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A B S T R A C T   

This paper addresses the issue of automatically seeking and identifying daily, weekly and seasonal patterns in 
harmonic voltage from measurement data at multiple locations. We propose a novel framework that employs 
deep autoencoder (DAE) followed by k-mean clustering. The DAE is used for extracting principal features from 
time series of harmonic voltages. A new strategy is used for training the encoder in DAE from data at one selected 
location that is effective for subsequent feature extraction from data at multiple locations. To analyze the pat
terns, several empirical analysis approaches are applied on the clustered principal features, including the dis
tribution of daily patterns over the week and the year, representative waveform sequences of individual classes, 
and feature maps for visualizing high-dimensional feature space through low-dimensional embedding. The 
proposed scheme has been tested on a dataset containing harmonic measurements at 10 low-voltage locations in 
Sweden for the whole year of 2017. Results show distinct principal patterns for most harmonics that can be 
related to the use of equipment causing harmonic distortion. This information can assist network operators in 
finding the origin of harmonic distortion and deciding about mitigation actions. The proposed scheme is the first 
to provide a useful analysis tool and insight for finding and analyzing underlying patterns from harmonic 
variation data at multiple locations.   

1. Introduction 

Power-quality monitoring can result in large amounts of data, 
especially where it concerns harmonics at multiple locations over a long 
period. For example, one year of monitoring of 39 harmonics and 40 
inter-harmonics (3 voltages, 3 currents, 10 min values) results in about 
31 million data points per location. In terms of the amount of data, [1] 
shows that a power quality measurement campaign in five different 
locations over two years recorded a total of 250 GB of data. Although 
manual analysis is possible, it is too time-consuming for multiple loca
tion measurements. Electric power systems often exhibit distinct har
monic patterns at different locations [2], which means that it is 
inaccurate to characterize a whole installation by the pattern in a 
particular location. 

Patterns of daily variations in harmonic voltage are compared be
tween locations in [3]. Visual inspection of the daily variations is used to 
study the propagation of harmonics through the network during reso
nance conditions. Reference [4] presents data on daily harmonic vari
ations from a number of low-voltage locations. The paper performs 

manual analysis of the data, using mainly visual inspection of the har
monic currents versus time to identify patterns. No analysis of the 
voltage was presented. More commonly, statistical analysis is performed 
when it concerns multiple locations. A classic example of the analysis of 
harmonics at multiple locations is presented in [5]. The analysis results 
in statistics over the locations, mainly in the form of probability density 
functions of the voltage for each harmonic order. The same approach has 
been used in many later papers and reports, with the main development 
being the definition of single-side indices to quantify the harmonic 
distortion per site [6,7]. In [8], statistics on the prevailing phase angle of 
the harmonics are included, but the overall approach remains the same. 

Methods to automatically identify common patterns in large 
amounts of harmonic voltage data from multiple locations are rare or 
non-existing in literatures. Machine learning, especially deep learning 
[9,10,11], provides automatic ways to extract information from a large 
amount of data. Machine learning tools have been applied to power 
quality data for the classification and recognition of distinct events 
[12–29]. Most algorithms are based on supervised learning that requires 
pre-labeled data, e.g., shallow neural networks [14–19]; and support 
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vector machines [20–23]. Recently, some deep learning algorithms have 
been developed for handling power quality data where extracting fea
tures is automatic rather than hand-crafted performed. Most deep 
learning approaches in the literature on power quality applications 
[24–29] are in the category of supervised learning. Within the literature 
on event classification, a substantial part of the approaches is based on 
synthetically generated and often non-realistic data, e.g. [27,28,29]. 
This limits the practical applicability of those methods, although they 
still contribute to the knowledge on supervised machine learning 
methods. 

For unsupervised machine learning algorithms, a limited number of 
applications in power quality measurement analysis has been found, e. 
g., in [30] a clustering method is used for probabilistic evaluation of 
harmonic load flow; in [31] k-means clustering is used for identification 
of distributed generation contribution; in [12,13,14] expert systems are 
used for classifying power quality disturbances. None of these works has 
applied deep learning architecture for seeking underlying patterns from 
variation measurements, despite many works on unsupervised deep 
learning in other areas especially in computer vision areas, e.g. 
perceptual grouping using a ladder network for grouping of images [32], 
and generic adversarial networks (GANs) for image and text synthesis 
[33,34]. 

This paper proposes an approach using deep autoencoders (DAE) and 
feature clustering for seeking possible underlying patterns from long 
sequences measured from multiple locations in power system networks. 
The DAE is used for obtaining principal features from time series of 
harmonic voltages. For the approach being effective to data from mul
tiple locations, we propose a new codebook training strategy where the 
codebook is trained by the dataset from the best selected location under 
a given criterion. To analyze the patterns, several empirical analysis 
approaches are employed after k-means clustering [35] of principal 
features. This results in a number of graphical presentations of patterns 
that can be used by the network operator to obtain information about 
patterns at different locations, without the need for time-consuming 
manual analysis. The main contributions of this paper include: (a) pro
pose a framework that shows applicability for extracting underlying 
information and common patterns from harmonic variation measure
ments; (b) proposing a novel method employing deep autoencoder 
(DAE) and clustering for extracting principal features grouped by clus
ters; (c) introduce a criterion for training the DAE that is robust to apply 
subsequently on data from multiple locations, based on minimizing the 
distance to the mean cross-correlations; (d) present several empirical 
analysis approaches for revealing underlying common patterns from 
data in multiple locations, including feature distribution maps over 
weekdays and days of the year, and typical waveform sequences of in
dividual patterns. To the best of our knowledge, this is the first suc
cessful attempt for automatically seeking harmonic variation patterns 
from big measurement data in multiple locations through unsupervised 
deep learning. 

The remainder of this paper is structured as follows. Section 2 de
scribes the proposed scheme in detail. Section 3 describes the large 
dataset and pre-processing used in our experiments. Section 4 shows the 
results and analysis. Finally, Section 5 concludes this paper. 

2. The proposed scheme 

This section describes a robust unsupervised deep learning and 
clustering scheme for seeking common underlying patterns in data se
quences of harmonic voltages over a long period of time, from multiple 
locations. The basic idea behind the proposed scheme is to design a deep 
learning scheme that has a good generalization performance on 
extracting underlying intrinsic feature patterns from big data, related to 
the harmonic variations at multiple network locations in a power sys
tem. The scheme, when trained by data measured from one location, is 
able to find common underlying features using the data from multiple 
locations for which similarities in electromagnetic environment can be 

expected, e.g. locations in the same low-voltage network or in different 
low-voltage network connected to the same medium-voltage network. 
To avoid time-consuming manual analysis and because every location 
has its own characteristics, the measurement data would be unanno
tated. Hence unsupervised learning and pattern prediction/analysis 
methods are necessary. The scheme used in this paper consists of two 
streams, as shown in Fig. 1, where the DAE is further detailed in Fig. 2. 

The top stream of Fig. 1 is designed for codebook training, where a 
deep autoencoder is employed for unsupervised training of codebook 
coefficients using measurement data from one location. The aim of 
choosing a DAE is twofold, one is for automatic unsupervised feature 
learning, and the other is for obtaining principal features. The bottom 
stream is designed for deep feature extraction and clustering, followed 
by pattern analysis. For feature extraction, the same structured DAE is 
utilized, whose encoder coefficients are provided by the DAE trained 
from the top stream. This provides automatic feature extraction from 
data in multiple locations. The principal features from DAE are then 
formed into several classes of patterns through an unsupervised k-mean 
feature clustering, followed by some harmonic pattern analysis. A list of 
items for empirical analysis of harmonic patterns is then selected in 
order to find a meaningful number of patterns as well as the distribution 
of the daily patterns over the week and the year. In this way, the clas
sification method is able to identify daily, weekly and seasonal patterns. 

In the following subsections, details of the proposed scheme will be 
described. 

2.1. Training deep autoencoder using data at one selected location 

To find the suitable architecture for unsupervised deep feature 
learning as well as the coefficients of the deep learning method, we 
employ a DAE with data at one selected location (described in Section 
2.3) as the input. We choose deep autoencoders for obtaining principal 
features since the input data sequence in our case is considered as a basic 
or the smallest component in a year-long data sequence. Another 
advantage of DAE is that it has an exponentially reduced computation of 
representing some functions, this may also lead to a decreasing number 
of required training data to learn the functions [11]. More details on the 
basic theory and method of AEs can be found in [36]. The main aim of 
training the DAE is to obtain a good structure as well as the coefficients 
of trained DAE through end-to-end training of encoder and decoder. 

The DAE used in the training consists of an encoder and a decoder. 
The encoder consists of three layers, each layer is fully connected to the 
previous one followed by ReLU (Rectified Linear Unit) activation func
tion [11] except the last encoding and decoding layers (as the recon
structed data sequence is not constrained by non-negative values). The 
input to the encoder is the original data sequence (144 × 1), and the 
output of the encoder is the feature vector (16 × 1, determined empir
ically). The decoder has a reverse structure as the encoder (three layers), 
where the output dimension in each layer is increased when the layer 
number increases, and the last decoder layer output is of size (144 × 1). 
The detailed architecture is shown in Fig. 3. (where the number of layers 
and neurons were obtained after many empirical tests, without over
fitting or underfitting). 

The autoencoder is trained using backpropagation similar to that in 
conventional neural networks. The loss function L for DAE is defined as 
the mean squared error between the original data sequence in the 
encoder input and the reconstructed data sequence in the decoder 
output, where xi represents each data sequence, N is the total number of 
data sequences in one location used for training DAE, he and hd represent 
the encoder and the decoder. 

L =
1
N
∑N

i=1
‖ hd(he(xi)) − xi ‖

2 (1)  

where he(xi) is the encoder output, which is the feature vector fi, fi =

[fi,1⋯fi,m]
T consisting of m components. 
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2.2. Extracting and clustering features from data at multiple locations 
using trained DAE 

Extracting features: To extract common features from the data 
measured in multiple locations, the DAE for feature extraction (see the 
bottom stream, Fig. 1) is set to have the same structure as that in the DAE 
encoder training (see the top stream, Fig. 1). The coefficients of DAE are 
fixed and provided from the encoder trained from data at one location (i. 
e., DAE in the top stream, Fig. 1). In such a way, features from mea
surement data at different locations are extracted based on the same 
codebook in the encoder (i.e. under the same m-dimensional space). 

Clustering into patterns: Once the features are extracted from all M 
locations, the next step is to classify these features into several classes, 
each having a distinct pattern. Since the measurement data sequences 
are not annotated, unsupervised k-means clustering is employed on 
feature vectors of data for finding classes of patterns for all locations 
together. K-means clustering partitions N × M feature vectors into K 
clusters C = {C1, C2, …, Ck}, that minimizes the Euclidean distance, 
argmin

C

∑K
i=1
∑

fj∈Ci

‖fj − μi‖
2, where μi is the mean of all feature vectors fj 

belonging to the cluster Ci. The k-means clustering consists of 

assignment and update steps. Each feature vector f j is assigned to a 
nearest cluster by examining the Euclidean distance between the feature 
vector and all cluster centroids. Once a new feature vector is added to a 
cluster, the cluster centroid is then updated by re-calculating its mean 
value. These steps repeat until the algorithm converges. 

2.3. Criterion for selecting a specific location 

For training the encoder, a strategy for choosing the best suitable 
location is adopted. This is done by applying a criterion that is based on 
the mean cross-correlation. Let f(i,j)k be defined as the k-th extracted 
features from the data in location j (j = 1, …, M, M = 10 in our case) 
where the codebook is trained from data in a selected location i, and k =

1,⋯,N, and N is the total number of feature vectors or training samples 
in each location. We define the normalized cross-correlation as the 
feature vectors between all possible locations j and a fixed location i, 
averaged over all pairs of (j, i), (j= 1…M, j ∕= i) and all k, (k = 1…N), as 
follows: 

Fig. 1. Block diagram of the proposed scheme for seeking underlying patterns in power system measurements from multiple locations, m-d: multi-dimensional.  

Fig. 2. Unsupervised feature learning by deep autoencoder (DAE).  

Fig. 3. The architecture of deep autoencoder (DAE) used in the proposed scheme.  
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ρ (i) =
1

N(M − 1)
∑M

j=1

(j∕=i)

∑N

k=1

〈
f(i,j)k , f(j,j)k

〉

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

‖ f(i,j)k ‖2‖f(j,j)k ‖2
√ ,

(2)  

where 〈⋅, ⋅〉 is the inner product of two vectors, and f(i,j)k is the feature 
vector corresponding to data measured in j-th location, however 
extracted from DAE trained by the data in i-th location. The best location 
number i∗ for training the encoder is chosen as the location that is 
nearest to the mean of |ρ (j)|: 

i∗ = arg
i

min

(

|ρ(i)| − 1
M
∑M

j=1
|ρ(j)|

)

(3) 

The rational of choosing the location nearest to the mean cross- 
correlation value is that the encoder not only takes into account 
commonly shared patterns (i.e., strong patterns) but also includes some 
not so strong patterns that only show in some of the locations. In 
essence, (2) calculates normalized cross-correlation of feature vectors 
between all locations j (j ∕= i) to i, where all features of j-th location data 
are extracted by a deep autoencoder trained by the dataset from a fixed i- 
th location. Then among all location i, the best autoencoder trained by 
dataset in location i∗ (that can best represent data in all locations), is the 
one that is closest to the mean of all cross-correlation values. 

2.4. Empirical analysis of harmonic patterns 

Pattern distribution maps: From the class labels obtained from feature 
clustering, the distribution of the patterns of feature classes over time 
can be studied. In this study, the weekly and seasonal changes have been 
studied, from the daily patterns. To give an overview of the data/fea
tures of a given harmonic during a year, a pattern distribution map is 
utilized by accumulating the number of patterns in different classes for 
individual weekdays and weeks over the entire year. Such a map can be 
drawn for each individual harmonic. 

Typical data sequences in each cluster/class: To further study the 
clustered patterns in K classes, one may examine and compare the 
typical or representative data sequences in several clusters. Since each 
feature is an m-dimensional vector (m = 16 in our case), comparing the 
typical feature vectors from different clusters in high dimension (m =
16) is difficult. Therefore, the feature vector in the centroid of each 
individual cluster is fed into the decoder part of DAE, which reconstructs 
a typical data sequence for the corresponding cluster. By comparing and 
examining typical data sequences in individual clusters, one can find out 
what are the main differences between different class patterns. 

Visualization features by nonlinear embedding of high-dimensional fea
tures into 2D space: For visualizing high dimensional features, a 
commonly used method in machine learning is to nonlinearly embed the 
features into a low dimensional space by the t-distributed stochastic 
neighbor embedding (t-SNE) technique [37]. It models two neighboring 
feature vectors in the high-dimensional space by a Gaussian distribution, 
and their corresponding ones in a low-dimensional space by a student 
t-distribution, such that the Kullback–Leibler (KL) divergence measure is 
minimized [38]. More details for the basics of t-SNE method can be 
found in [37,38]. There exists a Matlab function tsne for realizing t-SNE. 
To mitigate the sensitivity of tsne to initial value/random seed settings, 
tsne is run several times with random initial seeds, where the 2D space 
associated with the smallest loss is then chosen. It is worth emphasizing 
that tsne is only for 2D visualization, and it does not affect the output 
from the proposed DAE and high dimensional clustering of patterns. 

Pseudo-codes of the Scheme: Table I summarizes the pseudocodes for 
the proposed scheme. 

3. Application to a large dataset 

The pattern-identification scheme, as presented in Section 2, has 
been applied to the datasets described in Section 3.1. Settings and other 
details of the application are given in Section 3.2. The results for a 
number of harmonics are presented in Section 4. 

3.1. Dataset and pre-processing 

For a given location j, the dataset D(j) consists of 49 sub-datasets 
corresponding to harmonics 2 to 50, D(j)={D(j)

i , i = 2, …50}, each 
being a one-year measurement data. There are M=10 locations for each 
harmonic voltage component (simplified as “harmonic” in the subse
quent text). A simple extrapolation was used to fill the missing data 
sample values (rarely happened) by their nearest previous data value, 
when the missing samples values were shown as “NAN”. Data samples 
were captured each 10 min for each harmonic, as defined by IEC 61000- 
4-30 Class A, over the year 2017 at the low-voltage side (immediately 
after the transformer) of 10 different MV/LV distribution transformers 
connected to the same Swedish MV network. The MV network consists of 
a number of feeders that originate in an urban area and continue into 
rural areas. We then partitioned the one-year long measurement 
sequence in each harmonic into many 24 h short sequences to form the 
dataset, where each sequence contains 144 samples, and the time in
terval Δt between 2 consecutive samples is 10 min. In such a way, 365 
data sequences were obtained for each frequency component (har
monic) and each location. In such a way, we obtained 490 datasets (49 
harmonics x 10 locations), each dataset containing 365 sequences (one 
sequence per 24 h x 365 days). 

3.2. Setup 

All experiments were performed on a workstation with Intel-i7 3.40 
GHz CPU, 48G RAM and an NVIDIA Titan Xp 12GB GPU. DAE was 
implemented using KERAS library [39] with TensorFlow backend. In the 
proposed scheme, the DAE was trained with the following hyper
parameters: optimizer = mini-batch Adam [40] with batch size = 16, the 
number of epochs = 400, learning rate = 0.001. These hyperparameters 
were tuned through numerous empirical tests. Input data sequences 
were normalized to have the maximum value 1.0 for each harmonic 
from the whole year of data at M = 10 locations, before inputting to 
DAE. Each input feature vector consisted of m = 16 components, where 
m was determined empirically. Similar to other deep learning methods, 
features extracted from DAE do not associate with clear physical 

Table I 
Pseudo codes of the algorithm for seeking harmonic variation patterns.  

Input: harmonic variation data from all locations (for one selected harmonic number, 
e.g., H5). 

1. Codebook Training and Deep Feature Extraction 
1.1 For i=1 to all locations { 

1.2 Train a DAE(i) on the measurement data from i-th location; 
1.3 For j=1 to all locations { 
1.4 Extract features f(i,j)k from data sequences in j-th location using DAE(i);}} 
1.5 Select the best DAE(i*) associated with the best location i* that minimizes (3); 
1.6 Output: Coefficients of encoder and decoder trained from the data in i* location, 
feature vectors f(j)k := f(i

∗ ,j)
k , j = 1,⋯,M, k = 1,⋯,N;  

2. Clustering 
2.1 K-means clustering of features vectors (m=16) in all locations; 
3. Empirical Analysis of Harmonic Variation Patterns 
3.1 Calculate “weekdays vs. weeks of the year” distribution map from clustered m- 

dimensional features f(j)k in all locations; 
3.2 Reconstruct representative data sequences for all pattern classes; 
3.3. Visualize clustered feature points in 2D embedded space 
(run tsne on features f(j)k (m=16) 50 times with random seeds ∈ [1, 50], select a 2D 
space with minimum tsne error).   
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meaning. Feature normalization was also applied so that each feature 
component was set to zero-mean and unit-variance on each feature 
component where features were extracted from data at all 10 locations. 
For visualizing the feature points, a nonlinear embedding method, t-SNE 
(Matlab function tsne) was used to map m = 16 dimensional features 
into 2 dimensional (2D) ones. The parameters in tsne were set as the 
default values (i.e., use Barnes-Hut algorithm [41], Euclidean distance, 
perplexity=30, random seed values ∈ [1,50]). The best 2D embedded 
space was selected among the results from 50 runs that showed the 
minimum loss from the tsne function, so that the result is less sensitive to 
the initial seed settings. 

A deep autoencoder (DAE) was first applied for training the DAE 
coefficients using the measurement data from one location. For a given 
harmonic dataset, the best location for encoder training was decided by 
using (3). Table II shows the location where the encoder was trained for 
the given harmonic dataset. 

The feature extraction was then applied to the data for 10 locations, 
using the DAE whose encoder coefficients were obtained from training 
using data at one location. The output feature vectors (m = 16) from all 
10 locations were then normalized as zero-mean unit-variance for each 
component before being fed into the k-means clustering. After many 
empirical tests, the number of clusters was chosen K = 2, as it generated 
some principal patterns associated with good physical explanations. 

Program Time: Table III shows the time required for running the 
proposed method for training DAE, clustering and seeking principal 
patterns using the datasets from 10 locations. One can see from Table III 
that without using 2D embedded map, the algorithm was very fast and 
only needed about 71 s. 

Furthermore, using the existing trained DAEs and two principal 
patterns, one can easily analyze the patterns of a new test dataset. Giving 
a new test dataset (consisting of 365 data sequences from one year 
measurements in a new location), the time required for analyzing the 
dataset and finding its new pattern distribution map was only about 
0.142 s. Since for the new test dataset, the step “clustering” is converted 
to assigning features to a nearest cluster; the steps for “training DAE on 
data”, “reconstruct data sequences for cluster centroids” and “compute 
2D embedded feature map” are no longer needed. 

4. Results and analysis 

As previously described, one of the main tasks of the proposed 
method is to seek common underlying patterns from large measurement 
data, another one is that the method should be robust when applying to 
data measured from different locations. This section shows some results 
demonstrating that all these requirements are indeed satisfied. We show 
that 2 underlying principal patterns from the large harmonic variation 
data were found, also the method is robust in applying data measured 
from 10 locations, using the encoder trained by only one location. 

4.1. Test results 

To illustrate the method we have selected the dominant harmonics, 
3, 5, 7 and 9, as well as harmonic 19 as it shows an interesting pattern. 
The method has been applied to other harmonics as well, but the results 
are not shown in this paper. Fig. 4 shows the results for harmonics 3, 5, 
7, 9 and 19. For each of the harmonics, the figure shows the weekly and 
seasonal distribution of the patterns (Fig. 4(a)), the reconstructed data 
sequences for the cluster centers (Fig. 4(b)), and the visualization of 2D 

embedded feature space (Fig. 4(c)). The reonstructed data sequences in 
Fig. 4(b) are typical daily patterns in different clusters, hence are not 
associated with any particular days. 

On weekly and seasonal pattern distribution 
Fig. 4 (a) shows the pattern distribution maps indicating the fraction 

of locations with their daily pattern classed as cluster-1. For all har
monics, cluster-1 corresponds to low distortion (blue curve in Fig. 4(b) 
and blue dots in Fig. 4(c)) and cluster-2 (red) to high distortion. Thus, in 
the distribution maps, yellow (or, blue) corresponds to most locations 
having a high (or, low) distortion day. Fig. 4 (b) shows that there exist 
significant differences between two representative daily variations in 
these clusters. 

For H3, one can see from Fig. 4(a) that H3 has no obvious patterns 
over the most time in the year, apart from some pattern for cluster-1 
around week 10 and week 30. The number of locations falling into 
cluster-2 is small. It is reflected by Fig. 4(c) that the two clusters for H3 
do not show clear gaps, which further confirms the result of distribution 
map in H3. A possible reason is the distribution transformers in this 
network being Dy connected, so H3 voltage remains mainly within the 
local LV network. Despite this electrical separation, there appears to be 
similar patterns for different locations. 

For H5, the 10 locations have similar behavior. It happens often that 
the locations are all in cluster-1 or all in cluster-2. That points to a 
common cause affecting all locations in the same way. Whatever causes 
the high distortion at all locations, it is present during weekdays from 
week 15 to 28 and to a somewhat lesser extent week 32 to 40. 

For H7, the results show a similar behavior as H5, but there are some 
differences. During the first period with high distortion, all locations 
show high distortion at the same days. During the second period, that is 
the case for only about half of the locations. Contrary to H5, there is 
another period, later in the year, with high-distortion days affecting all 
locations again. A possible conclusion is that there are different causes of 
the high distortion during these three periods. One of them affects H5 
and H7 at all locations; one of them affects H5 at all locations and H7 at 
some locations; one of then affecting only H7 at all locations. 

For H9, results show that the low-distortion pattern dominates; there 
are days when all locations have a low-distortion day, but no days with 
the high-distortion pattern for all locations. During summer months, the 
low-distortion pattern is even more likely than during winter, but the 
difference is small. 

For H19, similar observations can be made as for H9, but with 
somewhat more low-distortion days during weekends and during 
summer. 

The clustered patterns associated with low/high harmonic distortion 
and the occurrence of the patterns (time of day versus week of year) will 
assist network operators in finding the major contribution to the har
monic distortion, with the help of additional network information. 

On reconstructed data sequences from cluster centers 
Fig. 4(b) shows the reconstructed data sequences from the feature 

vectors (dimension m = 16) from the two clustered centroids, by 
applying the decoder of DAE for the reconstruction. Each of the har
monics shows two distinctive patterns: a “low-distortion pattern” 

Table II 
Location of measurement data used for training the encoder according to (3), for 
different harmonics.  

Harmonic dataset number H3 H5 H7 H9 H19 

Location for training encoder 8 7 4 4 7 
| ρ (i*)| in (3)  0.0338 0.0706 0.0555 0.0413 0.0786  

Table III 
Time required for training DAE, clustering and seeking principal patterns using 
the datasets from 10 locations for each harmonic in the proposed scheme (split 
according to individual parts).  

Name Time (Seconds) 

Training DAE on data in 1 location 66.09 
Feature extraction for data in 10 locations 0.29 
Compute the normalized cross-correlation 0.69 
Clustering 0.50 
Reconstruct data sequences for cluster centroids 1.96 
Compute pattern distribution map 0.96 
Compute 2D embedded feature map (50 runs of tsne) 1110.02 

Total 1180.51  
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(pattern 1, blue) and a “high-distortion pattern” (pattern 2, red). For H3 
both patterns are rather constant through the day, with the high- 
distortion one having a minor increase around 8 am and 8 pm, indi
cating domestic activity as a contributing factor. For H5 both patterns 
show a broad maximum around the middle of the day, pointing to office 
and commercial load as a major contribution. A similar observation can 
be made for H7. The high-distortion pattern for H9 shows a clear 
maximum in the evening, indicating domestic activity; for H19 around 

the middle of the day, again indicating office or commercial activity. For 
both H9 and H19, the low-distortion patterns do not show a clear 
maximum. 

On visualization of 2D embedded feature spaces 
Observing Fig. 4(c), one can see that low dimensional embedded 

features of two clusters are reasonably well separated for H5, H7, H9, 
and H19 in the t-SNE map, while for H3 there is no clear gap between the 
two clusters in the t-SNE map that is consistent to the result in the 

Fig. 4. Analysis of harmonic patterns on measurement data from 10 locations, where the encoder was trained on the data from the location described in Table II. 
From rows 1-5: harmonics H3, H5, H7, H9, H19. (a): pattern distribution maps, which shows the number of feature vectors in 10 locations falling into individual 
clusters at a specified time (day of the week vs. weeks of the year), and is described by a color that is defined by the pseudo color bar. In the color bar, the top yellow 
implies all 10 features are in cluster-2, while the bottom dark blue implies all 10 features are in cluster-1. (b): Reconstructed data sequences from 2 cluster centroids. 
(c) 2D embedding of high-dimensional features, where maps from MATLAB function tsne are associated with (smallest loss, initial random seed) as (2.0379,18), 
(0.5707, 12), (0.9550, 41), (1.9146, 49). (1.7934, 14), respectively, in 50 runs. Axes in (c) denote two embedded feature dimensions f̃1 and f̃2 . 
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distribution map of Fig. 4(a). 

4.2. Analysis of feature correlation between different locations 

To compare the different spread of feature points from individual 
locations in a 10 locational feature map, Fig. 5 shows 2D feature maps 
from 10 locations for H7, and the contributions of feature points from 
each individual location to the 2D map in Fig. 5(a). This was done by 
selectively displaying embedded 2D feature map from one location only, 
while keeping the entire clustering and 2D feature embedding function 
fixed from that of 10 locations. In other words, by adding 10 embedded 
feature maps from Fig. 5(b)-(k), one obtains an exact 2D feature map as 
in Fig. 5(a)). In such a way one may gain more insight when learning the 
clusters and their centers, by examining the contribution of data from 
each individual location, e.g., whether or not it significantly deviates 
from the principal patterns learned from multiple locations. Observing 
Fig. 5, one can see more details on in the differences in distortion pat
terns between different locations. For example, high-distortion days (red 

dots) are more dominant from locations 1, 2, 3, and 4; the low distortion 
days (blue dots) are more spread especially for locations 6 -10. Using 
feature maps associated with individual locations in Fig. 5 provides 
possible tools to further examine the origin of harmonic distortion. 

4.3. Using multiple location data, versus using single location data 

In this subsection, we compare the results from the proposed method 
applied on data from multiple locations (M=10), and on data obtained 
from one single location. For the single location case, the block diagram 
in Fig. 1 is simplified by merging the top and bottom flows as selection of 
the best training dataset for the encoder is no longer needed. The results 
are shown in Fig. 6 and Fig. 7 for H5 and H7, where the first and second 
row shows the results from data at 10 locations and one location, 
respectively. 

Observing Fig. 6(a), one can see that the pattern distribution map for 
H5 from 10 locations is very similar to that from one location, though 
small differences exist. Further, the reconstructed sequences from 

Fig. 5. Comparison of 2D maps of feature points on H7, by using MATLAB function tsne. (a) 2D embedded feature points from data in all 10 locations. (b)-(k) 
contribution of feature points from data in each single location, indicated by L-1 (location-1) to L-10 (location-10) on each sub-plot. 
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cluster centroids in two cases are largely similar. Overall, the conclusion 
is that the results obtained from using locational data is largely similar 
(time of day, time of week, time of year) to that from single locational 
data for H5. Whatever causes the patterns in H5, they have impacted all 
locations in a similar way. The origin should be sought somewhere at a 
higher voltage level. 

Observing Fig. 7(a), the pattern distribution maps for H7 from 10 
locations are largely similar to that from one location, though some 
differences exist. For example, pattern differences exist in weeks: V15- 
28: high distortion everywhere; V33-40 high distortion at location-1, 
but not in all other locations. V46-48; location-1 does not show high 
distortion, however, combining 10 locations results in high distortion at 
most locations. 

Observing Fig. 6(c) and Fig. 7(c), one can see that 2D embedded 
feature maps for 10 locations and one location are somewhat different, 
despite the overall agreement to the distribution maps as well as the 

reconstructive sequences for the 2 clusters in Fig. 6(b) and Fig. 7(b). This 
can be easily explained: Since t-SNE is a feature map through low- 
dimensional embedding of a high-dimensional space, it will naturally 
find different low-dimensional embedding spaces when the input do
mains are different (by using data from 10 locations vs. one location). In 
this sense, 2D feature maps by t-SNE, which were originally adopted 
purely for visual purpose, are not suitable for comparison results from 
training data with significant size difference. The original high- 
dimensional features should be considered. 

5. Application of the method and results 

The aim of the proposed method along with the empirical analysis is 
to seek whether the common underlying patterns in harmonic variations 
exist for multiple locations, and how they look like if the patterns exist. 
The deep-learning based pattern identification method results in 

Fig. 6. Comparison of 2 class patterns of H5 from 10 locations (in first row) and one location (location-1) (in 2nd row). From column 1-3: (a) pattern distribution 
maps of weekdays vs weeks of a year; (b) reconstructed data sequences from 2 cluster centroids; (c) 2D embedded feature maps by using Matlab function tsne. 

Fig. 7. Comparison of 2 class patterns of H7 from 10 locations (in first row) and one location (location-1) (in 2nd row). From column 1-3: (a) pattern distribution 
maps of weekdays vs weeks of a year; (b) reconstructed data sequences from 2 cluster centroids; (c) 2D embedded feature maps by using Matlab function tsne. 
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information that is presented in a number of graphical ways. The 
graphical presentations are chosen such that they can use by persons 
familiar with power-quality, without requiring deep insight in the 
machine-learning methods used. The patterns for the cluster centres and 
the clustering results versus time of week and time of year, can be easily 
interpreted. The t-SNE plot requires some experience, but even a non- 
experienced user can get an impression of the separability of different 
clusters. The graphically-presented information obtained from the pro
posed scheme can be used as part of an investigation after major con
tributions to harmonic distortion and after possible mitigation measures. 
The results from the proposed method will rarely immediately provide 
the required knowledge, but it will be a first step in the investigation. 
This first step is done automatically, to save time-consuming manual 
analysis. Additional steps will likely be rather straightforward methods 
like plotting harmonic versus time for specific parts of the year, corre
lations between different locations and between different harmonic or
ders, again for specific parts of the year. The observed daily, weekly and 
seasonal patterns should further be combined with knowledge on such 
patterns in sources of harmonics (e.g. operational hours of industrial 
installations) and network operational states (e.g. switching of capacitor 
banks). This requires detailed knowledge on the local condition, which 
is typically available to the network operator. However, this issue is 
beyond the scope of this paper. 

It is also worth mentioning that the method illustrated here is applied 
at a distribution grid, but can equally be applied at transmission level. 
Although the example studied in this paper is on seeking underlying 
harmonic variation patterns, the proposed method can also be used for 
seeking patterns from other sets of large power-system data, e.g. power 
consumption from individual domestic customers, power consumptions 
at distribution transformer level, or production from renewable sources. 
The method can also be applied to other power-quality phenomena, like 
rms voltage, frequency, unbalance, rapid voltage changes, and harmonic 
currents. 

6. Conclusion 

A method using deep autoencoder for feature extraction from mul
tiple locations followed by feature clustering for daily harmonic pattern 
analysis has been proposed and applied to a power system data 
measured from 10 locations at the low-voltage side (immediately after 
the transformer) of different MV/LV distribution transformers con
nected to the same Swedish MV network throughout the year 2017. 
Results from the experiments have shown that common underlying 
patterns and information can be obtained by using an encoder trained on 
data from one location and subsequently applying to seek patterns from 
data in multiple locations. The unsupervised clustering method has 
shown to be effective for pattern discovery. Empirical analysis, 
including the distribution patterns of the original data sequence, the 
typical data sequence of each pattern, and visualization of features in 
low-dimensional embedded space by t-SNE, shows the usefulness of the 
proposed scheme in finding underlying patterns from large measure
ment data. 

The information obtained from the proposed scheme can be used by 
the network operator as part of an investigation after causes of high 
levels of harmonic distortion and after possible mitigation measures 
Although the example studied in this paper is on seeking underlying 
harmonic variation patterns, the proposed method can also be used for 
seeking patterns from other sets of large power-system data, e.g. power 
consumption and production from renewable sources. The method can 
also be applied to other power-quality phenomena, like rms voltage, 
frequency and harmonic currents. The results and comparison have 
demonstrated that the proposed scheme has indeed captured the com
mon typical pattern distribution maps and data sequence patterns from 
different harmonic variation clusters. For the 2D feature maps, our re
sults show that they can provide useful side information to visualize the 
separability of features between different clusters. Due to the nature of 

low-dimensional embeddings of the high-dimensional feature space, 
such information should only be used as a reference. Future work will be 
on deepening the understanding of variation data, as well as towards 
their modeling. 

Authorship contributions 
Conception and design of study: All authors 
Acquisition of data: Math Bollen 
Analysis and/or interpretation of data: All authors 
Drafting the first version of the manuscript: Chengjie Ge and Irene Y. 

H. Gu 
Revising the manuscript: All authors 
Approval of the version of the manuscript to be published: All 

authors 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This work was financially supported by the Swedish Energy Agency, 
Sweden 

References 

[1] A Mariscotti, Direct measurement of power quality over railway networks with 
results of a 16.7-Hz network, IEEE Trans Instr. Measurement 60 (5) (2011) 
1604–1612. 
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