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Abstract: The worldwide shortage of natural sand has created a need for improved methods to
create a replacement product. The use of vertical shaft impact (VSI) crushers is one possible solution,
since VSI crushers can create particles with a good aspect ratio and smooth surfaces for use in
different applications such as in construction. To evaluate the impact a VSI crusher has on the
process performance, a more fit-for-purpose model is needed for process simulations. This paper
aims to present a modelling framework to improve particle breakage prediction in VSI crushers.
The model is based on the theory of energy-based breakage behavior. Particle collision energy data
are extracted from discrete element method (DEM) simulations with particle velocities, i.e., rotor
speed, as the input. A selection–breakage approach is then used to create the particle size distribution
(PSD). For each site, the model is trained with two datasets for the PSDs at different VSI rotor tip
speeds. This allows the model to predict the product output for different rotor tip speeds beyond the
experimental configurations. A dataset from 24 different sites in Sweden is used for training and
validating the model to showcase the robustness of the model. The model presented in this paper
has a low barrier for implementation suitable for trying different speeds at existing sites and can be
used as a replacement to a manual testing approach.

Keywords: VSI; DEM; sand; breakage; modelling

1. Introduction

The increased infrastructure development of society has been accompanied by an
increase in the use of natural materials for construction [1]. One resource that has seen
massive extraction is natural sand deposits. The usefulness of sand in creating quality
concrete products has led to the erosion of numerous coastlines caused by aggressive sand
dredging [2]. Some governments such as Sweden are trying to incentivize new approaches
with increased taxes to minimize the use of natural sand along with limiting permits for
existing deposits.

Given the finite nature of natural sand and the increased demand on the market,
replacement resources are becoming more common. One approach is replacing natural
sand with manufactured sand. The process of creating manufactured sand for concrete
includes vertical shaft impactors (VSIs), which are common comminution machines for
crushing particles in the tertiary or quaternary stage of aggregate crushing circuits. Auto-
genous impact crushing results in particles that, compared to compressive crushing, have a
smoother surface and a more spherical shape but with an increased amount of fine particu-
late matter in the process. Manufactured sand has successfully been used to replace natural
aggregates in several applications, such as concrete production [3,4]. The main attributes
sought after in natural sand particles are sphericity and high volume-to-surface ratio. These
attributes minimize the use of cement in the concrete mixes and lead to desirable rheology
for pouring [5].

Natural sand requires fewer processing steps than the manufacturing of artificial sand.
To allow for a transition to more sustainable products, the process needs to become more
efficient. By establishing a framework to adopt crusher models to existing production
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plants, simulations can be used to optimize settings at real plants, and therefore, a more
efficient process can be achieved.

The dynamics of the particles has been shown to determine the product size distribu-
tion. A detailed description of the dynamics of the particles inside and exiting a rotor was
provided by Rychel [6]. However, Kojovic [7] formulated a predictive model for the VSI
crusher that correlated product size with power draw based on breakage of the ore in a
drop-weight test. Attempts to model the VSI output by adapting the Whiten model as a
basis for modeling have also been proven to be a viable approach [8].

According to Nikolov [9], the essential part of the performance of the VSI crusher is
the relationships between the radius of the rotor, angular velocity and the rate of material
being fed into the VSI crusher when given a specific particle size distribution for the feed
material. Bengtson and Evertsson [10] then proposed a model that also considered the
variations in rock properties and predicted capacity and power draw as well as the particle
shape distribution. Lindqvist [11] also suggests that impact crushing can significantly
reduce the energy required in grinding.

The attempts to model the performance of VSI crushers have often been limited by the
lack of information about the interaction between particles inside the crusher. An approach
to overcome this issue has been through the use of the discrete element method (DEM).
With the DEM, every particle and its dynamics are simulated, making it possible to estimate
the particle trajectories, residence times and collision energies when particles travel through
the crusher. DEMs have been the main method of choice for other researchers such as
Cunha, Cleary and Sinnott [12–14].

In Grunditz et al. [14], the data from DEM simulations of a VSI crusher were analyzed
to gain an understanding of how the energy in a VSI crusher is distributed in relation to
the different sizes of the particles fed into it and the number of impacts that occur. One
of these energy collision spectra can be seen in Figure 1. In addition, an exploration of
how the particles travel in the crushing chamber after leaving the rotor was conducted in
conjunction with evaluating the residence time of each particle [15,16].

Figure 1. The distribution of particle collision energies inside a discrete element method (DEM)
simulation of a vertical shaft impact (VSI). Two different rotor tip speeds were simulated.

To create a robust model, material from numerous sites was collected and used for the
calibration and validation of the model. The model accurately predicts the product size
distribution and is useful to give operators the opportunity to simulate changes to their
feed size, material attributes and machine parameters before committing to them.

The use of data from several different sites of varying geological types enables the
mapping of material properties to certain model parameters, achieved by deploying the
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same crushing process and equipment in the same configuration at multiple different
crushing plants. These physical material properties were attributed to fmat and E0

min
established in previous modelling efforts by Nikolov [9,17].

A selection–breakage approach is used to simulate the effects of impact energy present
in VSI crushers. Vogel and Peukert established a master curve for breakage that considers
the accumulation of impacts when observing particle breakage [18,19].

The purpose of this paper is to use previously established models and appropriate
optimization routines for calibration of a fit-for-purpose VSI crusher model. A frame-
work was proposed to enable crushing operators, plant owners and product managers to
explore and test differing machine configurations to reach alternate product goals more
systematically.

2. Methodology
2.1. Modeling

Breakage modeling relies on descriptive functions of particle behavior when subjected
to high energy impacts. The goal of these studies was to assess how much energy a particle
requires to break relative to its initial size. In addition, the size of the daughter fragments
following such an event was of interest.

Several previous studies and experiments [17] provide the basis to understand the
role of particle size and impact energy on the breakage of the particular materials studied.
Each material tested in this way provides properties that apply to only one specific quarry
site. Having to run these exhaustive tests for each modelling attempt for a site is costly.

The different sizes into which a particle will statistically split are referred to as an
appearance function. An appearance function was included in the optimization routine
and assumed that the behavior of the breakage follows a polynomial function, as seen in
Equation (1), where ai,j is the fraction of particles of one size being reduced into a smaller
subset; βi values are coefficients, and xi is the size of the originating particle. The index
i represents the number of particle sizes available in the PSD dataset starting from 1, the
largest size, to N being the smallest size. This creates an appearance matrix for the selected
particles sizes. An example of such an appearance matrix can be seen in Table 1 where each
column for progeny Equation (1) is shown.

ai,j = β1 + β2x1
i + β3x2

i + β4x3
i (1)

Table 1. The appearance matrix for a PSD with 5 different size bins. Each column for progeny
Equation (1).

a1,1 0 0 0 0
a1,2 a2,2 0 0 0
a1,3 a2,3 a3,3 0 0
a1,4 a2,4 a3,4 a4,4 0
a1,5 a2,5 a3,5 a4,5 a5,5

The most common approach to estimate the appearance function is with a drop
weight test or a Julius Kruttschnitt rotary breakage tester (JKRBT) to generate a family
of t10 curves [20]. In [21], three different ore types were tested with the JKRBT [22], and
their response was calculated with a modified equation based on the work of Vogel and
Peukert [19] with satisfying results. A similar approach was implemented in this work
by integrating the theories established by Vogel and Peukert and further expanded on by
Bonfils into the calibration of an appearance function.

The selection–breakage method was implemented to determine whether a particle
sustained enough impact energy to suffer a breakage event [10]. By using the kinetic
energy and size of particles, a probability distribution of particle breakage can be predicted
(see Equations (2) and (3) where B, the breakage, is the appearance matrix. The index i
represents the number of particle sizes available in the PSD dataset starting from 1, the
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largest size, to N being the smallest size. The model essentially treats particles that enter the
crusher as a binary option: either they are crushed to breakage or the particle withstands
the impact and retains its size. The particles that are chosen for breakage are then reduced
in size according to the appearance function. The product is then added to the unbroken
particles that pass through. This process can be seen in the flowchart in Figure 2. The
number of impacts a particle, following its exit from the rotor, is assumed to be 1 based
on the results of DEM simulations analyzing the collision energy spectrum. The majority
of the collisions are under 10 J/kg and are assumed not to influence the impact breakage.
These lower energy collisions are assumed to be after the initial collision with the rockbed
in the crushing chamber.

P = [BSf + (I− S)f] (2)

S =

[
1− exp

(
fmatxα

i k

(
ECS −

E0
min
xα

i

))]
(3)

Figure 2. The selection–breakage process was used to determine the product generated from the
feed [10].

After the model had been calibrated for different sites, an effort to validate it was
performed. The feed data and machine parameters for the VSI crushers were then put into
the model, and the product was predicted. The speed of the particles at the rotor tip is
transformed to kinetic energy, ECS, as seen in Equation (4).

ECS =
v2

rotor
2

(4)

The predicted particle size distributions (PSDs) for the product and the experimental
product were then compared to determine how much the model varied from the experi-
ments. The model was based on crushers that employ a rockbox configuration. The input
parameters and the overall process of running the model assumed that no prior material
characterization had been performed. The approach can be seen in Figure 3.

Figure 3. The overall modelling process for a new site where the material has not been calibrated
and then adequately mapped to the material database.

Once the material parameters have been obtained, the model can be run with alternative
machine parameters to achieve different rotor tip speeds, as seen in Figure 4.
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Figure 4. A model overview showing the parameters required to run the VSI crusher model at
alternate speeds to predict the product PSD. The model requires a material database with fmat, E0

min

and α values obtained from previous calibration efforts.

2.2. Sampling Procedures

Due to the enclosed design and destructive behavior of comminution machines, it is
difficult to directly observe what occurs inside with changes in operational parameters.
Experimental data that are measurable for a VSI crusher include the incoming material
feed rate and particle size distribution, outgoing mass flow and particle size distribution,
rotor tip speed, rotor radius and material properties. These parameters are often quantified
on a site-by-site basis to establish the range of products that can be expected with the
current setup of machines and the specific ore characteristics. For this model, datasets
were collected from different sites throughout Sweden to obtain a comprehensive overview
of the performance of the VSI crusher. The material from these sites was crushed with a
Metso BARMAC 5100 SE VSI crusher (Metso, Helsinki, Finland), which has a diameter of
510 mm and speeds between 69 and 79 m/s. The conveyer before and after the VSI crusher
was stopped to allow material sampling. A conveyor length of 1 m was isolated, and all
the material was taken according to the SS-EN 933-1 standard. The intricacies of variation
between the sites in terms of materials and machine parameters can create uncertainties
in the analysis of its effects. Each source of variation, originating from either equipment,
operator, material or site production level, contributes to a potential confounding of the
results. The locations of the different sites can be seen in Figure 5 and the overall plant
layout used in Figure 6.

Previous studies [13,15,17] have investigated the phenomena, conditions and effects of
crushing particles at single-energy levels. Several of these studies have been conducted to
analyze the inputs of specific energy levels on particles of different sizes. The results have
often been reported in useful units such as J/kg to make comparisons between different
particle sizes easier. More recent studies have shown simulations and observations of the
different energies that the particles are exposed to while being expelled from the rotor and
into the crushing chamber [12].



Minerals 2021, 11, 40 6 of 11

Figure 5. Location of the quarries tested in Sweden. Circles denote where the mobile VSI plant was
set up, and the colored dots show where the material originated from.

Figure 6. The mobile VSI crusher plant layout used at the different quarries tested.

2.3. Optimization Framework

The purpose of this framework is to enable the rapid deployment of an accurate model
without the need for exhaustive levels of sampling and ore characterization. The initial
design space for the framework was intentionally kept small to reduce the computational
load to run the optimization. Each round of sampling takes considerable time and effort on
site for collection. With the data at hand and prior models to simulate certain aspects of
impact crushing, a surrogate model was established for the appearance function and the
selection breakage. Both of these sets of values were assessed for accuracy, and an error
function was formulated (see Equation (5)), where Pexp,High and Pexp,Low are PSD data from
experiments, Psim,High and Psim,Low are PSD data from simulations using the model and the
i index is for the different particle sizes. The two datasets were run at two different rotor
tip speeds, 69 and 79 m/s, which is indicated with the Low and High indexes, respectively.
The framework for running the optimization utilizes the genetic algorithm for minimizing
the error function.

min
{βi , fmat ,E0

min,α}
E =

n

∑
i=1

((
PiExp,High − PiSim,High

)2
−
(

PiExp,Low − PiSim,Low

)2
)

(5)
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The different bounds used in conjunction with the Genetic Algorithm can be seen in
Table 2. A population size of 8000 was initiated with a set of 800 generations. The limits for
the coefficients for the appearance generation polynomial were reached by initial testing
to end up with a feasible yet large solution space. The values for fmat, E0

min and α were
derived through the implications of their properties and then expanded on the spectrum at
which these types of materials have been documented.

Table 2. Listing the lower and upper bounds of the 6 different variables used during the optimization
routine.

Variables β1, β2, β3, β4 fmat E0
min α

Lower Bound –1000 0.001 0 0

Upper Bound 1000 3 30 1

The error function takes the result of the product estimation function using the same
optimizer for two different speeds and compares each of them to their experimental data
according to Equation (5). The genetic algorithm will then continue to the next generation
until it reaches the tolerance limit and finds an optimum.

3. Results

Running calibrations on multiple datasets from multiple sites enabled the quantifica-
tion of the material properties for the different geological rock types. The property values
obtained from a wide array of sites all converge on values within the range that is to be
expected of rock materials. In Table 3, the summary of the calibrated material properties
per site is listed, where “Default Feed” indicates that only one sample was taken for the
feed into the crusher, and the variation was assumed to be negligible, while the term
“Individual Feeds” denotes that each rotor tip speed configuration run has matching feed
sample data.

Table 3. Material data from all the sites used in the study, along with their locations and calibrated values.

Geological Type Site Location Top Size fmat Source E0
min α

Diabase Ubbarp 19 mm 0.25 Default Feed 21.04 0.94
Diorite Borlänge 11.2 mm 0.75 Default Feed 16.29 0.94

Dolomite Glanshamar 11.2 mm 1.3 Individual Feeds 14.83 0.91
Gneiss Umeå 19 mm 0.8 Individual Feeds 18.61 0.92
Gneiss Atle 19 mm 0.68 Default Feed 22.8 0.88
Gneiss Össjö 4 mm 1.73 Default Feed 29.22 0.99

Gneissic Granite Skyttorp 11.2 mm 1.7 Default Feed 15.79 0.93
Gneissic Granite Önnestad 11.2 mm 1.32 Default Feed 26.54 0.86

Granite Tierp 11.2 mm 2.18 Unique Feeds 16.74 0.96
Granite Gävle 4 mm 1.45 Unique Feeds 20.48 0.92
Granite Gävle 11.2 mm 2.08 Unique Feeds 19.39 0.9
Granite Gävle 11.2 mm 1.63 Unique Feeds 17.91 0.82
Granite Kållered 16 mm 1.36 Individual Feeds 15.45 0.85

Granitic Gneiss Enhörna 19 mm 2.02 Default Feed 15.48 0.91
Granitoid Bro 10 mm 0.06 Individual Feeds 28.02 0.81

Granodiorite Sunderbyn 11.2 mm 1.92 Individual Feeds 23.48 0.95
Limestone Forsby 19 mm 2.35 Default Feed 25.22 0.82
Porphyry Kiruna 10 mm 0.39 Individual Feeds 16.83 0.88
Quartzite Gåsgruvan 19 mm 0.25 Default Feed 21.04 0.94

The results for each dataset originating from one site can be visualized, as in Figure 7.
The dashed lines represent the estimation of the model for the product, and the solid lines are
the tested product curves for the corresponding speeds. Lastly, the black solid line indicates
the feed or feeds in the dataset. Of the three rotor tip speeds, only two were used to train
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the model, the highest and lowest speeds, while the middle speed was used to verify the
response of the model.

Figure 7. Particle size distributions from one of the sites and the corresponding simulation results. Case data are from Tierp,
as seen in Table 3.

By running all the datasets through the same optimization routine, similar results
were obtained for each site, like the results achieved for Figure 7 but with different levels of
magnitude relating to the feed used and material properties. While these properties include
a multitude of factors that affect particle breakage and size progeny, some parameters are
more prevalent than others and will vary less between sites. For instance, the feed size PSD
has a large impact on the product, but the majority of sites surveyed used an 11.2-mm top
size feed. Three factors were calibrated from each site with the use of experimental data.

E0
min is a characterization of the energy level required to achieve particle breakage,

while the fmat property encompasses not only the material properties but also the proper-
ties arising from different particle shapes and α is a size dependency parameter. These
parameters are dependent on many variables within the material but generate a perception
of the strength of the different material types.

The models created and calibrated with these methods have created significantly
accurate models within normal operative speeds. In each dataset, a speed, intermediate,
was excluded from the training data to be used as verification of the model. Values of P20,
P50 and P80 were extracted from the simulated product data and were compared to similar
points interpolated from the experimental data. The values can be seen in Figure 8. These
sets were compared to each other to assess the accuracy and range of the model. In large
part, due to the optimization method, the values for P50 were the least differing, while the
tail ends were often more spread away from the experimental data. Some variation in the
experimental data is also assumed to be linked to the belt cut method of samples taken
from the sites but is generally considered to be negligible.

To test the robustness of the model, PSD predictions of speeds exceeding the rotor tip
speeds the model was trained with were made. In Figure 9, predictions were made for a
tip speed of 85 m/s (15% higher kinetic energy than training data) and 65 m/s (12% less
kinetic energy than training data), respectively.
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Figure 8. A parity plot of the P20, P50 and P80 values from the experimental data compared to the simulated data using the
developed models.

Figure 9. Particle size distributions from one of the sites and the corresponding simulation results for speeds exceeding the
training data of the model. Note that the training speeds were still 69 and 79 m/s, not shown in the figure.

4. Discussion

The distribution of the datasets for the different sites and materials in Figure 10
displays an interesting pattern. Materials on the large scale tend to either end up with
higher values for E0

min and lower values for fmat or, on the opposite side, with high values
for fmat and low values for E0

min. Since fmat can be regarded as the resistance of the material
against fracture, materials with lower values will be more pliable, and a higher level
of particle size reduction can be expected when breakage does occur. E0

min is regarded
as the energy threshold of a material, the level it can withstand before succumbing to
comminution breakage. Materials with higher values tend to require higher levels of
energy to break, ultimately requiring higher rotor tip speeds relative to materials with
lower values.

The model that has been presented can be used to optimize existing plants. The
machine parameters, the particle size distribution for the feed and product and the rock
type are entered into the model, and the site operator can then change the flow rates, rotor
speed or sizes to reach their desired production goals. The practical application of the
model is to enable plant owners to estimate the feasibility of operating a VSI crusher on
site and to see what different types of products they can expect to achieve and in what
tonnages.
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Figure 10. A scatter plot of the fmat and E0
min values for different rock types and sites analyzed.

One possible shortcoming of the model and the theory it uses as a basis is that the
properties of materials are summarized into two parameters and the size dependency
into one parameter. While useful to make the optimization and helpful to characterize a
material, it is possible that certain details or complexities are overlooked or disregarded
due to this approach. For instance, the sphericity and flakiness of material going into the
crusher compared to what goes out are often very different due to the abrasive nature of
the crusher. This factor is included in the material parameters but not isolated as a separate
measurement.
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Abbreviations
a(−) Fraction of initial particle volume as daughter fragment size
α(−) Size-dependency parameter
β(−) Appearance function coefficients
x(m) Initial particle size
fmat(kg/Jm) Material parameter
vrotor(m/s) Rotor tip speed
k(−) Number of impacts
S(−) Fraction of broken particles
E(−) Error objective of optimization function
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E0
min(Jm/kg) Mass-specific threshold energy for breakage

ECS(J/kg) Mass-specific kinetic impact energy
Pexp(−) The particle size from the cumulative particle size distribution from

experimental data
Psim(−) The particle size from the cumulative particle size distribution from

simulation data
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