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Optimization of Two-Phase Sampling Designs With
Application to Naturalistic Driving Studies

Henrik Imberg

Abstract Naturalistic driving studies (NDS) generate
tremendous amounts of traf ¢ data and constitute an important
component of modern traf c safety research. However, analysis
of the entire NDS database is rarely feasible, as it often requires
expensive and time-consuming annotations of video sequences.
We describe how automatic measurements, readily available in
an NDS database, may be utilized for selection of time segments
for annotation that are most informative with regards to
detection of potential associations between driving behavior and
a consecutive safety critical event. The methodology is illustrated
and evaluated on data from a large naturalistic driving study,
showing that the use of optimized instance selection may reduce
the number of segments that need to be annotated by as much
as 50%, compared to simple random sampling.

Index Terms Case-control studies, naturalistic driving stud-
ies, optimal design, pseudo-likelihood, safety critical event,
unequal probability sampling.

NOMENCLATURE
ND Naturalistic driving
NDS Naturalistic driving studies
SCE Safety critical event
SD Standard deviation
SRS Simple random sampling

WMLE  Weighted maximum likelihood estimator

I. INTRODUCTION

N RECENT years, naturalistic driving studies (NDS),

including naturalistic field operational tests, have been
employed all around the globe, providing an important source
of data for analysis and enabling a better understanding of
driver behavior and traffic safety, for example 100-car [1],
[2] and SHRP2 in the U.S.A. [3], [4], euroFOT [5], PRO-
LOGUE [6], and UDRIVE [7] in Europe, as well as NDS
in Australia [8] and in Japan [9]. In NDS, data is collected
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automatically for all driving sessions in a large fleet of vehicles
for several months. These automatic recordings include vehicle
data such as speed and direction; environmental conditions,
lane position, location and surrounding traffic recorded by
radar, video and other external instrumentation; and video
recordings of the drivers face, pedal, and eye movements. The
data provided by the NDS design thus offer many opportunities
for analysis of both normal driving and safety critical events,
and is richer than more traditional data sources such as crash
databases [10], [11].

Despite recent advancements and investments into naturalis-
tic data sources, there are many challenges remaining, largely
related to the huge amount of heterogeneous and sometimes
noisy data generated by NDS. For instance, the SHRP2 project
collected more than a million hours of driving data, including
both video and recordings of vehicle kinematics [12]. Thus,
the sheer volume of data poses a major challenge in analysis
of naturalistic driving (ND) data. On top of this comes issues
with data quality, including data losses and errors in recorded
vehicle kinematics [13] and challenges in the annotation of
video recordings [14]. To address the data quality issue,
the SHRP2 study employed a rigorous procedure for quality
assurance and quality control [12]. Others have proposed using
the Geographic Information System for quality control in
NDS, for example to understand missing data due to existence
of tunnels or to understand speed profile in relation to the
road profile [13], [15]. Thus, there is a need for rigorous and
efficient procedures to ensure high-quality data to be extracted
from NDS.

In order to handle the large amounts of data pro-
duced by NDS, data thinning or subsampling is commonly
employed. For example, [16] proposed a matched case-
crossover approach to extract event and control information
from the video part of ND data, while [10] used random base-
line sampling method. Sampling based approaches become of
even greater relevance when the analyses rely on information
derived from the video data: the great cost associated with
video annotation implies that statistical analyses based on
video sequences must be restricted to only a limited subset of
the original database. Thus, choosing this subset in a manner
that captures as much of the available information as possible
is essential.

In this paper, we address the issue of appropriate subset
selection: we present an inferential framework that enables a
flexible selection of video fragments for annotation from an
NDS database, and show how this selection may be optimized
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using information readily available in the database through
automatic recordings of vehicle maneuver data. The method-
ology is illustrated using data collected in Sweden as part
of the European large scale field operational test (euroFOT)
study [5]. We demonstrate that a variance reduction of up to
50% compared to simple random sampling can be achieved.
In other words, optimal sampling can lead to a performance
on par with that of ordinary methods with up to 50% less
annotation demand.

In the next section, we start by presenting a motivating
example. We then review a common procedure for analysis
of complex, two-phase, samples in Section Ill, and show
in Section 1V how the sample selection may be optimized.
The application of the methodology to the euroFOT data,
collected using Volvo cars in Sweden, can be found in
Sections V and VI.

Il. MOTIVATING EXAMPLE

A. An Embedded Experiment

Consider a traffic situation involving two vehicles, the vehi-
cle taking part in the NDS study (the index car) and a
front car. The two are driving at similar speeds, when the
front car brakes. This scenario describes a situation where
a potential safety critical event (SCE) can occur, namely a
rear-end collision. Of interest is the question of whether the
glancing behavior of the driver of the index car, namely
whether he/she looks at the car in front when braking is
initiated, the speed of the vehicles and time gap between the
two cars at this initiation, have an impact on the likelihood that
a safety critical event will occur. Mathematically, we could
explore this relationship through e.g. an application of a
logistic regression model, with presence, or absence, of an
SCE being the dichotomous response, and speed at brake light,
time gap at brake light and glancing away at brake light as
explanatory variables.

B. Definition of Events

Explicitly, we define an instance to be a time segment
initiated by the turning on of the brake lights of the front
car and ending with the driver of the index car returning
to normal driving after braking. It is also the turning on of
the brake lights that define the timepoint at which braking
is initiated. As collisions are rarely observed in naturalistic
driving data, other safety critical events are often used as proxy
endpoints; these SCEs are typically defined by a combination
of kinematic triggers that identifies SCE candidates, and a
visual review of videos, classifying the SCE candidates by
whether they are relevant for traffic safety or not [2], [17].
Specifically, we are interested in the safety critical event
characterized by the presence of a surprised reaction of the
driver of the index car, commonly referred to as an “oops
reaction” [18], [19]. Thus, the following information requires
video annotation in order to be obtained: the timepoint at
which the brake light turns on, whether the driver looks
on or off road at this timepoint, and whether the event is
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safety critical with the driver displaying a subsequent surprised
reaction after looking back on road.

C. Poisson Sampling

Due to financial constraints, only part of the relevant
instances in an NDS database can be annotated; typically all
the identified SCEs (cases) and some of the instances with no
SCE associated (controls) [10]. A simple way of choosing
controls to be annotated would be to toss a hypothetical
weighted coin for each of the available non-SCE instances,
a process referred to as Bernoulli random sampling in [20].
A somewhat more complex alternative would be a hypothetical
sequence of tosses of different weighted coins, the so called
Poisson random sampling. In this paper we will describe how
the weights in such a sampling procedure can be chosen in a
way that maximizes the information that could potentially be
provided by this smaller sub-sample, ideally approaching the
precision of estimation that would have been present were the
whole data set (i.e. all the instances) analyzed.

D. Data

In the examples that follow, we use data from the euro-
FOT study, containing data from 100 Volvo cars collected
during one year. All vehicles were supplied with specialized
equipment, including video cameras and external radars. Thus,
driver actions, environmental conditions, vehicle data and
vehicle maneuvers were continuously recorded and stored.
Additional details can be found from [21].

For the purpose of demonstrating the sampling approach
described in this paper, 49 instances with an SCE and 500 ran-
domly selected instances without an SCE were identified in
the database. The subset from which these were selected
constituted more than 1,000 driving hours of suitable filtered
instances for the rear-end conflict described above.

Video review revealed data quality issues in 65 of the
500 control candidates, including no video (n = 13), poor
video quality (n = 12), external factors hindering video
annotation (e.g. poor light conditions or driver wearing glasses,
n = 26) or the control candidate being judged as irrelevant for
the event of interest (e.g. due to lane change or lead vehicle
not braking, n = 14). The remaining 435 controls and 49 SCEs
were fully annotated.

In brief, the length of the annotated events ranged from
20 to 30 seconds. The mean (SD) vehicle speed was 53.0 km/h
(16.0) and time gap was 1.8 (0.8) seconds. Glances off road
at brake light were present in 21 (42.9%) of the cases and
63 (14.5%) of the controls.

I11. WEIGHTED ESTIMATION FROM COMPLEX SAMPLES

With the motivating example above in mind, consider a
statistical model f (y|x) relating a response variable Y to a set
of explanatory variables X, indexed by a parameter vector
(e.g. a logistic regression modeling the probability of an SCE).
Consider also a collection D of instances (e.g. time segments
started by the frontal car initiating a brake), for which the
responses yi and the explanatory variables X; are registered.
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For each instance in D, two types of variables can be available:
the ones that are measured automatically (e.g. acceleration)
and the ones that require video annotation in order to obtain
them (e.g. glancing behavior of the driver). We will denote
the former by Z and the latter by W. In the model f (y|x),
both Y and X can, at least partly, belong to this latter class of
measurements that require annotations.

Suppose that each instance i D is assigned a positive
probability  of being sampled, and that a subset S of D has
been sampled and annotated; consequently, complete records
(xi, Vi) are observed for this subset only. Since different
instances can have different sampling probabilities, as is the
case for Poisson sampling, the ordinary maximum likelihood
estimation, which assumes an independent and identically dis-
tributed sample, is generally not applicable. Instead, one may
consider a weighted maximum likelihood estimator (WMLE),
defined by:

:= arg max

), 1)

(): wilog f (yilxi), )
i S
where the weights w; may be taken as w; =1/ ;.

In the survey sampling literature, the WMLE (1) is known
as a pseudo maximum likelihood estimator [22], and the sum
(2), with weights taken as w; = 1/ , as a Horvitz-Thompson

estimator [23] of the log-likelihood

o( )= log f (yilxi), @)

i D
i.e. the log-likelihood we would have obtained if all data had
been annotated. In particular, () is an unbiased estimator of
o( ) provided that all sampling probabilities are strictly posi-
tive. Furthermore, it holds under general regularity conditions,
as the size of the sample S gets large, that the distribution of
under repeated subsampling from D converges to a normal
distribution with mean ¢ and covariance matrix ( o) [22],
[24], where ¢ is the maximizer of the log-likelihood (3) and

()=H() 'VOHO) 4)
2 o(
H() = = (5)
_ 1 i 7 i, i J T
V()= —Sisj + — Si§j
ip ! i,j D r
where j j is the probability of selecting both instances i

and j, si = si(yi,Xi, ) is the column vector defined by
si = log f (yi|xi) (i.e. the score), and H( ) is the
Hessian matrix of the log-likelihood o( ) given in (3). Hence,
the WMLE may be regarded as an estimator of the
finite population parameter g, i.e. the maximum likelihood
estimator we would have obtained if the entire database D
had been annotated.

The WMLE (1) may be obtained by standard software
routines by supplying the sampling weights to the estima-
tion procedure, e.g. using the weights option in the glim
function in the R language for statistical computing [25].
Obtaining appropriate standard errors of the estimates does,

however, require software routines specialized for inference
from complex samples. This is available e.g. through the
svyglm function in the survey package in R [26]-[28].
Formulas for variance estimation may also be found in e.g.
[29, Chapter 6.5].

We point out that the properties of ~ given above are stated
with respect to the sampling mechanism, taking the database
D as fixed. The additional uncertainty arising from the random
process generating the initial database may be accounted for
by addingaterm H( ) ! tothe covariance matrix (4), which
is the usual covariance matrix of the maximum likelihood
estimator o [29]. Since we are considering the problem of
sample selection from a specific database we will ignore this
term in the remaining part of the paper, as it is unaffected by
the subsampling procedure.

For the special case of Poisson sampling, each instance
i D is sampled independently, leading to jj = i j and
a simplification of the covariance matrix (4) of the WMLE to

1 .
H ! Lsis] H 1.

ip '

This simplification allows obtaining a closed form solution
to the optimal choices of ; for certain optimality criteria,
as is detailed in the next section. Note that we, from now on,
write the Hessian (5) of the log-likelihood (3) as H = H( ),
leaving the dependence on the parameter implicit to simplify
the notation.

IV. OPTIMAL SAMPLING SCHEMES

We will now describe how sample selection in NDS with
the use of Poisson sampling may be optimized for a class of
optimality criteria known as linear optimality criteria, which
aims to minimize the average variance of a collection of
linear combinations of the parameter . The motivation for
this particular choice of optimality criterion is threefold: first,
it is a natural optimization criterion in many studies where
the individual or simultaneous effect(s) of one or multiple
covariates are of primary interest; second, it leads, when
considered together with Poisson sampling, to an optimization
problem that is numerically tractable with a simple closed-
form solution for the optimal choice of sampling probabilities;
third, as we will show, it may be used as a building-block for
more complex non-linear optimization criteria.

We start with a single linear combination (c-optimality) and
continue with the general case with multiple linear combina-
tions (L-optimality). This includes, as a special case, mini-
mizing the average variance of the parameters (A-optimality).
We then show how this may be extended to optimization with
respect to non-linear optimality criteria, such as to minimize
prediction variance (V-optimality) [30].

A. Linear Optimality Criteria

Consider first a linear combination of the model parameters
of a regression model a” =a; 1+az o +...ap p, Where
is the parameter vector and a is a column vector of linear
coefficients. Such a linear combination may represent the
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effect of a single covariate, or the effect associated with
a simultaneous change in multiple covariates. Conditionally
on D, i.e. considering the variation due to subsampling from
the database D, the variance of the WMLE of such a linear
combination is given by

Var(a' |D)=a'Var( |D)a, (6)
which for Poisson sampling becomes
Var(@a" |D)=a"H ! _ 'sisT H la
ip !
= C_' +k,
ip !

where

ci=(a"H 's)? (7

and k is a constant not depending on the ’s. Thus, the optimal
sampling scheme in terms of minimizing the variance (6) is
obtained by choosing

i G, (8)

normalized so that ; p i equals the desired sample size
(Proposition 1, Appendix B). As this may result in sampling
probabilities greater than one, a simple adjustment described in
Algorithm 1 in Appendix A may be necessary. The optimality
of the sampling scheme after this modification is governed by
Proposition 2 in Appendix B.

More generally, we may consider a collection of parameter
combinations captured by an r  p matrix L, where each
row a] of L defines a linear combination as described above.
Thus, the matrix L may be defined to capture several relevant
evaluations and comparisons of interest. Using the total vari-
ance of the linear combinations specified by the matrix L as
optimality criterion, the result in Equation (7) generalizes to:

Ci = viTvi ,
) (©)
vi=LH -s;.

The special case where L is the p  p identity matrix corre-
sponds to minimizing the average variance of the parameters
in the vector , commonly referred to as A-optimality [30].

B. Non-Linear Optimality Criteria

The results of the previous section can also be applied
to optimization with respect to certain classes of non-linear
optimality criteria where the optimization criterion can be
expressed in terms of a differentiable function h( ). For
instance, considering a logistic regression model, we may
optimize the sample selection with respect to the variance of
estimators of absolute risks and smooth functions of those,
rather than the estimators of log-odds ratios, as would other-
wise commonly be the case. To see this, we have, by the use
of the Delta method [31], that the variance of h( ) may be
approximated by

h()'Var( ) h(),

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

provided that h( ) _ 0 = 0. Hence, minimizing the aver-

age variance of r such functionshi( ), ..., hy( ) translates
into a linear optimality criterion discussed above with L to be
a matrix with rows equal to  hy( )T.

C. Maximizing the Expected Log-Likelihood

Another important example of a non-linear optimality crite-
rion is obtained when the linear coefficient matrix L is taken
as L = HY2 where H'/2 is a square root of the matrix H
such that HY2H2 = H, leading to a simplification of (9)
to

ci=s H ls. (10)

As we show in [32], the resulting sampling scheme satisfies
the optimality criterion

max E

o ),

with expectation taken with respect to the sampling mecha-
nism. In words, this means that the sampling scheme derived
from (10) (using Algorithm 1 in Appendix A) optimizes the
generalization performance of the estimator in the sense
of maximizing, in expectation, the total log-likelihood (3).1
Compared to the other optimization criteria discussed above,
the criterion (11) has the advantage of not requiring explicit
specification of the linear coefficient matrix L; instead, it is
specified implicitly with respect to the geometry of the model
space. The corresponding optimal sampling scheme is also
invariant to linear transformations and non-singular re-codings
of the design matrix, and implicitly accounts for the relevance
of the variables in terms of their anticipated contribution to
the log-likelihood.

(11)

D. Using Auxiliary Information

A practical complication in optimal design theory is the fact
that the optimal design typically depends on unknown quanti-
ties, such as the actual value of the parameter . In particular,
the optimal design does in our case depend on the Hessian H
and score vectors s;, which in turn depend on the parameter

, outcomes y; and explanatory variables X;, some of which
are unknown. Consequently, the optimal sampling scheme
can not be evaluated, and we must resort to approximations.
In NDS, the availability of auxiliary information in the form
of automatically measured variables provides an opportunity
to derive such an approximation by minimizing the expected
variance under an assisting auxiliary model for the distribution
of the unknowns.

Formally, let Z denote a collection of auxiliary variables
that are automatically measured and thus readily available
for all instances in the database, and g(y, X|z) denote an
auxiliary model for the conditional distribution of the response
Y and explanatory variables X given the auxiliary variables
Z. Considering, as before, a linear coefficient matrix L,
the expected variance of the linear combinations specified by
L is minimized by sampling with probability proportional to

1 This follows from Proposition 2 in [32] by taking the negative log-density
log f (y|x) as loss function.
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E[ci], i.e. replacing ¢j in (7) - (10) and Algorithm 1 by its
expectation under the auxiliary model g(y, x|2).

In general, this expectation can not be obtained analytically
and numerical methods, such as Monte Carlo integration [33],
will have to be employed. An algorithmic description of such
a procedure is provided by Algorithm 2 in Appendix A.
We also present a simplified and computationally less demand-
ing version in Algorithm 3 in Appendix A, which additionally
requires a parameter guess and Hessian matrix H as
input. The auxiliary model g(y, x|z), parameter guess  and
Hessian H may be obtained using e.g. a small pilot study,
prior knowledge, existing data and simulations.

V. MOTIVATING EXAMPLE, CONTINUED
A. Optimization Criteria

Re-visiting the example introduced in Section Il, we con-
sider a logistic regression model for the risk of an SCE given

by

logit P(Y =1|X) = o+ 1Time gap + »Speed

+ 3Glance + 4Glance Time gap,
12)

where Y is a binary indicator of the SCE, Time gap is the dis-
tance between the vehicles measured in seconds, Speed is the
speed of the index car and Glance is a binary indicator whether
the driver is having eyes-off-road at brake light. To illustrate
the proposed sampling procedure, we will consider four linear
optimization criteria directed towards estimating the effects
of time gap, vehicle speed and glancing, and a high-low risk
contrast involving all parameters, as further described below.

i) Time gap. Say that we are primarily interested in the
regression coefficient corresponding to time gap when
having the eyes on road. Explicitly, we are interested
in minimizing the variance of an estimator of 1. In this
case, =(o, 1, 2, 3, 4)' and the linear combination
of interest consists of one single parameter, implying
that a = (0,1,0,0,0).

ii) Vehicle speed. Alternatively, we might be interested in
the effect of speed, i.e. in the parameter », correspond-
ing to a linear combination determined by the coefficient
vector a = (0,0,1,0,0)7.

iii) Glancing. We may also be interested in the effect of
glancing at a certain time gap to the front vehicle, say at
1, 2 and 3 s. time gap. This is described by the parameter
combinations 3 + 4, 3+ 2 4 and 3 + 3 4, corre-
sponding to the coefficient vectors a; = (0,0,0,1,1)7,
a, = (0,0,0,1,2)T, a3 = (0,0,0,1,3)" and the
coefficient matrix

0
10!
0

I_
Il
o oo
o oo
e
w N

iv) High-low risk contrast. As a final example of a linear
optimality criterion, we consider a contrast between a
hypothetical high risk and low risk scenario, defining
the high risk scenario as glancing off road when driving
at 70 km/h and 1 s. time gap, and the low risk scenario

as having eyes-on-road when driving at 30 km/h and
3 s. time gap. The parameter combination corresponding
to the high risk scenario is given by o+ 1 +70 o +
3+ 4 and a coefficient vector anigh = (1,1,70,1, .
Similarly, the low risk scenario may be described by
aiow = (1,3,30,0,0)7. The contrast between the two
is thus described by the linear combination 2 ; +
40 o + 3+ 4, and we may take a as anigh  alow =
(0, 2,40,1,1)".
As an example of a non-linear optimality criterion we
also consider the optimality criterion (11) introduced in
Section IV-C:

v) Maximizing the expected log-likelihood. This does not
require an explicit specification of the linear coefficient
matrix L, but simply amounts to replacing ¢; in (9) by
(10) in the optimization.

B. Auxiliary Information

Recall that there are three variables present in the example
model that require annotation: time gap, vehicle speed and
driver glancing behavior (eyes on/off road), at brake light.
Information about the first two can be obtained by automatic
measurements of vehicle data. Information of the latter would
ideally be obtained by automatic extraction of relevant signals
from the video sequences. Lacking such information, we pro-
ceeded using automatic measurements of vehicle data also to
predict glancing. We used data from the 49 a priori anno-
tated SCEs included in this study to derive auxiliary models,
pretending, in order to mimic a real-world scenario, that the
corresponding information for the controls was unavailable at
this stage.

Proxies for vehicle speed and time gap at brake light were
obtained as follows. Based on the deceleration profiles of
the annotated SCEs, a proxy for time of brake light onset
was first identified (Figure 1). The speed and time gap at
the predicted timepoint for brake light were consequently
used as proxies for the corresponding variables at brake light.
To identify auxiliary variables for glancing, we employed a
logistic regression model with eyes on/off road as a response
and used a stepwise search for predictors among the following
automatically measured variables: vehicle speed (km/h), time
gap (s), acceleration of vehicle ahead (m/s?), a binary indicator
whether the driver of the index car is braking, and time to
collision (s), defined as the expected time for the index car to
collide with the front car if they remain on the same path and
at the same speeds. This procedure resulted in deceleration of
vehicle ahead as the sole predictor of glancing behavior.

After auxiliary variables had been identified, we used data
from the annotated SCEs to estimate auxiliary models, using
univariate linear regression for time gap and vehicle speed,
yielding a coefficient of determination (R?) of 0.83 and 0.88,
and univariate logistic regression for glancing away from road
(Figure 2). The predictive performance of the latter was,
however, rather weak. Indeed, the auxiliary model predicted
a higher probability of having eyes-on-road with increasing
deceleration of the lead vehicle, but no such trend was actually
observed among the controls (Figure 2).
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