E and S6H), arguing that demand for NAD+ also

promotes aerobic glycolysis in this organism, consistent with

previous reports (Vemuri et al., 2007).

To test the hypothesis that an elevated mitochondrial mem-

brane potential limits the ability of respiration to support NAD+

regeneration in S. cerevisiae, we also assessed the effect of

FCCP on both proliferation and aerobic glycolysis. In agreement

with our hypothesis, we saw that FCCP decreased the ethanol

production rate without altering proliferation (Figures 6F and

S6I). The fact that FCCP reduces mitochondrial ATP production,

as well as fermentation rates, argues that ATP synthase in rapidly
702 Molecular Cell 81, 691–707, February 18, 2021
proliferating yeast is governed by the same limitations as rapidly

proliferating mammalian cells. When coupled with the finding

that the link between rapid proliferation and aerobic glycolysis

is broken if cells are allowed alternative pathways of NAD+

regeneration, these observations suggest that demand for

NAD+ in excess of demand for ATP drives aerobic glycolysis in

diverse organisms across kingdoms of life, regardless of

whether lactate or ethanol are produced as the fermentation

product.

DISCUSSION

Aerobic glycolysis is observed across species ranging from pro-

karyotes to specific mammalian cell types, yet a generalizable

explanation for this phenotype has been lacking. The data from

this study suggest that aerobic glycolysis reflects a metabolic

state in which the demand for NAD+ exceeds the demand for

ATP to support cell function. Oxidation of pyruvate, rather than

fermentation, increases the demand for mitochondrial respira-

tion to regenerate NAD+. However, because mitochondrial elec-

tron transport is coupled to mitochondrial ATP synthesis, when

the demand for NAD+ exceeds the demand for ATP, insufficient

ATP synthase activity leads to increased DJ and constrains

further increases in mitochondrial respiration. Thus, ATP hydro-

lysis, which supplies ADP as substrate for mitochondrial ATP
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synthesis and dissipates DJ produced by the mitochondrial

ETC, imposes an upper limit on the rate of mitochondrial NAD+

regeneration, regardless of oxygen availability. Therefore, if the

requirement for NAD+ to fuel oxidation reactions is greater than

the rate of ATP turnover, pyruvate oxidation is limited and the

more-reduced NAD+/NADH ratio promotes fermentation, even

if oxygen is present. These findings are consistent with a theoret-

ical prediction that NADH generation could impair biomass syn-

thesis in aerobic conditions if proliferation is fast enough (Fer-

nandez-de-Cossio-Diaz and Vazquez, 2017).

Although the reactions that regenerate NAD+ do not directly

provide biomass to cells, this cofactor is needed to catabolize

reduced nutrients, including sugars and lipids, and to synthesize

oxidized macromolecules, such as nucleotides and amino acids

(Hosios and Vander Heiden, 2018). Previous work has identified

aspartate synthesis as a major NAD+ demand (Birsoy et al.,

2015; Garcia-Bermudez et al., 2018; Gui et al., 2016; Sullivan

et al., 2015; Sullivan et al., 2018), and cells require NAD+ to sup-

port additional cellular processes, including serine and folate

synthesis (Baksh et al., 2020; Bao et al., 2016; Diehl et al.,

2019), histone deacetylation by sirtuins, maintenance of calcium

homeostasis, and poly(ADP-ribose) polymerase activity (Cantó

et al., 2015; Ying, 2008). Electron acceptor availability can

restrict cell proliferation, and the NAD+/NADH ratio has been

found to correlate with tumor growth in vivo (Gui et al., 2016).

Non-proliferating cells with high anabolic demands, such as

mammalian retina pigmented epithelial cells, also require

NAD+, and retinal toxicity has proven to be a liability for drugs

that target NAD+ synthesis (Zabka et al., 2015). Lastly, forced py-

ruvate oxidation induces NAD+ deficiency in epidermal stem

cells, which can impair biomass production (Baksh et al.,

2020), further arguing that demand for NAD+ can be high in

some cells.

Several explanations have been proposed for the Warburg ef-

fect; many of which consider how inefficient ATP production by

aerobic glycolysis is sufficient to support the high ATP demands

of proliferation. The finding that uncoupling respiration from ATP

production allows increased pyruvate oxidation and continued

proliferation, even in the presence of oligomycin, argues strongly

that the requirement for NAD+ can be greater than the require-

ment for ATP in at least some proliferating cells. Furthermore,

the observation that increasing ATP consumption also allows

proliferation, despite increased pyruvate oxidation, suggests

insufficient ATP turnover can limit mitochondria respiration in

cells and that aerobic glycolysis may, therefore, reflect a state

of high NAD+ demand and excess ATP. The idea that ATP hydro-

lysis, rather than ATP synthesis, could be limiting for cancer cell

metabolism has historical support (Racker, 1972; Scholnick

et al., 1973), although this possibility is not considered by most

studies. Nevertheless, it has been reported that some prolifer-

ating cells engage in futile metabolic cycles that consume ATP,

such as fatty acid synthesis and oxidation (Yao et al., 2016),

increased protein turnover (Zhang et al., 2014b), or the creatine

shuttle (Kurmi et al., 2018) for unclear reasons. These futile cy-

cles may promote ATP consumption to support oxidized

biomass synthesis and could explain why increased ATP turn-

over involving ENTPD5 can promote the proliferation of PTEN-

null cancers or why increasing the ATP/AMP ratio can result in
tumor regression (Fang et al., 2010; Naguib et al., 2018). The

mechanism by which ATP consumption promotes proliferation

in those contexts remains unexplained, but a model in which

excess ATP constrains NAD+ regeneration by respiration is

consistent with increasing ATP consumption enabling

proliferation.

Although demand for NAD+ that exceeds demand for ATP can

explain why some cells engage in fermentation, rather than

oxidative metabolism, this model does not explain why

increased glucose uptake and glycolysis are also often associ-

ated with proliferation. Fermentation is redox neutral and does

not net regenerate NAD+. In fact, the only known output of

fermentation is ATP, and if excess ATP limits net NAD+ regener-

ation to promote fermentation, why glucose metabolism is

increased during rapid proliferation remains unexplained. Never-

theless, a model in which aerobic glycolysis reflects a metabolic

state in which the requirement for NAD+ supersedes the demand

for ATP is consistent with the reality of this metabolic phenotype,

which is best characterized by a relative increase in fermenta-

tion, rather than a complete switch from mitochondrial respira-

tion to glycolysis. It also fits with the broad association between

aerobic glycolysis and proliferation (Diaz-Ruiz et al., 2011), the

link between this phenotype and nucleotide synthesis (Lunt

et al., 2015; Wang et al., 1976), the continued dependence of

most proliferating cells on respiration (Howell and Sager, 1979;

Tan et al., 2015; Weinberg et al., 2010; Wheaton et al., 2014;

Zhang et al., 2014a), and the fact that reversing aerobic glycol-

ysis slows, rather than stops, proliferation.

Different species of yeast diverge in their response to glucose

in terms of their propensity to ferment carbon (De Deken, 1966),

and organisms that proliferate rapidly without engaging in aer-

obic glycolysis may have evolved mechanisms to prevent a

mismatch in the demand for NAD+ and ATP. Of note, regulated

uncoupling of mitochondrial respiration from ATP synthesis is

important for thermoregulation, and these same processes

could also facilitate rapid proliferation (Li et al., 2020). Although

mammalian uncoupling proteins have limited tissue expression

and are tightly regulated, these proteins are overexpressed in

some cancers (Kawashima et al., 2020; Robbins and Zhao,

2011; Valle et al., 2010). Expression of uncoupling proteins,

as well as other means to uncouple mitochondrial respiration

(Bertholet et al., 2019), may support NAD+ regeneration in con-

texts in which NAD+ demand exceeds the demand for ATP. For

example, lymphocytes can proliferate faster than most other

mammalian cells and may use such an adaptive program to

support proliferation, potentially explaining why we observe

variability in whether FCCP-mediated mitochondrial uncou-

pling can enhance T cell proliferation. However, the fact that

maintaining a high ATP/ADP ratio is essential for cell survival

may explain why nutrient oxidation remains tightly coupled in

ATP production in most cells and leads to aerobic glycolysis

being engaged when the demand for NAD+ exceeds the de-

mand for ATP.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-PDHA1 (phospho S293) Abcam ab92696; RRID:AB_10711672

anti-PDK1 Cell Signaling Technologies 3062S; RRID:AB_2236832

anti-FLAG Sigma F1804; RRID:AB_262044

anti-Vinculin Sigma V9131; RRID:AB_477629

APC-conjugated anti-mouse CD69 BioLegend 310909; RRID:AB_314844

eFlour450-conjugated anti-CD3e Thermo Fisher 48-0032-80; RRID:AB_1272229

anti-mouse CD3e BD PharMingen 553057; RRID:AB_394590

anti-mouse CD28 BD PharMingen 553294; RRID:AB_394763

Chemicals, peptides, and recombinant proteins

AZD7545 Selleck Chemicals S7517

Sodium pyruvate Sigma P2256

Sodium L-lactate Sigma L7022

Duroquinone Sigma D223204

Metformin hydrochloride Sigma PHR1084

FCCP (carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone)

Sigma C2920

Rotenone Sigma R8875

Oligomycin A Sigma 75351

Antimycin A Sigma A8674

Gramicidin from Bacillus aneurinolyticus

(Bacillus brevis)

Sigma G5002

TMRE (tetramethylrhodamine, ethyl ester) Thermo Fisher T669

Critical commercial assays

NAD/NADH-Glo Assay kit Promega G9072

ADP/ATP Ratio Assay Kit Sigma MAK135

TMRE (tetramethylrhodamine, ethyl ester)

assay kit

Abcam ab113852

Ethanol Assay Kit Sigma MAK076

Dynabeads Untouched Human CD4 T

Cells kit

Thermo Fisher 11346D

Pan-T cell isolation kit Miltenyl Biotec 130-095-130

Deposited data

Raw image data This manuscript https://dx.doi.org/10.17632/

6zpghspxgs.1

Experimental models: cell lines

Human: 143B ATCC CRL-8303; RRID:CVCL_2270

Human: A172 ATCC CRL-1620; RRID:CVCL_0131

Human: A549 ATCC CCL-185; RRID:CVCL_0023

Mouse: C2C12 ATCC CRL-1772; RRID:CVCL_0188

Human: H1299 ATCC CRL-5803; RRID:CVCL_0060

Human: HeLa ATCC CCL-2; RRID:CVCL_0030

Human: MDA-MB-231 ATCC HTB-26; RRID:CVCL_0062

Mouse: PSC This manuscript N/A

Human: Primary CD4+ T cells This manuscript N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: Primary T cells This manuscript N/A

Experimental models: organisms/strains

Mouse: NU/NU Nude Mouse

(Crl:NU-Foxn1nu)

Charles River 088; RRID:IMSR_CRL:088

S. cerevisiae: CEN.PK 5D (MATa ura3-52

HIS3, LEU2 TRP1 MAL2-8c SUC2)

This manuscript N/A

Oligonucleotides

sgRNA sequence targeting PDK1 #1

(50 GCTCACGTACCACTCGGCAG 30)
Horlbeck et al., 2016 hCRISPRi-v2.1

sgRNA sequence targeting PDK1 #2

(50 GACGTCCCTCACGTACCACT 30
Horlbeck et al., 2016 hCRISPRi-v2.1

sgRNA sequence non-targeting control

(50 GGGAACCACATGGAATTCGA 30)
Horlbeck et al., 2016 hCRISPRi-v2.1

Recombinant DNA

pUC57-LbNOX Addgene 75285; RRID:Addgene_75285

pInducer20 Addgene 44012; RRID:Addgene_44012

Software and algorithms

FlowJo FlowJo V10.6.1

XcaliburTM Software Thermo Fisher N/A

Prism GraphPad 8.2.1
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by Lead Contact, Matthew G.

Vander Heiden (mvh@mit.edu)

Materials availability
This study did not generate new unique reagents

Data and code availability
This study did not generate any datasets or code. Original data have been deposited to Mendeley Data: https://dx.doi.org/10.17632/

6zpghspxgs.1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture experiments
Established cell lines (143B, ATCC CRL-8303; A549, ATCC CCL-185; C2C12, ATCC CRL-1772; ATCC CRL-5803; H1299, ATCC

CRL-5803; HeLa, ATCC CCL-2; A172, ATCC CRL-1620; MDA-MB-231, ATCC HTB-26) were maintained in DMEM (Corning,

10-013-CV) supplemented with 10% fetal bovine serum (FBS). For all experiments, cells were washed three times in phosphate

buffered saline (PBS), and then cultured in DMEM without pyruvate (Corning, 10-017-CV) with 10% dialyzed FBS, supplemented

with the indicated treatment condition. The reagents used for the cell culture experiments are as follows: AZD7545 (Selleck Chem-

icals, s7517), sodium pyruvate (Sigma, P2256), sodium L-lactate (Sigma, L7022), duroquinone (Sigma, D223204), metformin hydro-

chloride (Sigma, PHR1084), FCCP (carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, also referred to as trifluoromethoxy car-

bonylcyanide phenylhydrazone) (Sigma, C2920), oligomycin A (Sigma, 75351), gramicidin from Bacillus aneurinolyticus (Bacillus

brevis) (Sigma, G5002). All cells were cultured at 37�C with 5% CO2.

CRISPRi/Cas9-mediated repression of PDK1
PDK1 expression was suppressed using CRISPR interference (CRISPRi)-mediated transcriptional repression. A CRISPRi library

(Horlbeck et al., 2016) was used to design sgRNA human targeting PDK1 (Guide 1: F 50GCTCACGTACCACTCGGCAG 30; Guide

2: F 50GACGTCCCTCACGTACCACT 30) or a non-targeting control (NTC; F 50GGGAACCACATGGAATTCGA 30). The sgRNA

were cloned into a modified LentiCRISPRv2 plasmid, in which Cas9 was mutated to nuclease-dead Cas9 and fused to repressive
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chromatinmodifier domain KRAB (Kr€uppel-associated box) domain of Kox1 (dCAS9-KRAB) (Gilbert et al., 2013). A pooled population

of stable knockdown cell lines were generated and maintained in 5 mM/mL blasticidin.

Generation of LbNOX-expressing cells
LbNOX-FLAG cDNA was cloned from pUC57-LbNOX using the primers 50-GGGGACAAGTTTGTACAAAAAAGCAGGCATGAAGGT-

CACCGTGGTC-30 and 50-GGGGACCACTTTGTACAAGAAAGCTGGGTTTACTTGTCATCGTCATCCTTGTAATC-30. pUC57-LbNOX

was a gift from Vamsi Mootha (Addgene, 75285). The PCR product was subsequently cloned into pInducer20 using LR Clonase II

Plus (ThermoFisher, 12538120). pInducer20 was a gift from Stephen Elledge (Addgene, 44012). A549, 143B, and H1299 cells

were transduced with lentivirus containing pInducer20-LbNOX-FLAG or pInducer20-E.V. and 10ug/mL polybrene (Millipore, TR-

1003-G). The infected cells were selected in 1 mg/mL G418 (VWR, G5005). For proliferation experiments done with these cell lines,

all conditions were supplemented with 500 ng/mL doxycycline.

Pancreatic stellate cell (PSC) isolation
PSCs were isolated from b-actin-GFPmice (The Jackson Laboratory, 006567) in which 3 mL of 1.3 mg/mL cold collagenase P (Sigma,

11213865001) and 0.01 mg/mL DNase (Sigma, D5025) in GBSS (Sigma, G9779) were injected into the pancreas. The tissue was then

placed into 2 mL of 1.3 mg/mL collagenase P solution on ice. Cells were then placed in a 37�Cwater bath for 15minutes. The digested

pancreaswas filtered through a 250 mmstrainer andwashedwithGBSSwith 0.3%BSA.A gradientwas created by suspending the cells

in Nycodenz (VWR, 100356-726) and layering in GBSS with 0.3% BSA. Cells were then centrifuged at 13003 g for 20 minutes at 4�C.
The layer containingPSCswas removed, filtered through a 70mmstrainer, washed inGBSSwith 0.3%BSA, and plated for cell culture in

DMEM (Corning, 10-013-CV) with 10% FBS and penicillin-streptomycin (P/S). Post-isolation, PSCs were immortalized with TERT and

LargeT Antigen overexpression and cultured DMEM (Corning, 10-013-CV) supplemented with 10% FBS.

T cell isolation and culture
Primary human CD4+ T cells were isolated from peripheral blood by density gradient centrifugation over Lympholyte-H (Cedarlane

Laboratories) and negative selection using the Dynabeads Untouched Human CD4 T Cells kit (Thermo Fisher, 11346D) according to

the manufacturer’s instructions. Purity was assessed by flow cytometry for CD3 and CD4 and routinely found to be R 95%. Cells

were activated using Dynabeads Human T-Activator CD3/CD28 beads (Invitrogen) according to the manufacturer’s instructions

and cultured in RPMI supplemented with 10% FBS and 30 U/mL recombinant human IL-2 (PeproTech, 200-02) at 37�C in 5%

CO2. Primary mouse T cells were isolated from the spleens and lymph nodes of C57BL/6J mice using a Pan-T cell isolation kit

(Miltenyl Biotec, 130-095-130). Isolated murine T cells were activated on plates coated with anti-CD3e (BD Pharmigen, 553057)

and anti-CD28 (BD PharMingen, 553294) antibodies and cultured in RPMI with 10% FBS (non-dialyzed), 1% P/S, 1x NEAA culture

supplement (Thermo Fischer Scientific, 11140050), and 50 mM b-mercaptoethanol.

Tumor growth in mice
Two million A549 or one million 143B cells were injected into the flanks of 4-6 week old, male NU/NUmice (Charles River Laboratories,

088). A caliper was used tomeasure flank tumor volume in two dimensions and volumewas calculated using the equation V = (p/6)(L3

W2). Lengthwas defined to be the longer of the two dimensionsmeasured. For the A549 xenografts, the tumorswere permitted to reach

a size of 50 mm3, after which the animals were randomly assigned to an experimental group and the treatment regimen was initiated.

Metformin (500mg/kg) and AZD7545 (45mg/kg)were both administered oncedaily by oral gavage, with a vehicle ofwater and 0.5% (w/

w) methocel/0.1% polysorbate 80 respectively. All animal experiments were approved by the MIT Committee on Animal Care.

METHOD DETAILS

Proliferation rates
Cells were plated in replicate six-well plates in 2 mL at an initial seeding density of 20,000 cells per well for all cells except for MDA-MB-

231, which were seeded at 40,000 cells per well. Cells were permitted to settle overnight and one six-well dishwas counted to calculate

the starting cell number at the initiation of the experiment. For all remaining dishes, cells were washed three times with PBS and 4mL of

treatmentmediawas added to eachwell. After 48 hours, cells werewashed again three timeswith PBS and 4mLof the treatmentmedia

was replenished. Four days after the initial treatment, cells were counted to obtain the final cell counts for the experiment. Counts were

done using a Cellometer Auto T4 Plus Cell Counter (NexcelcomBioscience) or by sulforhodamine B (SRB) assay. For cell quantification

by SRB, cells were fixed by adding trichloroacetic acid to culture media (final concentration of 3.3%) and incubated 4�C for at least one

hour. Fixed cells were washed with deionized water and then stained with 0.057% SRB in 1% acetic acid for 30 min. Following three

washes with 1% acetic acid, plates were air-dried at room temperature. To solubilize the SRB dye, 1 mL of 10 mM Tris (pH 10.5) was

added per well, and absorbance was measured at 510 nm using a microplate reader (Tecan Infinite, M200Pro).

T cell proliferation assay
Proliferation of primary human CD4+ T cell and primary mouse T cell proliferation was assessed by dye dilution. Freshly isolated cells

were incubated at 1 3 107 cells/mL in PBS with 0.5% dialyzed FBS supplemented with 5 mM carboxyfluorescein succinimidyl ester
e3 Molecular Cell 81, 691–707.e1–e6, February 18, 2021
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(CFSE, Molecular Probes) or 2.5 mM CellTrace Far Red (Molecular Probes) for 5-7 minutes at room temperature. Staining was

quenched with ice-cold complete media and washed cells were resuspended in RPMI supplemented with 10% dialyzed FBS and

the indicated treatment condition before activation. For human CD4+ T cells, cells were expanded in fresh media containing the indi-

cated treatment condition and CFSE fluorescence was thenmeasured by flow cytometry after another 2 days. Primary murine T cells

were expanded in freshmedia containing the indicated treatment condition for 2 days, andCFSE fluorescencewas thenmeasured by

flow cytometry.

Flow cytometry of T cells
CD3/CD28 Dynabeads were removed from stimulated primary human CD4+ T cells using a DynaMag-2magnet (Invitrogen). For anti-

body staining, cells were incubated for 30minutes at 4�C in PBSwith a fluorochrome-conjugated antibody (mousemonoclonal APC-

conjugated anti-CD69 (BioLegend, 310909); mouse monoclonal PE-conjugated anti-CD25 (PharMingen, 30795X) as indicated). For

antibody staining or fluorescent dye dilution, cells were analyzed using a FACSCanto II, FACSCalibur or LSR Fortessa (BD Biosci-

ences) flow cytometer. For mouse T cell antibody staining, cells were incubated for 30 minutes at 4�C in PBS containing 2% fetal

bovine serum with eFluor780 viability dye (eBioscience, 65-0865-18) and fluorochrome-conjugated antibodies: mouse monoclonal

PE-CF594-conjugated anti-CD45 (BDHorizon 562420) and eFluor450-conjugated anti-CD3e (Thermo Fisher Scientific, 48-0032-80);

TMRE staining (Thermo Fisher Scientific, T669) was performed at room temperature in FluoroBrite DMEM (Thermo Fischer Scientific,

A1896701) supplemented with dialyzed FBS. Stained cells were analyzed using a LSR-II or LSR Fortessa (BD Biosciences) flow

cytometer. Data processing (including proliferation analysis) was conducted using FlowJo V10.6.1.

LCMS metabolite measurement
Metabolites weremeasured by LCMS on a QExactive bench top orbitrapmass spectrometer equipped with an IonMax source and a

HESI II probe, which was coupled to a Dionex UltiMate 3000 HPLC system (Thermo Fisher Scientific, San Jose, CA). External mass

calibration was performed using the standard calibration mixture every 7 days. For each sample, 4 mL of each sample was injected

onto a SeQuant� ZIC�-pHILIC 1503 2.1mmanalytical column equippedwith a 2.13 20mmguard column (both 5mmparticle size;

EMDMillipore). Buffer A was 20 mM ammonium carbonate, 0.1% ammonium hydroxide; Buffer B was acetonitrile. The column oven

and autosampler tray were held at 25�C and 4�C, respectively. The chromatographic gradient was run at a flow rate of 0.150 mL/min

as follows: 0-20 min: linear gradient from 80%–20% B; 20-20.5 min: linear gradient form 20%–80% B; 20.5-28 min: hold at 80% B.

The mass spectrometer was operated in full-scan, polarity-switching mode, with the spray voltage set to 3.0 kV, the heated capillary

held at 275�C, and the HESI probe held at 350�C. The sheath gas flow was set to 40 units, the auxiliary gas flow was set to 15 units,

and the sweep gas flow was set to 1 unit. MS data acquisition was performed in a range of m/z = 70–1000, with the resolution set at

70,000, the AGC target at 13 106, and the maximum injection time (Max IT) at 20 msec. For detection of 13C-labeled citrate, targeted

selected ion monitoring (tSIM) scans in negative mode centered on 194.1985 was included. The isolation window was set at 8.0 m/z.

For all tSIM scans, the resolution was set at 70,000, the AGC target was 1105, and the max IT was 250 ms.

Relative quantitation of polar metabolites was performed with XCalibur QuanBrowser 2.2 (Thermo Fisher Scientific) using a 5 ppm

mass tolerance and referencing an in-house library of chemical standards.

GCMS metabolite measurement
Gas-chromatography coupled to mass spectrometry (GCMS) analysis was done as described previously (Lewis et al., 2014).

Dried metabolite samples were derivatized with 20 mL of methoxamine (MOX) reagent (ThermoFisher, TS-45950) and 25 mL of

N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide with 1% tert-butyldimethylchlorosilane (Sigma, 375934). Following derivatiza-

tion, samples were analyzed using a DB-35MS column (30m3 0.25mm i.d.3 0.25 mm, Agilent J&WScientific) in an Agilent 7890 gas

chromatograph (GC) coupled to an Agilent 5975Cmass spectrometer (MS). Data were corrected for natural isotope abundance using

in-house algorithms as in Lewis et al. (2014).

Dynamic stable-isotope labeling experiments
Cells were plated in six-well plates at a seeding density of 150,000 cells per well and cultured overnight. Prior to the initiation of the

experiment, cells were washed three times with PBS, and then cultured in 1.5 mL media containing 5mM glucose and the indicated

treatment condition prior to tracing glucose fate. To assess glucose fate, 30 mL of a 1M [U-13C6]glucose solution was added to a final

concentration of 20 mM for the indicated time (ranging from 2 to 12 minutes). At each time point wells were washed as quickly as

possible with ice-cold blood bank saline and lysed on the dish with 300 mL of ice-cold 80% HPLC grade methanol in HPLC grade

water. Samples were scraped, collected into Eppendorf tubes, and vortexed for 10 minutes at 4�C. Samples were centrifuged at

21,000 3 g for 10 minutes at 4�C to precipitate protein. 50 mL of each sample was collected for immediate analysis by LCMS, or

the supernatant was dried down under nitrogen gas for subsequent analysis by GCMS.

Oxygen consumption
Oxygen consumption rates (OCR) wasmeasured using an Agilent Seahorse Bioscience Extracellular Flux Analyzer (XF24) using stan-

dard methods. Briefly, cells were plated at 50,000 cells per well in Seahorse Bioscience 24-well plates in 50 mL of DMEM without

pyruvate (Corning, 10-017-CV) supplemented with 10% dialyzed fetal bovine serum. An additional 500mL of media was added
Molecular Cell 81, 691–707.e1–e6, February 18, 2021 e4
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following a one hour incubation. The following day, cells were washed three timeswith PBS and incubated in DMEMwithout pyruvate

with the indicated treatment. Five hours later, OCR measurements were made every 6 minutes, and injections of pyruvate at 16 mi-

nutes, FCCP (Sigma, C2920) at 32 minutes, and rotenone (Sigma, R8875; 2 mM) and antimycin (Sigma, A8674; 2 mM) at 48 minutes.

Basal OCR was calculated by subtracting residual OCR following the addition of rotenone and antimycin from the initial OCR

measurements.

Glucose/lactate excretion index
Medium was collected from cells cultured in vehicle or 0.25 mM AZD7545 for 48 hours. Glucose and lactate concentrations were

measured on a YSI-2900 Biochemistry Analyzer as described previously, and rate of lactate excretion into media was normalized

to consumption of glucose (Hosios et al., 2016).

Lactate and pyruvate excretion
Medium was collected from 143B cells cultured in pyruvate-free DMEM treated with vehicle or 200mM duroquinone for 48 hours, or

mediumwas collected from143B cells cultured in pyruvate-free DMEMexpressing empty vector or LbNOX for 48 hours. Extracellular

pyruvate and lactate were measuring using GCMS, using a labeled internal standard (Cambridge Isotopes, CLM-1579-PK), and the

excretion was normalized to the proliferation rate to calculate the rate per unit growth. For H1299, PSC, andC2C12 cells, extracellular

lactate wasmeasured using a YSI-2900 Biochemistry Analyzer after treatment with the indicated amount of duroquinone for 48 hours

in pyruvate-free DMEM. Lactate excretion in primary mouse T cells was measured using a YSI-2900 Biochemistry Analyzer after 24

hours of stimulation using anti-CD3e (BD Biosciences, 553057) and anti-CD28 (BD Biosciences, 553294) antibodies and cultured in

RPMI with 10% FBS, 1% P/S, 1x NEAA culture supplement (Thermo Fischer Scientific, 11140050), and 50mM b-mercaptoethanol.

Lactate excretion was normalized to proliferation rate as assessed by counting the cells using a Cellometer Auto T4 Plus Cell Counter

(Nexcelcom Bioscience).

Western blot analysis
Cells washed with ice-cold PBS, and scraped into cold RIPA buffer containing cOmplete Mini protease inhibitor (Roche,

11836170001) and PhosStop Phosphatase Inhibitor Cocktail Tablets (Roche, 04906845001). Protein concentration was calculated

using the BCA Protein Assay (Pierce, 23225) with BSA as a standard. Lysates were resolved by SDS-PAGE and proteins were trans-

ferred onto nitrocellulose membranes using the iBlot2 Dry Blotting System (Thermo Fisher, IB21001, IB23001). Protein was detected

with the primary antibodies anti-Pyruvate Dehydrogenase E1-alpha subunit (phospho S293) (Abcam, ab92696), anti-PDK1

(Cell Signaling Technologies, 3062S), anti-FLAG (Sigma, F1804) and anti-Vinculin (Sigma, V9131). The secondary antibodies used

were IR680LT dye conjugated anti-rabbit IgG (Li-Cor Biosciences, 925-68021), IRDye 800CW conjugated anti-mouse IgG (Li-Cor

Biosciences, 925-32210), HRP-conjugated anti-rabbit IgG (Millipore, 12–348), and HRP-conjugated anti-mouse IgG (Millipore,

12-349).

NAD+/NADH measurements
Cells were seeded at 20,000 cells per well in six-well plates and permitted to adhere overnight. Cells were then washed three times

in PBS and incubated in 4 mL of the indicated treatment media for 5 hours prior to rapidly washing three times in 4�C PBS and

extraction in 100mL of ice-cold lysis buffer (1% dodecyltrimethylammonium bromide [DTAB] in 0.2 N of NaOH diluted 1:1 with

PBS), then snap-frozen in liquid nitrogen and frozen at �80�C. The NAD+/NADH ratio was measured using an NAD/NADH-Glo

Assay kit (Promega, G9072) according to a modified protocol as described previously (Gui et al., 2016). Briefly, to measure

NAD+, 20 mL of lysate was transferred to PCR and diluted with 20 mL of lysis buffer and 20 mL 0.4 N HCl, and subsequently incu-

bated at 60�C for 15minutes. For NADHmeasurement, 20 mL of freshly thawed lysate was transferred to PCR tubes and incubated

at 75�C for 30 minutes. The acidic conditions permit for selective degradation of NADH, while the basic conditions degrade NAD+.

Following the incubation, samples were spun on a bench-top centrifuge and quenched with 20 mL neutralizing solution. The

neutralizing solution consisted of 0.5 M Tris base for NAD+ samples and 0.25 M Tris in 0.2 N HCl for the NADH samples. The in-

structions in the Promega G9072 technical manual were then followed to measure NAD+ and NADH levels using a luminometer

(Tecan Infinite, M200Pro).

ATP/ADP measurements
Cells were seeded at 5,000 cells per well in 96-well plates and permitted to adhere overnight. Cells were then washed one time

with PBS and incubated in 200 mL of the indicated treatment media for 24 hours. ATP and ADP measurements were made

using a luciferase-based assay (Sigma, MAK135) based on manufacturer’s instructions. Luminescence was measured using a

luminometer (Tecan Infinite, M200Pro).

Yeast proliferation and metabolite analysis
In studies comparing the effects of LbNOX on ethanol production, CEN.PK 5D (MATa ura3-52 HIS3, LEU2 TRP1 MAL2-8c SUC2)

expressing p416-TEF-lbNOX or p416-TEF (empty vector) were grown in log phase in YPD (3% glucose) at 30�C. At OD = 0.8,

supernatant was collected and analyzed for ethanol content using an Ethanol Assay Kit (Sigma, MAK076). Rate of ethanol production
e5 Molecular Cell 81, 691–707.e1–e6, February 18, 2021
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was normalized to the proliferation rate. To study the effects of FCCP on ethanol production, wild-type CEN.PK 5D strain yeast were

cultured in YPD (3% glucose) at 30�C in the indicated amount of FCCP.

Mitochondrial membrane potential measurement
Mitochondrial membrane potential was assessed using the TMRE (tetramethylrhodamine, ethyl ester) assay kit (Abcam, ab113852) in

nonquench mode. The concentration of TMRE in nonquench mode was determined empirically (Perry et al., 2011). Cells were plated

in 6 well dishes at a plating density of 150,000 cells per well and incubated in media containing the indicated concentration of vehicle

AZD7545, 500 nM FCCP, 1 nM oligomycin, and/or 5nM gramicidin D. The cells were then treated with TMRE for 30 minutes,

trypsinized, washed with PBS, and resuspended in GIBCO FluoroBrite DMEM (Thermo Fisher Scientific, A1896701) containing

the same concentration of TMRE supplemented with 10% dialyzed FBS. TMRE fluorescence was measured on a BD LSR II flow

cytometer.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details pertaining to all statistical analyses can be found in the figure legends.
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