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Dissipative Kerr solitons are localized structures that exist in nonlinear optical cavities. They lead to the
formation of microcombs—chip-scale frequency combs that could facilitate precision frequency synthesis and
metrology by capitalizing on advances in silicon photonics. Previous demonstrations have mainly focused
on anomalous dispersion cavities. Notwithstanding, localized structures also exist in the normal dispersion
regime in the form of circulating dark pulses, but their physical dynamics is far from being understood.
Here, we explore dark-pulse Kerr combs generated in normal dispersion optical microresonators and report the
discovery of reversible switching between coherent dark-pulse combs, whereby distinct states can be accessed
deterministically. Furthermore, we reveal that the formation of dark-pulse Kerr combs is associated with the
appearance of another resonance, a feature that has never been observed for dark pulses and is ascribed to soliton
behavior. These results contribute to understanding the nonlinear physics in normal dispersion nonlinear cavities
and provide insight into the generation of microcombs with high conversion efficiency.

DOI: 10.1103/PhysRevA.103.013513

I. INTRODUCTION

Dissipative solitons are self-enforcing, stationary struc-
tures that exist in diverse nonlinear dissipative systems subject
to an external pump of energy [1]. The recent discovery of
temporal dissipative solitons in optical cavities displaying
Kerr nonlinearity [2,3] (from now on dissipative Kerr solitons
or DKS) has facilitated the investigation of their rich dynamics
[4–15]. DKS rely on balancing the inherent cavity dispersion
with the corresponding Kerr nonlinear phase shift induced
by the soliton, while the dissipative nature of the cavity is
offset by supplying it with the energy from a pump laser. DKS
are just one particular solution of the complex spatiotemporal
landscape in nonlinear Kerr cavities [5,6]. The same optical
cavities can also display chaos, breathing dynamics [7–10],
soliton crystals [11,12], and transitions between some of these
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states [13]. The single-soliton regime can be accessed de-
terministically by decreasing the number of cavity solitons,
while properly tuning the pump laser over the resonance [14].
Mapping this complexity is not only of fundamental interest,
but important for the design and operation of stable, ultra-
broadband coherent Kerr combs [4,15], which have potential
applications in multiple fields, ranging from optical clocks to
coherent communications [16–26].

DKS require the optical cavity to display anomalous dis-
persion [27] at the pump wavelength. Interestingly, other
stationary structures such as ultrashort optical pulses [28] or
dark-pulse Kerr combs [29] can be found in cavities operating
in the normal dispersion regime [i.e., decreasing free spec-
tral range (FSR) with optical frequency]. The time-domain
waveform of a dark-pulse Kerr comb corresponds to a lo-
calized dark-pulse structure, where low-intensity oscillations
are embedded in a high-intensity background. These pulses
can be interpreted as two stably interlocked switching waves,
connecting the upper and lower homogeneous steady-state
solutions of the bistability curve in Kerr cavities [30]. These
localized waveforms also exhibit breathing dynamics [31,32]
and have intriguing connections to sneaker waves found in hy-
drodynamics, called flaticons [33] and platicons [34] in optics.
In comparison to DKS, the physics of dark-pulse Kerr combs
is less understood, even though these combs are more efficient
in converting the pump power into useful comb light [35]—an
aspect that is particularly promising for coherent optical com-
munications [36,37]. Some key questions remain unanswered,
such as what the pathway to their generation is, starting from a
continuous-wave (CW) waveform, and whether this transition
is accompanied by similar switching dynamics to what has
been observed in DKS.
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FIG. 1. Linear characterization of the multimode silicon nitride microresonator. (a) Microscope image of the silicon nitride microresonator.
(b) Measured transmission scan of the microresonator, where two clear transverse modes appear. (c) Integrated dispersion, i.e., frequency
deviation of the resonance locations of the main mode (black dots), ωμ, with respect to an ideal grid, Dint = (ωμ − ω0 − 2πD1μ)/2π , where μ

is the mode number and D1 the free spectral range. The main mode displays normal dispersion, while at μ = 0 the dispersion changes locally
to anomalous due to the linear coupling between two transverse modes in the resonator. (d) Linear mode coupling effect. The transmission
spectrum is divided into blocks with a spacing difference of 1 FSR [dotted lines in (b)] to plot this diagram and calculate the linear coupling
strength. The red and blue circles represent the resonance frequencies of the two transverse modes in different FSR blocks. The gray solid lines
depict the no mode coupling (κ = 0) case, found by linearly fitting μ versus the resonance frequencies in the region far from μ = 0. Mode
coupling shifts the resonances apart from each other at μ = 0, leading to an avoided mode crossing. The measured linear coupling coefficient
between the modes is κ = 22.7 m−1, while the measured group velocity dispersion of the main mode is β2 = 139 ps2/km.

In this work, without loss of generality, normal dispersion
optical microresonators are used to explore the physical dy-
namics of dark-pulse Kerr combs. We report deterministic
switching between dark-pulse Kerr comb states and support
our results with numerical simulations that take into account
the linear coupling between the dominant transverse modes of
the microresonator. The numerical analysis shows that each
comb state is uniquely ascribed to a number of low-intensity
oscillation periods. This number can be deterministically con-
trolled and increased or decreased one at a time, unraveling an
overlooked dependence with the pump laser detuning param-
eter for dark-pulse Kerr combs. This tuning of the dark-pulse
duration and shape is continuous and not associated with sharp
changes, which is attributed to the interaction between the
transverse modes. Strikingly, we find that the formation of
dark-pulse Kerr combs is also accompanied by the appearance
of an extra resonance, in compelling similarity to the behavior
reported for DKS [14] and perfect soliton crystals [13]. In
contrast, however, our measurements reveal that in dark-pulse
Kerr combs, the pump is effectively blue detuned with respect
to the cavity resonance that is Kerr shifted due to the high-
power CW background of the dark pulse. The appearance of
an extra resonance is not dependent on the linear coupling be-
tween the transverse modes. While the observations reported
here have been made in a normal dispersion microresonator,
similar results might be found in nonlinear systems with self-
focusing nonlinearity and normal dispersion, such as fiber
ring cavities, Bose-Einstein condensates, or hydrodynamics
[33,38,39].

II. MICRORESONATOR CHARACTERIZATION

A silicon nitride microresonator with a designed cross
section of 2 μm width × 600 nm height is used in our ex-
periments. The ring features a radius of 100 μm [Fig. 1(a)],
corresponding to an FSR of around 229 GHz for the main
mode used for comb generation, with a measured mean in-
trinsic Q factor of around 1.6 × 106. The particular modes
of interest are TE1 and TE2, which exhibit normal dispersion
within the C band [40].

A tunable external-cavity pump laser with sub-10 kHz
linewidth is calibrated using a Mach-Zehnder interferometer
[28], and scanned over the C band to find the resonance
locations of the two linearly coupled transverse modes. The
measured transmission scan is shown in Fig. 1(b). As ob-
served, around 1540 nm, the resonance frequencies of the two
transverse modes are very close to each other. Thus, any fabri-
cation imperfections could lead to linear coupling between the
modes [41]. Mode coupling, in turn, induces a frequency shift
on the interacting resonances and pushes them apart, leading
to an avoided mode crossing [Fig. 1(d)] [42,43]. This effect
locally modifies the dispersion of the modes and results in a
local anomalous dispersion [Fig. 1(c)], where it is possible to
achieve modulational instability and initialize the dark-pulse
Kerr comb [29,44].

For comb generation, the pump power is amplified in an
erbium-doped fiber amplifier and optically filtered to remove
the amplified spontaneous emission noise far away from the
pump [Fig. 2(a)]. This increases the signal quality of the
generated comb lines. The microresonator chip is placed on a
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FIG. 2. Deterministic switching of dark pulses. (a) Setup for comb generation and measurement. The setup within the dashed lines is
used in Sec. IV. PC: Polarization controller, EDFA: Erbium-doped fiber amplifier; PM: Power meter; ATT: Attenuator; PD: Photodiode; IM:
Intensity modulator; OSA: Optical spectrum analyzer; OSC: Oscilloscope; VNA: Vector network analyzer. (b) Measured comb power when
the pump is forward and backward tuned, shown in blue (dark gray) and yellow (light gray), respectively. The frequency axis indicates the
pump location with respect to its initial frequency. The frequency scan is calibrated by means of an auxiliary interferometer. (c) Zoomed-in
view of (b), where smoothed steplike patterns are observed as the pump is tuned, indicating switching between dark-pulse comb states. The
inset shows the radio-frequency spectrum (dashed red) and noise floor (solid blue) of the generated comb. (d) The blue frequency lines are
the comb spectra measured at different pump detunings, corresponding to the comb states marked in (b). The comb envelope of each state
is simulated and shown in red, with the corresponding simulated time-domain waveforms underneath. The arrows point the number of low
intensity oscillations. For state F, the phase of the pulse is also shown in dashed blue.

piezo-controlled positioning stage, which is temperature con-
trolled with a standard laser temperature controller at 18 ◦C,
limiting the variations to less than 0.01 ◦C. This allows stable
comb operation over several hours. The pump is coupled into
the microresonator using a lensed fiber. The off-chip power
is 25.6 dBm. At high pump powers, the coupling losses be-
tween the fiber and chip are estimated to be 4–5 dB per facet.
Our simulations, explained in Sec. III, have a good agree-
ment with the experimental measurements when the coupled
pump power is assumed 150 mW (21.8 dBm). The set of
two hybridized resonances that experience the strongest linear
coupling, indicated by the red arrow in Fig. 1(c), are pumped
from the blue side. The same microresonator, pumped in the
same way, has been previously used to generate a mode-
locked Kerr frequency comb, with evidence of dark pulses
circulating in the cavity [36].

III. SWITCHING DYNAMICS OF DARK-PULSE
COMB STATES

As the pump is tuned over the resonance from the thermally
stable blue side towards the red [3,45] (forward tuning), a

coherent dark-pulse Kerr comb is generated. The comb state
is monitored using an optical spectrum analyzer, while the
power in the generated comb lines is measured with an os-
cilloscope, after suppressing the pump line with an optical
notch filter [Fig. 2(a)]. As the laser is tuned further into
resonance, an increased comb power is observed. The comb
power increases in a gradual manner while displaying con-
tinuous steps, as shown in the topmost parts of Figs. 2(b),
2(c) (positions A → B → C). Each step corresponds to a
coherent comb state, indicated by a low-amplitude noise as
shown in the inset of Fig. 2(c), which can be accessed se-
quentially. Keeping the pump power fixed, the comb power
measurements in the forward pump tuning are repeated 100
times and smoothed steplike patterns, almost identical to
those shown in Fig. 2(b), are measured. The dynamics re-
veal that at the used power level, the comb does not go
over a chaotic state, making the comb generation process
repeatable and deterministic. The comb found in state A
achieves a conversion efficiency of around 25%, where the
conversion efficiency is defined as the output power in the
comb lines (excluding the pump) divided by the input pump
power.
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To get a better insight into the physics of comb generation
in the normal dispersion regime, we simulate our experimental
findings using an Ikeda map [46–48], modified such that the
linear mode coupling is taken into account. Each round trip
has two steps, one is the coupling between the pump in the bus

waveguide and the ring and the other is the light propagation
in the microresonator. The coupling between the pump to the
modes in the resonator is found through coupled mode theory
[49,50], assuming a 3 × 3 lossless coupler. It can be expressed
as

⎡
⎢⎣

Aout

A(k+1)
1

A(k+1)
2

⎤
⎥⎦ =

⎡
⎢⎢⎣

√
1 − θ1 − θ2 −√

θ1 −√
θ2√

θ1
θ2+θ1

√
1−θ1−θ2

θ1+θ2

√
θ1θ2

θ1+θ2
(
√

1 − θ1 − θ2 − 1)
√

θ2

√
θ1θ2

θ1+θ2
(
√

1 − θ1 − θ2 − 1) θ1+θ2
√

1−θ1−θ2

θ1+θ2

⎤
⎥⎥⎦

⎡
⎢⎣

Ain

A(k)
1

A(k)
2

⎤
⎥⎦ (1)

where Ain and Aout are the input pump and throughput field
of the microresonator. A(k)

m is the intracavity field of mode m
at round trip k in the cavity and θm is the coupling coefficient
between the bus and the microring for mode m. The evolution
of the fields in the resonator is modeled using the nonlinear
Schrödinger equation in multimode waveguides [51,52]. The
propagation of mode m in every round trip of the microres-
onator is given by

∂Am

∂z
= −αm

2
Am + iβ (m)

0 Am − β
(m)
1

∂Am

∂t
− i

β
(m)
2

2

∂2Am

∂t2

+ iγm |Am|2Am + iκmnAn �=m, (2)

where αm is the propagation loss, β
(m)
1 is the inverse group

velocity, β
(m)
2 is the group velocity dispersion, and γm is the

nonlinear coefficient of mode m, while κmn is the mode cou-
pling strength between modes m and n. The resonator length
is L and the linear phase shift of the field is β

(m)
0 L = −δ

(m)
0 ,

where δ
(m)
0 is the pump detuning from the cold-cavity reso-

nance of each transverse mode closest to the pump frequency
ωp. It can be expressed as δ

(m)
0 = −[β (m)(ωp) − β (m)(ω0,m)]L,

where β (m)(ω) is the propagation constant of mode m at fre-
quency ω and ω0,m denotes the pumped cold-cavity resonance
frequency of mode m. Note that nonlinear intermodal coupling
[53] is not included in our simulations, assuming that it is
negligible.

In each round trip a CW pump together with quantum
noise consisting of one photon per spectral bin with random
phase [47] is coupled to the ring. Unlike previously reported
models that start the simulations with an initial intracavity
square dark pulse, the initial intracavity field here is just
the quantum noise in the resonator. The closest resonance
to the avoided crossing is pumped from the blue side
and the detuning is dynamically changed to emulate the
tuning of the pump laser. The propagation in the ring
is carried out using the split-step Fourier method. The
parameters used in the simulations are extracted from the
transmission scan measurements (Fig. 1). For the main
mode, α1 corresponds to 0.1 dB/cm, θ1 = 0.004, the initial
pump detuning is δ

(1)
0 = −0.001 rad, β

(1)
2 = 139 ps2/km,

and FSR1 = 229.08 GHz. For the auxiliary mode, α2

corresponds to 0.3 dB/cm, θ2 = 0.01, δ
(2)
0 = −0.0033 rad,

β
(2)
2 = 1.8 ps2/km, and FSR2 = 221.45 GHz. Accordingly,

in the short 3 × 3 coupling region described by Eq. (1), the
cross-coupling powers between the two microresonator
transverse modes are orders of magnitude smaller

than the corresponding self-coupling terms (similar
to earlier reports [50]). The nonlinear coefficients are
γ1 = 0.89 (m W)−1 and γ2 = 0.44 (m W)−1, and the ring
length is L = 2π × 100 μm. The linear coupling between
the two modes is κ12 = 22.7 m−1, calculated from the
measurements in Fig. 1(d). The pump detuning is varied
linearly in a dynamic manner, such that the final detuning
of the main mode is δ

(1)
0 = 0.02 rad after 750 ns. After the

field inside the cavity has stabilized and converged to a steady
state, the results are analyzed.

The simulated comb envelope for various pump detunings
and their corresponding simulated intracavity waveforms are
shown in red in Fig. 2(d). The corresponding frequency lines
of the measured comb spectra are also depicted in Fig. 2(d).
The simulated waveforms reveal that in the forward pump
tuning, with each step in the comb power, one additional low
intensity oscillation appears at the center of the dark-pulse
structure. The observed states correspond to different snaking
branch solutions reported in the bifurcation analysis of switch-
ing waves [30]. In cavities with a single transverse mode,
where there is no linear mode coupling (κ = 0), the snaking
branch of solutions are disconnected and have discrete steps,
as shown in the simulations of Fig. 3 (dashed red curve) [30].
However, as seen in Figs. 2(b) and 2(c) in our experiments we
observe a continuous curve as the pump is tuned. The continu-
ity is due to the linear coupling between the transverse modes,
which merges the discrete steps into a continuous curve and
enables gradual switching between dark-pulse comb states
(dotted blue and solid green curves in Fig. 3), as opposed to
the abrupt jumps observed in DKS [14]. In the time domain,
this translates into continuous tuning of the shape and number
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(b) Zoomed-in view of the dashed region in (a), clearly showing
smooth steps similar to those observed in our experiments [Fig. 2(c)].
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of the low-intensity oscillations in the dark pulse. Thus, as the
pump is tuned across one step, the shape of the oscillations
gradually changes until the switching point, where finally
an additional oscillation appears. For higher κ , the shape of
the oscillations vary slower and thus sharp changes are not
observed in the pulse power (solid green curve in Fig. 3). This
feature, which has been previously predicted [34], is observed
here.

After accessing a comb state in the forward tuning, the
switching transition can be reversed by tuning the pump back-
wards [yellow (light gray) curve in Fig. 2(b)]. The comb
power drops and shows a smoothed steplike pattern similar
to the forward tuning, but in the reverse direction. Thus, the
low-intensity oscillations in the dark pulse vanish one by one,
until what appears to be a single gray soliton state [54–56] is
accessed [state F in Fig. 2(d)]. However, strictly speaking it is
not a gray soliton in the sense of the dissipationless nonlinear
Schrödinger equation, as the temporal phase is not an odd
function of time due to the periodic boundary conditions of
the cavity. Switching occurs over a broader detuning range in
the backward pump tuning (state C to F) compared to forward
tuning (state A to C), giving access to more comb states. The
comb power in the forward and backward pump tuning shows
a hysteresis behavior, similar to what has been observed for
DKS in the anomalous dispersion regime [14].

We find an excellent agreement between the measured and
simulated comb spectra, indicating that by just measuring the
transmission spectrum and retrieving the parameters of the
interacting modes, one can predict the comb dynamics starting
from a CW pump by using two linearly coupled equations.
Moreover, the excellent agreement between the experimen-
tal and simulated comb spectra confirms that linear mode
coupling is the dominant cause leading to the generation of
the dark-pulse comb. The discrepancy between simulations
and experiments for longer wavelengths in Fig. 2(d) might
be due to a second mode coupling around 1590 nm. The
measurements display an asymmetry in the comb spectra,
which had also been observed in previously reported dark-
pulse Kerr combs [36]. Our simulations naturally capture this
comb asymmetry even though the third-order dispersion has
not been included, clearly indicating that the asymmetry is
caused by the linear coupling between the two transverse
modes.

IV. HOT-CAVITY SPECTROSCOPY OF DARK-PULSE
KERR COMBS

To get a better understanding of the dynamics of dark-pulse
Kerr combs, we look into the system’s response upon the
dark-pulse formation. The formation of a dark pulse breaks
the time invariance of the system, making it impossible to
describe the resonator in terms of a linear transfer function.
Instead, we measure the system’s response with the aid of
an external (probe) laser, as sketched in Fig. 4(a). A red-
detuned probe laser with a fixed frequency, far detuned from
the cavity resonances, is weakly modulated with an external
dual-sideband electro-optic intensity modulator, driven by a
tunable radio-frequency (RF) signal, allowing to retrieve the
system’s response as the pump laser is tuned into resonance
[setup shown in Fig. 2(a)]. The benefit of using this scheme

instead of modulating the pump itself is that it solves the am-
biguity in the pump location with respect to the resonances of
the coupled modes. One of the two generated probe sidebands
is scanned across the cavity resonances of the two interacting
modes, by sweeping the RF source from 10 MHz to 24 GHz in
10 MHz steps. The sideband will be affected by the presence
of resonances in the cavity and nonlinear distortions caused
by the pump and the dark pulse. A vector network analyzer
(VNA) measures the magnitude of the RF beat between the
sideband and probe laser as the sideband is swept in fre-
quency. This process is repeated as the pump laser is tuned
across the hybridized cavity resonances [resonances of the two
linearly coupled modes labeled as 1 and 2 in Fig. 4(a)] from
the blue side in 81 steps. The recorded system’s responses are
displayed in Fig. 4(b). The parameter �fpump determines the
location of the pump laser, while �fVNA is the detuning of
the sideband, both measured relative to the probe laser. As the
laser is tuned closer to the resonances, �fpump decreases and
varies from 23.94 GHz down to 1.053 GHz. The two lasers are
not locked to each other, so the measurement of the system’s
response has a frequency resolution in the order of a few MHz,
given by the relative drift between the probe and pump lasers.
Since the pump frequency varies in every step, the beat note
between the pump and sideband is used to find the location of
the pump.

At the initial stages prior to the formation of the dark-pulse
Kerr comb, the system’s response is affected by thermal dy-
namics. Consequently, the hybridized resonances are strongly
red shifted, which decreases their �fVNA [states I and II in
Figs. 4(b), 4(d)]. By further tuning the pump, a mode-locked
dark-pulse comb emerges suddenly (state III) as soon as the
pump crosses the first hybridized resonance, labeled “2” (see
Supplemental Material [57]). The generation of a dark-pulse
Kerr comb is associated with the emergence of a third reso-
nance [labeled “3” in Fig. 4(a) and visible in states III and
IV in Figs. 4(b), 4(d)]. This feature has a striking similarity
to observations made for DKS [14]. In this stage, the pump
frequency is effectively red detuned with respect to this res-
onance. Once the pump crosses the hybridized resonance 2,
this resonance moves towards higher frequencies. Our sim-
ulations, explained in the following [see Fig. 4(e)], confirm
that the generated resonance 3 is the resonance located closer
to the pump, while the resonance further away from the pump
is the hybridized resonance 2. Further moving the pump to
the red side causes the laser to cross the two hybridized reso-
nances, associated with a loss of the comb and a cooling down
of the system [see Fig. 4(b)]. The system’s response in this
case is similar to that of the first stage, with two Lorentzian
shape resonances associated with the hybridized modes [state
I in Fig. 4(d)].

We explain the appearance of the third resonance as
follows. Dark pulses are intermediate solutions between
the upper and lower CW steady-state solutions of the
Lugiato-Lefever equation [5,58–60]. Given the intensity
dependence of the Kerr effect, the high-intensity CW back-
ground and the low-intensity oscillations in the dark pulse
induce different nonlinear Kerr phase shifts on the cavity
resonances, but most notably on the main mode. In particular,
the high-power level shifts the cavity resonance to the red
side of the pump, while the low-power level induces a smaller
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FIG. 4. (a) Schematic diagram of the method used for the measurement of the system response. The pump approaches the hybridized
resonances 1 and 2 from the blue side. Once the pump crosses resonance 2, a dark-pulse comb is generated and another resonance, labeled 3,
emerges. (b) System response as the pump is tuned into resonance. (c) Zoomed-in view of (b), where the existence of dark pulses is highlighted.
The appearance of an extra resonance can be clearly observed in this regime. (d) VNA traces and corresponding measured comb spectra and
simulated time-domain waveforms (inset) for various pump detunings indicated by dashed lines in (b). Note that the origin of the frequency
axis here is the pump laser, providing a direct indication of the location of the resonances and effective pump-laser detuning. (e) Measured and
simulated VNA traces associated with the main mode for pump detunings III and IV in (b). The experimental traces are the zoomed-in view
of states III and IV in (d).

shift on the cavity resonance and creates a resonance on the
blue side of the pump. This behavior is analogous to the
appearance of the soliton resonance in the system response
of anomalous dispersion microresonators [14]. In dark-pulse
Kerr combs, a subtle yet important difference is that the
CW background corresponds to the high-power level, so its
Kerr shifted resonance appears on the red side of the pump.
Meanwhile, the low-intensity oscillations at the center of the
pulse, which are associated with the generation of the dark
pulse, generate another resonance on the blue side of the pump
labeled as “dark resonance” [Fig. 4(a)]. Hence, in contrast to
DKS, where the CW background is weak and the soliton has
a high-power level, for dark-pulse Kerr combs the pump laser
remains on the effectively blue-detuned side with respect to
the CW background resonance [labeled “1” in Fig. 4(a)]. The
observations made here are consistent with previous studies
based on modulation of the resonator using a microheater
[29]. The emergence of an extra resonance is a unique prop-
erty of stationary solitonic states in Kerr microresonators that
had not been previously demonstrated for dark-pulse Kerr
combs.

We support the explanation of the VNA response above
with numerical simulations. For a complete numerical anal-
ysis, as explained in Sec. III, the comb generation can be
simulated based on the linear coupling between the two trans-
verse modes, while considering quantum noise as the initial

intracavity field. The auxiliary mode and the linear coupling
between the modes are essential, as they play an important
role in initiating the comb generation. However, to simplify
the simulations, if we assume that the comb has already been
initiated, or in other words if instead of the quantum noise, a
field is already circulating in the cavity, then it is no longer
necessary to include the auxiliary mode and linear mode cou-
pling in the comb generation simulations. Therefore, here, for
simplicity, we assume only a single transverse mode in the
cavity. Meanwhile, the initial intracavity field is considered
as a square dark pulse, where the amplitude and phase of the
top (bottom) of the pulse are equal to the upper branch (lower
branch) steady-state values [29]. This is a reasonable assump-
tion, given that the appearance of the additional resonance
in the system’s response arises from the two power levels
(high-intensity CW background and low-intensity oscillations
of the dark pulse) present in the intracavity waveform of the
main mode and does not directly depend on the auxiliary
mode nor the linear coupling between the modes. The con-
sidered ring parameters and pump power are similar to the
main mode values mentioned in Sec. III. The pump is fixed in
frequency and a weak (−40 dBm) probe is swept across the
resonance in 10 MHz steps. In each step, after simulating the
output spectrum of the microresonator, the power of the probe
frequency component is calculated. The comparison between
this power and the probe power at the input is the system’s
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FIG. 5. Hot-cavity spectroscopy of a dark-pulse Kerr comb in a
different silicon nitride microresonator with similar characteristics,
in terms of dispersion, Q and avoided mode crossing. (a) System
response as the pump is tuned into resonance from the blue side.
The appearance of a third resonance can be clearly observed in the
dark-pulse regime (highlighted region). (b) Dark-pulse Kerr comb
spectrum measured at the pump detuning indicated by a dashed line
in (a).

response. It corresponds to the beat note between the sideband
and the probe, measured with the VNA in the experiment. The
considered cold-cavity detunings are δ

(1)
0 = 0.0242 rad and

δ
(1)
0 = 0.0248 rad, which correspond to the comb states III

and IV in Fig. 4(d), respectively. The measured and simulated
system responses of these two pump detunings are shown in
Fig. 4(e). The appearance of an extra resonance is evident
in the simulations too. Both measured and simulated results
indicate that the depth of the CW resonance increases with
the red tuning of the pump. Moreover, the frequency of the
CW resonance remains almost fixed, while that of the dark
resonance shifts with the pump detuning. This shift is related
to changes in the lower level of the dark-pulse structure, which
correspond to dark pulses with different number of oscilla-
tions [shown in the inset of Fig. 4(d)]. The power variations
of the VNA traces around the pump frequency, observed in
both experiments and simulations, are related to the nonlinear
effects induced on the sideband; an aspect that has also been
observed in other experiments using other microresonator
platforms [61]. Note that the switching between dark-pulse
comb states is not associated with sharp changes in the sys-
tem’s response. The reason is that switching in dark pulses
changes the number of oscillations, which have a low intensity
and do not introduce a significant energy change in the cavity.

To show the generality of our observations, we also
measured the system’s response in a second silicon nitride
microresonator chip. The microresonator has nominally the

same dimensions as the chip used in our main experiments,
except for the gap between the ring and the drop port. The
measured results are shown in Fig. 5. The formation of a
dark-pulse Kerr comb in this microresonator is also clearly
accompanied by the emergence of an additional resonance.

V. CONCLUSIONS

The physics of dark-pulse Kerr comb generation and its
switching dynamics are investigated, both experimentally
and numerically. Deterministic switching between dark-pulse
comb states is observed. Numerical simulations, which give
rise to frequency combs that are in excellent agreement with
the measured spectra, suggest that as the pump tuning varies,
the number of low-intensity oscillations at the center of the
corresponding dark pulses can either increase or decrease, one
at a time. Moreover, we measure the system’s response as the
pump laser is tuned into resonance and discover that the for-
mation of a dark-pulse Kerr comb is associated with the emer-
gence of an extra resonance. This is due to the combination
of nonlinearity and bistability in the cavity. The revealed mul-
tiresonance dynamics is a distinctive property of soliton states
in Kerr cavities and confirms the switching behavior of the
dark-pulse combs in a new way. Furthermore, by using an ex-
ternal probe to measure the system’s response, we could dis-
entangle the different resonances present in the system, clearly
indicating that for dark-pulse states, the pump laser lies in the
effectively blue-detuned region with respect to the CW back-
ground resonance, in sharp contrast to DKS in anomalous dis-
persion microresonators. These results shed light into the for-
mation of Kerr combs in normal dispersion microresonators
and pave the way for the generation of reproducible chip-scale
comb sources with high-power conversion efficiency.

The measured raw data necessary to reproduce the plots in
this work can be accessed at [62].
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