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ABSTRACT We present a low-loss power combiner, providing a highly integrated interface from an array of
mm-wave power amplifiers (PAs) to a single standard rectangular waveguide (WG). The PAs are connected to
an array of parallel and strongly coupled microstrip lines that excite a substrate integrated waveguide (SITW)
based cavity. The spatially distributed modes then couple from the cavity to the rectangular WG mode
through an etched aperture and two stepped ridges embedded in the WG flange. A new co-design procedure
for the PA-integrated power combining module is presented that targets optimal system-level performance:
output power, efficiency, linearity. A commercial SiGe quad-channel configurable transmitter and a standard
gain horn antenna were interfaced to both ends of this module to experimentally demonstrate the proposed
power combining concept. Since the combiner input ports are non-isolated, we have investigated the
effects of mutual coupling on the transmitter performance by using a realistic PA model. This study
has shown acceptable relative phase and amplitude differences between the PAs, i.e. within +15° and
41 dB. The increase of generated output power with respect to a single PA at the 1-dB compression point
remains virtually constant (5.5 dB) over a 42% bandwidth. The performed statistical active load variation
indicates that the interaction between the PAs through the combiner has negligible effect on the overall
linearity. Furthermore, the antenna pattern measured with this combiner shows negligible deformation due to
non-identical PAs. This represents experimental prove-of-concept of the proposed spatial power combining
module, which can be suitable for applications in MIMO array transmitters with potentially coupled array
channels.

INDEX TERMS Antenna feed, array amplifiers, integration, MMIC, mode converter, spatial power

combining.

I. INTRODUCTION

Highly integrated millimeter-wave transceivers with high
output power and efficiency are of high demand for the
next-generation wireless communication systems, imaging,
and radar applications. Although III-V compound semicon-
ductors are traditionally used for implementing the mm-wave
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power amplifiers, silicon is becoming more favorable due
to its low cost and high integration capability [1]. However,
the typical RF power that needs to be delivered by power
amplifiers (PAs) in emerging applications is beyond the cur-
rent state-of-the-art of silicon devices due to their relatively
low breakdown voltage [2]. This problem can be overcome by
combining signals from multiple PAs into a single radiating
antenna element. However, this approach is not well-suited
for IC solutions, since an on-chip combiner as well as an
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antenna and its interconnecting transition should be low-
loss [3]-[6]. Moreover, losses in conventional circuit power
combiners exacerbate if the number of channels increases
[71, [8]. This fact limits the feasible combined output power
and reduces efficiency. Table 1, which presents state of the
art mm-wave integrated power combiners, exemplifies this
effect for two CMOS-based combiners with 2 and 4 channels
[8]-[10]. Another challenge is the integration with antenna
elements, which are comparable in size to ICs at these fre-
quencies [11]-[13].

TABLE 1. Comparison between state-of-the-art PA power combining
solutions and the proposed design.

Reference Nug;ber Freq, | Bandwidth, | Losses,
channels [GHz] (%] [dB]
CMOS on-chip [8 2 22-26 17 1.4
CMOS on-chip [9 2 16-27 51 1.0
CMOS on-chip [10] 2 30-40 29 1.7
CMOS on-chip [8] 1 22-26 17 2.4
this work 4 24-38 42 0.3
this work 8 25-36 37 0.4

A possible solution towards the efficient wide band high
power silicon-based transmitters at mm-wave frequencies
is the recently proposed multi-channel transition with spa-
tial power combining functionality [14], where an array of
strongly-coupled microstrip lines (MLs) interface a single
substrate integrated waveguide (SIW). The corresponding
back-to-back configuration is a passive structure, hence,
the effects of imperfect PAs on the radiation performance
of an interconnected antenna element remain to be stud-
ied. This study is important to conduct because the MLs
are not isolated (—8 dB). The PAs will therefore cou-
ple via the common SIW structure. In turn, the input ML
active impedances change with the ML excitation. These
active input impedances are the load impedances presented
to interconnected PAs. The PA output power, efficiency,
and non-linear distortion are highly dependent on the load
impedance [15]. Consequently, the combined output power
is affected by unequal PA signals; any deviation from the
optimum PA load impedance leads to an output power and
efficiency reduction [16].

Given the above motivation, the novel contributions of the
current work are: (i) a new design procedure of the spatial
power combiner in the presence of the critical effects of
power amplifiers in linear and non-linear regimes; (ii) exper-
imental proof-of-concept using a commercially available
multi-channel PA IC. The key performance metrics are
the combined output power, power efficiency, linearity,
impedance matching and radiation pattern stability due to
unequal PA input signals. This analysis approach allows to
determine the requirements for the multi-channel transmit-
ter gain spread in conjunction with the power combining
module.
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Il. DESIGN OF THE POWER COMBINING MODULE
INCLUDING THE EFFECTS OF PAs

Figure 1 shows a detailed model of the designed power
combining module, which employs the spatially distributed
excitation of the SIW-based cavity modes by an array of,
in this case, four coupled MLs. A conventional waveguide
interface was used as an output port to demonstrate the
power combining performance and to measure the antenna
pattern degradation of a standard gain horn in the presence
of imperfect PAs and manufacturing tolerances. Furthermore,
to integrate a WG interface, the design concept of the 90° bent
interface between an SIW-based cavity with etched aperture
and a stepped ridge WG has been employed [17]. However,
instead of using the relatively bulky and long multi-section
SIW in [17], the desired multi-mode field distribution in the
relatively wide SIW cavity is in this case directly created
by an array of coupled MLs [14]. The direct multi-mode
excitation allows to reduce the size of the transition and
hence the losses in comparison with [17]. The consequence
is that our transition becomes inseparable and, therefore,
must be designed and characterized as a single integrated
multi-port unit. In contrast to the previous back-to-back
design [14], where four quasi-TEM modes are matched to
a single TEj9 mode (See Fig. 2 (a)), the present structure
has been optimized to directly match the over-moded cavity
with an open aperture, as shown in Figure 2 (b). In this case,
the electric field of the resonant cavity mode is concentrated
near the bottom orthogonal ridge and is coupled through the

stepped ridges

//;\’
metal N
flange T
coupling aperture
4x PA (top)

SIW-based cavity
4 x ML (bottom)

FIGURE 1. A detailed model of the proposed spatial power combining
module. The PAs are interfaced to an SIW-based cavity with a coupling
aperture through 4 spatially distributed microstrip lines (MLs) located on
the bottom layer. The electric field of the resonant cavity mode is
concentrated near the bottom orthogonal ridge and subsequently
coupled through the etched rectangular aperture into the metal

WR-28 flange with stepped ridges. The TE;; mode propagation inside the
WG and direct coupling to the array of MLs are illustrated.
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multi-mode excitation

pure TE ;o mode

A=

(a)

FIGURE 2. Magnitude of the E-field distribution at 30 GHz inside: (a) a
single-mode SIW excited by an array of MLs [14]; (b) over-moded cavity
with the open aperture excited by an array of ML.

FIGURE 3. The geometry of proposed DUT including bent divergent
routing lines to connectors.

etched rectangular aperture into the metal WR-28 flange with
stepped ridges. Due to the low substrate height and different
medium the aperture region becomes very sensitive and hence
challenging for assembling. Figure 3 shows the geometry of
the designed prototype. The divergent MLs were included
in the device under test (DUT) to be able to mount RF
connectors to the PCB and to decouple the extended routing
of MLs.! By exploiting symmetry, a two-port-only calibra-
tion kit is sufficient to de-embed most of the effects of the
four connectors from the measurement results. The structure
employs the RO4350 laminate with thickness 0.254 mm and
relative dielectric constant &, = 3.66.

As mentioned above, the output power, efficiency, and
non-linear distortion are highly dependent on the PA load
impedances [15]. These loads can be represented by active
reflection coefficients at the combiner input ports:

N
1
Ty=— " GuSum, (1
Gn m=1

IThe extended microstrip lines and coaxial connectors can, in typical
applications, be eliminated by mounting the MMIC directly onto the PCB.
Although such a structure will be more compact it will not affect the
conclusions of the present study.
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FIGURE 4. A co-design optimization flow for the spatial power combining
module.

where S, is the S-parameter from combiner port m to n,
while G,, = A,,e/%n is the complex gain of the m-th PA. The
active impedances at the combiner input ports are assumed to
be optimal for achieving high output power and efficiency in
case of identical PAs (uniform excitation). However, in prac-
tice, individual PAs can differ due to the different thermal
regimes of each PA and/or due to fabrication uncertainties.
Therefore, interfacing PAs with varying and non-equal gains
(G # Guyln,m € {1...N}) to a non-isolating combiner
(Sumlnzm # 0) affects the active impedances at the com-
biner input ports, and hence, degrades the individual PA
performance. Taking the above effects into account, a more
holistic design procedure has been proposed (See Fig. 4).
It consists of two design phases: initial passive design phase
similar to work [14] and statistical co-optimization, which
includes large-signal behavior of coupled realistic PAs. In the
first phase, an initial module geometry is created based on
the initial system specifications, such as the number of PAs,
optimum load impedance, and operation frequency. This
geometry is numerically optimized under the condition of
uniform excitation to satisfy the initial performance goals:
active reflection coefficients and insertion loss levels over a
certain frequency bandwidth.

In the second design phase, the initially realized geometry
is co-optimized in conjunction with a large-signal PA model.
Individual PA gains are statically varied using Monte Carlo
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Vi=3.6V peak current density while remaining in safe operation in
PA cell terms of electro-thermal breakdown [21]. This resulted in a
high-voltage HBT with a 0.4 x 25.2 x 12 um emitter area.
A simple biasing network based on the current mirror has
: 3 Tonrse 1 been employed, Igc = 50 mA corresponds to the class A/B
ot “2s0x04 T - operation point. In order to improve electrical stability at
L lower frequencies an additional high-pass shunt RC network
F{ S ‘@ : (20 €, 1 pF) has been used. An output matching circuit based
: on transmission lines has been used in order to match the
output stage to 50-£2 load. The capacitor C, = 30 {F rep-
1 resents a typical parasitic layout capacitance. The load-pull
""""""""""""""" simulations have been performed in Keysight ADS using a
FIGURE 5. Simulated Class-A single-ended common-base output PA stage harmonic balance technique. The simulated PA output power
in SiGe HBT technology. OMN = output matching network, BN = bias at 1-dB compression point (P1dB) reaches the maximum
network, SN = stability network. An active load sweep is performed. value of 23.5 dBm and remains above 23 dBm over the
entire PA operation bandwidth (26.5-29.5 GHz). The corre-
sponding power efficiency at P1dB point is above 35%. The

method in order to emulate a realistic PA gain spread. The maximum PA gain of 8.5 dB is observed at 28 GHz.

25.2x0.4 |

1

'

'

|
.
: * DC|
| x12pm -
1

1

1

performance of such a joint active structure is evaluated in Figure 6 shows the simulated P1dB output power and effi-
terms of PA metrics: output power, efficiency, linearity. If the ciency contours at 28 GHz in the load reflection coefficient
performance targets are satisfied for all possible realizations, ~ plane. The clusters of points represent I' > of the multi-port
the final geometry is obtained. Otherwise, the module geom- power combiner in the presence of normally distributed phase
etry needs to be updated. The above procedure also allows and amplitude deviations representing non-indantical PAs
one to determine the maximum allowable variation of the PA with standard deviation, o, of 1 dB and 15°, respectivly.
gains. As one can see, most of the active load realizations remain

In the present design an output stage based on conventional ~ within the region of high efficiency and high output power,
single-ended common-base amplifier has been employed although for higher o the cluster of points is more spread.

(See Fig. 5). The design is implemented in 0.25um SiGe:C Another important performance metric of a PA is its lin-
BiCMOS technology [18], which is also the technology used earity. Nonlinear properties of the PA interconnected to the
for the quad channel IC in our experimental verification (cf . power combining module have been quantified by perform-
Section 3). SiGe heterojunction bipolar transistors (HBTS) ing a two-tone test. The relative magnitude of the output
operated in the common-base configuration are widely used third-order intermodulation (IM3) products has been used as
at high frequencies due to the higher maximum available a measure of nonlinearity. The IM3 products are the most

power gain and relatively higher output load compared to critical ones for this design since they appear in the operating
the common-emitter configuration [19], [20]. The scale of  frequency range. In the performed test, two spectrally pure
the HBT has been chosen in such a way to operate near  tones at frequencies fi and f> are applied to the PA input

0.6 — 0.6
S>Efficiency, %

——|@&>Power, dBm

S Efficiency, %
& Power, dBm
© Portl

(S Efficiency, %
——|@& Power, dBm
o Portl
1 © Port2

N2z, TN

Re(T)
Re(T)

0.6 0.6
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0
Im(T") Im(T")

(a) (b)
FIGURE 6. Simulated PA P1dB output power (blue) and efficiency (red) contours at 28 GHz in the load reflection coefficient plane. The cluster of points

represent I’y , of the power combining module in the presence of normally distributed: (a) Phase errors with 1 = 0° and ¢ = 15°; (b) Amplitude errors
with 4 = 0 dB and o =1 dB; (c) Both amplitude and phase errors. The colored regions indicate |T'; | < —10 dB.
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FIGURE 7. Simulated output third-order intermodulation products
relative to the corresponding fundamental tones as a function of the
two-tone output power in case of a single PA (x1) and the combined

PA (x4). The testing was carried out at f, = 28 GHz with two-tone spacing
of Af = 0.1 GHz.

port. The tones are centered around the center frequency,
fo = 28 GHz, and separated by Af = 0.1 GHz, such thatf] =
Jo— Af and fo = fy + Af. A large input signal drives the PA
into its nonlinear operating range. As a result, IM3 products
appear in the output signal at frequincies 2f] — f> and 2> —f].
Figure 7 shows the magnitude of the output IM3 products
relative to the corresponding fundamental tones as a function
of the two-tone input power for a single PA (curve x1) and
the combined PA (x4). As expected, operating at higher
output power levels leads to a significant increase in the
relative magnitude of IM3 components. Asymmetry of the
magnitude of the upper and lower IM3 products is similar
for both considered cases and indicates the memory effects
in the nonlinear transfer function of the PA. The IM3 curves
for the combined PA are 5.5 dB shifted compared to the
single PA case whereas their shapes are the same for both
configurations. The latter confirms that the module itself
has no effect on linearity. However, the output impedance
mismatch caused by non-equal PA gains might affect the
linearity of the combined PA. Figure 8 shows the relative
output IM3 products in the load reflection coefficient plane

& 1M3, dBm

-0.6 o Portl .
. 3
0.9 \ Port2
09 -06 03 0 03 06 09

Im(T")

FIGURE 8. The output third-order intermodulation product relative to the
fundamental tone in the load reflection coefficient plane. The testing was
carried out at fy = 28 GHz with two-tone spacing of Af = 0.1 GHz,

Pjn = 10 dBm. The cluster of points represent I'; , of the power
combining module in presence of normally distributed phase and
amplitude deviations with o = 1 dB and 15° respectivly. The colored
regions indicate |T'y | < —10 dB.
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for a single PA. The testing is carried out at fy = 28 GHz with
Af = 0.1 GHz, P;; = 10 dBm. The cluster of points repre-
sents I'1 2 of the power combining module in the presence
of normally distributed phase and amplitude with standard
deviation, o, of 1 dB and 15°, respectively. As one can see,
most of the active load realizations correspond to the same
relative IM3 level (—28 dBc), which indicates a negligible
effect of the load mismatch on the combined PA linearity. The
conclusions are the same for different input power levels, Pjy,
and these results have therefore been omitted. A combined
PA could be considered as a single unit with a nonlinear
transfer function. Therefore, conventional techniques such as
feedback, feed forward, analog and digital pre-distortion are
applicable for its linearization [22].

This study has been used to determine the PA requirements
in terms of the maximum allowable relative difference of the
phase and amplitude. The results show that good performance
(relative output power reduction < 1 dB) can be expected as
long as PA gain variations remain within £15° for the phase
and £1 dB for the amplitude. The corresponding optimum
combiner design parameters (in mm) are shown in Table 2.

TABLE 2. The optimum design parameters, as shown in Figure 3.

Ly |Ww | Gs | Ls [ Ws [Wi1 | Ly [Wie | Lo | H
3.56 | 7.11 | 0.77 [ 1.53 [ 3.40 [ 0.71 [ 1.72 [ 2.69 | 0.53 | 6.00
wi | w2 | g1 | g2 50 E d Wl h L
0.79 | 043042 [0.38]0.25|0.63| 0.3 |5.79| 232 | 1.21
R 1o I3 14 15 Is o | ha
0.74 200 [ 1.54 [5.00 | 1.9 | 0.63 [135° | 2.71

A non-uniform input port excitation also causes the
higher-order modes in the SIW-based cavity to be excited
with different amplitudes. Higher-order modes at the antenna
side of the discontinuity radiate out directly if these are
propagating modes and thus affect the radiation pattern shape
when excited strongly. If higher-order modes are evanescent,
they will store different amounts of reactive energy at the
transition depending upon their excitation, which in turn
affects the PA matching as well as the PA gain, efficiency
and output power, also for the dominant propagating mode.
The latter effect is already modeled by the existing dominant
mode S-parameter matrix. Finally, the amplitude level of the
higher-order evanescent modes could still be significant in the
closely located output port. Interfacing a radiation element
supporting the propagation of higher-order modes to such
a port might degrade the radiation pattern shape. Thus it is
important to investigate the aperture modal content and their
excitation profile in the presence of a non-uniform excitation.

An H-plane flared horn supporting the propagation of
TE0-TE3p modes has been simulated in conjunction with
the proposed power combining module in the presence of
randomly distributed phase errors with maximum deviation
A¢ at 30 GHz (See Fig. 9). The realizations corresponding
to the lowest TE o amplitude (worst-case scenario) are given
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FIGURE 9. Simulated amplitudes of the propagating TE( (blue) and TE;z,
(red) modes in the aperture of a H-plane flared horn with multi-port
excitation in the presence of randomly distributed phase errors with
maximum deviation A¢. The realizations corresponding the lowest TE,(
amplitude are given for each A¢. Dashed lines show corresponding mode
levels in case of a single-mode wave-port excitation at the horn base.

for each A¢. Dashed lines show corresponding mode levels in
the case of a single wave-port excitation. Due to the symmetry
of the structure, the TE>p mode level is negligible and this
result has therefore been omitted. As one can see, increasing
A¢ does not increase the TE3g mode level, in fact, the relative
level to that of the main TE ;9 mode remains the same. Conse-
quently, the total aperture field distribution is not a function
of A¢, which confirms the pattern shape sustainability over
a range of phase excitations.

Ill. MEASUREMENT RESULTS

The designed passive prototype has four 50-2 coaxial ports
for testing with a standard VNA and a single WR-28 antenna
interface (See the photos in Fig. 10).

9 ° ®
Adjustment

element™ B ¥ \%N’ _________ b
| & OF e

O] 3 ;

51

(Bottom view)

(Top view)

FIGURE 10. Fabricated spatial power combining module prototype.

The prototype is formed by stacking a standard
double-sided PCB on the aluminium WG flange, which con-
tains embedded ridges. As discussed in the previous section,
the region between the etched aperture and the bottom
ridge is very sensitive to fabrication tolerances, and an extra
adjustment element was, therefore, developed. It constitutes
a movable metal plate with a trimming screw, which can be
used to control pressure contact between the PCB and the
aluminium flange. The top side of the flange has a standard
WR-28 interface, which can also be used as an open-ended
WG radiating element. The stack has on overall size of
approximately 46 x 46 x 6 mm.
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A. INPUT IMPEDANCE MATCHING

The measured and simulated WR-28 port reflection coef-
ficients are shown in Figure 11 with the 50-2 terminated
coaxial ports. It is seen that S;’gR_ZS < —14 dB from
24.5-37.8 GHz. The measured active reflection coefficients
of the symmetric 50-2 ports are shown in Figure 12. The
active reflection coefficients are calculated from the mea-
sured 5 x 5 S-matrix assuming the uniform excitation sce-
nario. The obtained |I'1| and |I'2| < —13 dB in the desired
frequency range, and remain <—10 dB for frequencies in the
range 24.5-37.8 GHz. This corresponds to a 42% bandwidth.
All curves are close to each other and in good agreement with
the simulations shown by black dashed lines. Visible ripples
are attributed to the connector interfaces and bent MLs, which
cannot be completely de-embedded by the designed two-port
TRL calibration kit, since the ports are slightly different in
practice. The measured and simulated WR-28 port reflection

— S (S?R'zs) measured

o ¢(WR28)
Sss

simulated

Frequency, [GHz]

FIGURE 11. Measured (solid) and simulated (dashed) reflection
coefficient of WR-28 port (coaxial ports are terminated), as shown
in Fig. 10. The colored region shows the operation band of PAs.

2N,

S|

T, [dB]

2

20~ ==Ts u R
I— 1]

25 4

20 25

Frequency, [GHz]

(a)

_512 _Sl4

[dB

St 513 S23

S-parameters,

20 . . .
20 25 30 35 40

Frequency, [GHz]
(b)
FIGURE 12. Measured: (a) Active reflection coefficients of the 50-Q
microstrip ports of the prototype (including effect of connectors),
as shown in Fig. 10 (WR-28 port is terminated); (b) Mutual coupling

coefficients between the input ports. The colored region shows the
operation band of PAs.
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coefficients do not exceed —15 dB and —20 dB, respectively.
The observed difference between measurements and simu-
lations is mainly attributed to the connector interfaces and
bent MLs which cannot be completely de-embedded by the
designed two-port ML TRL calibration kit, since in prac-
tice the ports are slightly different. Figure 12 (b) shows the
coupling coefficients between the 50-2 input ports. As one
can see, the coupling between the edge ports (|S14|) reaches
—7 dB level, whereas the coupling between port 1 and port 3
(1S13]) is below —14 dB over the entire PA operation fre-
quency range. The relatively high |S14| does not significantly
affects the individual PA performance (¢f Section 2) and
mainly attributes to the coupling between the ports within
SIW modes.

B. RADIATION PATTERN

The radiation performance has been investigated in conjunc-
tion with a standard gain horn antenna at the desired fre-
quency range.

Figure 13 shows the measured H-plane radiation pattern at
28 GHz that was obtained by combining four embedded ele-
ment patterns, each of which corresponds to the excitation of
one port while terminating the others. As one can see, the rela-
tive difference between the measured patterns with the single
port and multi-port feeding is negligible (<—35 dB within
the angular region of +20°). This difference is comparable
with a relative measurement uncertainty, which increases to
—20 dB at larger angles. This fact confirms a good rejection
of higher-order propagating modes that, in general, can be
excited through asymmetric feeding. The conclusions are the
same for the E-plane patterns and these results have therefore
been omitted.

o I single port

% _5 |~ multi port

= _ relative

E difference

m

e

(5]

N

= 1

=) 1

s - 1

Z ' 1 I\l‘"’\l‘ A ‘, 1 I|
50 s Ch R :‘n\':.~| Y

-45 -30 -15 0 15 30 45

0, [deg]

FIGURE 13. Measured H-plane normalized EIRP pattern of the standard
gain horn antenna connected to the proposed spatial power combining
module (red) and conventional probe-type feed (blue) at 28 GHz. The
relative difference is shown by the black dashed line.

C. POWER COMBINING

In order to demonstrate the proposed concept in the pres-
ence of the critical effects of realistic power amplifiers,
the fabricated power combining module has been interfaced
to Class-A/B PAs. The PAs are integrated as a part of a
quad-channel beamforming SiGe HBT IC [23], as shown
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in Figure 14. The beamforming IC has one input and
four output RF branches operating in the 26.5-29.5 GHz
frequency band.

The beamforming IC input and output ports have a 50-£2
nominal impedance. The beamforming IC on the evaluation
board has been connected to the multi-port combiner by four
short coaxial cables. Such connection allows for an extra flex-
ibility during the calibration and measurements. In practical
applications the IC can be directly mounted on the same PCB
without any cables and routing lines. The gain and phase of
each branch can be controlled via a digital interface using a
proprietary protocol. The phase and amplitude values have a
6-bit range, which results in +5.6° and 0.5 dB resolution for
the phase and amplitude respectively. This ability has been
used to compensate for various lengths of cables between
the beamforming IC board and the power combiner. It allows
driving the proposed structure with a calibrated equal ampli-
tude and phase distribution, but also to examine the effect of
amplitude and phase variations. The efficiency of PAs cannot
be measured since the beamformer IC does not have separate
biasing pins for the output stage. Figure 15 illustrates the
measurement setup.

Figure 16 shows the relative increase of the generated
output power of the 4 x PA combined by the proposed
module with respect to a single PA over the 24-31 GHz
frequency range for different PA operational regimes. The
measured results are compared to the EM simulated model,
which accounts for dielectric losses. The measured result
in the linear regime is close to the simulation, however,
the average level is a bit lower due to the losses in the
extended routing of the MLs. The dielectric and radiation
losses have been estimated based on the HFSS simulated
data. At 30 GHz, the total simulated losses of the DUT are
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FIGURE 15. Measurement setup for evaluating the power combining
module in conjunction with PAs (vector network analyzer and cables are
not shown).
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FIGURE 16. Simulated (dashed) and measured (solid) relative increase of
the generated output power of the 4 x PA combined by the proposed
module, as shown Fig. 3, with respect to a single PA in nonlinear (P1dB
point) and linear regime. The colored region shows the operation band of
PAs.

0.55 dB, where the contribution of dielectric and radiation
losses are 0.19 and 0.36 dB, respectively. Radiation losses
are dominant and attributed to the bent MLs, but these can
be eliminated through direct MMIC interfacing. The overall
expected losses of the proposed spatial power combining
module without extended routing lines do not exceed 0.3 dB.
Since we are using a parallel power combiner, the losses do
not significantly increase with the number of added ampli-
fiers, in contrast to conventional on-chip power combining
techniques (See Table 1). There is no considerable difference
between the measured relative power increase in the linear
and nonlinear regime.

Also, there is a slightly higher (0.3 dB) relative power
increase in the nonlinear regime at some frequency points.
This is due to the PA dissimilarities, which have not been
compensated for in the measurements. Hence, the spatial
power combining module does not affect the PA performance
over the whole input power range.

Figure 17 shows the measured combined power compared
to the output power of each PA versus input power. The
input and output powers were normalized to obtain 0 dB
gain at the P1dB point. The nonlinear behaviour of the joint
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FIGURE 17. Normalized measured output power versus input power for
single PAs (dashed) and after combination with proposed module (solid)

at 28 GHz. The set of curves shows measured performance reduction in
the presence of +15° phase variation.

PA and power combining module is similar to a single PA.
The performance reduction in the presence of phase devia-
tions has been investigated by manually adjusting the phase
shift for each beamformer IC branch. The measured set of
curves (semitransparent) correspond to =15° phase variation.
As one can see, in the worst scenario the output power
decrease is less than 1 dB, which is in good agreement with
simulations (See Fig. 6).

IV. CONCLUSION

The joint optimization procedure of a spatial power com-
bining module has been proposed and proven necessary to
account for the critical effects of coupled PAs and to ulti-
mately improve the large-signal performance of the combined
PA. A class-A single-ended common-base output PA stage
in SiGe HBT technology has been employed in the present
design. The developed power combining module facilitates
efficient mm-wave power generation over 42% bandwidth
(24.5-37.8 GHz) where the total power loss due to this mod-
ule is <0.5 dB in simulations and <0.7 dB in measurements.
The performed statistical study shows that good performance
(relative output power reduction < 1 dB) can be expected
as long as PA gain variations remain within £15° for the
phase and £ 1 dB for the amplitude. The corresponding output
impedance mismatch caused by non-equal PA gains has a
negligible effect on linearity of the combined PA.

To the authors best knowledge, this is the first exper-
imental demonstration of a compact parallel power com-
biner with optimal excitation of the SIW-based cavity modes
through strongly-coupled microstrip lines. The increase of
the total generated output power in the nonlinear regime
of PAs @P1dB remains virtually constant (5.5 dB for 4 x
PA). The over-the-air tests confirm that the antenna pattern
shape is stable with negligible degradation effects due to
multi-port excitation. The low loss and wideband properties
of the proposed solution is expected to play an important role
in efficient high power wideband mm-wave transmitters.
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