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Abstract

The network function virtualization (NFV) paradigm advocates the replace-

ment of specific-purpose hardware supporting packet processing by general-

purpose ones, reducing costs and bringing more flexibility and agility to the

network operation. However, this shift can degrade the network performance

due to the non-optimal packet processing capabilities of the general-purpose

hardware. Meanwhile, graphics processing units (GPUs) have been deployed

in many data centers (DCs) due to their broad use in, e.g., machine learn-

ing (ML). These GPUs can be leveraged to accelerate the packet processing

capability of virtual network functions (vNFs), but the delay introduced can

be an issue for some applications. Our work proposes a framework for packet

processing acceleration using GPUs to support vNF execution. We validate

the proposed framework with a case study, analyzing the benefits of using

GPU to support the execution of an intrusion detection system (IDS) as a

vNF and evaluating the traffic intensities where using our framework brings

the most benefits. Results show that the throughput of the system increases
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from 50 Mbps to 1 Gbps by employing our framework while reducing the

central process unit (CPU) resource usage by almost 40%. The results indi-

cate that GPUs are a good candidate for accelerating packet processing in

vNFs.1

Keywords: NFV, CUDA, GPGPU, IDS

1. Introduction1

The Cisco Visual Networking Index forecasts growth in global IP traffic,2

reaching 396 exabytes per month by 2022. It is nearly triple the 122 exabytes3

recorded in 2017 [1]. The network function virtualization (NFV) has been4

proposed as a new paradigm to help operators meet these increasing traffic5

requirements while reducing cost and improving flexibility and agility to their6

network operations.7

NFV implements virtual network functions (vNFs) by decoupling hard-8

ware appliances from the functions running on them (firewalls, gateways, and9

others). In other words, instead of using functions that have hardware and10

software closely integrated, vNF uses technologies such as virtualization or11

containerization to run functions over general-purpose hardware [2].12

The main benefits of NFV are (i) reduced capital expenditure (CAPEX)13

and operational expenditure (OPEX): the general-purpose equipment can be14

used across a broad set of applications, also contributing to a more flexible15

network architecture; (ii) shorter time to market: the new functions will be16

implemented by software, i.e., no longer by a specific hardware appliance;17

1The complete implementation of the software components reported in this work will
be published in open-source format upon paper acceptance.
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(iii) reduced complexity of deployment and management: NFV can be or-18

chestrated and managed according to the operator objectives; (iv) dynamic19

and elastic scaling of services: the vNF’s resources can be provisioned follow-20

ing the traffic demand; (v) efficient usage and management: the NFV allows21

network functions from different vendors to run in a consolidated hardware22

platform and manage them in a centralized manner [3].23

However, one of the big challenges of shifting specific appliance hardware24

for general-purpose hardware is the difficulty of reaching, using general-25

purpose hardware, the same performance level achieved by specific appli-26

ances. Nonetheless, general-purpose hardware opens an opportunity to ex-27

plore different types of hardware, e.g., processing packets using graphics pro-28

cessing units (GPUs).29

Recently, GPUs have been applied in many domains other than the video30

rendering initially intended for them due to their highly parallelized process-31

ing capability. This capability, known as general-purpose graphic processing32

unit (GPGPU), has enabled many recent advances in machine learning (ML).33

The successful application of GPUs in different areas has driven cloud com-34

puting providers to deploy them in data centers (DCs). In networking, GPUs35

have been applied to IPv4/v6 forwarder [4], IPsec gateway [5], deep packet36

inspection [6], and cipher algorithm [7]. However, some aspects, such as the37

delay introduced by GPUs to the packet processing, have not been studied38

so far.39

In this paper, we propose a quasi-real-time framework for the use of40

GPUs to support vNF execution. The framework defines the key packet41

processing components that should be developed/adapted to take advantage42
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of the highly parallelized capabilities of GPUs while efficiently using CPU43

resources. We present a case study where an open-source intrusion detection44

system (IDS) (a common and important network function) is modified using45

the framework. The benefits of the GPU-assisted vNF are assessed in realis-46

tic traffic scenarios. Results show that by carefully configuring the execution47

parameters of the vNF, it is possible to improve the throughput from 5048

Mbps to 1 Gbps while reducing the CPU usage by 40%. The results also49

indicate that the use of GPUs provide significant packet processing speedup50

and is recommended for most traffic intensities and delay requirements.51

The remainder of this paper is organized as follows. Section 2 describes52

related work on NFV, GPU, and IDS. Section 3 introduces the background53

concepts to the use of GPGPU. Section 4 presents the details of the proposed54

GPU-assisted packet processing framework. Section 5 presents the details of55

the IDS implementation and the experimental setup, results and discussions.56

Finally, the paper is concluded in Section 6.57

2. Related Work58

Maintaining a high-performance IDS is critical in high throughput net-59

works due to the increasing complexity of the DPI task and the increase of60

attack patterns [8]. This performance is directly defined by the hardware61

used, so different architectures [9] and technologies have been evaluated in62

order to improve the performance, like TILERAGX36 [10], Intel Software63

Guard Extension [11], and GPU [12, 13]. Recent works show that using GPU64

increases the throughput and reduces the CAPEX [14]. The GPUs also have65

a better performance-per-watt rate and reduced energy consumption [15].66
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Vasiliadis et al. [16, 12] propose architectures to improve the performance67

of IDS using GPU. The GPU execution management proposed overlaps68

one execution at the GPU of a buffer of packets, with the transfer between69

memories (GPU and CPU) from another buffer of packets. However, they70

do not perform simultaneous execution of packet batches on the GPU. [12]71

uses two GPUs to perform these simultaneous executions. Our framework72

allows the management of simultaneous executions on a single GPU. Also, it73

enables better usage of GPU resources with fewer CPU resources.74

Zheng et al. [17] propose a framework to enforce latency Service Level75

Objective in GPU-accelerated NFV systems, owing to the fact that by con-76

solidating multiple network functions in one host, current GPU-accelerated77

NFV systems suffer from significant latency variation for each network func-78

tion. The authors present three design principles to guarantee latency in this79

scenario. Our framework uses two of those principles: (i) dynamic batch size80

setting and (ii) maximizing concurrency while minimizing interference for81

task execution.82

Lin et al. [6] propose two means of parallel string matching algorithms83

that adopt perfect hashing to compact a state transition table and reduce84

memory usage. The authors use the parallel failureless aho-corasick algo-85

rithm (PFAC) that relies on a multi-GPU approach to process more than86

one buffer concurrently, i.e., one buffer for each GPU. Our framework has a87

single GPU approach with concurrent buffer processing.88

Yi et al. [18] present the GPUNFV, a GPU-based NFV system that89

provides microservice for stateful service chain processing with GPU acceler-90

ation. The authors perform experiments with a firewall, load balancer, and91
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flow monitor as vNFs in their framework. The approach uses a single GPU92

and processes only one batch at a time. On the contrary, our framework93

implements a CUDA stream pool, running multiple batches concurrently on94

the same GPU.95

The literature shows that performance is a critical issue to the success-96

ful adoption of NFV. Moreover, IDS augments these challenges due to their97

criticality in maintaining a safe network. Finally, the literature demonstrates98

that GPUs can improve the throughput of telecommunications applications99

and reduce energy consumption. However, works using GPUs did not ex-100

ploit the full potential of the GPU resources. They either use a multi-GPU101

approach to process more than one buffer at a time or waste CPU resources102

by locking the thread to wait for the GPU processing to finish. We propose103

a framework that implements a CUDA stream pool which does not lock the104

CPU threads to wait for a GPU response and execute more buffers concur-105

rently. This approach translates into a more efficient usage of resources and106

improved throughput for the vNFs using our framework.107

3. General Purpose Graphic Processing Unit108

GPUs are commonly used in matrix-multiplication operations [19]. The109

concept of GPGPU was introduced in 2001 with support to floating-point110

operations in GPUs as a way to compute anything other than graphic op-111

erations. In 2006, NVIDIA released the compute unified device architec-112

ture (CUDA), enabling code execution on GPUs without requiring full and113

explicit conversion of the data to/from a graphical form [20]. This architec-114

ture is the main enabler of the recent advances in several areas, such as the115
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training of large-scale ML models.116

The GPU architecture is composed of many streaming multiprocessors117

(SMs); each SM has many single processors. The focus of the GPU archi-118

tecture is on the number of arithmetic logic units (ALUs) to increase the119

throughput. In contrast, central process units (CPUs) focus on a large part120

of the chip to memory cache, reducing the memory access latency.121

ALU

Control

Cache

DRAM

Control

ALU

ALU

ALU

(a) CPU

DRAM

SM

DRAM

SM

DRAM

SM

(b) GPU

Figure 1: CPU and GPU architectures [21].

Figure 1 illustrates the differences between CPU and GPU architectures.122

CPUs (Figure 1a) focus on executing several different instructions over dif-123

ferent data and reserve a significant space of chip to the memory cache to124

accelerate the access to the data. A large cache memory reduces the la-125

tency of memory access. GPUs (Figure 1b), in contrast, focus on executing126

the same instructions over multiple instances of different data and reserve127

more space of the chip to ALUs, which increases the throughput of compu-128

tations. The fact that GPUs have more ALUs than CPUs makes the GPU129

ideal for large amounts of data executing the same instructions over differ-130
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ent values. Due to these properties, GPUs are present in almost all top 10131

energy-efficient supercomputers, and many works show that GPUs present132

better power efficiency.133

One of the significant disadvantages of GPGPUs is the need to trans-134

fer data between the random access memory (RAM) (which communicates135

directly with the CPU) and the GPU memory. These data transfers intro-136

duce an overhead before start processing on a GPU. Therefore, the benefits137

obtained by increased throughput may not compensate for the overhead of138

transferring the data depending on the amount of data to be processed. Con-139

sequently, the time to process small amounts of data on GPUs will be longer140

than on CPUs. This is particularly important for the packet processing capa-141

bilities of vNFs, since the amount of data to be processed may define whether142

the use of GPGPUs is beneficial or not.143

3.1. CUDA stream144

The management of tasks to be performed by a CUDA program, such145

as the GPU execution and CPU-GPU inter-memory transfer, is made by a146

queue of operations called stream, which follows a first-in, first-out (FIFO)147

pattern. If the CUDA stream in which the application execution to be sched-148

uled is not specified, it will be allocated to a default stream. In this case,149

each operation will be executed in parallel with many CUDA cores but per-150

formed sequentially, thus leading to a reduced performance if the program is151

composed of inherently independent operations. A multiple stream approach152

can be used to avoid this problem by performing cross-device operations or153

concurrent GPU executions on a single device [22].154

Figure 2 illustrates the difference between these approaches by showing155
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Figure 2: A CUDA application with (a) single- and (b) multi-stream approach.

an example of a CUDA application running in single- and multi-stream ap-156

proaches for two tasks (i.e., packet buffers in the context of this work). For157

simplicity, each execution is constituted by two primary sequential opera-158

tions (i.e., data transfer and packet processing). The execution in a single159

stream is represented in Figure 2a, where the data transfer of the first buffer160

is performed and followed by the GPU processing; only after the complete161

execution of the first buffer, the operations for the second buffer are initi-162

ated. Figure 2b illustrates the same operations, but using a multi-stream163

approach, where each buffer was allocated in a different stream so that the164

CUDA operations can run concurrently; here, as the operations can be ex-165

ecuted independently, it is not necessary for one to finish for the other to166

start. In the following, we develop a framework that leverages this multi-167

stream approach to accelerate packet processing in vNFs.168

4. GPU-Assisted Packet Processing Framework169

Figure 3 shows the sequence of steps that a network packet is subject170

when being processed by an implementation of the framework proposed in171

9



this work. The packets received by a network interface (1) are queued (2) and172

wait to be processed by an idle CPU thread from the thread pool. In order173

to prevent a bottleneck in the packets collected, new packets are dropped174

when this queue (2) reaches a size limit.175

Thread Pool

Thread 1

Thread 2

Thread T
..
.

CUDA Stream

Stream 1

Stream 4

Stream S

..
.

Pool

Stream 2

Stream 3

Start

End

Preprocessing
Packet

Buffer

Post-processing
Checking /

Buffer
Full

Pkt 1Pkt 2Pkt 3...Pkt P

Packets

Network
Interface

No

Yes1
2

3

4

5

6

7

8

Figure 3: Workflow of the proposed GPU-assisted packet processing framework

The packets from the queue are processed by a pool of threads (3). The176

pool can be composed of one or many threads, enabling the processing of177

multiple packets from the queue at the same time. The packets processed178

by a CPU thread are first subject to a preprocessing step (4) that can per-179

form operations such as packet decoding, protocol identification, handling180

unprintable bytes, etc. After the preprocessing, the packet is included into181

the buffer (5). The buffer is used to minimize the number of memory transfer182

requests between CPU and GPU by enabling packets to be processed by the183

GPU in batches.184

After adding the packet into the buffer, the CPU thread checks whether185

any of the (previously launched) CUDA streams has finalized its processing186

(6). This step is necessary because our CUDA stream pool approach results187

in a nonblocking CPU thread. As a side effect of this approach, we need to188

check periodically whether the stream has finalized its processing or not. If a189
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CUDA stream finalized its processing, CPU thread performs the data transfer190

from the GPU back to the CPU memory. Once the data is transferred to191

the CPU memory, the CPU thread performs post-processing actions that can192

perform operations such as packet forwarding, logging, blocking packets, etc.193

Finally, the CPU thread checks whether it should start the processing194

of the buffer in an idle CUDA stream (7). To do this, two conditions must195

be fulfilled: (i) the buffer is full or its time limit was exceeded; and (ii)196

there is a CUDA stream out of the pool which is currently idle. If these two197

conditions are fulfilled, the buffer is transferred to the GPU memory and198

a CUDA stream is assigned to process this buffer (8). Within the CUDA199

stream, each packet is processed by one CUDA core, while all the CUDA200

cores execute the same set of instructions over all the packets. This is a key201

aspect since for a vNF all the packets are always subject to the same set of202

operations. As mentioned before, since our framework uses CUDA streams203

that do not block the CPU, at this point the CPU is free and can start again204

the processing of the next packet in the queue.205

5. Case Study and Performance Assessment206

The framework proposed in Sec. 4 is validated by implementing an IDS207

and assessing its performance. The case study was implemented in C++2,208

based on an open-source IDS called Snort [23]. To assess the benefits of using209

the proposed framework, we compare the performance of the framework with210

a IDS using only CPUs for the packet processing. Figure 4 further details the211

2The implementation will publicly available upon publication at: https://git.io/

fjnIx
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architecture introduced in Figure 3 for the specific IDS case study, showing212

the workflow of the CPU-only and GPU-assisted executions, in addition to213

the network setup used to assess the performance of the proposed framework.214

Iperf 3

Client

Iperf 3

Server

LIBPCAP

Waiting

Pk1Pk2...Pn

Thread Pool Packet Decoder

Buffer

Detection Engine

Logging and

Start

End

CPU-only execution

GPU-assisted execution1 2

4
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5

6

8
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Thread #1(P1)
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Figure 4: IDS architecture and case study execution flow for CPU-only and GPU-assisted

executions.

The case study works as follows. Network traffic is generated from the215

client (1) to the server (2). Arriving packets are captured as a copy by the216

sniffer method using libpcap (3) and stored in the waiting queue (4). The217

waiting queue has limited capacity, and can be fully occupied if the processing218

capabilities of the IDS are not enough to cope with the traffic intensity. When219

this happens, new incoming packets cannot be accommodated in the queue,220

and will be dropped.221

The IDS uses a CPU multi-threading approach, where one thread is used222

specifically to capture packets from the network, while the other threads com-223

pound a thread pool (5) that will perform the deep packet inspection (DPI).224

During DPI, the first operation is to decoded the packet (6), identifying its225

protocol.226

If the IDS runs in CPU-only mode, the execution flow will start the detec-227
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tion engine. The detection engine (8) performs a string match algorithm, i.e.,228

Aho-Corasick, to identify if the content from packet data is a known attack229

pattern. The logging and alert system triggers the appropriate measures if230

threats were found in the packet (9).231

If the IDS runs in GPU-assisted mode, the decoded packet is added into232

the buffer (7). Then, the CPU thread checks whether a (previously launched)233

CUDA stream has finalized its processing (10). In case the processing has234

finished, the result is transferred from the GPU to the CPU memory, and235

appropriate logging and alert systems (9) are notified. Then, the CPU thread236

checks whether the buffer is full or not and whether there is an idle CUDA237

stream available (11). If both conditions are met, the CPU launches a CUDA238

stream to run the detection engine (8) over the current buffer. At this point,239

this CPU thread is free and will repeat the procedures starting from (6).240

5.1. Setup241

This section first presents the setup used to evaluate the performance242

of the GPU-assisted implementation of the IDS. Then, the performance243

assessment is presented.244

The experiments were executed using two computers, one client and one245

server. The client generates the traffic using iPerf3 and is equipped with246

Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 16 GB RAM, Linux CentOS247

7, and 1 Gbps PCI Express Gigabit Ethernet Controller. The server runs248

the developed IDS and receives the traffic. It is also equipped with Intel(R)249

Xeon(R) CPU E5-2620 v2 @ 2.10GHz, 16 GB RAM, Linux CentOS 7, 1250

Gbps Network Interface Card, and an NVIDIA Tesla K20c with 2496 CUDA251

Cores and 5GB of VRAM. The two machines are connected directly by a252

13



gigabit Ethernet cable. We evaluate the performance of the CPU-only and253

GPU-assisted implementations of the IDS over different traffic intensities and254

configurations. Table 1 shows the parameters considered for the experiments.255

Table 1: Parameters of the Experiments

Traffic duration 1 hour

Num. Threadsa 4 threads

Waiting Queue limit 128 MB

Buffer Time Limit 500 ms

Num. CUDA streams 16 streams

GPU Buffer Sizes
256KB 512KB 1MB 2MB 4MB 8MB

16MB 32MB

Traffic Intensities
10Mbps 50Mbps 100Mbps 200Mbps

400Mbps 800Mbps 1Gbps

a Including the packet capture exclusive thread.

All the experiments have one-hour traffic duration, simulating a machine256

with four cores, one of them used exclusively for the packet capture and 3 to257

the DPI task. The waiting queue has a limit of 128 MB, i.e., if the packets258

overextend this limit, new incoming packets are dropped. A batch of packets259

is processed when either of the following conditions is met: (i) the buffer260

time reached 500 ms; or (ii) the buffer has reached its size limit. 16 CUDA261

streams have been used to better utilize the GPU resources.262

In order to evaluate the packet delay incurred by the GPU buffer, eight263

buffer size configurations were tested in seven different network traffic inten-264

sities. Moreover, for each traffic intensity, a CPU-only execution was per-265
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formed, resulting in a combination of 63 experiments in total. The results of266

these experiments are reported next.267

5.2. Results268

We evaluate the performance of the CPU-only and GPU-assisted IDS over269

a set of metrics: (i) packet loss: the percentage of packets lost due to the270

dropping of packets resulting from a full waiting queue; (ii) CPU usage: the271

percentage of CPU used to execute the IDS; (iii) GPU usage: the percentage272

of the GPU used to execute the DPI; (iv) speedup: the relative performance273

of GPU-assisted over the CPU-only execution in terms of packet processing274

time.275

The packet loss illustrates the capability of the IDS to process the in-276

coming packets at the necessary rate, and its analysis can also show us the277

throughput achieved by the IDS. The CPU usage is another important met-278

ric that illustrates the efficiency of the IDS, directly related to its CAPEX.279

Moreover, a CPU-bottlenecked vNF may have unexpected behavior. The280

GPU usage allows us to evaluate the performance of the CUDA stream pool281

approach. The speedup shows how beneficial is the GPU-assisted over the282

CPU-only execution in terms of the delay incurred by the vNF. We then show283

a table with recommended configurations according to the traffic intensity284

and the application delay requirement.285

Figure 5 shows the packet loss percentage over different traffic intensities286

for the CPU-only and different buffer size limits of the GPU-assisted IDS.287

The CPU-only implementation starts to drop packets at 100 Mbps, where288

it drops around 40% of the packets. With 1 Gbps traffic, the CPU-only289

implementation drops almost 95% of the packets. The GPU-assisted IDS290
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presents substantially better results if the buffer size is correctly configured.291

If the buffer size is 4 MB or higher, there are no packets dropped. The packet292

drops observed in smaller buffer sizes occur due to a higher number of CPU-293

GPU calls, degrading the performance of the GPU-assisted implementation294

at high bit rates. However, larger buffers may lead to long delays under295

low traffic intensities. This indicates that our framework can benefit from296

a dynamic adjustment of its parameters to better match the needs for a297

particular traffic intensity.298
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Figure 5: Packets loss of the IDS with CPU and GPU executions for different traffic

intensities. The GPU results (G) were tested for different buffer size limits.

Figure 6 shows the throughput of the CPU-only and the GPU-assisted299

versions with different buffer sizes for 1 Gbps traffic intensity. The 1 Gbps300

traffic intensity is relevant because it is the maximum theoretical throughput301

for the network interface card used in our experiments. Due to protocol302

overhead and other factors, 900 Mbps is the maximum rate that we can303
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achieve. Our framework achieves the throughput of approximately 900 Mbps304

for the GPU-assisted versions with a buffer greater than or equal to 4MB.305

As we saw in Figure 5, these are the configurations where no packet drop is306

experienced, and shows that our framework is able to achieve the maximum307

practical throughput of our experimental setup. As opposed to the GPU-308

assisted IDS, the CPU-only IDS only achieves a throughput of around 50309

Mbps, which means that the GPU-assisted version improves throughput by310

around 16 times.311
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Figure 6: Throughput of the IDS with CPU and GPU executions for the 1 Gbps traffic

intensity. The GPU results (G) were tested for different buffer size limits.

Figure 7 shows the CPU usage over different framework configurations312

for different traffic intensities. The CPU-only IDS presents a CPU usage313

between 65% to 78% across all traffic intensities tested. On the other hand,314

the GPU-assisted IDS uses only 1% to 42% of CPU resources, showing a315

reduction of at least 46% in the CPU usage compared with the CPU-only316

17



CPU G-256K G-512K G-1M G-2M G-4M G-8M G-16M G-32M
0

10

20

30

40

50

60

70

80

C
P

U
 U

sa
g
e
 (

%
)

10 Mbps

50 Mbps

100 Mbps

200 Mbps

400 Mbps

800 Mbps

1 Gbps
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IDS. Another point worth mentioning is that even in low traffic intensities,317

i.e., 10 and 50 Mbps, where the CPU-only version has not dropped packets,318

the decrease in CPU usage ranges from 32% to 95%, approximately.319
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Figure 8: GPU usage over different buffer size limits of the GPU-assisted for different

traffic intensities.

Figure 8 shows the GPU usage over different buffer size limits for different320

traffic intensities. The buffer size limit has a strong impact on GPU usage. A321
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smaller buffer size penalizes the GPU usage due to the more frequent CPU-322

GPU memory transfers, which reduces the GPU efficiency. Our approach,323

when appropriately configured, can use around 64% of the GPU resources.324

This value represents a significant improvement over previous works, which325

report a GPU usage of around 20% (in this case, the more we can use the326

GPU, the better). Moreover, with the highest traffic tested (1 Gbps), the327

GPU usage reaches near 100% for the biggest buffer size. This trend indicates328

that the framework can be potentially used for higher bit rates combined with329

higher-performance GPUs.330

Table 2: Speedup of the Packet Processing Time (Delay) of the GPU-assisted over the

CPU-only IDS. Values in bold font highlight the cases where both CPU-only and GPU-

assisted IDS dropped packets.

Buffer

Size (B)

Traffic Intensity (Mbps)

10 50 100 200 400 800 1000

256K 0.27 1.29 2.60 0.40 0.39 0.43 0.43

512K 0.14 1.03 551.90 811.14 0.94 1.18 1.09

1M 0.08 0.62 375.37 651.16 1023.40 1.88 2.19

2M 0.08 0.33 208.11 388.74 687.53 6.91 18.11

4M 0.08 0.19 107.66 206.29 380.90 794.35 930.03

8M 0.08 0.20 62.74 105.21 197.24 419.72 494.75

16M 0.08 0.20 62.86 62.16 99.90 214.41 252.58

32M 0.08 0.20 63.23 61.95 60.64 107.92 127.07

Table 2 shows the speedup of the average packet processing time (delay) of331

the GPU-assisted over the CPU-only IDS. In our case, a number greater than332
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one means that the GPU-assisted packet processing is faster than the CPU-333

only one. The table shows that the buffer size definition greatly impacts the334

speedup achieved. For instance, with 400 Mbps of traffic, the GPU-assisted335

IDS can achieve up to 1023 times faster packet processing when a buffer of 1336

MB is used. However, using half of this buffer size (i.e., 512 KB) yields worse337

results than the CPU-only execution (i.e., speedup of 0.94). These results338

indicate that GPUs are more beneficial for higher-intensity traffic scenarios,339

but even with traffic as low as 50 Mbps, benefits can still be obtained.340

The results shown so far indicate that GPU-assisted vNFs can achieve341

significant benefits over CPU-only ones. However, different applications may342

have different delay requirements. Table 3 illustrates how the recommended343

framework configuration may change depending on the traffic intensity and344

delay requirement. We assume applications with 50, 100, 250, and 500 ms,345

assuming that applications with lower delay might be served by resources346

closer to the edge of the network. The recommended configuration is based347

on the setting that provides a delay lower than required while favoring the348

ones with lower dropped packets.349

Table 3 shows that the GPU-assisted configuration achieved better per-350

formance in almost all the cases, except for the 10 Mbps traffic intensity. The351

lower performance of the GPU-assisted framework under low traffic intensi-352

ties is due to the memory transfer overhead, which overcomes the benefits of353

the GPU multi-processing capabilities. Moreover, applications with higher354

delay allow for larger buffer sizes, which translates to higher speedups shown355

in Table 2.356
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Table 3: Recommended Configuration Given the Traffic Intensity and Application’s Delay

Requirement.

Traffic

Intensity

Delay Requirement

50 ms 100 ms 250 ms 500 ms

10 Mbps CPU CPU CPU GPU (2MB)

50 Mbps GPU (256KB) GPU (1MB) GPU (2MB) GPU (4MB)

100 Mbps GPU (1MB) GPU (2MB) GPU (4MB) GPU (8MB)

200 Mbps GPU (2MB) GPU (4MB) GPU (8MB) GPU (16MB)

400 Mbps GPU (4MB) GPU (8MB) GPU (16MB) GPU (32MB)

800 Mbps GPU (8MB) GPU (16MB) GPU (32MB) GPU (32MB)

1 Gbps GPU (8MB) GPU (16MB) GPU (32MB) GPU (32MB)

6. Conclusion357

In this paper, we introduced a framework for the use of GPUs to support358

the packet processing tasks of vNFs. The framework was validated by a case359

study where we modified a state-of-the-art open-source IDS to incorporate360

the capabilities of the proposed framework. The results obtained from the361

case study show the benefits of using the proposed framework over several362

different performance indicators, such as throughput, delay, and resource363

usage. Finally, the paper presented a table that shows the recommended364

framework configuration for different traffic intensities and application delay365

requirements.366

We demonstrated that the benefits of using GPUs to network packet pro-367

cessing depend on the traffic intensity and buffer size. There are cases where368

the traffic intensity or the buffer size are low, and the GPU execution will in-369
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cur performance degradation in comparison with CPU execution. Therefore,370

ensuring the best performance across different traffic scenarios is an impor-371

tant challenge to fully utilize the potential of GPUs for packet processing.372

As future work, a hybrid CPU-GPU IDS inspection can be developed, where373

an intelligent strategy (possibly enabled by machine learning) selects which374

processing entity and buffer size should be used given the current traffic375

properties and application requirements such as delay. On a different aspect,376

new technologies such as Remote Direct Memory Access (RDMA) allows the377

GPU to access packets directly from the Network Interface Card (NIC), not378

requiring the packet to be accessed by the CPU first, and then transferred379

to the GPU later. In the future, such technologies can be used to mitigate380

the performance degradation caused by CPU-GPU memory transfer.381
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