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0. Introduction

Fekete points and transfinite diameter are classical notions in logarithmic potential 
theory in the plane. For each m ∈ N, the m-diameter δm(K) of a compact subset K ⊂ C

is defined as the supremum of the geometric mean distance between m + 1 points in K, 
maximizers being called Fekete configurations. The m-diameter of K admits a limit 
δ∞(K) as m → ∞, called the transfinite diameter of K, which turns out to coincide 
with the logarithmic capacity of K. Further, Fekete configurations become asymptotically 
unique in the limit, in the sense that they equidistribute to a certain canonical probability 
measure on K, called its equilibrium measure.

In several complex variables, a similar picture was only rather recently obtained. 
The first steps were taken by Leja in the 1950’s, introducing a notion of m-diameter 
δm(K) for a compact subset K ⊂ Cn, defined in terms of the supremum of certain 
Vandermonde-type determinants. The existence of the transfinite diameter δ∞(K) =
limm→∞ δm(K) was established by Zaharjuta [80], and the next key step came with 
Rumely’s observation in [66] that the general results in arithmetic intersection theory 
developed in [24] yield in particular an exact formula for δ∞(K) in terms of pluripotential 
theory, generalizing the classical Robin formula for the logarithmic capacity in the plane, 
and involving plurisubharmonic envelopes and mixed Monge–Ampère operators in the 
sense of Bedford–Taylor. This triggered joint work of the first author with Berman and 
Witt Nyström [5,6], which built on Bergman kernel asymptotics to establish a general 
version of Rumely’s formula in the setting of complex projective manifolds, and combined 
it with a variational argument to prove the equidistribution of Fekete configurations in 
this context.

The main purpose of the present paper is to study versions of these results in 
non-Archimedean (Berkovich) geometry. While many results hold over an arbitrary 
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non-Archimedean complete valued field K, the full picture relies on more refined non-
Archimedean pluripotential theory as developed in [14,13,18,16], and hence requires K
to be trivially or discretely valued and of residue characteristic 0.

Asymptotics of relative volumes. The Bouche–Catlin–Tian–Zelditch asymptotic expan-
sion of Bergman kernels [11,19,76,81] is a fundamental result in complex geometry, which 
describes the asymptotic behavior of the L2-norms associated to large tensor powers of a 
positive Hermitian line bundle. As noticed in [5], it can be reformulated as an asymptotic 
expansion for the logarithmic volume ratio of such L2-norms, as follows.

First, define the relative volume of any two norms ‖ · ‖, ‖ · ‖′ on an N -dimensional 
complex vector space V as

vol(‖ · ‖, ‖ · ‖′) := log
(

det ‖ · ‖′
det ‖ · ‖

)
, (0.1)

where det ‖ ·‖, det ‖ ·‖′ denote the induced norms on the determinant line detV =
∧N

V . 
In terms of the unit balls B, B′ ⊂ V of the two norms,

vol(‖ · ‖, ‖ · ‖′) = 1
2 log

(
volB
volB′

)
+ O(N logN),

where the error term O(N logN) vanishes when the two norms are Hermitian.
Let next X be an n-dimensional complex projective manifold. Every smooth, positively 

curved metric φ on an (ample) line bundle L over X induces, for each m ∈ N, an L2-
norm ‖ · ‖L2(mφ) on the space of global sections H0(mL) = H0(X, L⊗m). The asymptotic 
expansion of Bergman kernels mentioned above turns out to be equivalent to the existence 
of a full asymptotic expansion

vol
(
‖ · ‖L2(mφ), ‖ · ‖L2(mψ)

)
= mn+1an+1 + mnan + . . . + O(m−∞)

for any two such metrics φ, ψ. Up to a multiplicative constant, the leading order coeffi-
cient an+1 can further be identified with a fundamental functional in Kähler geometry, 
the relative Monge-Ampère energy1

E(φ, ψ) := 1
n + 1

n∑
j=0

∫
X

(φ− ψ)(ddcφ)j ∧ (ddcψ)n−j . (0.2)

We use additive notation for metrics on line bundles, so that φ − ψ is a function on X, 
and ddcφ, ddcψ denote the curvature (1, 1)-forms of φ, ψ.

1 Note that the present normalization, which is more convenient for the purpose of this paper, is not 
uniform across the literature.
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Consider now an arbitrary complete valued field K, i.e. a field K complete with respect 
to an absolute value. In the Archimedean case, K = R or C, by the Gelfand–Mazur 
theorem. In the non-Archimedean case, the main examples are K = Qp, Cp, or fields of 
formal Laurent series and their completed algebraic closure, but the trivially valued case 
is also important for the study of K-stability (see [17]). Let X be a geometrically reduced 
projective scheme over K, L be a line bundle on X, and φ, ψ be continuous metrics on 
(the Berkovich analytification of) L. Building on a result of Chen and Maclean based on 
Okounkov bodies [22], we show the existence of the relative volume of φ, ψ

vol(L, φ, ψ) := lim
m→∞

n!
mn+1 vol (‖ · ‖mφ, ‖ · ‖mψ) ∈ R, (0.3)

cf. Theorem 9.8. The main result of the present paper is as follows.

Theorem A. Let X be a geometrically reduced projective scheme over any complete valued 
field K, and φ, ψ be continuous psh2 metrics on an ample line bundle L over X. Then

vol(L, φ, ψ) = E(φ, ψ).

In the Archimedean case, it follows from results of Demailly that a continuous metric 
on L is psh iff it is a uniform limit of Fubini–Study metrics (see Theorem 7.1). In the 
non-Archimedean case, we use this as a definition, and prove compatibility with the more 
common notion of semipositive metric in this context, due to S.W. Zhang and involving 
nef models, when K is nontrivially valued. We also show that a continuous metric φ is 
psh iff it becomes psh after ground field extension. The relative Monge–Ampère energy 
of continuous psh metrics can still be defined by (0.2), the latter being understood in 
the sense of Chamber-Loir and Ducros [20] in the non-Archimedean sense.

In the Archimedean case, Theorem A reduces to [5] after passing to a resolution of 
singularities. In the discretely valued case, it was established in [18, Theorem A]. The 
main contribution of the present paper is thus to establish Theorem A for a densely 
valued, non-Archimedean ground field K.

The psh envelope P(φ) of a continuous metric φ on L is defined as the pointwise 
supremum of the family of all continuous psh metrics ψ on L such that ψ ≤ φ. We say 
that continuity of envelopes holds for (X, L) if P(φ) is continuous (and hence psh) for 
each continuous metric φ on L.

Corollary B. Assume that continuity of envelopes holds for (X, L). For any two contin-
uous metrics φ, ψ on L, we then have

vol(L, φ, ψ) = E(P(φ),P(ψ)).

2 A shorthand for plurisubharmonic.
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In the Archimedean case, classical results in pluripotential imply that continuity of 
envelopes holds whenever X is normal, and Corollary B is indeed also a consequence 
of [5] in that case.

In the non-Archimedean case, we similarly expect continuity of envelopes to holds as 
soon as X is normal. As of this writing, continuity of envelopes (and hence Corollary B) 
has been established when X is smooth, and one of the following is satisfied:

• X is a curve, as a consequence of A. Thuillier’s work [74] (see [44]);
• K is discretely or trivially valued, of residue characteristic 0 [14,16], building on 

multiplier ideals and the Nadel vanishing theorem;
• K is discretely valued of characteristic p, (X, L) is defined over a function field 

of transcendence degree d, and resolution of singularities is assumed in dimension 
n + d [44], replacing multiplier ideals with test ideals.

Sketch of the proof. As already mentioned, Theorem A basically follows from [5] in the 
Archimedean case, and we henceforth assume that K is non-Archimedean. The main 
tools involved in the proof can be summarized as follows.

The reduced fiber theorem. The proof of Theorem A is fairly easily reduced to the case 
where each metric is induced by an ample model (X , L) of (X, L), i.e. an ample line 
bundle L extending L to a projective model X of X over the valuation ring K◦. Besides 
the supnorm ‖ ·‖mφ defined by the model metric φ = φL, the space of sections H0(mL) is 
then also equipped with the lattice norm ‖ ·‖H0(mL) induced by the K◦-module H0(mL) =
H0(X , L⊗m). This lattice norm, which is to some extent the analogue of the L2-norm in 
the present non-Archimedean context, coincides with the supnorm when X has a reduced 
special fiber, but not in general. Using the Bosch–Lütkebohmert–Raynaud reduced fiber 
theorem [10], we prove however that the distortion between ‖ ·‖mφ and ‖ ·‖H0(mL) remains 
bounded as m → ∞, which enables us to replace the supnorms with the lattice norms 
in proving Theorem A.

Knudsen–Mumford expansion. Our main tool is then the Knudsen–Mumford expansion 
of the determinant of cohomology [53], which plays the role of the asymptotic expansion 
of Bergman kernels in the complex case, and provides for m 	 1 a polynomial expansion 
(in additive notation for Q-line bundles over SpecK◦)

detH0(mL) = mn+1

(n + 1)! 〈L
n+1〉 + . . . (0.4)

with leading order term the Deligne pairing 〈Ln+1〉. Since models over K◦ are non-
Noetherian in the densely valued case, some care is however required to apply this 
result, and the relevant explanations are provided in Appendix A, based on F. Ducrot’s 
approach [34].
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Metrics on Deligne pairings. The Knudsen–Mumford expansion yields an expression of 
the relative volume of the metrics as a difference of model metrics on the Deligne pairing 
〈Ln+1〉. The final ingredient in the proof of Theorem A consists in relating model metrics 
on Deligne pairings with mixed Monge–Ampère integrals, which is accomplished via the 
Poincaré–Lelong formula of [20] and a careful monotone regularization argument.

Transfinite diameter and Fekete points. Following the strategy developed in [5,6], we 
establish the existence of transfinite diameters, and combine it with a differentiability 
result proved in [13,18,16] under appropriate assumptions on the ground field K to infer 
equidistribution of Fekete points.

Let as above X be a geometrically reduced projective scheme over a complete valued 
field K. Let L be a line bundle on X, and set N := dim H0(X, L). The data of a basis 
s = (si) of H0(X, L) determines a generator s1 ∧ · · · ∧ sN of detH0(X, L), as well as a 
section

det s ∈ H0
(
XN , L�N

)
,

expressed as the Vandermonde determinant

(det s)(x1, . . . , xN ) = det (si(xj)) .

Every continuous metric φ on L induces a continuous metric φ�N on L�N , and a Fekete 
configuration for φ is a point P ∈ (XN )an that computes the supnorm ‖ det s‖φ�N . The 
choice of a norm ‖ · ‖ on H0(X, L) induces a norm det ‖ · ‖ on detH0(X, L), and the 
diameter of φ with respect to ‖ · ‖ is defined as the normalized supnorm

δ(φ, ‖ · ‖) :=
‖ det s‖φ�N

det ‖s1 ∧ . . . ∧ sN‖ ,

which is independent of the choice of basis s = (si).

Theorem C. Let L be any line bundle on a geometrically reduced projective scheme X
over a complete valued field K. For any two continuous metrics φ, ψ on L, the transfinite 
diameter

δ∞(φ, ψ) := lim
m→∞

δ(mφ, ‖ · ‖mψ)n!/mn+1

exists in R>0, and satisfies log δ∞(φ, ψ) = vol(L, ψ, φ).

This is inferred from the existence of the limit (0.3) defining the relative volume 
vol(L, φ, ψ) = − vol(L, ψ, φ) via an estimate of the operator norms of the embeddings 
det H0(mL) ↪→ H0 ((mL)�Nm

)
with respect to the norms induced by φ on both sides, 

which is again ultimately deduced from the reduced fiber theorem.
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From now on we assume that L is ample. To state our last main result, we shall say 
that differentiability holds at a continuous metric φ on L if:

(i) the psh envelope P(φ) is continuous (hence psh);
(ii) for all f ∈ C0(Xan) we have

d

dt

∣∣∣∣
t=0

vol(L, φ + tf, φ) =
∫

Xan

f (ddc P(φ))n .

Differentiability is known to hold at all continuous metrics when X is smooth and one 
of the following conditions is satisfied:

• K is Archimedean [5];
• K is non-Archimedean, trivially or discretely valued, of residue characteristic 

zero [14,18,16];
• K is discretely valued of characteristic p, (X, L) is defined over a function field 

of transcendence degree d, and resolution of singularities is assumed in dimension 
n + d [44,18].

In a forthcoming paper [15], it will be shown that continuity of envelopes implies differ-
entiability at all continuous metrics.

Importing the variational argument of [6], itself based on an idea of [71], we prove:

Theorem D. Let X be a geometrically reduced, projective scheme over a complete valued 
field K. Let φ be a continuous metric on an ample line bundle L over X, of volume 
V = (Ln), and assume that differentiability holds at φ. For each m 	 1, pick a Fekete 
configuration Pm ∈ (XNm)an for mφ. Then Pm equidistributes to the probability measure

μφ := V −1(ddc P(φ))n.

as m → ∞.

Organization of the paper. The paper is organized as follows:

• Section 1 contains background material on norms on finite dimensional vector spaces 
over a complete valued field. We present the results in the Archimedean and non-
Archimedean cases as uniformly as possible.

• In Section 2 we discuss determinants of norms and their relation to relative spectra.
• Section 3, which stands somewhat apart from the rest of paper, applies the previous 

result to construct metrics on spaces of norms, following [39].
• Sections 4 and 5 contain background material on Berkovich spaces and metrics on 

line bundles. We recall the standard constructions of model metrics, and compare 
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them to Fubini–Study metrics. We discuss the relation between the reduced fiber 
theorem and finiteness of integral closure.

• Section 6 establishes our first key tool, to wit boundedness of the distortion between 
the supnorms and lattice norms induced by a model. As a consequence, we obtain a 
precise description of the behavior of supnorms under ground field extension.

• In Section 7 we study limits of Fubini–Study metrics, compare them to Zhang’s 
definition of semipositive metrics, and discuss the related notion of semipositive 
envelope.

• In Section 8 we review the Bedford–Taylor/Chambert–Loir–Ducros mixed Monge–
Ampère operators, and relate them to Deligne pairings.

• Section 9 contains the proof of Theorem A and Corollary B.
• Section 10 shows the existence of transfinite diameters and equidistribution of Fekete 

points, i.e. Theorem C and Theorem D. We also show how the results can be applied 
in the case of toric varieties.

• In the Appendix we explain how F. Ducrot’s approach to the Knudsen–Mumford 
expansion for the determinant of cohomology [34] and the related notion of Deligne 
pairings can be extended from the usual Noetherian case to arbitrary schemes.

Acknowledgments. We are grateful for many helpful discussions and remarks from many 
colleagues. In particular, we thank Robert Berman, Dario Cordero-Erausquin, Antoine 
Ducros, Gerard Freixas, Gilles Godefroy, Mattias Jonsson, Klaus Künnemann, Marco 
Maculan, Florent Martin, David Rydh. We are especially grateful to Walter Gubler for 
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ANR-15-CE40-0003. The second author would like to thank the ANR project POSITIVE 
ANR-10-BLAN-0119 for financial support. The second author wants to thank the Max-
Planck Institut in Bonn, where part of this work was effectuated, for their excellent 
working conditions and hospitality.

Part 1. Spaces of norms and determinants

1. Spaces of norms

The goal of this section is to review some basic material on finite dimensional normed 
vector spaces, treating in parallel the Archimedean and non-Archimedean cases (includ-
ing the trivially valued case). All the results are more or less well-known, but our proof 
of density of diagonalizable norms among all norms in the non-Archimedean case (The-
orem 1.19) appears to be new.

1.1. Complete valued fields

Here and throughout the article, K denotes a complete valued field, i.e. a field endowed 
with a (possibly trivial) absolute value | · | : K → R≥0, with respect to which it becomes 
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a complete metric space. The value group |K×| is a subgroup of R>0, and is thus either 
discrete or dense. We sometimes use the additive value group ΓK := log |K×| ⊂ R.

Recall that K is Archimedean if, for each nonzero a ∈ K, there exists n ∈ Z with 
|na| > 1. This implies that K has characteristic 0, and hence contains Q, and that 
the restriction of | · | to Q is equivalent to the standard absolute | · |∞, by Ostrowski’s 
theorem. As a result, K is a complete field extension of R, and hence K = R or C (up 
to normalization of the absolute value), by the Gelfand–Mazur theorem.

Otherwise, K is non-Archimedean, and this holds if and only if | · | satisfies the ultra-
metric inequality |a + b| ≤ max{|a|, |b|} for all a, b ∈ K. We then have a corresponding 
real-valued valuation vK := − log | · | on K, whose valuation ring K◦ is thus the closed 
unit ball of K, with maximal ideal K◦◦ the open unit ball and residue field K̃ := K◦/K◦◦. 
Since the value group is a subgroup of R, the valuation ring K◦ is of Krull dimension 
at most 1, and it is Noetherian if and only if |K×| is discrete. In that case, K◦◦ is a 
principal ideal; a generator πK of K◦◦ is called a uniformizing parameter, and is unique 
up to multiplication by a unit.

If on the other hand K is algebraically closed, then K̃ is algebraically closed as well, 
and |K×| is divisible. In particular, K is then either trivially valued or densely valued. 
The completion of an algebraic closure of any non-Archimedean field K is denoted by 
CK . It is the smallest complete algebraically closed extension of K.

A field K is local if its unit ball K◦ is compact. This holds if and only if K is either 
Archimedean, or non-Archimedean with finite residue field K̃. In the latter case, K is 
trivially or discretely valued, and in fact either a finite trivially valued field, or isomorphic 
to a finite extension of Qp or Fp((t)) (up to normalization of the absolute value).

An immediate extension of a non-Archimedean field K is a complete field extension 
F/K with the same value group and residue field as K. The field K is maximally complete
if it admits no nontrivial immediate extension. By [49], K is maximally complete iff 
it is spherically complete, which means that any decreasing sequence of closed balls 
has non-empty intersection. A discretely valued field is maximally complete, and every 
algebraically closed field admits an immediate maximally complete extension, unique up 
to isomorphism [49, Theorem 5].

Example 1.1. Let k be an algebraically closed field of characteristic 0, and endow the 
field K = k((t)) of formal Laurent series with the t-adic valuation. An algebraic closure 
of K is given by the field of Puiseux series

k((t1/∞)) =
⋃
n≥1

k((t1/n)),

whose completion CK is realized as the field of formal series f =
∑

r∈Q art
r, ar ∈ k, 

with support Supp f = {r ∈ Q | ar �= 0} containing only finitely many elements with a 
given upper bound. The immediate maximally complete extension of CK is given by the 
Malcev–Neumann field k( (tQ) ) of power series f =

∑
r∈Q art

r with well-ordered support. 
Note that f =

∑
n≥1 t

−1/n is in k( (tQ) ) \CK , so that CK is not maximally complete.
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Example 1.2. Similarly, the completion Cp of an algebraic closure of Qp is also not maxi-
mally complete. Denote by A the Witt ring of Fp, i.e. the valuation ring of the completion 
of the maximal unramified extension of Qp. The immediate maximally complete exten-
sion of Cp is obtained as the quotient of the Malcev–Neumann ring A( (tQ) ) by the ideal 
of formal power series f =

∑
r∈Q art

r such that 
∑

n∈Z ar+np
n = 0 in Zp for all r ∈ Q, 

cf. [60, §4].

1.2. The space of norms

Let V be a fixed finite dimensional K-vector space, and set N := dimV .

Definition 1.3. A seminorm on V is a function ‖ · ‖ : V → R+ such that

(i) ‖av‖ = |a|‖v‖ for all a ∈ K, v ∈ V ;
(ii) ‖v + w‖ ≤ ‖v‖ + ‖w‖ (resp. ‖v + w‖ ≤ max{‖v‖, ‖w‖}) for all v, w ∈ V if K is 

Archimedean (resp. non-Archimedean).

We say that ‖ · ‖ is pure if it takes values in |K| ⊂ R≥0. A norm is a seminorm ‖ · ‖ such 
that ‖v‖ = 0 ⇐⇒ v = 0. We denote by N (V ) the set of all norms on V .

The group GL(V ) acts on N (V ) by composition.

Example 1.4. If K is Archimedean, mapping a norm ‖ ·‖ to its closed unit ball B (centered 
at 0) sets up a one-to-one correspondence between N (V ) and the set of all convex bodies 
of V that are centrally symmetric when K = R, and S1-invariant when K = C. The 
inverse map is obtained by setting

‖v‖ = inf {r ≥ 0 | v ∈ rB} .

Example 1.5. If K is trivially valued, the closed balls Br, of radius r, of a norm on V
form an increasing filtration of V by linear subspaces, which is exhaustive (Br = V

for r 	 1), separating (Br = {0} for r � 1), and right-continuous (Br =
⋂

r′>r Br′). 
Conversely, any such filtration defines a norm by setting

‖v‖ = inf{r ≥ 0 | v ∈ Br}.

In other words, the data of a norm with respect to the trivial absolute value is equivalent 
to that of an increasing flag {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V of linear subspaces, together 
with a increasing sequence 0 = r0 < r1 < · · · < rn.

Equivalence of norms over R and C is usually established as a consequence of the com-
pactness of the unit cube. Crucially, equivalence of norms still holds over any complete 
valued field.
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Proposition 1.6. Any two norms ‖ · ‖, ‖ · ‖′ on V are equivalent, i.e. there exists C > 0
such that C−1‖ · ‖ ≤ ‖ · ‖′ ≤ C‖ · ‖.

Proof. For the convenience of the reader, we repeat the simple standard argument, in 
order to show that it applies to the trivially valued case as well. Note first that the 
result implies that V is complete with respect to any norm ‖ · ‖. Indeed, after choosing 
a basis (ei) of V , ‖ · ‖ will be equivalent to the �∞-norm ‖ · ‖∞ associated to (ei), 
which is complete since it is isometrically isomorphic to KN . We argue by induction on 
N = dimV , the desired result being trivial for N = 1. We are going to show that any 
given norm ‖ · ‖ on V is equivalent to ‖ · ‖∞. For each subspace W �= V , the restriction 
of ‖ · ‖ to W is complete, by induction. As a result, W is closed with respect to ‖ · ‖, and 
hence infw∈W ‖v + w‖ > 0 for each v ∈ V \W . In particular,

ci := inf
a∈KN

∥∥∥∥∥∥ei +
∑
j 	=i

ajej

∥∥∥∥∥∥ > 0

for all i. For each a ∈ KN and each i with ai �= 0, we get∥∥∥∥∥∥
∑
j

ajej

∥∥∥∥∥∥ = |ai|

∥∥∥∥∥∥ei +
∑
j 	=i

aj
ai

ej

∥∥∥∥∥∥ ≥ ci|ai|,

and hence 
∥∥∥∑j ajej

∥∥∥ ≥ (minj cj) maxj |aj |. By the triangle inequality, we also have ∥∥∥∑j ajei

∥∥∥ ≤ N maxj |aj |‖ei‖, which proves that ‖ ·‖ and ‖ ·‖∞ are indeed equivalent. �
As noticed during the proof, each linear subspace W ⊂ V is closed with respect to 

any norm ‖ · ‖, and ‖ · ‖ thus induces a quotient norm ‖ · ‖V/W on V/W , defined as usual 
by

‖v̄‖V/W := inf
w∈W

‖v + w‖

for each v ∈ V with image v̄ ∈ V/W .
By Proposition 1.6, we can endow N (V ) with the Goldman–Iwahori metric d∞

(named after [40]), defined by

d∞ (‖ · ‖, ‖ · ‖′) := sup
v∈V \{0}

|log ‖v‖ − log ‖v‖′| . (1.1)

The exponential of d∞ (‖ · ‖, ‖ · ‖′) is thus the distortion between the two norms, i.e. the 
smallest constant C ≥ 1 such that

C−1‖ · ‖ ≤ ‖ · ‖′ ≤ C‖ · ‖.

The action of GL(V ) on N (V ) preserves d∞.
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Example 1.7. Assume dimV = 1, and pick a nonzero v ∈ V . Then ‖ · ‖ �→ log ‖v‖ defines 
an isometry (N (V ), d∞) � R, and the action of GL(V ) on N (V ) is equivalent to the 
action of the additive value group ΓK = log |K×| on R by translation.

The basic topological properties of N (V ) are as follows.

Proposition 1.8. The metric space (N (V ), d∞) is complete. If K is local, i.e. its unit ball 
K◦ is compact, then any closed bounded subset of N (V ) is compact.

Proof. If (‖ · ‖n) is a Cauchy sequence in N (V ), then log ‖v‖n is a Cauchy sequence for 
each nonzero v ∈ V . We easily conclude that ‖ · ‖n converges in N (V ), which proves 
the first assertion. Assume now that K is local. After choosing a basis, we may assume 
that V = KN , which we equip with the �∞-norm ‖ · ‖∞. By the triangle inequality, each 
norm ‖ · ‖ with d∞(‖ · ‖, ‖ · ‖∞) ≤ C restricts to a C-Lipschitz continuous function on 
the compact set (K◦)N . By the Arzelà–Ascoli theorem, the closed balls of N (V ) (and 
hence any bounded closed subset) are thus compact. �
Remark 1.9. Conversely, if dimV > 1, one can show that N (V ) is locally compact only 
if K◦ is compact.

1.3. Diagonalizable norms

In order to treat in parallel the Archimedean and non-Archimedean cases, we will use 
the following terminology.

Definition 1.10. A norm ‖ · ‖ on V is diagonalizable if there exists a basis (ei) such that 
we have for all a ∈ KN :

(i) ‖ 
∑

i aiei‖2 =
∑

i ‖aiei‖2 (Archimedean case);
(ii) ‖ 

∑
i aiei‖ = maxi ‖aiei‖ (non-Archimedean case).

The basis (ei) is then said to be orthogonal for ‖ · ‖, and it is orthonormal if it further 
satisfies ‖ei‖ = 1. We denote by

N diag(V ) ⊂ N (V )

the set of diagonalizable norms.

Note that a norm admits an orthonormal basis iff it is diagonalizable and pure (cf. Def-
inition 1.3). In the Archimedean case, all norms are pure, and a norm is diagonalizable if 
and only if it derives from a Euclidian/Hermitian scalar product. In the non-Archimedean 
case, N diag(V ) is a dense subset of N (V ) (see §1.4 below), and N diag(V ) = N (V ) for 
several important classes of fields K.
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Example 1.11. If K is trivially valued, any norm ‖ · ‖ is diagonalizable. Indeed, ‖ · ‖
determines a flag of subspaces (cf. Example 1.5), and a basis (ei) of V is orthogonal for 
‖ · ‖ if and only if (eσ(i)) is compatible with the flag, for some permutation σ ∈ SN .

More generally, we have:

Lemma 1.12. Assume that K is non-Archimedean. The following properties are equiva-
lent:

(i) K is maximally complete;
(ii) every norm on a finite dimensional K-vector space is diagonalizable.

Proof. (i) =⇒ (ii) is proved in [8, 2.4.2/3]. Assume conversely that K is not maximally 
complete, and pick a nontrivial immediate extension F/K. For any choice of a ∈ F \K, 
we claim that the restriction ‖ · ‖ of the absolute value of F to K + aK � K2 is 
not diagonalizable. Assume the contrary. Since ‖ · ‖ takes values in |F | = |K|, it then 
admits an orthonormal basis (e1, e2). Using F̃ = K̃, we find a unit u ∈ K◦ such that 
e1 − ue2 ∈ L◦◦, i.e. ‖e1 − ue2‖ < 1, contradicting the orthonormality of (e1, e2). �

In the Archimedean case, diagonalizable norms are of course preserved by restriction 
and quotient. This is also true in the non-Archimedean case (cf. [8, 2.4.1/5]):

Lemma 1.13. Let 0 → V ′ → V → V ′′ → 0 be an exact sequence of finite dimensional 
K-vector spaces. If ‖ · ‖ is a diagonalizable norm on V , then the induced norms on V ′

and V ′′ are also diagonalizable.

The following codiagonalization result is crucial for what follows. It will be proved in 
§1.5, after the basic facts on duality have been discussed.

Proposition 1.14. For any two diagonalizable norms ‖ · ‖, ‖ · ‖′ ∈ N diag(V ), there exists 
a basis (ei) of V that is orthogonal for both ‖ · ‖ and ‖ · ‖′.

This can be used to give a simple description of the restriction of d∞ to N diag(V ).

Lemma 1.15. If ‖ · ‖, ‖ · ‖′ ∈ N diag(V ) are codiagonalized in a basis (ei), then

d∞(‖ · ‖, ‖ · ‖′) = max
i

∣∣∣∣log ‖ei‖
‖ei‖′

∣∣∣∣ .
If K is non-Archimedean, we have more generally

d∞(‖ · ‖, ‖ · ‖′) = log max
{

max
i

‖ei‖′
‖ei‖

,max
i

‖e′i‖
‖e′i‖′

}
whenever (ei) and (e′i) are orthogonal bases for ‖ · ‖ and ‖ · ‖′, respectively.
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Proof. Assume first that K is Archimedean. We trivially have

d∞(‖ · ‖, ‖ · ‖′) = sup
v∈V \{0}

∣∣∣∣log ‖v‖
‖v‖′

∣∣∣∣ ≥ m := max
i

∣∣∣∣log ‖ei‖
‖ei‖′

∣∣∣∣
Consider conversely v =

∑
i aiei with a ∈ KN . Then

‖v‖′ 2 =
∑
i

|ai|2‖ei‖′ 2 ≤ e2m
∑
i

|ai|‖ei‖2 = e2m‖v‖2.

By symmetry, this shows that e−m‖ · ‖ ≤ ‖ · ‖′ ≤ em‖ · ‖, i.e. d∞(‖ · ‖, ‖ · ‖′) ≤ m. In the 
non-Archimedean case the result follows from Lemma 1.16 below. �
Lemma 1.16. Assume that K is non-Archimedean. Let ‖ · ‖ be a diagonalizable norm with 
orthogonal basis (ei), and ‖ · ‖′ be any (ultrametric) seminorm on V . Then

sup
v∈V \{0}

‖v‖′
‖v‖ = max

i

‖ei‖′
‖ei‖

.

Proof. As above, we trivially have supv∈V \{0} ‖v‖′/‖v‖ ≥ m := maxi ‖ei‖′/‖ei‖, and 
v =

∑
i aiei satisfies ‖v‖′ ≤ maxi |ai|‖ei‖′ ≤ m maxi |ai|‖ei‖ = m‖v‖. �

We now discuss in more detail the structure of the set N diag(V ) of diagonalizable 
norms. To each basis e = (ei) of V is associated an injective map

ιe : RN ↪→ N diag(V ),

which takes λ ∈ RN to the unique norm ‖ · ‖e,λ that is diagonalized in (ei) and such that 
‖ei‖e,λ = e−λi . The image

Ae := ιe(RN ) ⊂ N diag(V )

is thus the set of norms that are diagonalized in the given basis e, and is called an 
apartment (or flat) of N diag(V ). By definition, N diag(V ) =

⋃
e Ae, and the Goldman–

Iwahori metric d∞ can then be characterized as follows.

Proposition 1.17. The restriction of d∞ to N diag(V ) is the unique metric such that each 
ιe : RN ↪→ N diag(V ) becomes an isometric embedding with respect to the �∞-norm 
on RN .

Proof. Each ιe is an isometric embedding by Lemma 1.15, and uniqueness follows from 
the fact that any two points of N diag(V ) belong to the image of some ιe, by codiagonal-
ization (Proposition 1.14). �
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This picture will be generalized to any symmetric norm on RN (and in particular 
to the �2-norm) in Section 3, leading to the description of N diag(V ) as a Riemannian 
symmetric space/Euclidian building. In the present setting, the general construction of 
retractions onto an apartment in building theory specializes as follows (compare [39]).

Definition 1.18. Let e = (ei) be a basis of V , with apartment Ae = ιe(RN ) ⊂ N diag(V ). 
The Gram–Schmidt projection ρe : N (V ) → Ae is defined by sending a norm ‖ · ‖ to the 
unique norm ‖ · ‖e that is diagonalized in e and such that

‖ei‖e = inf
a∈KN

∥∥∥∥∥∥ei +
∑
j<i

ajej

∥∥∥∥∥∥
for i = 1, . . . , N .

Setting Wi := Vect(e1, . . . , ei) defines a complete flag W• in V , and ‖ · ‖ induces a 
subquotient norm on each graded piece Wi/Wi−1, and hence a diagonalizable norm on 
the graded object GrV =

⊕
1≤i≤N Wi/Wi−1. The norm ‖ · ‖e can then be described as 

the corresponding norm on V under the isomorphism V � GrV defined by (ei). It is 
straightforward to see that ρe : N (V ) → Ae is a retraction, i.e. restricts to the identity 
on Ae.

The chosen terminology comes from the Archimedean case, where the Gram–Schmidt 
orthogonalization process associates to a Euclidian/Hermitian norm ‖ · ‖ and a basis (ei)
the orthogonal basis (e′i) obtained by projection of each ei orthogonal to Wi−1, which 
satisfies ‖ei‖e = ‖e′i‖.

1.4. Approximation by diagonalizable norms

The goal of this section is to study the closure in N (V ) of the set N diag(V ) of diago-
nalizable norms.

Theorem 1.19. The space of diagonalizable norms N diag(V ) satisfies the following prop-
erties.

(i) If K is Archimedean, then N diag(V ) is closed in N (V ), and each norm ‖ · ‖ ∈ N (V )
is at distance at most 1

2 logN of N diag(V ).
(ii) If K is non-Archimedean, then N diag(V ) is dense in N (V ).

Closedness in (i) follows from the fact that Euclidian/Hermitian norms are character-
ized by the parallelogram law

‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2,
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and the second half of (i) can be deduced from the John ellipsoid theorem; one can also 
use the simpler Auerbach lemma, whose proof will be basically repeated below. Density 
in (ii) is equivalent to the existence of α-cartesian bases in the sense of [8, 2.6.1/3], which 
will be recovered below by imitating the Auerbach argument.

Denote by V ∨ the dual of V , and by detV ∨ =
∧N

V ∨ its determinant line. Viewing 
an element ω ∈ detV ∨ as a multilinear form on V , we define its operator norm as

‖ω‖op := sup
(v1,...,vN )∈(V \{0})N

|ω(v1, . . . , vN )|
‖v1‖ · . . . · ‖vN‖ .

This supremum is indeed finite by equivalence of norms.

Lemma 1.20. Let ‖ · ‖ be a norm on V , and pick a nonzero ω ∈ detV ∨. For each basis 
(ei) of V and all a ∈ KN , we then have

max
i

‖aiei‖ ≤
(
‖ω‖op‖e1‖ · . . . · ‖eN‖

|ω(e1, . . . , eN )|

)
‖
∑
i

aiei‖.

Proof. The dual basis (e∨i ) satisfies

〈e∨i , v〉 = ω(e1, . . . , ei−1, v, ei+1, . . . , eN )
ω(e1, . . . , eN ) ,

and hence

max
i

|〈e∨i , v〉|‖ei‖ ≤
(
‖ω‖op‖e1‖ . . . ‖eN‖
|ω(e1, . . . , eN )|

)
‖v‖,

which is equivalent to the desired result. �
Proof of Theorem 1.19. Assume first that K is Archimedean. As noted above, closedness 
in (i) follows from the characterization of diagonalizable norms in terms of the parallel-
ogram law. Let ‖ · ‖ be any norm on V , and fix a nonzero determinant ω ∈ detV ∨. By 
compactness, we may choose a basis (ei) of V with ‖ei‖ = 1 and ‖ω‖op = |ω(e1, . . . , eN )|. 
For each p ∈ [1, ∞], denote by ‖ · ‖p the �p-norm in the basis (ei). Lemma 1.20 and the 
triangle inequality yield ‖ · ‖∞ ≤ ‖ · ‖ ≤ ‖ · ‖1. Since N−1/2‖ · ‖1 ≤ ‖ · ‖2 ≤ N1/2‖ · ‖∞, it 
follows that N−1/2‖ · ‖2 ≤ ‖ · ‖ ≤ N1/2‖ · ‖2, and hence d∞(‖ · ‖, ‖ · ‖2) ≤ 1

2 logN , which 
proves (i) since ‖ · ‖2 ∈ N diag(V ).

Assume now that K is non-Archimedean, and pick any norm ‖ · ‖ ∈ N (V ). For any 
ε > 0, there exists a basis (ei) such that

‖ω‖op ≤ (1 + ε) |ω(e1, . . . , eN )|
‖e1‖ . . . ‖eN‖ ,

and Lemma 1.20 yields
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‖
∑
i

aiei‖ ≤ max
i

‖aiei‖ ≤ (1 + ε)‖
∑
i

aiei‖ (1.2)

for all a ∈ KN . Denoting by ‖ ·‖′ the norm diagonalized in (ei) and such that ‖ei‖′ = ‖ei‖, 
we infer ‖ · ‖ ≤ ‖ · ‖′ ≤ (1 + ε)‖ · ‖, hence d∞ (‖ · ‖, ‖ · ‖′) ≤ log(1 + ε), and ‖ · ‖ is thus 
in the closure of N diag(V ). �
1.5. Duality

To each norm ‖ · ‖ on V is associated a dual norm ‖ · ‖∨ on the dual vector space V ∨, 
defined by the usual formula

‖μ‖∨ = sup
v∈V \{0}

|〈μ, v〉|
‖v‖ .

Again, the supremum is finite by equivalence of norms.

Theorem 1.21. The duality map N (V ) → N (V ∨) is an involutive isometry with respect 
to the Goldman–Iwahori distances.

Lemma 1.22. If ‖ · ‖ ∈ N diag(V ) is diagonalizable, then so is ‖ · ‖∨. Further, if (ei)
is an orthogonal basis for ‖ · ‖, then the dual basis (e∨i ) is orthogonal for ‖ · ‖∨, and 
‖e∨i ‖∨ = ‖ei‖−1.

Proof. In the Archimedean case, ‖ · ‖ is Euclidian/Hermitian, and the result is 
well-known. In the non-Archimedean case, the result is a simple consequence of 
Lemma 1.16. �
Proof of Theorem 1.21. It is straightforward to see that ‖ · ‖ �→ ‖ · ‖∨ is 1-Lipschitz, it is 
enough to show that (‖ · ‖∨)∨ = ‖ · ‖ for all ‖ · ‖ ∈ N (V ). In the Archimedean case, this 
is a consequence of the Hahn–Banach theorem. In the non-Archimedean case, it follows 
from Lemma 1.22 and the density of diagonalizable norms in N (V ) (Theorem 1.19). �
Lemma 1.23. If W ⊂ V is a linear subspace, the canonical embedding (V/W )∨ ↪→ V ∨

identifies the dual of the quotient norm ‖ · ‖V/W with the restriction of ‖ · ‖∨.

Proof. The image of (V/W )∨ in V ∨ is the space W⊥ of linear forms μ ∈ V ∨ that 
vanish on W . Denoting by v̄ ∈ V/W the image of v ∈ V and by μ̃ ∈ V ∨ the image of 
μ ∈ (V/W )∨, we have by definition

‖μ̃‖∨ = sup |〈μ̃, v〉|
‖v‖
v∈V \{0}
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and

‖μ‖∨V/W = sup
v∈V−W

|〈μ̃, v〉|
‖v̄‖V/W

.

Since ‖v̄‖V/W = infw∈W ‖v + w‖ ≤ ‖v‖ and 〈μ̃, v〉 = 0 for v ∈ W , we trivially have 
‖μ̃‖∨ ≤ ‖μ‖∨V/W . Conversely, we have for each v ∈ V −W and w ∈ W

|〈μ̃, v〉|
‖v + w‖ = |〈μ̃, v + w〉|

‖v + w‖ ≤ ‖μ̃‖∨,

hence

|〈μ̃, v〉|
‖v̄‖V/W

= sup
w∈W

|〈μ̃, v〉|
‖v + w‖ ≤ ‖μ̃‖∨,

and taking the supremum over v yields the inequality in the other direction ‖μ‖∨V/W ≤
‖μ̃‖∨ and we conclude. �

We are now in a position to prove the codiagonalization result promised in Proposi-
tion 1.14.

Proof of Proposition 1.14. That any two diagonalizable norms ‖ · ‖, ‖ · ‖′ ∈ N diag(V ) are 
codiagonalizable is a standard fact in the Archimedean case, and we henceforth assume 
that K is non-Archimedean. Our argument extends the classical one of [40], which treats 
the case of a local field, following a suggestion of Marco Maculan, whom we warmly 
thank. Recall that a direct sum decomposition V = V1 ⊕ · · ·⊕Vr is orthogonal for ‖ · ‖ if∥∥∥∥∥∑

i

vi

∥∥∥∥∥ = max
i

‖vi‖

for all vi ∈ Vi. Given v ∈ V and a linear form μ ∈ V ∨ with 〈μ, v〉 �= 0, it is straightforward 
to check that the decomposition V = Kv ⊕ Kerμ is orthogonal for ‖ · ‖ if and only if

|〈μ,w〉|
|〈μ, v〉| ≤ ‖w‖

‖v‖

for all w ∈ V . Arguing by induction on dimV , we will thus be done if we prove the 
existence of v ∈ V and μ ∈ V ∨ with 〈μ, v〉 �= 0 such that

|〈μ,w〉|
|〈μ, v〉| ≤ ‖w‖

‖v‖ ≤ ‖w‖′
‖v‖′ (1.3)

for all w ∈ V , since V = Kv ⊕ kerμ will then be orthogonal for both ‖ · ‖ and ‖ · ‖′. Let 
(e′i) be an orthogonal basis for ‖ · ‖′. By Lemma 1.16, we have
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sup
w∈W\{0}

‖w‖
‖w‖′ = ‖e′i‖

‖e′i‖′

for some i, and v := e′i therefore satisfies ‖w‖/‖v‖ ≤ ‖w‖′/‖v‖′ for all w ∈ V . Let now 
(ej) be an orthogonal basis for ‖ · ‖. Since the dual basis (e∨j ) is orthogonal for the dual 
norm ‖ · ‖∨, we similarly get

‖v‖ = sup
μ∈V ∨\{0}

|〈μ, v〉|
‖μ‖∨ =

|〈e∨j , v〉|
‖e∨j ‖∨

for some j. It follows that μ := e∨j satisfies

|〈μ, v〉| = ‖μ‖∨‖v‖ ≥ |〈μ,w〉|
‖w‖ ‖v‖

for all w ∈ V \ {0}, and (1.3) follows. �
1.6. Ground field extension

Let V be a finite dimensional K-vector space V , F/K be a complete field extension, 
and set VF := V ⊗K F . When K is Archimedean, the only nontrivial case is K = R, 
F = C, by the Gelfand–Mazur theorem.

Definition 1.24. The ground field extension of a norm ‖ · ‖ on V is the norm ‖ · ‖F on VF

defined by

• ‖w‖F := inf
∑

i |bi|‖vi‖ if K is Archimedean;
• ‖w‖F := inf maxi |bi|‖vi‖ if K is non-Archimedean;

where the infimum ranges in both cases over all decompositions w =
∑

i bivi with bi ∈ F

and vi ∈ V .

Proposition 1.25. Let F/K be a complete field extension.

(i) For any norm ‖ · ‖ on V , the restriction of ‖ · ‖F to V coincides with ‖ · ‖, and ‖ · ‖F
is the maximal norm on VF with this property.

(ii) The map N (V ) → N (VF ) ‖ · ‖ �→ ‖ · ‖F is an isometric embedding with respect to 
the Goldman–Iwahori distances.

(iii) If K = R and F = C, then ‖ · ‖C is conjugation invariant, and any conjugation 
invariant norm ‖ · ‖′ on VC that coincides with ‖ · ‖ on V satisfies

1‖ · ‖C ≤ ‖ · ‖′ ≤ ‖ · ‖C.
2
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(iv) Assume that K is non-Archimedean, and let ‖ · ‖ be a diagonalizable norm with 
orthogonal basis (ei). Then ‖ · ‖F is also a diagonalizable norm with orthogonal 
basis (ei), viewed as a basis of VF , and ‖ei‖F = ‖ei‖.

(v) Assume further that F̃ = K̃ and

{‖ei‖/‖ei‖ | 1 ≤ i, j ≤ N} ∩ |F×| = {1}. (1.4)

Then ‖ · ‖F is the only norm that extends ‖ · ‖ to VF .

Note that (v) is direct generalization of [23, Lemma 1.12].

Proof. (i) is immediate, and implies for any two norms ‖ · ‖, ‖ · ‖′ on V

d∞(‖ · ‖F , ‖ · ‖′F ) ≥ sup
v∈V \{0}

| log ‖v‖ − log ‖v‖′| = d∞(‖ · ‖, ‖ · ‖′).

The converse inequality d∞(‖ · ‖F , ‖ · ‖′F ) ≤ d∞(‖ · ‖, ‖ · ‖′) is straightforward from the 
definition, hence (ii).

To prove (iii), pick any conjugation invariant norm ‖ · ‖′ on VC that coincides with 
‖ · ‖ on V . For each w ∈ VC we then have ‖w‖′ = ‖w̄‖′, hence ‖ Rew‖ = ‖ Rew‖′ =
‖(w + w̄)/2‖′ ≤ ‖w‖′, ‖ Imw‖ = ‖ Imw‖′ ≤ ‖w‖′. Since w = Rew + i Imw, we infer

‖w‖C ≤ ‖Rew‖ + ‖ Imw‖ ≤ 2‖w‖′.

To see (iv), pick w ∈ VF , and write w =
∑

j bjej with bj ∈ F . By definition, ‖w‖F ≤
maxj |bj |‖ej‖. Conversely, pick any decomposition v =

∑
i bivi with bi ∈ F and vi ∈ V , 

and write vi =
∑

j aijej with aij ∈ K. Then v =
∑

j cjej with cj =
∑

i bibij , and we 
need to show that

max
j

|cj |‖ej‖ ≤ max
i

|bi|‖vi‖.

This follows indeed from ‖vi‖ = maxj |aij |‖ej‖ and |cj | ≤ maxi |bi||aij |.
Now assume that F̃ = K̃ and (1.4) hold, and pick an extension ‖ · ‖′ of ‖ · ‖ to VF . 

Given a nonzero tuple (bi) in F , we need to show that

‖
∑
i

biei‖′ = c := max
i

|bi|‖ei‖.

After reindexing, we may assume that

c = |b1|‖e1‖ = · · · = |br|‖er‖ > |br+1|‖er+1‖ ≥ . . .

For 1 ≤ i ≤ r, we have ‖ei‖/‖e1‖ = |b1b−1
i | ∈ |F×|, and (1.4) thus implies ‖ei‖ = ‖e1‖, 

and hence also |bib−1
1 | = 1. Since K̃ = F̃ , we can pick a unit ui ∈ K◦ such that 
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|bib−1
1 − ui| < 1. Set v1 := b1

∑
i≤r uiei, v2 =

∑
i≤r(bi − b1ui)ei, and v3 :=

∑
i>r biei, so 

that v1 + v2 + v3 =
∑

i biei. Then

‖v1‖′ = |b1|‖
∑
i≤r

uiei‖′ = |b1|‖
∑
i≤r

uiei‖ = |b1|max
i≤r

|ui|‖ei‖ = c,

‖v2‖′ < |b1|max
i≤r

‖ei‖ = c,

and

‖v3‖′ ≤ max
i>r

|bi|‖ei‖ < |b1|‖e1‖ = c,

and we infer as desired ‖ 
∑

i biei‖′ = ‖v1 + v2 + v3‖′ = c. �
As in the proof of [23, Theorem 4.1], we infer:

Lemma 1.26. Assume that K is trivially valued, and let (Vi, ‖ · ‖i)i∈I be an at most 
countable family of norms on finite dimensional K-vector spaces. We may then find a 
complete extension F/K with F nontrivially valued such that for each i ∈ I, (‖ · ‖i)F is 
the only norm on (Vi)F that coincides with ‖ · ‖i on Vi.

Proof. For each i, pick an orthogonal basis (eij)j∈Ji
for (Vi, ‖ · ‖i) (see Example 1.11), 

and consider the finite set

Si := {log ‖eij‖ − log ‖eij′‖ | j, j′ ∈ Ji} .

Set F := K( (t) ), pick α ∈ R>0, and endow F with the valuation vF equal to α times 
the t-adic valuation. Then log |F×| = vF (F×) = αZ and F̃ = K̃. According to Proposi-
tion 1.25 (v), it will thus be enough to show that α can be chosen so that αZ ∩Si = {0}
for all i. Now 

⋃
i QSi is countable, and it is then enough to choose α ∈ R>0 \

⋃
i QSi. �

1.7. Lattice norms

In this section, K is non-Archimedean, with associated real-valued valuation vK =
− log | · |. As for any valuation ring, K◦ has the property that every finitely generated 
ideal is principal, which implies that a K◦-module M is flat if and only if it is torsion-free. 
If M is further finitely generated, then it is free (since K◦ is local).

Definition 1.27. A lattice3 of V is a finite K◦-submodule V of V such that V⊗K◦ K = V .

3 In the densely valued case, the present notion of lattice is more restrictive than the one used in [23, 
§1.3.3].
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Any lattice of V is thus of the form V =
∑

i K
◦ei with (ei) a basis of V . A lattice V

determines a lattice norm ‖ · ‖V on V , by setting

‖v‖V := inf {|a| | a ∈ K, v ∈ aV} .

Lemma 1.28. Let (ei) be a K◦-basis of a lattice V of V . Then (ei) is an orthonormal 
basis of ‖ · ‖V . In particular, V coincides with the unit ball of ‖ · ‖V .

Proof. Pick v ∈ V , and write v =
∑

i aiei with a ∈ KN . Given a ∈ K, we then have 
v ∈ aV if and only if |ai| ≤ |a|, and hence ‖v‖V = maxi |ai|. This means that (ei) is 
orthonormal for ‖ · ‖V , and also implies that V is the unit ball of ‖ · ‖V . �
Lemma 1.29. Denote by N latt(V ) ⊂ N diag(V ) the set of lattice norms.

(i) A norm is a lattice norm if and only if it is a pure diagonalizable norm, i.e. a norm 
that admits an orthonormal basis.

(ii) If K is trivially valued, then N latt(V ) reduces to the trivial norm on V . If K is 
discretely valued, with uniformizing parameter πK, then N latt(V ) is discrete and 
closed in N (V ) = N diag(V ). Further, the (closed) unit ball B of any norm ‖ · ‖ is 
a lattice, whose associated lattice norm ‖ · ‖B satisfies

d∞(‖ · ‖, ‖ · ‖B) ≤ vK(πK).

(iii) If K is densely valued, N latt(V ) is dense in N diag(V ), and hence also in N (V ). 
Further, the unit ball B of a norm ‖ · ‖ is a lattice if and only ‖ · ‖ is a lattice norm.

(iv) Let ‖ · ‖ be the lattice norm determined by a lattice V of V , and F/K be a complete 
extension. Then the ground field extension ‖ · ‖F is the lattice norm determined by 
the lattice V ⊗K◦ F ◦ of VF = V ⊗K F .

Proof. (i) is a direct consequence of Lemma 1.28, and implies the first part of (ii). Assume 
that K is discretely valued. Let ‖ · ‖V �= ‖ · ‖V′ be two distinct lattice norms, and pick 
a joint orthogonal basis (ei) as in Proposition 1.14. We then have V =

∑
i K

◦πmi

K ei and 

V ′ =
∑

i K
◦π

m′
i

K ei for some integers mi, m′
i ∈ Z, and hence

d∞(‖ · ‖V , ‖ · ‖V′) = max
i

∣∣∣∣log ‖ei‖V
‖ei‖V′

∣∣∣∣
= vK(πK) max

i
|mi −m′

i| ≥ vK(πK).

This shows that N latt(V ) is discrete and closed. Next, let ‖ · ‖ be any diagonalizable 
norm, pick an orthogonal basis (ei) for ‖ · ‖, and write a given v ∈ V as v =

∑
i uiπ

ni

K ei
with ni ∈ Z and ui a unit. Then ‖v‖ ≤ 1 if and only if |πK |ni‖ei‖ ≤ 1 for all i, and we 
infer B =

∑
i K

◦πmi

K ei with mi := �log ‖ei‖/vK(πK)�. In particular, B is a lattice with 
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basis (πmi

K ei), and hence

d∞(‖ · ‖, ‖ · ‖B) = max
i

∣∣∣∣log ‖ei‖B
‖ei‖

∣∣∣∣ = max
i

|mivK(πK) − log ‖ei‖| ≤ vK(πK).

Assume finally that K is densely valued. That N latt(V ) is dense in N diag(V ) is easily 
seen by approximating the values of a given diagonalizable norm ‖ · ‖ on an orthogonal 
basis (ei) by elements of the dense subset |K×| of R>0. Similarly, any norm ‖ · ‖ is 
determined by its closed unit ball B, via

‖v‖ = inf {|a| | a ∈ K, v ∈ aB} .

As a result, ‖ · ‖ is a lattice norm if and only if B is a lattice. Finally, (iv) is a direct 
consequence of Lemma 1.28 and Proposition 1.25. �

As an illustration of these considerations, we have:

Example 1.30. Let K be a densely valued non-Archimedean field, and F/K be a finite 
extension. If the ring extension F ◦/K◦ is finite, then F/K is necessarily unramified, i.e. 
|F | = |K|. Indeed, the absolute value | ·|L of L is then a lattice norm, by Lemma 1.29 (iii), 
and hence |L| = |K|.

2. Determinants and relative spectra

The goal of this section is to investigate induced norms on the determinant line, 
leading to the notion of relative volume of two norms. We relate the latter to the relative 
spectrum via a Minkowski-type theorem.

As before, V denotes a finite dimensional vector space over a complete valued field K, 
and we set N := dimV .

2.1. The determinant of a norm

The determinant line of V is detV :=
∧N

V . We have a natural isomorphism 
det(V ∨) � (detV )∨, induced by the pairing

〈v1 ∧ . . . ∧ vN , μ1 ∧ . . . ∧ μN 〉 = det (〈vi, μj〉) .

In particular, if (ei) is basis of V with dual basis (e∨i ), then

(e1 ∧ . . . ∧ eN )∨ = e∨1 ∧ . . . ∧ e∨N .

Definition 2.1. To each norm ‖ · ‖ on V , we associate a norm det ‖ · ‖ on detV by setting 
for τ ∈ detV
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det ‖τ‖ = inf
τ=v1∧...∧vN

∏
i

‖vi‖,

where the infimum runs over all decompositions τ = v1 ∧ . . . ∧ vN with vi ∈ V .

We abuse the notation slightly by writing det ‖τ‖ for the value of det ‖ · ‖ on τ . 
By construction, det ‖ · ‖ is the largest seminorm on detV with the submultiplicativity 
property

det ‖v1 ∧ . . . ∧ vN‖ ≤
∏
i

‖vi‖ (2.1)

for all v1, . . . , vN ∈ V . That it is actually a norm follows from the next result, which is 
readily checked.

Lemma 2.2. If we view the dual τ∨ ∈ detV ∨ of a nonzero τ ∈ detV as a multilinear 
form on V , then (det ‖τ‖)−1 coincides with the operator norm

‖τ∨‖op := sup
v1,...,vN∈V \{0}

|τ∨(v1, . . . , vN )|
‖v1‖ . . . ‖vN‖ .

From the definition, we immediately get:

Lemma 2.3. The map det : N (V ) → N (detV ) is N -Lipschitz continuous with respect to 
d∞-metrics, i.e. we have

d∞(det ‖ · ‖,det ‖ · ‖′) ≤ N d∞(‖ · ‖, ‖ · ‖′)

for any two norms ‖ · ‖, ‖ · ‖′ on V .

Computing the determinant of a norm is typically a hard problem in the Archimedean 
case.

Example 2.4. Consider the usual �p-norm ‖ ·‖p on RN , p ∈ [1, ∞], and set τ := e1∧. . .∧eN , 
with (ei) the canonical basis. Then

• det ‖τ‖p = 1 for p ∈ [1, 2];
• det ‖τ‖p < 1 for p > 2.

For p = ∞, determining the precise value of det ‖τ‖∞ amounts to maximizing the deter-
minant of a N×N -matrix with entries in {±1}, and is known as the Hadamard maximal 
determinant problem. By [25], we have for instance

N−N
2 ≤ det ‖τ‖∞ ≤ N

−N
2

(
1− log(4/3)

log N

)
.
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The lower bound is achieved if and only if there exists an �2-orthogonal basis with 
entries in {±1} (which implies that N is a multiple of 4), but the exact value det ‖τ‖∞
is unknown in the general case.

2.2. Determinants of diagonalizable norms

As we shall see in this section, the determinant of a diagonalizable norm is very 
well-behaved. In the non-Archimedean case, this will extend to all norms, by density of 
diagonalizable norms.

Lemma 2.5. If ‖ · ‖ is diagonalizable, then a basis (ei) of V satisfies

det ‖e1 ∧ . . . ∧ eN‖ =
∏
i

‖ei‖

if and only if (ei) is orthogonal for ‖ · ‖.

Corollary 2.6. Assume that K is non-Archimedean, and let V be a lattice of V . Then 
det ‖ · ‖V = ‖ · ‖detV is the norm determined by the lattice detV :=

∧N V of detV .

Proof of Lemma 2.5. When K is Archimedean, the result is equivalent to the classical 
Hadamard inequality for the determinant of a matrix. Assume now that K is non-
Archimedean, and let (ei) be an orthogonal basis for ‖ · ‖. We need to show that each 
basis (vi) such that v1 ∧ . . . ∧ vN = e1 ∧ . . . ∧ eN satisfies 

∏
i ‖ei‖ ≤

∏
i ‖vi‖. If we write 

vi =
∑

j aijej with aij ∈ K, then det(aij) = 1. Expanding out the determinant and 
using the ultrametric inequality, we get 

∏
i |aiσ(i)| ≥ 1 for some permutation σ. Since 

‖ · ‖ is diagonalized in (ei), we have

‖vi‖ = max
j

|aij |‖ej‖ ≥
∣∣aiσ(i)

∣∣ ∥∥eσ(i)
∥∥ ,

and we obtain as desired

∏
i

‖vi‖ ≥
∏
i

∣∣aiσ(i)
∣∣ ∥∥eσ(i)‖

∥∥ =
(∏

i

|aiσ(i)|
)(∏

i

‖eσ(i)

)
≥
∏
i

‖ei‖.

Conversely, any basis (ei) satisfying det ‖e1 ∧ . . .∧ eN‖ =
∏

i ‖ei‖ is orthogonal for ‖ · ‖, 
as a direct consequence of Lemma 1.20. �
Lemma 2.7. If ‖ · ‖ is a diagonalizable norm on V , then det (‖ · ‖∨) = (det ‖ · ‖)∨ under 
the canonical isomorphism det (V ∨) � (detV )∨.

Proof. Let (ei) be an orthogonal basis for ‖ · ‖. By Lemma 1.22, the dual basis (e∨i ) is 
orthogonal for ‖ · ‖∨, and ‖e∨i ‖∨ = ‖ei‖−1. By Lemma 2.5, we infer
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det ‖e∨1 ∧ . . . ∧ e∨N‖∨ =
∏
i

‖e∨i ‖
∨ =

(∏
i

‖ei‖
)−1

= (det ‖e1 ∧ . . . ∧ eN‖)−1
,

hence the result. �
Lemma 2.8. Let ‖ · ‖ be a diagonalizable norm on V , and consider an exact sequence of 
vector spaces

0 → V ′ → V → V ′′ → 0,

with induced norms ‖ · ‖′, ‖ · ‖′′ on V ′, V ′′. Under the canonical isomorphism

detV � detV ′ ⊗ detV ′′,

we then have

det ‖ · ‖ = det ‖ · ‖′ ⊗ det ‖ · ‖′′.

Proof. Set N ′ := dimV ′, N ′′ := dimV ′′, and denote by π : V → V ′′ the given surjection. 
Pick nonzero τ ′ ∈ detV ′, τ ′′ ∈ detV ′′ and ε > 0. Definition 2.1, we may then find 
v′1, . . . , v

′
N ′ ∈ V ′ and v′′1 , . . . , v

′′
N ′′ ∈ V ′ such that τ ′ = v′1 ∧ . . . ∧ v′N ′ , τ ′′ = π(v′′1 ) ∧ . . . ∧

π(v′′N ′′), ∏
i

‖v′i‖ ≤ (1 + ε) det ‖τ ′‖

and ∏
i

‖v′′i ‖ ≤ (1 + ε) det ‖τ ′′‖

The isomorphism detV ′ ⊗ detV ′′ � detV maps τ ′ ⊗ τ ′′ to

v′1 ∧ . . . ∧ v′N ′ ∧ v′′1 ∧ . . . ∧ v′′N ′′ ,

which satisfies

det ‖τ ′ ⊗ τ ′′‖ = det ‖v′1 ∧ . . . ∧ v′N ′ ∧ v′′1 ∧ . . . ∧ v′′N ′′‖

≤
∏
i

‖v′i‖
∏
i

‖v′′j ‖ ≤ (1 + ε)2(det ‖τ ′‖′)(det ‖τ ′′‖′′),

hence det ‖ · ‖ ≤ det ‖ · ‖′ ⊗ det ‖ · ‖′′. By Lemma 1.23, we dually have

det(‖ · ‖∨) ≤ det(‖ · ‖′′ ∨) ⊗ det(‖ · ‖′ ∨).
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Since ‖ · ‖ is diagonalizable, so are ‖ · ‖′ and ‖ · ‖′′, by Lemma 1.13. By Lemma 2.7, we 
thus have (det ‖ · ‖)−1 ≤ (det ‖ · ‖′′)−1 ⊗ (det ‖ · ‖′)−1, hence the result. �
Lemma 2.9. Let ‖ · ‖ be a diagonalizable norm on V , and F/K be a complete field exten-
sion. Then det(‖ · ‖F ) = (det ‖ · ‖)F .

Proof. This follows from Proposition 1.25 together with Lemma 2.5. �
Corollary 2.10. If K is non-Archimedean, Lemma 2.7, Lemma 2.8 and Lemma 2.9 hold 
for all norms.

Proof. By Theorem 1.19, diagonalizable norms are dense in the set of all norms, and we 
conclude by continuity of det (Lemma 2.3). �

In the Archimedean case, both Lemma 2.7 and Lemma 2.8 fail in general for non-
diagonalizable norms.

Example 2.11. Let ‖ · ‖ be the �∞-norm on RN . The dual norm ‖ · ‖∨ is the �1-norm, and 
Example 2.4 thus shows that det(‖ · ‖∨) �= (det ‖ · ‖)∨. Also, the exact sequence

0 → V ′ → V → V ′′ → 0

with V ′ = Ke1, V ′′ = Ke2 shows that det ‖ · ‖ < (det ‖ · ‖′) ⊗ (det ‖ · ‖′′).

Finally, recall from §1.3 that each basis e = (ei) of V defines an apartment Ae =
ιe(RN ) in N diag(V ) and a Gram–Schmidt projection ρe : N (V ) → Ae. For later use, we 
show:

Lemma 2.12. For each diagonalizable norm ‖ · ‖, we have det ‖ · ‖ = det ρe(‖ · ‖).

Proof. Denote by Wi = Vect(e1, . . . , ei) the complete flag defined by e. By Lemma 2.8, 
we have

det ‖ · ‖ =
⊗
i

det ‖ · ‖Wi/Wi−1 ,

under the identification detV �
⊗

i det(Wi/Wi−1). By definition of ‖ · ‖e := ρe(‖ · ‖), 
we infer

det ‖e1 ∧ . . . ∧ eN‖ =
∏
i

‖ei‖e = det ‖e1 ∧ . . . ∧ eN‖e,

where the second equality follows from Lemma 2.5. �
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2.3. Relative volume

We introduce the following ‘additive version’ of [73, 2.4.3].

Definition 2.13. The relative volume of two norms ‖ · ‖, ‖ · ‖′ on V is defined as the real 
number

vol(‖ · ‖, ‖ · ‖′) := log
(

det ‖ · ‖′
det ‖ · ‖

)
.

Proposition 2.14. The relative volume satisfies the following properties.

(i) cocycle formula:

vol(‖ · ‖, ‖ · ‖′) = vol(‖ · ‖, ‖ · ‖′′) + vol(‖ · ‖′′, ‖ · ‖′).

(ii) homogeneity:

vol(‖ · ‖, ec‖ · ‖′) = vol(‖ · ‖, ‖ · ‖′) + cN for all c ∈ R.

(iii) monotonicity:

‖ · ‖′ ≤ ‖ · ‖′′ =⇒ vol(‖ · ‖, ‖ · ‖′) ≤ vol(‖ · ‖, ‖ · ‖′′).

(iv) Lipschitz continuity:

|vol(‖ · ‖1, ‖ · ‖′1) − vol(‖ · ‖2, ‖ · ‖′2)| ≤ N (d∞(‖ · ‖1, ‖ · ‖2) + d∞(‖ · ‖′1, ‖ · ‖′2)) .

(v) if F/K is a complete field extension and ‖ · ‖, ‖ · ‖′ are two norms on V with ground 
field extensions ‖ · ‖F , ‖ · ‖′F to VF , then

vol(‖ · ‖F , ‖ · ‖′F ) = vol(‖ · ‖, ‖ · ‖′)

in the diagonalizable or non-Archimedean case, and

|vol(‖ · ‖F , ‖ · ‖′F ) − vol(‖ · ‖, ‖ · ‖′)| ≤ 2N logN

in the general Archimedean case.
(vi) if 0 → V ′ → V → V ′′ → 0 is an exact sequence, the induced norms ‖ · ‖V ′ , ‖ · ‖′V ′

and ‖ · ‖V ′′ , ‖ · ‖′V ′′ satisfy

vol(‖ · ‖, ‖ · ‖′) = vol (‖ · ‖V ′ , ‖ · ‖′V ′) + vol (‖ · ‖V ′′ , ‖ · ‖′V ′′)

in the diagonalizable or non-Archimedean case, and
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|vol(‖ · ‖, ‖ · ‖′) − vol (‖ · ‖V ′ , ‖ · ‖′V ′) − vol (‖ · ‖V ′′ , ‖ · ‖′V ′′)| ≤ 2N logN

in general.

Proof. The first three properties are obvious, and imply the fourth one as a formal con-
sequence. In the diagonalizable and non-Archimedean case, (v) and (vi) are consequences 
of Lemma 2.9, Lemma 2.8 and Corollary 2.10. If K is Archimedean, Theorem 1.19 yields 
diagonalizable norms ‖ · ‖0, ‖ · ‖′0 with

d∞(‖ · ‖, ‖ · ‖0) ≤ 1
2 logN, d∞(‖ · ‖′, ‖ · ‖′0) ≤ 1

2 logN.

Then

vol((‖ · ‖0)F , (‖ · ‖′0)F ) = vol(‖ · ‖0, ‖ · ‖′0),

while (iv) yields

|vol(‖ · ‖, ‖ · ‖′) − vol(‖ · ‖0, ‖ · ‖′0)| ≤ N logN

and

|vol(‖ · ‖F , ‖ · ‖′F ) − vol((‖ · ‖0)F , (‖ · ‖′0)F )| ≤ N logN,

since ground field extension is an isometry for d∞, by Proposition 1.25. Thus

|vol(‖ · ‖F , ‖ · ‖′F ) − vol(‖ · ‖, ‖ · ‖′)| ≤ |vol(‖ · ‖F , ‖ · ‖′F ) − vol((‖ · ‖0)F , (‖ · ‖′0)F )|
+ |vol(‖ · ‖0, ‖ · ‖′0) − vol(‖ · ‖, ‖ · ‖′)| ≤ 2N logN.

The proof of (vi) in the general Archimedean case is similar. �
As we next show, in the Archimedean case, the relative volume is equivalent to the 

(logarithmic) volume ratio. The non-Archimedean case will be analyzed in the next 
section.

Proposition 2.15. Assume that K is Archimedean, and let ‖ · ‖, ‖ · ‖′ be two norms on V , 
with unit balls B, B′.

(i) If ‖ · ‖, ‖ · ‖′ are diagonalizable, then

vol(‖ · ‖, ‖ · ‖′) = 1
[K : R] log

(
vol(B)
vol(B′)

)
,

where vol is any choice of Haar measure on V .



30 S. Boucksom, D. Eriksson / Advances in Mathematics 378 (2021) 107501
(ii) In the general case, we have∣∣∣∣vol(‖ · ‖, ‖ · ‖′) − 1
[K : R] log

(
vol(B)
vol(B′)

)∣∣∣∣ ≤ 2N logN. (2.2)

Proof. If ‖ · ‖, ‖ · ‖′ are diagonalizable, we can pick an orthonormal basis (ei) for ‖ · ‖ in 
which ‖ · ‖′ is diagonalized, and the change-of-variable formula yields

vol(‖ · ‖, ‖ · ‖′) = log
∏
i

‖ei‖′ = 1
[K : R] log

(
vol(B)
vol(B′)

)
,

which proves (i). The proof of (ii) is entirely similar to that of (v) in Proposition 2.14. �
Here again, the error term in (2.2) is generally nonzero in the Archimedean non-

diagonalizable case.

Example 2.16. By Example 2.4, the �1 and �2 norms ‖ · ‖1, ‖ · ‖2 on RN satisfy vol(‖ · ‖1,

‖ · ‖2) = 0, while the volume of the unit ball of ‖ · ‖1 is strictly smaller than that of 
‖ · ‖2.

2.4. The content of a torsion module

We assume in this section that K is non-Archimedean and nontrivially valued, with 
associated valuation vK = − log | · |. The next result was proved for instance in [67, 
Proposition 2.10] (see also [73, Corollary 2.3.8]).

Lemma 2.17. Every finitely presented torsion K◦-module M is isomorphic to a finite 
direct sum of cyclic modules

M �
r⊕

i=1
K◦/aiK

◦.

with ai ∈ K◦◦. Further, r and the sequence vK(a1), . . . , vK(ar) are uniquely determined 
by M , up to permutation.

Proof. Pick a presentation (K◦)a → (K◦)b → M → 0. The image V ′ of (K◦)a in 
V := (K◦)b is finitely generated and torsion free, hence a free submodule. Since V/V ′ is 
torsion, V ′ ⊂ V are both lattices in V := Kb. We claim that V admits a basis (ei) such 
that V =

⊕
i K

◦ei and V ′ =
⊕

i K
◦aiei for some nonzero ai ∈ K◦, which will yield as 

desired M �
⊕r

i=1 K
◦/aiK◦ with vK(ai) > 0 (since K◦/aiK◦ = 0 when vK(ai) = 0). 

Indeed, Proposition 1.14 yields a basis (ei) that jointly diagonalizes the lattice norms 
‖ · ‖V and ‖ · ‖V′ . Since lattice norms take values in |K|, we can arrange that ‖ei‖V = 1
after multiplying each ei by a scalar. Since V ′ ⊂ V, we then have ‖ei‖V′ = |a−1

i | for some 
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nonzero ai ∈ K◦, and we get the claim by Lemma 1.28. The uniqueness part is proved 
as in the usual structure theorem for torsion modules over PID’s. �
Definition 2.18. The content of a finitely presented torsion module M is defined as

cont(M) :=
r∑

i=1
vK(ai) ∈ (0,+∞).

Note that this is − log of the content as defined in [73, 2.6.1]. Alternatively, cont(M)
is obtained by applying vK to the fractional ideal sheaf {a ∈ K | a · detM = 0}.

Example 2.19. If K is discretely valued with uniformizing parameter πK , then cont(M) =
vK(πK)�(M) with �(M) the length of M .

The content is closely related to the relative volume. Indeed, as we saw during the 
proof of Lemma 2.17, every finitely presented torsion module is the quotient of two 
lattices in the same vector space, and we have:

Lemma 2.20. If V ′ ⊂ V are lattices in a finite dimensional vector space V , then

cont(V/V ′) = vol (‖ · ‖V , ‖ · ‖V′) .

Assuming now that K is discretely valued, we conclude this section with an analogue 
of Proposition 2.15, relating the relative volume to the virtual length used in [18]. Recall 
that the virtual length �(V/V ′) ∈ Z of two lattices V, V ′ in a K-vector space is defined 
as

�(V/V ′) := �(V/V ′′) − �(V ′/V ′′)

for any lattice V ′′ contained in both V and V ′ (cf. [18, Definition 4.1.1], [68, III, §1]).

Proposition 2.21. Assume that K is discretely valued with uniformizing parameter πK, 
and let ‖ ·‖, ‖ ·‖′ be two norms on V . Denote by B, B′ their unit balls, and by ‖ ·‖B, ‖ ·‖B′

the associated lattice norms. Then

vol (‖ · ‖B , ‖ · ‖B′) = vK(πK)�(B/B′) = vol(‖ · ‖, ‖ · ‖′) + O(N).

Note that the absolute value of K is normalized by vK(πK) = 1 in [18].

Proof of Proposition 2.21. The first equality follows from Example 2.19. By Lemma 1.28, 
we further have d∞(‖ · ‖, ‖ · ‖B) ≤ vK(πK) and d∞(‖ · ‖′, ‖ · ‖B′) ≤ vK(πK), and hence 
vol(‖ · ‖, ‖ · ‖′) = vol(‖ · ‖B , ‖ · ‖B′) + O(N) by N -Lipschitz continuity of vol. �
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2.5. Relative spectra

We introduce a general notion of relative spectrum of two norms, and relate it to 
relative volumes. In the Archimedean (resp. discretely valued) case, the results of this 
section can be traced back to Minkowski’s work on successive minima (resp. Mahler’s 
paper [55]).

Definition 2.22. Let ‖ ·‖, ‖ ·‖′ ∈ N (V ) be two norms on V . We define the relative spectrum
of ‖ · ‖ with respect to ‖ · ‖′ as the finite decreasing sequence

λ1(‖ · ‖, ‖ · ‖′) ≥ · · · ≥ λN (‖ · ‖, ‖ · ‖′)

defined by the minmax-type formulas

λi(‖ · ‖, ‖ · ‖′) := sup
W⊂V, dimW≥i

(
inf

w∈W\{0}
log ‖w‖′

‖w‖

)
. (2.3)

The following properties are immediate to check.

Lemma 2.23. For any two norms ‖ · ‖, ‖ · ‖′ on V we have:

(i) λ1(‖ · ‖, ‖ · ‖′) = supv∈V \{0} (log ‖v‖′ − log ‖v‖);
(ii) λN (‖ · ‖, ‖ · ‖′) = infv∈V \{0} (log ‖v‖′ − log ‖v‖) = −λ1(‖ · ‖′, ‖ · ‖);
(iii) d∞(‖ · ‖, ‖ · ‖′) = max {λ1(‖ · ‖, ‖ · ‖′), λ1(‖ · ‖′, ‖ · ‖)};
(iv) for each i, λi(‖ · ‖, ‖ · ‖′) is a 1-Lipschitz continuous function of ‖ · ‖, ‖ · ‖′ with 

respect to the Goldman–Iwahori distance d∞.

The next result justifies the chosen terminology.

Proposition 2.24. Assume that ‖ · ‖, ‖ · ‖′ ∈ N diag(V ) are diagonalizable. Choose a basis 
(ei) of V in which both norms are diagonalized, as in Proposition 1.14, and order it so 
that

‖e1‖′
‖e1‖

≥ · · · ≥ ‖eN‖′
‖eN‖ .

Then

λi(‖ · ‖, ‖ · ‖′) = log ‖ei‖′
‖ei‖

.

Proof. Set Wi := Vect(e1, . . . , ei), W ′
i := Vect(ei, . . . , eN ), and observe that

log ‖ei‖′
‖e ‖ = inf

w∈Wi\{0}
log ‖w‖′

‖w‖ = sup
′

log ‖w‖′
‖w‖ .
i w∈Wi\{0}
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By (2.3), the first equality yields log ‖ei‖′

‖ei‖ ≤ λi(‖ · ‖, ‖ · ‖′). On the other hand, each 
subspace W ⊂ V with dimW ≥ i satisfies W ∩ W ′

i �= {0} for dimension reason, and 
hence

inf
w∈W\{0}

log ‖w‖′
‖w‖ ≤ sup

w∈W ′
i\{0}

log ‖w‖′
‖w‖ = log ‖ei‖′

‖ei‖
,

and using (2.3) again yields λi(‖ · ‖, ‖ · ‖′) ≤ log ‖ei‖′

‖ei‖ . �
We are now in a position to prove the following analogue of Minkowski’s second 

theorem.

Theorem 2.25. Let ‖ · ‖, ‖ · ‖′ be two norms on V . If ‖ · ‖, ‖ · ‖′ are diagonalizable, or K
is non-Archimedean, then

vol(‖ · ‖, ‖ · ‖′) =
N∑
i=1

λi(‖ · ‖, ‖ · ‖′).

Otherwise, ∣∣∣∣∣vol(‖ · ‖, ‖ · ‖′) −
N∑
i=1

λi(‖ · ‖, ‖ · ‖′)
∣∣∣∣∣ ≤ 2N logN.

Proof. Note that vol(‖ · ‖, ‖ · ‖′) and 
∑

i λi(‖ · ‖, ‖ · ‖′) are both N -Lipschitz continuous 
in ‖ · ‖, ‖ · ‖′, by Proposition 2.14 and Lemma 2.23, respectively. When both norms are 
diagonalizable, Lemma 2.5 and Proposition 2.24 yield

vol(‖ · ‖, ‖ · ‖′) =
N∑
i=1

λi(‖ · ‖, ‖ · ‖′).

If K is non-Archimedean, this propagates to all norms, by density of diagonalizable norms 
and (Lipschitz) continuity. Finally, the case of arbitrary norms in the Archimedean case 
is handled just as point (v) in Proposition 2.14, by choosing diagonalizable norms at 
distance at most 1

2 logN of ‖ · ‖, ‖ · ‖′. �
Example 2.26. By Example 2.4, the �1 and �2 norms ‖ · ‖1, ‖ · ‖2 on R2 satisfy vol(‖ · ‖2,

‖ · ‖1) = 0, while λ1(‖ · ‖2, ‖ · ‖1) = log
√

2 and λ2(‖ · ‖2, ‖ · ‖1) = 0.

3. Alternative metric structures on spaces of norms

The goal of this section, which stands somewhat apart from the rest of the paper, is 
to exploit the properties of determinants of norms to endow the space of diagonalizable 
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norms with natural metric structures, recovering in particular the Bruhat–Tits metric 
in the non-Archimedean case.

In this section, K is again an arbitrary complete valued field, and V an N -dimensional 
K-vector space.

3.1. The triangle inequality

The relative spectrum of two norms ‖ · ‖, ‖ · ‖′ ∈ N (V ) defines a point λ (‖ · ‖, ‖ · ‖′)
in the rational polyhedral cone

C :=
{
λ ∈ RN | λ1 ≥ · · · ≥ λN

}
� RN/SN ,

which is a Weyl chamber for the Weyl group SN of GLN . Given an SN -invariant norm 
χ on RN , set

dχ (‖ · ‖, ‖ · ‖′) := χ (λ (‖ · ‖, ‖ · ‖′)) .

The resulting function dχ : N (V ) ×N (V ) → R+ is symmetric, with dχ(‖ · ‖, ‖ · ‖′) = 0 if 
and only if ‖ · ‖ = ‖ · ‖′. The following result is inspired by Gerardin’s proof of [39, 2.4.7, 
Corollaire 2].

Theorem 3.1. For each SN -invariant norm χ on RN , dχ satisfies the triangle inequality 
on N diag(V ), and is characterized as the unique metric on N diag(V ) for which

ιe : (RN , χ) ↪→ (N diag(V ),dχ)

is an isometric embedding for each basis e of V .

By Proposition 1.17, the Goldman–Iwahori metric d∞ on N diag(V ) corresponds to 
the �∞-norm on RN . By equivalence of norms on RN , any metric dχ produced by Theo-
rem 3.1 is Lipschitz equivalent to d∞. Besides the latter, the most important case is the 
Euclidian metric d2 induced by the �2-norm:

Example 3.2. When K is Archimedean, d2 coincides with the Riemannian metric of 
the symmetric space N diag(V ) � GLN (K)/UN (K) (see Theorem 3.7 below). When K is 
non-Archimedean, (N diag(V ), d2) is a realization of the Bruhat–Tits building of GLN (K)
with its Euclidian metric, see for instance [59, Chapter III]. In both cases, (N diag(V ), d2)
is a CAT(0) metric space.

Corollary 3.3. If K is non-Archimedean, the space N (V ) is complete with respect to 
the metric dχ, which is characterized as the unique compatible metric such that ιe :
(RN , χ) ↪→ (N (V ), dχ) is an isometric embedding for all bases e. For χ = �2, (N (V ), d2)
is a CAT(0) metric space.
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Proof. On N diag(V ), dχ is equivalent to d∞ and satisfies the triangle inequality. This 
is also the case on N (V ), by density of N diag(V ). Since N (V ) is complete for d∞, it 
is also complete for dχ, and is thus the completion of (N diag(V ), dχ). Conversely, any 
metric on N (V ) with the stated property must coincide with dχ on the dense subset 
N diag(V ), hence everywhere. For χ = �2, the Bruhat–Tits building (N diag(V ), d2) is a 
CAT(0) metric space, and this property is preserved under completion. �

As in the construction of the Euclidian metric on any Euclidian building, the key to 
the proof of Theorem 3.1 is to show that the Gram–Schmidt projections introduced in 
Definition 1.18 are distance-decreasing.

Lemma 3.4. For each basis e of V , the Gram–Schmidt projection ρe : N diag(V ) → Ae
satisfies

dχ (ρe(‖ · ‖), ρe(‖ · ‖′)) ≤ dχ(‖ · ‖, ‖ · ‖′) (3.1)

for all ‖ · ‖, ‖ · ‖′ ∈ N diag(V ).

We first recall some elementary facts.

Definition 3.5. Given λ, λ′ ∈ C =
{
λ ∈ RN | λ1 ≥ · · · ≥ λN

}
, one says that λ is majorized 

by λ′, written λ � λ′, if λ1 + · · · + λi ≤ λ′
1 + · · · + λ′

i for all i, with equality for i = N .

Lemma 3.6. We have λ � λ′ if and only λ belongs to the convex envelope of the SN -orbit 
of λ′, and then χ(λ′) ≤ χ(λ) for any SN -invariant norm χ on RN .

Proof. It is straightforward to see that any λ in the convex envelope of the SN -orbit 
of λ′ satisfies λ � λ′. As observed in [62], the converse is a simple consequence of the 
Hahn–Banach theorem. Assuming indeed that λ � λ′, it is enough to show that for each 
μ ∈ RN there exists ρ ∈ SN with∑

i

μiλi ≤
∑
i

μiλ
′
σ(i).

Choose σ such that μσ(1) ≥ · · · ≥ μσ(N). Then∑
i

μiλi =
∑
i

μσ(i)λσ(i)

=
∑
i<N

(
μσ(1) − μσ(i+1)

) (
λσ(1) + · · · + λσ(i)

)
+ μσ(N)

(
λσ(1) + · · · + λσ(N)

)
≤
∑
i<N

(
μσ(1) − μσ(i+1)

)
(λ′

1 + · · · + λ′
i) + μσ(N) (λ′

1 + · · · + λ′
N ) =

∑
i

μσ(i)λ
′
i

=
∑
i

μiλ
′
σ−1(i),
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and it remains to set ρ := σ−1. Assume finally that λ � λ′, and hence λ =
∑

j tjμj with 
μi SN -equivalent to λ′, tj ∈ R≥0 and 

∑
j tj = 1, by what we just saw. By SN -invariance 

of χ, we infer

χ(λ) ≤
∑
j

tjχ(μi) =
∑
j

tjχ(λ′) = χ(λ′). �

Proof of Lemma 3.4. By Lemma 3.6, it will be enough to show that the relative spectrum 
λ (resp. μ) of ρe(‖ · ‖′) with respect to ρe(‖ · ‖′) (resp. ‖ · ‖′ with respect to ‖ · ‖) satisfy 
λ1 + · · ·+λi ≤ μ1 + · · ·+μi for all i, with equality for i = N . Set W := Vect(e1, . . . , ei), 
and observe that the restriction ρe(‖ · ‖)W of ρe(‖ · ‖) to W satisfies by definition

ρe(‖ · ‖)W = ρeW
(‖ · ‖W )

with eW = (e1, . . . , ei). By Lemma 2.12, we thus have det(ρe(‖ · ‖)W ) = det(‖ · ‖W ), and 
Theorem 2.25 yields

λ1 + · · · + λi = vol (ρe(‖ · ‖)W , ρe(‖ · ‖′)W )

= vol (‖ · ‖W , ‖ · ‖′W ) =
∑
j≤i

λj(‖ · ‖W , ‖ · ‖′W )

≤
∑
j≤i

λj(‖ · ‖, ‖ · ‖′) = μ1 + · · · + μi,

where the last inequality follows directly from (2.3), and is an equality when i = N , i.e. 
W = V . �
Proof of Theorem 3.1. By construction, ιe is an isometric embedding with respect to 
χ and dχ, and the latter therefore satisfies the triangle inequality on each apartment 
Ae = ιe(RN ). Pick three diagonalizable norms ‖ · ‖i ∈ N diag(V ), i = 1, 2, 3. We may 
then choose a basis e with ‖ · ‖1, ‖ · ‖2 ∈ Ae. Since dχ satisfies the triangle inequality on 
Ae, we have

dχ (‖ · ‖1, ‖ · ‖2) = dχ (ρe(‖ · ‖1), ρe(‖ · ‖2))

≤ dχ (ρe(‖ · ‖1), ρe(‖ · ‖3)) + dχ (ρe(‖ · ‖3), ρe(‖ · ‖2)) ,

which shows that dχ satisfies the triangle inequality on N diag(V ), by (3.1). �
3.2. The Archimedean case: Finsler metrics

Assume that K is Archimedean, i.e. K = R or C, and denote by H(V ) the real vector 
space of all quadratic/Hermitian forms h on V . Each diagonalizable norm ‖ ·‖ ∈ N diag(V )
is then associated to a positive definite form γ(v) := ‖v‖2, thereby defining an embedding 
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of N diag(V ) as an open convex subset of H(V ). Further, N diag(V ) is diffeomorphic to 
the symmetric space GLN (K)/UN (K), with UN (K) the unitary/orthogonal group.

As we now show, the metric dχ constructed above is induced by a natural Finsler 
metric on N diag(V ). Recall first that for each h, γ ∈ H(V ) with γ positive definite, one 
can find a basis e = (ei) of V which is orthonormal for γ and orthogonal for h, i.e.

γ

(∑
i

aiei

)
=
∑
i

|ai|2

and

h

(∑
i

aiei

)
=
∑
i

λi|ai|2

for all ai ∈ K. The spectrum (λi) is independent of the choice of e up to ordering, hence 
defines a point λγ(h) ∈ C, and we then have for any two h, h′ ∈ H(V )

λγ(h + h′) � λγ(h) + λγ(h′).

This is indeed a simple consequence of the min-max principle, known as the Ky Fan 
inequality. Given a symmetric norm χ on RN , it follows as in Lemma 3.6 that setting 
for each γ ∈ N diag(V )

|h|χ,γ := χ (λg(h))

defines a norm on H(V ), and we thus get a continuous Finsler norm | · |χ on the tangent 
bundle of N diag(V ).

Theorem 3.7. The metric dχ on N diag(V ) in Theorem 3.1 coincides with the length 
metric defined by the Finsler norm | · |χ. In other words, for any two γ, γ′ ∈ N diag(V ), 
dχ(γ, γ′) is the infimum over all smooth paths (γt)t∈[0,1] in N diag(V ) joining γ to γ′ of 
the corresponding length

�χ(γ) :=
1∫

0

|γ̇t|χ,γt
dt.

As a consequence, the distance dχ coincides with the one constructed in [7, §4] and 
(for χ = �p) in [27].

Lemma 3.8. For each basis e of V , the Gram–Schmidt projection ρe : N diag(V ) → Ae is 
a smooth map, and it satisfies ρ	e| · |χ ≤ | · |χ.
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Proof. The smoothness of ρe follows from its description in terms of the Gram–Schmidt 
orthogonalization process. Pick γ ∈ N diag(V ), h ∈ H(V ). As in the proof of Lemma 3.4, 
it will be enough to show that λ := λρe(γ)(dγρe(h)) is majorized by μ := λγ(h). Differ-
entiating the identity

vol(γ, γ′) = vol(ρe(γ), ρe(γ′))

with respect to γ′ shows that the trace Trγ(h) satisfies

Trγ(h) = Trρe(γ)(dγρe(h)),

i.e. λ1 + · · · + λN = μ1 + · · · + μN . Arguing as in Lemma 3.4, we apply this fact to the 
restrictions of γ and h to the span W of (e1, . . . , ei) for a given i, and get

λ1 + · · · + λi = Trγ|W (h|W ) ≤ μ1 · · · + μi

thanks to the min-max principle. �
Proof of Theorem 3.7. Pick a basis e, and observe that the differential dλιe : RN →
H(V ) at λ ∈ RN satisfies for all μ ∈ RN

λιe(λ)(dλιe(μ)) = μ mod SN .

As a result, ι	e| · |χ is the constant Finsler norm χ on RN , and the χ-length of any smooth 
path γ : [0, 1] → Ae joining γ = ιe(λ) to γ′ = ιe(λ′) thus satisfies

�χ(γ) ≥ χ(λ′ − λ) = dχ(γ, γ′),

with equality when γ is the image of the line segment [λ, λ′]. If γ : [0, 1] → N diag(V )
is now a smooth path joining γ to γ′ in N diag(V ) only, the previous case applies to 
ρe ◦ γ : [0, 1] → Ae, which combines with Lemma 3.8 (ii) to give �χ(γ) ≥ �χ(ρe ◦ γ) ≥
dχ(γ, γ′). �
Part 2. Models and metrics

4. Analytification and models

This section reviews some well-known facts on Berkovich analytifications and models, 
with an emphasis on the reduced fiber condition. We provide in particular a direct proof 
of a version of the Bosch–Lütkebohmert–Raynaud reduced fiber theorem for models.

As before, K denotes a complete valued field. All schemes over K (or K◦, when K is 
non-Archimedean) considered below are separated, unless otherwise specified.
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4.1. Analytification

To any scheme X of finite type over K, Berkovich functorially associates in [3, §3.4]
an analytification Xan, together with a continuous map ker : Xan → X. In the present 
paper, we mostly only need the underlying topological space, which is Hausdorff and 
locally compact. As such, the analytifications of X and of the reduced scheme Xred
coincide, but it will nevertheless be useful for inductive arguments to allow X to be 
non-reduced.

Assume first that X is affine, i.e. X = SpecA with A a finite type K-algebra. The 
topological space Xan is defined as the set of all multiplicative seminorms on A extending 
the given absolute value on K, endowed with the topology of pointwise convergence. The 
multiplicative seminorm associated to x ∈ Xan is denoted by f �→ |f(x)|. The set of f ∈ A

with |f(x)| = 0 is a prime ideal, the kernel of x, thereby defining a natural continuous 
map ker : Xan → X. We thus have |f(x)| = 0 if and only if f vanishes at ξ = ker(x), 
and f �→ |f(x)| defines a norm on the residue field κ(ξ).

Lemma 4.1. A function f ∈ A satisfies |f | ≡ 0 on Xan if and only if f is nilpotent.

Proof. For each closed point ξ ∈ X, the absolute value on K (uniquely) extends to 
the finite field extension κ(ξ) of K, and image of the kernel map therefore contains the 
set of closed points of X (in fact, ker injects Xan onto the set of closed points of X
if K is Archimedean, while ker maps Xan onto X when K is non-Archimedean). As a 
consequence, a function f ∈ A with |f | ≡ 0 vanishes at all closed points of X, and hence 
is nilpotent. �

Consider now an arbitrary K-scheme of finite type X, and cover it with finitely many 
affine open subschemes Ui. Since X is separated, each Uij = Ui ∩Uj is affine, and Uan

ij is 
homeomorphic to the inverse image of Uij in both Uan

i and Uan
j . We can thus glue Uan

i

and Uan
j together along their common open subset Uan

ij to define the topological space 
Xan with a continuous map ker : Xan → X.

The GAGA theorem [3, 3.4.8, 3.5.3] guarantees that Xan is Hausdorff (since we always 
assume X separated), locally compact, and Xan is compact if and only if X is proper.

Example 4.2. If K is Archimedean, the Gelfand-Mazur theorem yields the following de-
scription of Xan. When K = C, Xan is the usual analytification of X, i.e. Xan = X(C)
with its Euclidian topology. When K = R, Xan is identified with the set of closed points 
of X, i.e. the quotient of (X ⊗C)an = X(C) by complex conjugation.

Example 4.3. When K is non-Archimedean with valuation vK = − log | · |, Xan can 
be seen as a space of semivaluations on X, i.e. real valuations on the residue fields of 
points of X. More precisely, the bijective map x �→ (ker(x), vx) with vx(f) := − log |f(x)|
describes Xan as the set of pairs (ξ, v) where ξ ∈ X is a scheme point and v : κ(ξ)	 → R

is a rank 1 valuation on the residue field κ(ξ) extending vK .
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4.2. Smooth functions

In the Archimedean case, every point of Xan admits a neighborhood V with a closed 
(analytic) embedding in a polydisc Dr, and a smooth function u : V → R is defined 
as the restriction of a smooth function on Dr, the definition being independent of the 
choice of closed embedding.

In the non-Archimedean case, Chambert-Loir and Ducros have introduced in [20] a 
notion of (p, q)-form on any Berkovich analytic space (see also [43] for the case of an 
analytification). In particular, a sheaf of smooth functions on Xan is defined, basically 
prescribed by the following two natural requirements:

(i) log |f | is smooth for each invertible analytic function f ;
(ii) if u1, . . . , ur are smooth functions on an open V ⊂ Xan and χ is a smooth function 

defined near the range of the map V → Rr with components (ui), then χ(u1, . . . , ur)
is smooth on V .

More explicitly, a function u on an open subset of Xan is smooth iff it is locally of the 
form

u = χ (log |f1|, . . . , log |fr|) (4.1)

where the fi are invertible analytic functions and χ is a smooth function on an appro-
priate subset of Rr. Note that this description of smooth functions also holds in the 
Archimedean case (using Re zi = log |ezi |).

4.3. Models and reduction

In what follows, K is non-Archimedean (possibly trivially valued). Recall that the 
valuation ring K◦ is Noetherian if and only if K is discretely or trivially valued. Let X
be a K-scheme of finite type.

Definition 4.4. A model of X is a (separated) flat, finite type K◦-scheme X together with 
an identification of K-schemes XK := X ⊗K◦ K � X.

The special fiber of a model X is the K̃-scheme of finite type Xs := X ⊗K◦ K̃. We 
say that a model X is proper (resp. projective) if it is proper (resp. projective) as a 
K◦-scheme. This implies of course that X is proper (resp. projective) as a K-scheme.

Models of X form a category, in which a morphism of models μ : X ′ → X is a 
morphism of K◦-schemes compatible with the given identifications X ′

K � X � XK . If 
two models X ′, X admit a morphism μ : X ′ → X , then μ is unique, by separatedness, 
and we then say that X ′ dominates X . We say that X ′ properly dominates X if μ is 
proper.
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In the trivially valued case, models of X are in 1–1 correspondence with automor-
phisms of X, and X = X is thus the only model up to isomorphism.

Lemma 4.5. Any model X of X is automatically finitely presented over K◦.

This follows from a general result of Raynaud–Gruson [63, Théorème 3.4.6], and goes 
back to Nagata [58, Theorem 3]. For the sake of completeness, we reproduce here a simple 
argument due to Antoine Ducros [33], which is basically equivalent to that of Nagata.

Proof. We claim that it is enough to prove the result when X is projective over K◦. 
Indeed, arguing locally, we may first assume that X is affine, and we get the claim by 
choosing a closed embedding in an affine space and passing to the schematic closure in 
the corresponding projective space. Pick a closed embedding X ↪→ PN

K◦ , and denote by 
I the corresponding homogeneous ideal of R := K◦[t0, . . . , tN ]. Since both (R/I) ⊗ K

and (R/I) ⊗ K̃ are Noetherian, we may choose a finitely generated homogeneous ideal 
I ′ ⊂ I such that R/I ′ → R/I becomes an isomorphism after tensoring with either K
or K̃. This means that the finitely presented closed subscheme X ′ ⊂ PN

K◦ defined by I ′

has the same special fiber and generic fiber as X . If we can show that X ′ is flat over 
K◦, it will coincide with the schematic closure of its generic fiber, which will prove that 
X = X ′ is finitely presented. But X ′ is flat over K◦ if and only if the finite type K◦-
module Vm := (R/I ′)m is free for all m ∈ N large enough, which is indeed the case since 
dimK Vm ⊗K = dim

K̃
Vm ⊗ K̃, by choice of I ′. �

A model X of X determines a compact subset X�4 of Xan and an anticontinuous5
reduction map

redX : X� → Xs,

as follows. If X is affine, i.e. X = Spec(A) with A a flat (i.e. torsion-free) finite type 
K◦-algebra, then

X� = {x ∈ Xan | |f(x)| ≤ 1 for all f ∈ A} ,

and the reduction redX (x) of x ∈ X� is the point of Xs induced by the prime ideal 
{f ∈ A | |f(x)| < 1}. In the general case, X is covered by finitely many affine open 
subschemes Ui, whose generic fibers Ui give an affine open cover of X, and

X� =
⋃
i

U�
i ⊂

⋃
i

Uan
i = Xan.

4 The letter � (‘bet’) is the second letter of the Hebrew alphabet. The chosen notation follows the lead 
of [75].
5 The inverse image of an open is closed.
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In the language of Example 4.3, X� consists of those semivaluations on X that admit 
a center on X , and redX maps a semivaluation to its center, which is necessarily on Xs. 
By the valuative criterion of properness, we thus have:

Lemma 4.6. If a model X ′ properly dominates X , then (X ′)� = X�. If X is proper over 
K◦ (and hence X is proper over K), then X� = Xan.

Example 4.7. In the trivially valued case, X is the only model up to isomorphism, and 
X� coincides with the construction of [75]. In particular, X� ⊂ Xan, with equality iff X
is proper.

The compact set X� associated to a model X can also be understood as (the underly-
ing topological space of) the generic fiber in the sense of [4, §1] of the formal completion 
X̂ of X . As above, it is enough to consider the case where X = Spec(A) and X = Spec(A)
are affine. For any two nonzero a, a′ ∈ K◦◦, there exists n 	 1 with an ∈ K◦a′, and 
the formal completion Â of A with respect to a is thus independent of the choice of 
a ∈ K◦◦ (set Â = A = A in the trivially valued case). The K◦-algebra Â is flat and 
topologically of finite type, and X̂ = Spf(Â) is thus an admissible formal K◦-scheme, 
whose generic fiber X̂η is defined as the set of bounded multiplicative seminorms on the 
K-affinoid algebra Â := Â ⊗ K. Composing such a seminorm with the canonical map 
A → Â defines a continuous map X̂η → X�, which is easily see to be bijective by density 
of the image of A in Â, and hence a homeomorphism, by compactness of X̂η.

The following well-known result holds in fact for the reduction map of any admissible 
formal scheme (see for instance [46, §2.13]).

Lemma 4.8. The reduction map redX : X� → Xs of any model X is anticontinuous and 
surjective. Further, the preimage Γ(X ) of the set of generic points of Xs is a finite set.

We shall call Γ(X ) the set of Shilov points. When X (and hence X) is affine, Γ(X )
is exactly the Shilov boundary of the K-affinoid domain X� in the sense of [3, 2.4.4], 
cf. [45, Proposition A.3]. Covering a general model with affine open subschemes, we get:

Lemma 4.9. For any model X of X and f ∈ O(X), the sup-seminorm on X� satisfies

‖f‖X� := sup
X�

|f | = max
Γ(X )

|f |.

Example 4.10. If K is trivially valued and η is a generic point of X = Xs, the point of 
X� corresponding to the trivial valuation on κ(η) = OX,η is the unique Shilov point 
mapping to η.

Example 4.11. Assume that K is nontrivially valued and X is normal, i.e. integrally 
closed in X with X normal. For each generic point η of Xs, the local ring OX ,η is a rank 
one valuation ring. This is of course well-known when X is Noetherian (i.e. K trivially or 
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discretely valued), while the general case is proved in [52, Theorem 2.6.1]. As observed 
in [47, Proposition 2.3], one easily checks that the corresponding point of X� is the 
unique Shilov point of X mapping to η.

Example 4.12. If we merely assume that X is integrally closed in X, it is still true 
that there is a unique Shilov point mapping to any given generic point η of Xs. In the 
discretely valued case, this is proved in [21, Lemme 2.1]. In the densely valued case, 
the assumption implies that Xs is reduced by Theorem 4.19 below, which also implies 
that redX : X� → Xs coincides with the affinoid reduction map, and we conclude by [3, 
Proposition 2.4.4].

4.4. Sup-seminorm, integral closure and reduced fiber

The goal of this section is to review the relation between sup-seminorm, integral 
closure and reduced fiber.

Assume first that K is non-Archimedean and nontrivially valued, X = Spec(A) is 
affine and X = Spec(A) is an affine model of X. Denote as above by Â the formal 
completion of A with respect to any nonzero a ∈ K◦◦, by Â := Â ⊗ K the associated 
K-affinoid algebra, and write f �→ f̂ for the canonical map A → Â (which is not injective 
in general, cf. Example 4.14 below). The affinoid algebra Â is equipped with the sup-
seminorm ‖ · ‖sup, defined by setting for g ∈ Â

‖g‖sup := sup
X�

|g| = max
Γ(X )

|g|,

where the second equality holds by [3, 2.4.4]. The sup-seminorm on X� of f ∈ A as in 
Lemma 4.9 can thus be written as

‖f‖X� = ‖f̂‖sup.

By [8, 6.2.1/4] and [3, 3.4.3], we have:

Lemma 4.13. The sup-seminorm on Â is a norm if and only if Â is reduced. This holds 
in particular if A is reduced.

While A → Â has dense image, it is not injective in general, even when A is reduced:

Example 4.14. If K is discretely valued, A := K is of finite type of K◦, and hence a 
model of A = K, for which Â = {0} (thanks to Antoine Ducros for this simple example).

Theorem 4.15. The unit ball of ‖ · ‖sup coincides with the integral closure Â′ of Â in Â. 
Similarly, the unit ball of ‖ · ‖X� coincides with the integral closure A′ of A in A, and 
the induced map A′ → Â′ further has dense image.
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Corollary 4.16. A given f ∈ A is integral over A if and only if f̂ is integral over Â, and 
A is integrally closed in A if and only if Â is integrally closed in Â.

We start with a useful observation.

Lemma 4.17. For each f ∈ A, we have f ∈ A ⇐⇒ f̂ ∈ Â.

Proof. We imitate [9, Lemma 1.4]. Pick a nonzero a ∈ K◦◦ such that af ∈ A, and note 
that the canonical map A → Â induces an isomorphism A/aA � Â/aÂ. If f̂ ∈ Â, we 
thus have af = ag for some g ∈ A, and hence f = g ∈ A after multiplying by a−1

in A. �
Proof of Theorem 4.15. That the unit ball of ‖ · ‖sup is the integral closure of Â is a 
reformulation of [8, 6.3.4/1] (and the remark that follows). Before dealing with the unit 
ball of ‖ · ‖X� , we first establish the density of the image of A′ in Â′.

Let thus g ∈ Â′, so that gn +
∑n−1

i=1 big
n−i ∈ Â for some bi ∈ Â. Since A → Â and 

A → Â have dense images, we can pick sequences fj ∈ A and aij ∈ A with f̂j → g and 
âij → bi as j → ∞. As Â is open in Â (for instance by Lemma 4.18 below), it follows 
that f̂n

j +
∑n−1

i=1 âij f̂
n−i
j ∈ Â for all j 	 1, i.e. fn

j +
∑n−1

i=1 aijf
n−i
j ∈ A, by Lemma 4.17. 

As a result, fj is integral over A, i.e. fj ∈ A′, which proves that A′ → Â′ has dense 
image.

It remains to show that an element f ∈ A with ‖f‖X� ≤ 1 is integral over A. Since 
‖f̂‖sup ≤ 1, we already know that f̂ belongs to Â′. Since A′ → Â′ has dense image and 
Â is open in Â, we find f ′ ∈ A′ with f̂ − f̂ ′ ∈ Â, i.e. f − f ′ ∈ A, and hence f ∈ A′ (see 
also [23, Theorem 2.10]) for a direct proof). �

Besides the sup-seminorm ‖ · ‖X� , A is also equipped with a ‘lattice seminorm’ ‖ · ‖A, 
defined by

‖f‖A := inf {|a| | a ∈ K, f ∈ aA} .

By Example 4.14, this is again not a norm in general. However, similarly setting for 
g ∈ Â

‖g‖Â := inf
{
|a| | a ∈ K, g ∈ aÂ

}
,

does yield a norm on Â:

Lemma 4.18. For each g ∈ Â, the infimum defining ‖g‖Â is achieved. In particular, Â is 
the closed unit ball of ‖ · ‖Â, and K◦◦Â is its open unit ball.

Proof. The result is true for the polynomial ring B := K◦[t1, . . . , tr], since ‖ · ‖B̂ is then 
the Gauss norm on the Tate algebra B̂ = K{t1, . . . , tr}. In the general case, choose a 
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surjection B := K◦[t1, . . . , tr] � A for some r ≥ 1, and observe that ‖ ·‖Â is the quotient 
seminorm of ‖ · ‖B̂ with respect to the induced surjection ρ : B̂ � Â. The kernel of ρ, 
being an ideal in a Tate algebra, is strictly closed [8, 5.2.7/8]. By definition, this means 
that for each g ∈ Â, there exists h ∈ B̂ such that ρ(h) = g and ‖h‖B̂ = ‖g‖Â. Since 
the desired result holds for B̂, we can then find a ∈ K with |a| = ‖h‖B̂ = ‖g‖Â, which 
implies that h ∈ aB̂, and hence g = ρ(h) ∈ aÂ. �

Theorem 4.19. As above, let X = SpecA be an affine model of X = SpecA. We then 
have ‖ ·‖sup ≤ ‖ ·‖Â on Â, and hence ‖ ·‖X� ≤ ‖ ·‖A on A. Consider further the following 
properties:

(i) Xs is reduced;
(ii) ‖ · ‖sup = ‖ · ‖Â on Â;
(iii) ‖ · ‖X� = ‖ · ‖A on A;
(iv) Â is integrally closed in Â;
(v) A is integrally closed in A.

Then (i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv) ⇐⇒ (v). If K is densely valued, we also have 
(v) =⇒ (i), and (i)—(v) are then equivalent.

Proof. Pick a nonzero g ∈ Â. By Lemma 4.18, ‖g‖Â is in the value group |K×|, and 
we may thus assume that ‖g‖Â = 1 after multiplying g by a nonzero scalar. We then 
have g ∈ Â, hence |g(x)| ≤ 1 for all x ∈ X�, which proves that ‖g‖sup ≤ 1, and hence 
‖ · ‖sup ≤ ‖ · ‖Â.

Suppose now that Xs is reduced, and assume by contradiction that g as above satisfies 
‖g‖sup < 1. By [8, 6.2.3/2], g is topologically nilpotent, i.e. gn → 0. For n 	 1, we thus 
have ‖gn‖Â < 1, i.e. gn ∈ K◦◦Â; since A ⊗K̃ � Â⊗K̃ is reduced, this implies g ∈ K◦◦Â, 
which contradicts ‖g‖Â = 1. We have thus proved (i) =⇒ (ii), which trivially implies 
(iii) by composing with A → Â. If (iii) holds, then ‖ · ‖A is power-multiplicative, i.e. 
‖fn‖A = ‖f‖nA for each f ∈ A and n ∈ N. In particular, fn ∈ K◦◦A ⇐⇒ ‖fn‖A <

1 ⇐⇒ f ∈ K◦◦A, which means that A ⊗ K̃ � A/K◦◦A is reduced.
Since Â (resp. A) is the unit ball of ‖ · ‖Â (resp. ‖ · ‖A), Theorem 4.15 shows that (ii) 

and (iii) respectively imply (iv) and (v), while Corollary 4.16 shows that (iv) and (v) are 
equivalent.

Assume finally that K is densely valued and that (v) holds. To prove (i), we need to 
show that each f ∈ A such that fn ∈ aA for some n ≥ 1 and a ∈ K◦◦ actually satisfies 
f ∈ K◦◦A. Since K is densely valued, we can find a′ ∈ K◦◦ with |a|1/n ≤ |a′| < 1, and 
hence a/a′n ∈ K◦. As a result, g := a′ −1f ∈ A satisfies gn ∈ A, and hence g ∈ A, since 
A is integrally closed in A. We have thus shown as desired that f = a′g ∈ K◦◦A (we are 
grateful to Walter Gubler for his help with this argument). �
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We conclude this section with the following rather special case of the scheme-theoretic 
version of the Bosch–Lütkebohmert–Raynaud reduced fiber theorem [10, Theorem 2.1’]. 
We provide some details for the convenience of the reader (see also [1, Théorème 1’, 
p. 73]).

Theorem 4.20. Assume that K is non-Archimedean and nontrivially valued, and either 
discretely valued or algebraically closed. Let X be a reduced K-scheme of finite type, and 
pick a model X of X. The integral closure X ′ of X in X is then finite over X , and hence 
a model of X as well. In the algebraically closed case, X ′

s is further reduced.

Note conversely that the existence of a model with reduced special fiber implies that 
X is reduced, by [32, IV,12.1.1].

Proof of Theorem 4.20. If K is discretely valued, then X is excellent, which implies that 
its integral closure in X is finite. Assume that K is algebraically closed. It is then densely 
valued, and the final point will thus follow from Theorem 4.19.

The finiteness of X ′ over X being local, we assume that X = Spec(A) is affine and 
use the above notation. We will reduce the result to the Grauert–Remmert finiteness 
theorem, basically arguing as in [9, Proposition 1.5] and [72, Theorem 3.5.5, Step 3].

Since A is reduced, Â is reduced as well by Lemma 4.13, and [8, 6.4.1/5] thus shows 
that Â′ is finite over Â, i.e. Â′ =

∑
i Âgi for a finite set gi ∈ Â, in which we include 1

for convenience. As in the proof of Lemma 4.17, we can find for each i some fi ∈ A with 
gi − f̂i ∈ Â, and hence Â′ =

∑
i Âf̂i. By Corollary 4.16, an element f ∈ A belongs to 

the integral closure A′ of A in A if and only f̂ belongs to Â′ =
∑

i Âf̂i, which is also 
equivalent to f ∈

∑
i Afi by Lemma 4.17. We conclude as desired that A′ =

∑
i Afi is 

finite over A. �
Remark 4.21. Theorem 4.20 fails in general over an arbitrary densely valued non-
Archimedean field K. Let indeed X = SpecA be an affine reduced K-scheme, X =
SpecA an affine model, and denote by A′ the integral closure of A in A. If K is densely 
valued and A′ is finite over A, then X ′ := SpecA′ is a model of X, and hence X ′

s is 
reduced, by Theorem 4.19. As a result, the sup-seminorm ‖ · ‖X� = ‖ · ‖X ′� = ‖ · ‖A′

takes values in |K|, a condition that is not satisfied in general when the group |K×| is 
not divisible.

5. Fubini–Study metrics and model metrics

This section introduces Fubini–Study metrics, and compares them with model metrics. 
The main result is Theorem 6.4, which compares the supnorms and lattice norms induced 
by a model metric, and relies on the reduced fiber theorem.

In what follows, X denotes a projective K-scheme, where K is a complete valued field.
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5.1. Metrics

Let L be a line bundle on X. A continuous metric φ on L is a family of norms

| · |φx
: Lx := L⊗H(x) → [0,+∞), x ∈ Xan,

such that for any local section s of L on an open U ⊂ X, the induced function |s|φ on 
Uan is continuous. We use additive notation for metrics, which amounts to the following 
rules:

(i) if φ, ψ are continuous metrics on line bundles L, M , then φ ±ψ denotes the induced 
metric on L ±M = L ⊗M±1, i.e.

| · |φ±ψ = | · |φ ⊗ | · |±1
ψ ;

(ii) a continuous metric φ on the trivial line bundle L = OX is identified with the 
continuous function − log |1|φ on Xan.

If φ, ψ are two continuous metrics on the same line bundle L, φ −ψ is thus a continuous 
function on Xan, which means that the space C0(L) of continuous metrics on L is an 
affine space modeled on C0(Xan).

A smooth metric φ on L is a continuous metric such that |s|φ is smooth for any local 
trivialization s of L. In the non-Archimedean case, smoothness is understood in the sense 
of [20], see §4.2. The set of smooth metrics C∞(L) ⊂ C0(L) is an affine space modeled 
on C∞(X).

We occasionally use the notion of a singular metric on L, by which we mean a metric 
of the form φ = ψ + f with ψ ∈ C0(L) and f : Xan → [−∞, +∞) an arbitrary function. 
For a local trivialization s of L, |s|φ = |s|ψe−f is thus allowed to be +∞ at certain 
points.

If f is bounded, we say that φ is a bounded metric, defining an affine space L∞(L) ⊃
C0(L) modeled on the space of bounded functions.

Example 5.1. Every section s ∈ H0(X, L) defines a singular metric log |s| on L, such that 
log |s| = ψ + log |s|ψ for any ψ ∈ C0(L).

For each m ≥ 1, every metric on L is of the form mφ with φ a metric on L. As a 
result, all of the above notions immediately extend to Q-line bundles.

5.2. Fubini–Study metrics

The usual Fubini–Study metric on the tautological ample line bundle O(1) over the 
projective space (also known as the Weil metric in the non-Archimedean context) gen-
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eralizes in a natural way as follows (see Corollary 7.18 below for a more conceptual 
characterization).

Definition 5.2. A metric φ on a line bundle L over X is called a Fubini–Study metric
if there exists m ≥ 1, a finite set of sections (si) of mL without common zeroes, and 
constants λi ∈ R such that

(A) φ = 1
2m log

∑
i |si|2e2λi (Archimedean case);

(NA) φ = 1
m maxi{log |si| + λi} (non-Archimedean case).

We say that φ is pure if λi = 0.

By definition, L admits a (pure) Fubini–Study metric iff L is semiample, i.e. mL is 
globally generated for some m ≥ 1.

The notation |si| = elog |si| is understood as in Example 5.1, and thus means that 
for any local trivializing section τ of L, the corresponding functions fi := si/τ

m ∈ OX

satisfy

− log |τ |φ = 1
2m log

∑
i

|fi|2e−2λi (resp. 1
m

max
i

{log |fi| + λi}).

In the Archimedean case, one can replace si with eλisi, and all Fubini–Study metrics 
are thus pure in that case.

Given a subgroup Γ ⊂ R, we say that a metric φ as above is a Γ-Fubini–Study metric
if λi ∈ Γ for all i. We denote by

FSΓ(L) ⊂ C0(L)

the set of Γ-Fubini–Study metrics on L, and by FS(L) = FSR(L) the set of all Fubini–
Study metrics. The set of pure Fubini–Study metrics is thus FS{0}(L).

Remark 5.3. While Fubini–Study metrics are smooth in the Archimedean case, they 
are instead piecewise linear when K is non-Archimedean (see §5.4 below). But it is 
anyway easy to explicitly approximate a Fubini–Study metric by smooth metrics, cf. The-
orem 7.14.

The next result summarized the main properties of Fubini–Study metrics.

Proposition 5.4. If L, L′ are line bundles on X and Γ ⊂ R is a subgroup, then:

(i) FSΓ(L) + FSΓ(L′) ⊂ FSΓ(L + L′);
(ii) FSΓ(L) = FSΓ′(L) with Γ′ := Q(Γ + ΓK) the Q-linear subspace of R spanned by Γ

and ΓK ;
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(iii) FSΓ(mL) = m FSΓ(L) for all m ∈ Z>0;
(iv) f	 FSΓ(L) ⊂ FSΓ(f	L) for any projective morphism f : X ′ → X;
(v) if Γ �= {0}, or K is nontrivially valued, then FSΓ(L) is dense in FS(L) with respect 

to uniform convergence.

When K is non-Archimedean, we further have:

(vi) FSΓ(L) is stable under max.

Proof. Pick m, m′ ≥ 1 and finitely many sections without common si ∈ H0(mL), s′j ∈
H0(m′L′) such that φ = 1

2m log
∑

i |si|2, φ′ = 1
2m′ log

∑
j |s′j |2 in the Archimedean case, 

and φ = 1
m maxi{log |si| +λi}, φ′ = 1

m maxj{log |s′j | +λ′
j} in the non-Archimedean case. 

In the former case,

mm′(φ + φ′) = log
(∑

i

|si|2
)m′ ⎛⎝∑

j

|s′j |2
⎞⎠m

,

which expands out as mm′(φ + φ′) = log
∑

α |σα|2 for a finite set of sections σa ∈
H0(mm′L) without common zeroes, proving that φ + φ′ is Fubini–Study. In the non-
Archimedean case,

mm′(φ + φ′) = max
i

{log |sm′

i | + m′λi} + max
j

{log |s′mj | + mλ′
j}

= max
i,j

{log |sm′

i s′mj | + m′λi + mλ′
j},

which proves (i). The proof of (ii) and (iii) is similar, and (iv), (vi) follow directly from 
the definitions. To prove (v), note that the assumption implies that Γ′ = Q(Γ + ΓK) is 
a nontrivial Q-linear subspace of R. It is thus dense in R, and it is then straightforward 
to check that FSΓ(L) = FSΓ′(L) is dense in FS(L) = FSR(L), simply by approximating 
the coefficients λi in Definition 5.2. �

By Proposition 5.4 (ii), we can make sense of Γ-Fubini–Study metrics on any Q-line 
bundle L over X. As noted above, such metrics exist iff L is semiample. As we now show, 
Fubini–Study metrics always descend to an ample Q-line bundle.

Lemma 5.5. If L is a semiample Q-line bundle on X, then there exists a surjective 
morphism f : X → Y to a projective K-scheme with f	OX = OY and an ample Q-line 
bundle A on Y such that f	A = L. Further, f and (Y, A) are unique up to isomorphism.

We call A the Stein factorization of L.

Proof. After passing to a multiple, we may assume that L is a globally generated line 
bundle. We then have a morphism h : X → P H0(L) such that L = h	O(1). By Stein 
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factorization, we have h = g ◦ f with f : X → Y such that f	OX = OY and g : Y →
P H0(L) finite. Thus A := g	O(1) is ample, and L = f	A. By the projection formula, we 
have H0(Y, mA) � H0(X, mL) for all m. This shows that (Y, A) is recovered from the 
graded ring R(X, L) =

⊕
m∈N H0(X, mL) by the Proj construction, and hence is unique 

up to isomorphism. �
Lemma 5.6. Let L be a semiample Q-line bundle on X. Denote by Xred ⊂ X the reduction 
of X, and by Lred the restriction of L. For all m sufficiently divisible, the restriction map 
H0(X, mL) → H0(Xred, mLred) is surjective.

Proof. Use the notation of Lemma 5.5. Since every germ on OYred locally lifts to OY , 
we have f	OXred = OYred , hence H0(Xred, mLred) � H0(Yred, mAred), by the projection 
formula. We are thus reduced to the case where L is ample, which follows from Serre 
vanishing. �
Corollary 5.7. Let L be a semiample Q-line bundle on X. Denote by A the Stein factor-
ization of L as in Lemma 5.5, and by Lred the restriction of L to Xred. Then

FSΓ(A) � FSΓ(L) � FSΓ(Lred).

5.3. Model metrics

In this section, K is non-Archimedean (possibly trivially valued). A model of a line 
bundle L on the projective K-scheme X is a line bundle L on a projective model X of 
X, together with an isomorphism L|XK

� L compatible with the given isomorphism 
XK � X. When L = OX , each model of L is of the form OX (D) where D is a vertical
Cartier divisor on a projective model X , i.e. SuppD ⊂ Xs.

Lemma 5.8. Let L be a line bundle on X, and X a projective model of X. Then we can 
find a projective model X ′ dominating X and a model L of L determined on X ′.

Proof. Pick very ample line bundles A1, A2 on X such that L = A1 − A2. Sections of 
Ai yields an embedding X ↪→ PNi

K such that Ai = O(1)|X . The scheme theoretic closure 
of X in PNi

K◦ is thus a projective model Xi of X, and Ai := O(1)|Xi
is a model of Ai

determined on Xi. It remains to choose a projective model X ′ dominating X , X1 and 
X2, and to define L as the difference of the pullbacks to X ′ of A1 and A2. �

A model L of L defines a continuous metric φL on L, as follows. Cover X with finitely 
many open subschemes Ui with a trivializing section τi of L. Since X is in particular 
proper over K◦, Xan = X� is covered by the compact sets U�

i . We may thus define a 
continuous metric φL on Lan by requiring that |τi|φL = 1 on U�

i . This is indeed well-
defined, since any other trivializing section of L on Ui is of the form uiτi with ui ∈ O×(Ui)
a unit, and hence |ui| ≡ 1 on U�

i .
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Example 5.9. If K is trivially valued, the model metric defined by the unique model 
(X, L) is called the trivial metric of L.

Lemma 5.10. Let L be a model of L, with corresponding metric φL.

(i) For each m ∈ Z we have φmL = mφL.
(ii) If a model X ′ dominates X , then the pull-back L′ of L to X ′ satisfies φL′ = φL.

Proof. If τ is trivializing section of L on an open set U , then τm is a trivializing section 
of mL, and the pull-back of τ is a local trivialization of L′ on the inverse image U ′, which 
satisfies U ′� = U� since U ′ is proper over U (cf. Lemma 4.6). �

If L is now a Q-line bundle on X, a Q-model of L is defined as a Q-line bundle L
on a projective model X of X such that mL is a model of mL for some m ≥ 1. By 
Lemma 5.10 (i), the metric φL := m−1φmL on L is independent of the choice of m.

Definition 5.11. A model metric on a Q-line bundle L is a metric of the form φ = φL, 
where L is a Q-model of L. A model function is a model metric φ on OX , identified with 
the continuous function − log |1|φ on Xan.

A model function f is thus determined by a vertical Q-Cartier divisor D on some 
projective model X of X. Every line bundle L on X admits a model metric φ, and any 
other model metric on L is then of the form φ + f with f a model function.

Theorem 5.12. Assume that K is either discretely (or trivially) valued, or algebraically 
closed. Let L, L′ be two models of a the same line bundle L, determined on models X , X ′

of X. Then the model metrics φL, φL′ on L coincide iff the pullbacks of L, L′ to some 
model X ′′ dominating both X and X ’ are equal.

Proof. If the pullbacks of L, L′ to some high enough model agree, then φL = φL′ , 
by Lemma 5.10. Assume conversely that φL = φL′ . By Theorem 4.20, X and X ′ are 
dominated by a model X ′′ which is integrally closed in X. After pulling back L and L′

to X ′′, we may thus assume that L and L′ are determined on X integrally closed in X, 
and we then claim that L = L′. To see thus, let U = Spec(A) be an affine open subscheme 
of X with trivializing sections τ ∈ H0(U , L), τ ′ ∈ H0(U , L′). Since L, L′ are both models 
of the same line bundle L, the restrictions of τ, τ ′ to the generic fiber U = Spec(AK)
of U satisfy τ ′|U = uτ |U with u ∈ AK a unit. As φL and φL′ coincide, the definition of 
model metrics yields |u| ≡ 1 on U�. By Theorem 4.19, A coincides with the unit ball of 
‖ · ‖sup on AK . As ‖u‖sup = ‖u−1‖sup = 1, it follows that u and u−1 belong to A, i.e. u
is a unit in A, and we conclude that L = L′. �

The next result describes the behavior of model metrics under pullback.
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Proposition 5.13. Let L be a Q-line bundle on X, and φL be the model metric determined 
by a Q-model L of L on a model X of X. For any projective morphism f : Y → X, 
the induced metric f	φ on f	L is also a model metric. More precisely, the family of 
projective models Y of Y such that f extends to a K◦-morphism f : Y → X is cofinal in 
all projective models, and we have f	φL = φf�L for any such model Y.

If f : Y → X is flat, then Y can further be assumed to be flat over X .

Proof. Pick a projective model Y ′ of Y , and denote by Y the schematic (or flat) closure in 
Y ′×K◦ X of the graph of f . Then Y dominates Y ′, and the projection Y → X extends f . 
To see the last point, we may assume that L is a line bundle. Let (Ui) be a finite open 
cover of Y with trivializing sections τi ∈ H0(Ui, L). Then (f−1(Ui)) is an open cover of 
Y with trivializing sections f	τi for f	L, and the result easily follows.

For the last point, by the Raynaud–Gruson flattening theorem [63], we can blow up 
X and take the proper transform of Y to obtain a flat morphism f : Y ′ → X ′ of models. 
By Lemma 5.10 this does not change the metrics induced by the models. �

We are now in a position to compare model metrics and Fubini–Study metrics (see [23, 
Proposition 3.8] for a related result).

Theorem 5.14. For a continuous metric φ on a Q-line bundle L over X, the following 
are equivalent:

(i) φ is a pure Fubini–Study metric;
(ii) φ is a model metric determined by a semiample Q-model L of L, i.e. mL is a globally 

generated line bundle when m ∈ N is sufficiently divisible.

Proof. The key observation is that the Weil metric log maxi |zi| on P r
K with homogeneous 

coordinates [z0 : · · · : zr] coincides with the model metric φO(1) determined by the 
canonical model of (P r, O(1)) over K◦.

Let first φ be a pure Fubini–Study metric on L. After replacing L by a multiple, we 
may assume that L is globally generated and φ = log maxi |si| with (si) a basis of H0(L). 
These sections induce a morphism of K-schemes f : X → P r

K with an identification 
L = f	O(1) such that φ = f	φO(1). By Proposition 5.13, X admits a projective model 
X such that f extends to a morphism f : X → P r

K◦ , and φ is the model metric defined 
by (X , f	O(1)). Since f	O(1) is globally generated, this proves (i) =⇒ (ii). Conversely, 
let L be a semiample Q-model of L. After passing to a multiple, we may assume that L
is a globally generated line bundle. Choosing a K◦-basis (si) of the lattice H0(L) yields 
a morphism f : X → P r

K◦ with f	O(1) = L, and hence φL = f	φO(1) = log maxi |si|, by 
Proposition 5.13. �
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5.4. PL metrics

In this section, K is non-Archimedean, and Γ ⊂ R is an additive subgroup.

Definition 5.15. We say that a continuous metric φ on a Q-line bundle L is Γ-piecewise 
linear, or Γ-PL for short, if there exists (semiample) Q-line bundles M, M ′ and Γ-
Fubini–Study metrics ψ, ψ′ on M, M ′ such that L = M −M ′ and φ = ψ − ψ′.

We denote by PLΓ(L) the set of Γ-PL metrics on L. A Γ-PL metric on OX is called 
a Γ-PL function, defining a subset PLΓ(Xan) ⊂ C0(Xan).

When Γ = {0}, we speak of pure PL metrics and pure PL functions, respectively.

Proposition 5.16. Let L, L′ be Q-line bundles on X. Then:

(i) PLΓ(L) + PLΓ(L′) ⊂ PLΓ(L + L′);
(ii) PLΓ(L) is stable under max and min;
(iii) PLΓ(mL) = m PLΓ(L) for all nonzero m ∈ Z;
(iv) PLΓ(L) = PLΓ′(L) with Γ′ = Q(Γ + ΓK);
(v) PLΓ(Xan) is a Q-linear subspace of C0(Xan), and PLΓ(L) is a Q-affine space mod-

eled on PLΓ(Xan);
(vi) pure PL metrics on L coincide with model metrics.

We refer to [45, Theorem 1.1] for an alternative description of (pure) PL metrics.

Proof. (i)—(v) are direct consequences of Proposition 5.4.
To prove (vi), pick a Q-model L of L, determined on a projective model X of X. Pick 

an ample line bundle A on X , and denote by A its restriction to X. For a 	 1, L + aA
is then ample on X . By Theorem 5.14, φL+aA and φaA are pure Fubini–Study metrics, 
and φL = φL+aA − φaA is thus a pure PL metric.

Conversely, Theorem 5.14 implies that any pure Fubini–Study metric is a model met-
ric. Every pure PL metric is thus also a model metric, which concludes the proof of 
(vi). �

For later use, we also note:

Lemma 5.17. Let L be a Q-line bundle, and φ be a Γ-PL metric on L. Then we can find 
Γ-Fubini–Study metrics ψ, ψ′ on ample Q-line bundles A, A′ such that L = A − A′ and 
φ = ψ − ψ′.

Proof. By definition, we can find Γ-Fubini–Study metrics φ, φ′ on Q-line bundles M, M ′

such that L = M−M ′ and φ = ψ−ψ′. Pick an ample line bundle H, and a 	 1 such that 
aH −M and aH − L are both ample, and pick τ ∈ FSΓ(aH −M). By Proposition 5.4, 
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ψ + τ , and ψ′ + τ are Γ-Fubini–Study metrics on the ample line bundles A := aH, 
A′ := aH − L, and φ = (ψ + τ) − (ψ′ + τ), which proves the result. �

The following result generalizes the well-known density of model functions [45] in the 
nontrivially valued case.

Theorem 5.18. If Γ �= {0}, or if K is nontrivially valued, then PLΓ(Xan) is dense in 
C0(Xan).

Proof. The assumption guarantees that Γ′ = Q(Γ +ΓK) is nontrivial; replacing Γ with Γ′, 
we may thus assume in all cases that Γ �= {0}, by Proposition 5.16 (iv). By Proposi-
tion 5.16, PLΓ(Xan) is a Q-linear subspace of C0(Xan), stable under max. By the ‘lattice 
version’ of the Stone–Weierstrass theorem, it will thus be enough to show that PLΓ(Xan)
separates the points of Xan.

To see this, fix γ ∈ Γ ∩R>0, ρ ∈ FSΓ(L), and pick x1 �= x2 ∈ Xan and a very ample line 
bundle L. After replacing L with a multiple, we can find nonzero sections s, s′ ∈ H0(L)
such that s′ does not vanish at x1, x2 and |s/s′|(x1) �= |s/s′|(x2). For each m ∈ N set

φm = max{log |s|, ρ−mγ}, φ′
m := max{log |s′|, ρ−mγ}, fm := φm − φ′

m.

Then φm, φ′
m ∈ FSΓ(L), and hence fm ∈ PLΓ(Xan). Since log |s′| is finite at x1, x2, 

φ′
m = log |s′| at x1, x2 for all m large enough. Thus

fm(xi) = max{log |s/s′|(xi), ρ(xi) −mγ} → log |s/s′|(xi)

as m → ∞, and |s/s′|(x1) �= |s/s′|(x2) thus yields fm(x1) �= fm(x2) for m 	 1. This 
proves as desired that PLΓ(Xan) separates the points of Xan. �
6. The supnorm of a metric

In this section, K is an arbitrary complete valued field, X is a projective K-scheme, 
and L is a line bundle on X.

6.1. Supnorms vs. lattice norms

The data of a bounded metric φ on L defines a sup-seminorm ‖ · ‖φ on H0(L) by 
setting

‖s‖φ := sup
Xan

|s|φ

for each s ∈ H0(L). If X is reduced, then ‖ · ‖φ is a norm, by Lemma 4.1.
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Lemma 6.1. Let F/K be a complete field extension, and assume that both X and XF are 
reduced. Let φ be a bounded metric on L, and denote by φF the pullback of φ to the base 
change LF . Then ‖ · ‖φF

= ‖ · ‖φ on H0(L) ↪→ H0(LF ) = H0(L)F , and ‖ · ‖φF
≤ (‖ · ‖φ)F

on H0(LF ).
If K is Archimedean, we further have

1
2 (‖ · ‖φ)F ≤ ‖ · ‖φF

≤ (‖ · ‖φ)F .

Proof. Denoting by p : Xan
F → Xan the surjective projection map, we plainly have for 

s ∈ H0(L)

‖s‖φF
= sup

Xan
F

|s|φ ◦ p = sup
Xan

|s|φ = ‖s‖φ.

By Proposition 1.25, (‖ · ‖φ)F is the largest norm on H0(L)F that coincides with ‖ · ‖φ on 
H0(L), thus ‖ · ‖φF

≤ (‖ · ‖φ)F . If K is Archimedean, the only nontrivial case is K = R, 
F = C. The metric φC is conjugation invariant, thus ‖ · ‖φC

is conjugation invariant as 
well, and hence ‖ · ‖φC

≥ 1
2 (‖ · ‖φ)C, by Proposition 1.25 again. �

The inequality ‖ · ‖φF
≤ (‖ · ‖φ)F of Lemma 6.1 is strict in general. One has indeed:

Lemma 6.2. Assume that K is discretely (nontrivially) valued, and let F/K be a finite 
Galois extension. The following are equivalent:

(i) F/K is tamely ramified, i.e. the residue field extension F̃ /K̃ is separable and the 
ramification order [|F×| : |K×|] is prime to the residue characteristic;

(ii) for each bounded metric φ on a line bundle L over a reduced projective K-scheme 
X such that XF is reduced, we have ‖ · ‖φF

= (‖ · ‖φ)F .

Proof. In the situation of (ii), ‖ · ‖φF
is a Galois invariant norm on H0(L)F . If F/K is 

tamely ramified, the descent result of [65, Proposition 5.1.1] (see also [61]) implies that 
every Galois invariant norm is obtained by ground field extension, and hence (i) =⇒ (ii).

Conversely, for X := SpecF , L = OX and φ = 0, the supnorm ‖ · ‖φF
is the spectral 

norm on F ⊗K F , and [64, §5.1] thus says that ‖ · ‖φF
= (‖ · ‖φ)F if and only if F is 

tamely ramified. �
In the remainder on this section, we assume that K is non-Archimedean.

Lemma 6.3. L be a model of L determined on a projective model X of X, with associated 
set of Shilov points Γ(X ) ⊂ Xan. Denote by φ = φL the induced model metric on L, and 
recall that ‖ · ‖H0(L) denotes the norm on H0(L) determined by the lattice H0(L). Then:

(i) for each s ∈ H0(L), we have ‖s‖φ = maxΓ(X ) |s|φ;
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(ii) ‖ · ‖φ ≤ ‖ · ‖H0(L);
(iii) if Xs is further reduced, then ‖ · ‖φ = ‖ · ‖H0(L).

Proof. Cover X with finitely many open subschemes Ui with trivializing sections τi ∈
H0(Ui, L). Denoting by Ui the generic fiber of Ui, we have s|Ui

= fiτi with fi ∈ O(Ui), 
and |s|φ = |fi| on U�

i , by definition of a model metric. By Lemma 4.9, it follows that 
supU�

i
|s|φ = maxΓ(Ui) |s|φ, and (i) follows since Xan =

⋃
i U�

i and Γ(X ) =
⋃

i Γ(Ui).
In order to prove (ii) and (iii), let s ∈ H0(L) be a nonzero section. Since ‖s‖H0(L)

belongs to value group |K×|, we may then multiply s be a scalar and assume that 
‖s‖H0(L) = 1, i.e. s ∈ H0(L) but s /∈ K◦◦ H0(L). Choose as above a finite cover X
by affine open subscheme Ui = Spec(Ai) with a trivializing section τi of L, and write 
s|Ui

= fiτi with fi ∈ Ai. On U�
i , we have |s|φ = |fi| ≤ 1, and hence ‖s‖φ ≤ 1, which 

proves (ii).
Finally, suppose that Xs is reduced. To prove (iv), it is enough to show that a section 

s ∈ H0(L) with ‖s‖H0(L) = 1 satisfies ‖s‖φ = 1. Assume by contradiction that a nonzero 
section ‖s‖φ < 1. For each i, we then have supU�

i
|fi| < 1, and hence a−1

i fi ∈ Ai for some 
nonzero ai ∈ K◦◦, by Theorem 4.19. Setting a := ai0 for an index i0 achieving maxi |ai|, 
we infer that a−1fi ∈ Ai for all i, and hence a−1s ∈ H0(L), a contradiction. �

The next result will be a key ingredient in the proof of Theorem 9.15 below.

Theorem 6.4. Assume that X is geometrically reduced, let L be a model of L determined 
on a projective model X of X, and denote by φ = φL the induced model metric on L. 
Then the supnorm ‖ · ‖mφ and the lattice norm ‖ · ‖H0(mL) on H0 (mL) satisfy

‖ · ‖mφ ≤ ‖ · ‖H0(mL) ≤ C‖ · ‖mφ

for a constant C > 0 independent of m.

Proof. Lemma 6.3 yields the left-hand inequality. Fix an algebraically closed complete 
field extension F/K, and denote by (XF , LF ) the base change of (X , L) to F ◦, which is 
thus a model of (XF , LF ). The pulled back metric φF is the model metric determined 
by LF , and the ground field extension of ‖ · ‖H0(L) to H0(LF ) = H0(L)F coincides with 
the lattice norm ‖ · ‖H0(LF ), by Lemma 1.29. By Lemma 6.1 and Lemma 6.3, we infer

‖ · ‖mφF
≤ (‖ · ‖mφ)F ≤ ‖ · ‖H0(mLF ).

Since X is geometrically reduced, XF is reduced, and Theorem 4.20 thus yields a model 
X ′ of XF with a finite morphism μ : X ′ → XF such that X ′

s is reduced. By Lemma 5.10, 
we have φF = φLF

= φμ�LF
, and hence ‖ · ‖H0(mμ�LF ) = ‖ · ‖mφF

, by Lemma 6.3. All in 
all, we get

‖ · ‖H0(mμ�LF ) = ‖ · ‖mφF
≤ (‖ · ‖mφ) ≤ (‖ · ‖H0(mL))F = ‖ · ‖H0(mLF ),
F
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and it will thus be enough to show that ‖ · ‖H0(mLF ) ≤ C‖ · ‖H0(mμ�LF ) for a uniform 
constant C > 0. By the projection formula, we have an injection of K◦-modules

H0 (X ′,mμ	LF ) /H0(mLF ) ↪→ H0 (XF ,F(mLF )) ,

where F := (μ	OX ′) /OXF
is a coherent module on XF supported in the special fiber 

(cf. Theorem A.6 for coherence), and hence a-torsion for some nonzero a ∈ K ′ ◦◦. We 
thus have a H0(mμ	LF ) ⊂ H0(mLF ), and hence ‖ ·‖H0(mLF ) ≤ |a|−1‖ ·‖H0(mμ�LF ), which 
yields the desired result. �

For later use, we also provide the following technical generalization of Theorem 6.4. 
A bounded metric on a line bundle L over X induces for each r ≥ 1 a bounded metric 
φ�r on the external tensor product L�r over Xr := X ×K · · · ×K X (r times). If φ is 
the model metric determined by a line bundle L over X , then φ�r is the model metric 
determined by L�r over X r := X ×K◦ · · · ×K◦ X .

Theorem 6.5. Assume that X is geometrically reduced, and let φi be a finite family of 
model metrics on line bundles Li, with φi determined by a line bundle Li on a given 
model X of X. We can then find a constant C ≥ 1 such that for all integers r, mi ≥ 1, 
we have

‖ · ‖(
∑

i miφi)�r ≤ ‖ · ‖H0
(
X r,(

∑
i miLi)�r

) ≤ Cr‖ · ‖(
∑

i miφi)�r

as norms on H0(Xr, (
∑

i miLi)�r).

Note that Xr is reduced for each r, since X is geometrically reduced, so that
‖ · ‖(

∑
i miφi)�r is indeed a norm.

Proof. Use the notation in the proof of Theorem 6.4. Since F is algebraically closed, so 
is its residue field F̃ ; the F̃ -scheme X ′

s is thus geometrically reduced, and

(X ′ r)s = (X ′ ×F◦ · · · ×F◦ X ′)s = X ′
s ×F̃ · · · ×F̃ X ′

s

is therefore reduced. As above, we have

‖ · ‖H0
(
X ′ r,(μr)�(

∑
i miLi,F )�r

) = ‖ · ‖(
∑

i miφi,F )�r ≤
(
‖ · ‖(

∑
i miφi)�r

)
F

≤
(
‖ · ‖H0

(
X r,(

∑
i miLi)�r

))
F

= ‖ · ‖H0
(
X r

F ,(
∑

i miLF )�r
),

and

H0

(
X ′ r, (μr)	(

∑
i

miLF )�r

)
/H0

(
X r

F , (
∑
i

miLi,F )�r

)

↪→ H0

(
X r

F ,Fr(
∑
i

miLi,F )�r

)
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with Fr := ((μr)	OX ′ r) /OX r
F
. It will thus be enough to show that Fr is ar-torsion, where 

a ∈ F ◦◦ annihilates F = (μ	OX ′) /OXF
as above. Let U = Spec(A) be an affine open 

subset of XF . Since μ is finite, μ−1(U) = Spec(A′) is also affine. Since aA′ ⊂ A, we get 
arA′⊗F◦ · · ·⊗F◦A′ ⊂ A ⊗F◦ · · ·⊗F◦A′, which implies as desired ar(μr)	OX ′ r ⊂ OX r

F
. �

6.2. Supnorms and ground field extension

Even though supnorms are generally not compatible with ground field extension (see 
Lemma 6.2), the following result shows that it becomes asymptotically true for large 
powers of a line bundle (thanks to Walter Gubler for his help with the argument).

Theorem 6.6. Assume that X is geometrically reduced. Let F/K be an arbitrary complete 
field extension, φ a continuous metric on L, and denote by φF its pull-back to LF . Then

d∞ (‖ · ‖mφF
, (‖ · ‖mφ)F ) = o(m).

If K is Archimedean, or if φ is a model metric, then d∞ (‖ · ‖mφF
, (‖ · ‖mφ)F ) = O(1).

Proof. The Archimedean case follows directly from Lemma 6.1. From now on, K is non-
Archimedean. Assume that φ is a model metric, and pick a model (X , L) of (X, aL), 
a ≥ 1, such that φ = a−1φL. After passing to a higher model, we can also assume that 
L has a model M on X (Lemma 5.8). Pick m ≥ 1 and write m = qa + r with q ∈ N and 
0 ≤ r < a. Denote by XF , LF and MF the base change of X , L and M to F ◦. Since 
mφ = φqL + rφ and φ − φM is bounded,

d∞
(
‖ · ‖mφF

, ‖ · ‖φqLF +rMF

)
= O(1) and d∞

(
(‖ · ‖mφ)F , (‖ · ‖φqL+rM)F

)
= O(1),

using again Proposition 1.25. By Theorem 6.4,

d∞
(
‖ · ‖φqLF +rMF

, ‖ · ‖H0(qLF +rMF )

)
= O(1) and d∞

(
(‖ · ‖φqL+rM)F , (‖ · ‖H0(qL+rM))F

)
= O(1).

By Lemma 1.28, ‖ · ‖H0(qLF +rMF ) = (‖ · ‖H0(qL+rM))F , and it follows that

d∞((‖ · ‖mφ)F , ‖ · ‖mφF
)

≤ d∞
(
(‖ · ‖mφ)F , (‖ · ‖φqL+rM)F

)
+ d∞

(
(‖ · ‖φqL+rM)F , (‖ · ‖H0(qL+rM))F

)
+ d∞

(
‖ · ‖H0(qLF +rMF ), ‖ · ‖φqLF +rMF

)
+ d∞

(
‖ · ‖φqLF +rMF

, ‖ · ‖mφF

)
,

which is thus bounded.
Let now φ be an arbitrary continuous metric. Assume first that K is nontrivially 

valued, and pick ε > 0. By Theorem 5.18, we can find a model metric ψ on L such that 
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sup |φ −ψ| ≤ ε. By invariance of d∞ under ground field extension (Proposition 1.25), we 
infer

d∞ (‖ · ‖mφF
, (‖ · ‖mφ)F ) ≤ d∞ (‖ · ‖mφF

, ‖ · ‖mψF
) + d∞ (‖ · ‖mψF

, (‖ · ‖mψ)F )

+ d∞ ((‖ · ‖mψ)F , (‖ · ‖mφ)F ) ≤ C + 2mε.

Thus lim supm→∞ m−1 d∞((‖ · ‖mφ)F , ‖ · ‖mφF
) ≤ ε for all ε > 0, and hence

d∞((‖ · ‖mφ)F , ‖ · ‖mφF
) = o(m).

Assume next that K is trivially valued, and that F is nontrivially valued. By Lemma 1.26, 
there exists a nontrivially valued extension K ′/K such that for each m ∈ N, the ground 
field extension (‖ · ‖mφ)K′ to H0(mL)K′ is the unique norm that coincides with ‖ · ‖mφ

on H0(mL), and hence (‖ · ‖mφ)K′ = ‖ · ‖mφK′ , by Lemma 6.1.
Choose a common non-Archimedean extension F ′ of both K ′ and F , and note that 

(‖ · ‖mφ)F ′ = (‖ · ‖mφK′ )F ′ . By Proposition 1.25 and the triangle inequality, we get

d∞ ((‖ · ‖mφ)F , ‖ · ‖mφF
) = d∞ ((‖ · ‖mφ)F ′ , (‖ · ‖mφF

)F ′)

= d∞
(
(‖ · ‖mφK′ )F ′ , (‖ · ‖mφF

)F ′
)

≤ d∞
(
‖ · ‖mφK′ )F ′ , ‖ · ‖mφF ′

)
+ d∞

(
‖ · ‖mφF ′ , (‖ · ‖mφF

)F ′
)
,

which is o(m) by the first part of the proof applied to the nontrivially valued fields F
and K ′.

Assume finally that both K and F are trivially valued, and chose a nontrivially valued 
extension F ′ of F . We similarly get

d∞ (‖ · ‖mφF
, (‖ · ‖mφ)F ) = d∞ ((‖ · ‖mφF

)F ′ , (‖ · ‖mφ)F ′)

≤ d∞
(
(‖ · ‖mφF

)F ′ , ‖ · ‖mφF ′

)
+ d∞

(
‖ · ‖mφF ′ , (‖ · ‖mφ)F ′

)
.

Since F ′ is nontrivially valued, the previous step shows that the last two terms are o(m), 
and we are done. �
7. Plurisubharmonic metrics and envelopes

Following [14,16], we introduce a general notion of plurisubharmonic metric, and com-
pare it with other existing notions. In what follows, X denotes a projective scheme over 
a complete valued field K.

7.1. Plurisubharmonic metrics

Assume first that K is Archimedean (the case K = R merely consisting in working 
with conjugation-invariant objects). A (possibly singular) metric φ on a line bundle L



60 S. Boucksom, D. Eriksson / Advances in Mathematics 378 (2021) 107501
is plurisubharmonic (psh for short) if, for each local trivialization τ of L, the function 
− log |τ |φ is psh, i.e. locally the restriction of a psh function in a polydisc. Note that φ is 
psh iff its pullback to Lred is psh. For any m ≥ 1, φ is psh iff mφ is psh, and psh metrics 
thus make sense on Q-line bundles.

Theorem 7.1. Assume that K is Archimedean, and let L be a semiample Q-line bundle. 
Then every psh metric φ on L is the limit of a decreasing sequence (φj) of Fubini–Study 
metrics on L.

Proof. When X is smooth and L is ample, the result is due to Demailly, and is based 
on the deep Ohsawa–Takegoshi L2-extension theorem (see for instance [48, Theorem 
8.1] and its proof). In the general case, let A be the Stein factorization of (X, L) as in 
Lemma 5.5, i.e. A is an ample Q-line bundle on a projective scheme Y , and L = f	A

with f : X → Y surjective and such that f	OX = OY . By Zariski’s main theorem, 
f : X(C) → Y (C) has connected fibers, and φ thus descends to a (singular) usc metric 
on A. Relying on the deep Fornaess–Narasimhan theorem, one checks as in the final part 
of the proof of [30, Théorème 1.7] that the induced metric on A is psh. As a result, we 
may assume wlog that L was ample to begin with. Passing to a multiple, we can even 
assume that L is a very ample line bundle, and hence L = O(1)|X for an embedding 
of X in a projective space P . By [26, Theorem B’], every psh metric φ on L is then 
the restriction of a psh metric ψ on O(1). Since P is smooth, Demailly’s result implies 
that ψ is the decreasing limit of a sequence ψj of Fubini–Study metrics on O(1). The 
restriction of each ψj to X is then a Fubini–Study metric on L (Proposition 5.4 (iv)), 
and the result follows. �

In view of Theorem 7.1, it is natural to introduce as in [16]:

Definition 7.2. Assume that K is non-Archimedean, and let L be a semiample Q-line 
bundle. We say that a (possibly singular) metric φ on L is plurisubharmonic (psh for 
short) if φ can be written as the pointwise limit of a decreasing net φi ∈ FS(L) of 
Fubini–Study metrics on L. We denote by PSH(L) the set of psh metrics on L.

Given a subgroup Γ ⊂ R, nontrivial if K is trivially valued, FSΓ(L) is dense in FS(L)
with respect to uniform convergence, by Proposition 5.4 (v); it would thus be equivalent 
to require φi ∈ FSΓ(L) in the above definition.

As a direct consequence of Corollary 5.7, we have:

Lemma 7.3. Let A be the Stein factorization of L. Then

PSH(A) � PSH(L) � PSH(Lred).

The following general result, borrowed from [16, Proposition 5.6], ensures that PSH(L)
is closed under decreasing limits.



S. Boucksom, D. Eriksson / Advances in Mathematics 378 (2021) 107501 61
Lemma 7.4. Let F ⊂ C0(L) be a family of continuous metrics on a Q-line bundle L, 
closed under addition of a constant, and define F̃ as the set of possibly singular metrics 
on L that can be written as decreasing limits of nets in F . Then F̃ is closed under 
decreasing limits.

Proof. Let (φi)i∈I be a decreasing net in F̃ . For each i ∈ I choose a decreasing net 
(φi,j)j∈Ji

in F converging to φi. Let A be the set of triples α = (i, j, m) with i ∈ I, 
j ∈ Ji and m ∈ Z>0. For each α = (i, j, m) in A, set

ψα := φi,j + m−1 ∈ F ,

and define a partial order on A by

α ≥ α′ ⇐⇒ ψα ≤ ψα′ .

We claim that A is directed, i.e. any two elements a1 = (i1, j1, m1), a2 = (i2, j2, m2) in 
A can be dominated by a third. To see this, first pick i ≥ i1, i2, so that φi ≤ φi1 and 
φi ≤ φi2 , and set m := max{m1, m2} + 1. A simple variant of Dini’s lemma shows that 
φi,j +m−1 ≤ φik,jk +m−1

k = ψak
on Xan for k = 1, 2 and all j ∈ Ji large enough, which 

proves the claim. By construction, (ψα)α∈A is a decreasing net in F such that ψα → φ

pointwise on Xan, and hence φ ∈ F̃ . �
Corollary 7.5. The space PSH(L) is stable under finite max and decreasing limits.

Corollary 7.6. Pick a subgroup Γ ⊂ R, nontrivial if K is trivially valued. For any semi-
ample Q-line bundle L, the set C0 ∩ PSH(L) of continuous psh metrics on L is the closure 
of FSΓ(L) with respect to uniform convergence.

Proof. Let φ be a continuous psh metric, and pick a decreasing net (φi) in FSΓ(L)
converging pointwise to φ. By Dini’s lemma, φi → φ uniformly on Xan, and φ is thus in 
the closure of FSΓ(L). Conversely, let (φi) be a sequence in FSΓ(L) converging uniformly
to some (continuous) metric φ. We can inductively construct a sequence of constants 
ci → 0 such that φi + ci is decreasing, and it follows that φ = limi(φi + ci) is psh. �
7.2. Nef metrics

Assume that K is non-Archimedean. A model metric φ on a Q-line bundle L is nef if 
φ = φL for some Q-model L of L which is nef, i.e. L ·C ≥ 0 for each K̃-projective curve 
C ⊂ Xs. By [45, Proposition 3.5], any Q-model L′ of L such that φ = φL′ is then also 
nef.

Definition 7.7. A nef metric on a Q-line bundle L is a continuous metric φ that can be 
written as a uniform limit of nef model metrics.
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This is usually known as a semipositive metric in the sense of S.W. Zhang, cf. [45]
for a thorough discussion. When K is trivially valued, the trivial metric is the only nef 
metric.

Theorem 7.8. Assume that K is nontrivially valued, and let L be an ample Q-line bundle. 
Then a continuous metric on L is nef iff it is psh (in the sense of Definition 7.2).

A proof of this result is also sketched, in a slightly different language, in [23, Remark 
3.18]; we nevertheless provide a proof below, for completeness. By [45, Corollary 1.4], we 
get:

Corollary 7.9. Let L be an ample Q-line bundle, and pick a Q-model L of L. Then φL
is psh iff L is nef.

Proof of Theorem 7.8. By Theorem 5.14, pure Fubini–Study metrics on L coincide with 
model metrics associated to Q-models L of L that are semiample, and hence nef. Since 
K is nontrivially valued, Corollary 7.6 implies that every continuous psh metric is a 
uniform limit of pure Fubini–Study metrics, and hence is nef.

To prove the converse, let L be a nef Q-model of L, determined on a model X of 
X. Using again Theorem 5.14, it will be enough to show that φL is a uniform limit of 
model metrics associated to semiample Q-models. Since L is ample, it admits an ample 
Q-model A on some projective model X ′ dominating X (cf. [45, Lemma 4.12]). The 
pull-back L′ of L to X ′ is nef. For each ε ∈ (0, 1) ∩ Q, Lε := (1 − ε)L′ + εH is thus 
ample on Xs, and hence on X , by [32, IV.9.6.4]. In particular, Lε is a semiample model 
of L. Since φL = φL′ (Lemma 5.10), φLε

−φL = ε(φH −φL) converges to 0 uniformly as 
ε > 0, and we are done. �
Remark 7.10. We expect Theorem 7.8 and Corollary 7.9 to hold when L is merely semi-
ample. For this, it would be enough to show that any nef model metric on L descends to 
the Stein factorization A as in Lemma 5.5; this would for instance follow from a relative 
version of the local Hodge index theorem proved in [79, Theorem 2.1].

7.3. Psh-regularizable metrics

The curvature form of a smooth metric φ on a line bundle L is a closed (1, 1)-form, 
which we denote by ddcφ (see [20, §6.4.1] for the non-Archimedean case). For each 
trivializing section τ of L over an open U ⊂ X, the function log |τ |φ is smooth, and 
ddcφ = −ddc log |τ |φ on Uan. Again, this makes sense for Q-line bundles as well.

Definition 7.11. A smooth metric φ on a Q-line bundle L is semipositive if its curvature 
form ddcφ is semipositive (see [20, §5.4] for the non-Archimedean case).
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Example 7.12. Let L be a line bundle, s1, . . . sr ∈ H0(L) be sections without common 
zeroes, λ1, . . . , λr ∈ R, and maxε : Rr → R a regularized max function. Then

φ := maxε {log |s1| + λ1, . . . , log |sr| + λr}

is a smooth semipositive metric on L, see [20, 6.3.2].

Definition 7.13. A (possibly singular) metric φ on a line bundle L is psh-regularizable if 
φ can be written as the limit of a decreasing net φi of smooth semipositive metrics.

If φ is continuous then φi → φ uniformly, by Dini’s lemma.

Theorem 7.14. Every psh metric φ on a semiample Q-line bundle L is psh-regularizable.

Proof. By Lemma 7.4, it is enough to prove the result when φ is a Fubini–Study metric. 
After replacing L with a multiple, there exists a basis (s1, . . . , sN ) of H0(L) without com-
mon zeroes and constants λi ∈ R such that φ = max {log |s1| + λ1 . . . , log |sN | + λN}, 
and φ is thus the uniform limit as ε → 0 of the smooth semipositive metrics

φε = maxε {log |s1| + λ1 . . . , log |sN | + λN}

as in Example 7.12. �
7.4. The Fubini–Study operator

The following discussion is closely related to the point of view developed by Chen and 
Moriwaki in [23, §3.2].

Definition 7.15. Let L be a globally generated line bundle. We say that a subspace 
V ⊂ H0(L) is basepoint free if sections in V generate L at all points. To each norm ‖ · ‖
on V , we then associate the metric FS(‖ ·‖) on L defined at each x ∈ Xan as the quotient 
norm

FS(‖ · ‖)(x) := log sup
s∈V \{0}

|s(x)|
‖s‖ .

Recall that log |s| denotes the singular metric attached to s ∈ H0(L), cf. Example 5.1.

Theorem 7.16. For any norm ‖ · ‖ on a basepoint free subspace V ⊂ H0(L), the metric 
FS(‖ · ‖) is continuous and psh.

Lemma 7.17. Let s1, . . . , sr be finitely many sections of L without common zeroes, and 
λ1, . . . , λr ∈ R. Let V ⊂ H0(L) be the basepoint free subspace generated by the si. Let 
‖ · ‖λ be the norm on Kr which is diagonal in the canonical basis (ei) and such that 
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‖ei‖λ = e−λi , and denote by ‖ · ‖ the induced quotient norm on V with respect to the 
surjective map Kr → V that sends (ei) to (si). Then:

(i) FS(‖ · ‖) = 1
2 log

∑
i |si|2e2λi when K is Archimedean;

(ii) FS(‖ · ‖) = maxi(log |si| + λi) when K is non-Archimedean.

Proof. For each s ∈ V , we have ‖s‖ = inf {‖a‖λ | a ∈ Kr, s =
∑

i aisi}. Using this, one 
immediately checks that

FS(‖ · ‖) = log sup
a∈Kr\{0}

|
∑

i aisi|
‖a‖λ

pointwise on Xan. In the Archimedean case, the Cauchy–Schwarz inequality yields

sup
a∈Kr\{0}

|
∑

i aisi|2
‖a‖2

λ

=
∑
i

|si|2
‖ei‖2

λ

=
∑
i

|si|2e2λi .

In the non-Archimedean case, Lemma 1.16 yields

sup
a∈Kr\{0}

|
∑

i aisi|
‖a‖λ

= max
i

|si|
‖ei‖λ

= max
i

|si|eλi .

The result follows. �
Corollary 7.18. For a continuous metric φ on a Q-line bundle L, the following are equiv-
alent:

(i) φ is a Fubini–Study metric;
(ii) for m ∈ Z>0 divisible enough, there exists a basepoint free subspace V ⊂ H0(mL)

and a diagonalizable norm ‖ · ‖ on V such that φ = m−1 FS(‖ · ‖).

Proof. That (ii) =⇒ (i) follows directly from Lemma 7.17. Assume conversely that φ
is Fubini–Study. For m divisible enough we can find sections s1, . . . , sr of mL with-
out common zeroes such that φ = 1

2m log
∑

i |si|2 in the Archimedean case, and 
φ = 1

m maxi(log |si| + λi) with λi ∈ R in the non-Archimedean case. By Lemma 7.17, 
φ = m−1 FS(‖ · ‖) with ‖ · ‖ the quotient norm on V = Vect(si) of some diagonalizable 
norm. By Lemma 1.13, ‖ · ‖ is diagonalizable, and we are done. �
Example 7.19. Assume that K is non-Archimedean, and let L be a semiample Q-model 
of a (semiample) Q-line bundle L. For m divisible enough, mL is a globally generated 
line bundle, and the lattice norm ‖ · ‖H0(mL) on H0(mL) satisfies

φL = m−1 FS
(
‖ · ‖H0(mL)

)
This follows indeed from Theorem 5.14 (and its proof).
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Proof of Theorem 7.16. Let V ⊂ H0(L) be a basepoint free subspace, and note first that 
for any two norms ‖ · ‖, ‖ · ‖′ on V , we trivially have

FS(‖ · ‖) − d∞(‖ · ‖, ‖ · ‖′) ≤ FS(‖ · ‖′) ≤ FS(‖ · ‖) + d∞(‖ · ‖, ‖ · ‖′). (7.1)

When K is non-Archimedean, Theorem 1.19 shows that for each norm ‖ · ‖ on V there 
exists a sequence of diagonalizable norms ‖ · ‖i such that d∞(‖ · ‖i, ‖ · ‖) → 0. By 
Lemma 7.17, FS(‖ · ‖i) is a Fubini–Study metric for all i, and FS(‖ · ‖i) converges 
uniformly to FS(‖ · ‖), by (7.1). This proves that FS(‖ · ‖) is continuous and psh.

In the Archimedean case, the unit ball B ⊂ V of ‖ · ‖ is compact, and

FS(‖ · ‖) = sup
s∈B

log |s|

pointwise. Using this, it is easy to see that FS(‖ · ‖) is continuous and psh. �
Lemma 7.20. Let ‖ · ‖ be a norm on a basepoint free subspace V ⊂ H0(L). Let F/K be 
a complete field extension, and denote by ‖ · ‖F the ground field extension of ‖ · ‖ to 
VF ⊂ H0(L)F = H0(L)F . Then FS(‖ · ‖F ) is the pullback to LF of FS(‖ · ‖).

Proof. In the Archimedean case, the only nontrivial case is K = R, F = C. Denote by 
B ⊂ V and BC ⊂ VC the unit balls of ‖ · ‖, ‖ · ‖C. We need to show that sups∈B log |s| =
sups∈BC

log |s|, which is an easy consequence of Proposition 1.25. Assume now that K is 
non-Archimedean. As above, it is enough to prove the result when ‖ · ‖ is diagonalizable. 
Let (si) be an orthogonal basis of H0(L). The pullback (s′i) of (si) to H0(LF ) is orthogonal 
for ‖ · ‖F with ‖s′i‖F = ‖si‖, and Lemma 7.17 thus yields

FS(‖ · ‖) = max
i

{log |si| − log ‖si‖}, FS(‖ · ‖F ) = max
i

{log |s′i| − log ‖s′i‖F },

which proves the result. �
Definition 7.21. Let L be a globally generated line bundle, and denote by Lred its restric-
tion to Xred. For each bounded metric φ, we set FS(φ) := FS(‖ · ‖φ), where ‖ · ‖φ is the 
supnorm induced by φ on H0(Lred).

Theorem 7.22. A bounded metric φ on a semiample Q-line bundle L is a Fubini–Study 
metric on L only if φ = m−1 FS(mφ) for all m sufficiently divisible.

Lemma 7.23. For each bounded metric φ on a globally generated line bundle L, we have

(i) FS(φ) ≤ φ;
(ii) if φ = FS(‖ · ‖) for some norm ‖ · ‖ on a basepoint free subspace V ⊂ H0(L), then 

FS(φ) = φ;
(iii) ‖ · ‖FS(φ) = ‖ · ‖φ as norms on H0(Lred);
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(iv) for any other bounded metric φ′ on L we have

sup |FS(φ) − FS(φ′)| ≤ sup |φ− φ′|. (7.2)

Proof. For any nonzero s ∈ H0(Lred), the definitional inequality |s|φ ≤ ‖s‖φ yields 
log |s| − φ ≤ log ‖s‖φ, and

FS(φ) = sup
s∈H0(Lred)\{0}

(log |s| − log ‖s‖φ) ≤ φ,

proving (i). Assume φ = FS(‖ ·‖) for a norm ‖ ·‖ on a basepoint free subspace V ⊂ H0(L). 
For each s ∈ V , we have log |s| − log ‖s‖ ≤ φ, i.e. ‖s‖φ ≤ ‖s‖. Thus

FS(‖ · ‖φ) ≥ sup
s∈V \{0}

(log |s| − log ‖s‖) = φ,

and hence (ii). Since FS(φ) ≤ φ, each nonzero s ∈ H0(Lred) satisfies ‖s‖φ ≤ ‖s‖FS(φ). 
On the other hand, log |s| − log ‖s‖φ ≤ FS(φ), hence |s|FS(φ) ≤ ‖s‖φ, which proves (iii).

Finally, we trivially have φ ≤ φ′ =⇒ FS(φ) ≤ FS(φ′) and FS(φ + c) = FS(φ) + c for 
c ∈ R, which formally imply (7.2). �
Proof of Theorem 7.22. Assume that φ is a Fubini–Study metric. By Corollary 7.18, for 
all m sufficiently divisible we have φ = m−1 FS(‖ · ‖) with ‖ · ‖ a norm on a basepoint 
free subspace V ⊂ H0(mL), and Lemma 7.23 (ii) thus yields φ = m−1 FS(mφ). �
7.5. Envelopes and ground field invariance

In what follows, L is a semiample Q-line bundle on X.

Definition 7.24. Let φ be a bounded metric on L.

(i) The psh envelope of φ is defined as the pointwise upper envelope

P(φ) := sup{ψ ∈ PSH(L) | ψ ≤ φ}. (7.3)

(ii) The regular psh envelope of φ is

Q(φ) := sup{ψ ∈ FS(L) | ψ ≤ φ}. (7.4)

Since any continuous psh metric on L is a uniform limit of Fubini–Study metrics, 
it would be equivalent to require ψ continuous and psh in (ii). Trivially, Q(φ) is lsc, 
Q(φ) ≤ P(φ) ≤ φ, and the operators P and Q are monotone increasing and 1-Lipschitz 
with respect to the supnorm. They are related as follows.
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Proposition 7.25. For any bounded metric φ on L we have Q(φ) = P(φ	), with φ	 ≤ φ

denoting the lsc regularization of φ.

Proof. A continuous metric ψ satisfies ψ ≤ φ iff ψ ≤ φ	, and hence Q(φ) = Q(φ	). We 
may thus assume from the start that φ is lsc, and we then need to show that any psh 
metric ψ on L such that ψ ≤ φ satisfies ψ ≤ Q(φ). By Definition 7.2, there exists a 
decreasing net (ψj) of Fubini–Study metrics on L with ψj → φ. Pick ε > 0. By lower 
semicontinuity of φ − ψj and a simple compactness argument (Dini’s lemma), we thus 
have ψj ≤ φ +ε on Xan for j large enough. Thus ψj ≤ Q(φ) +ε, and hence ψ ≤ Q(φ) +ε, 
which yields the result. �

To L we attach the semigroup

N(L) = {m ∈ N | mL is a globally generated line bundle} .

Theorem 7.26. For any bounded metric φ on L we have

lim
N(L)�m,m→∞

m−1 FS(mφ) = Q(φ), (7.5)

and the convergence is uniform iff Q(φ) is continuous.

Proof. Pick m, m′ ∈ N(L). For any two s ∈ H0(mLred), s′ ∈ H0(m′Lred), we have

‖s · s′‖(m+m′)φ ≤ ‖s‖mφ‖s′‖m′φ. (7.6)

This implies FS((m + m′)φ) ≥ FS(mφ) + FS(m′φ), and hence

lim
N(L)�m,m→∞

m−1 FS(mφ) = sup
m∈N(L)>0

m−1 FS(mφ),

by Fekete’s lemma. For each m ∈ N(L)>0, m−1 FS(mφ) is continuous and psh, by 
Theorem 7.16. By Lemma 7.23, m−1 FS(mφ) ≤ φ, and hence m−1 FS(mφ) ≤ Q(φ), 
which proves that

sup
m∈N(L)>0

m−1 FS(mφ) ≤ Q(φ).

Conversely, pick ψ ∈ FS(L) such that ψ ≤ φ. By Theorem 7.22, we find m ∈ N(L)>0
such that ψ = m−1 FS(mψ). Thus ψ ≤ supm∈N(L)>0

m−1 FS(mφ), and hence

Q(φ) ≤ sup
m∈N(L)>0

m−1 FS(mφ). �
Corollary 7.27. Let φ be a bounded metric on L, and pick m ∈ N such mL is a line 
bundle. Then
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‖ · ‖φ = ‖ · ‖Q(φ) = ‖ · ‖P(φ)

as norms on H0(mLred).

Proof. For each s ∈ H0(mL) and k ∈ N, we have ‖sk‖kmφ = ‖s‖kmφ. After replacing m
with a multiple, we may thus assume that mL is globally generated. Then

m−1 FS(mφ) ≤ Q(φ) ≤ P(φ) ≤ φ,

and we are done since ‖ · ‖FS(mφ) = ‖ · ‖mφ on H0(mLred), by Lemma 7.23. �
Definition 7.28. Let L be a semiample Q-line bundle. We say that continuity of envelopes
holds for L if for any continuous metric φ on L, P(φ) = Q(φ) is continuous.

By Theorem 7.26 and Dini’s lemma, P(φ) is continuous iff m−1 FS(mφ) converges 
uniformly as m → ∞.

Lemma 7.29. Continuity of envelopes is equivalent to the following property: for any fam-
ily (φα) of psh metrics on L, uniformly bounded above, the usc upper envelope (supα φα)	

is psh.

Proof. Suppose first that continuity of envelopes holds, and let φ be a continuous metric 
on L. Since each FS(mφ) is continuous, P(φ) = supm m−1 FS(mφ) is lsc, and its usc 
regularization P(φ)	 is the decreasing limit of a net of asymptotically Fubini–Study 
metrics ψj . Since P(φ) ≤ φ and φ is continuous, limj ψj = P(φ)	 ≤ φ, and (a small 
variant of) Dini’s lemma therefore yields ψj ≤ φ + εj for some constants εj → 0. It 
follows that ψj = P(ψj) ≤ P(φ) + εj , and hence P(φ)	 ≤ P(φ) in the limit, which proves 
that P(φ) is usc.

Conversely, assume that P(φ) is continuous for each continuous metric φ, and let (φα)
be a family of psh metrics, uniformly bounded above. The metric ψ := (supα φα)	, being 
usc, can be written as the limit of a decreasing net of continuous metrics τj. For each 
α, j, we have φα ≤ τj , and hence φα ≤ P(τj), which in turn yields ψ ≤ P(τj) ≤ τj . We 
have thus written ψ as the limit of the decreasing net of psh metrics P(τj), which shows 
that ψ is psh. �

In the Archimedean case, the equivalent formulation of Lemma 7.29 is a classical 
property, assuming X to be normal. It is thus natural to conjecture:

Conjecture 7.30. Continuity of envelopes holds for any semiample Q-line bundle L over 
a normal projective variety X.

As of this writing, continuity of envelopes in the non-Archimedean case has been 
established when X is smooth and one of the following is satisfied:
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• X is a curve, as a consequence of A. Thuillier’s work [74] (see [44]);
• K discretely or trivially valued, of residue characteristic 0 [14,16], building on mul-

tiplier ideals and the Nadel vanishing theorem;
• K is discretely valued of characteristic p, (X, L) is defined over a function field 

of transcendence degree d, and resolution of singularities is assumed in dimension 
n + d [44], replacing multiplier ideals with test ideals.

We conclude this section with the following application of Theorem 7.26.

Theorem 7.31. Assume that X is geometrically reduced. Let φ be a continuous metric on 
a semiample Q-line bundle L over X. Pick a complete field extension F/K, and denote 
φF the pullback of φ to LF . Then φ is psh iff φF is psh.

Proof. By definition, the pullback of a Fubini–Study metric on L is a Fubini–Study 
metric on LF , and hence φ psh implies φF psh. Assume conversely that φF is psh. By 
Theorem 7.26,

εm := sup
Xan

F

∣∣m−1 FS(mφF ) − φF

∣∣
tends to 0 as m ∈ N(L) tends to ∞; we need to show that φm := m−1 FS(mφ) converges 
uniformly to φ. By Lemma 7.20, we have

(φm)F = m−1 FS
(
(‖ · ‖mφ)F

)
.

Thus

sup
Xan

|φm − φ| = sup
Xan

F

|(φm)F − φF | ≤ sup
Xan

F

∣∣(φm)F −m−1 FS(mφF )
∣∣+ εm

= m−1 sup
Xan

F

∣∣FS
(
(‖ · ‖mφ)F

)
− FS (‖ · ‖mφF

)
∣∣+ εm

≤ m−1 d∞(‖ · ‖mφF
, (‖ · ‖mφ)F ) + εm,

by (7.1). By Theorem 6.6, m−1 d∞(‖ · ‖mφF
, (‖ · ‖mφ)F ) → 0, and are done. �

Part 3. Asymptotics of relative volumes

8. Monge–Ampère measures and Deligne pairings

In this section, we review some basic properties of Monge–Ampère operators, and 
use them to define metrics on Deligne pairings (Theorem 8.16), following Deligne’s pro-
gram [28]. In what follows, X is as before an n-dimensional projective scheme over a 
complete valued field K.
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8.1. Mixed Monge–Ampère measures

The (algebraic) fundamental class of X is the n-dimensional cycle

[X] =
∑
α

mα[Xα],

where the Xα denote the n-dimensional irreducible components of X (with their reduced 
structure) and mα is the length of the local ring of X at the generic point of Xα. The 
intersection number of Q-line bundles L1, . . . , Ln on X is defined as

(L1 · . . . · Ln) := deg π	 (c1(L1) · . . . · c1(Ln) · [X]) ,

with π : X → SpecK the structure morphism.
Now let φ1, . . . , φn be smooth metrics on L1, . . . , Ln, and recall that ddcφi denotes 

the curvature form of φi, a smooth, closed (1, 1)-form on Xan (cf. [20, §6.4.1] for the 
non-Archimedean case). The smooth (n, n)-form ddcφ1∧ . . .∧ddcφn determines a Radon 
measure

ddcφ1 ∧ . . . ∧ ddcφn ∧ δX =
∑
α

mα ddcφ1 ∧ . . . ∧ ddcφn ∧ δXα
(8.1)

on the topological space Xan, the mixed Monge–Ampère measure of the φi, with δX =∑
α mαδXα

denoting the analytic fundamental class of X (see [20, §3.7] for the non-
Archimedean case).

Remark 8.1. When K = R, we define ddcφ1 ∧ . . . ∧ ddcφn ∧ δX as the image of the 
corresponding measure on X(C) = Xan

C by the projection map Xan
C → Xan.

Example 8.2. Assume that n = 0, i.e. X = SpecA with A a finite K-algebra. The previous 
construction produces a positive measure δX on the finite set Xan, which is described 
as follows. We have a product decomposition A =

∏
i Ai into local finite K-algebras Ai

corresponding to the connected components of X. The (reduced) irreducible components 
of X are given by Xi = SpecKi, where the residue field Ki of Ai is a finite extension of 
K, and the unique extension of the absolute value of K to Ki defines a point xi ∈ Xan. 
The current δX =

∑
i miδXi

is a measure on Xan, and the requirement that δXi
has 

total mass deg π	[Xi] = [Ki : K] yields δXi
= [Ki : K]δxi

. As mi[Ki : K] = dimK Ai, we 
conclude that

δX =
∑
i

(dimK Ai)δxi
.

Proposition 8.3. For each tuple φ1, . . . , φn of smooth metrics on Q-line bundles 
L1, . . . , Ln, the mixed Monge–Ampère measure ddcφ1 ∧ . . . ∧ ddcφn ∧ δX satisfies the 
following properties:
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(i) it is a symmetric, multilinear function of the φi, and a positive Radon measure if 
the φi are semipositive, i.e. ddcφi ≥ 0;

(ii)
∫
ddcφ1 ∧ . . . ∧ ddcφn ∧ δX = (L1 · . . . · Ln);

(iii) if L0 = L1 = OX (and hence φ0, φ1 are smooth functions on Xan), then∫
φ0 dd

cφ1∧ddcφ2∧ . . .∧ddcφn∧δX =
∫

φ1 dd
cφ0∧ddcφ2∧ . . .∧ddcφn∧δX . (8.2)

(iv) for any complete field extension F/K, we have

p	 (ddcφ1,F ∧ . . . ∧ ddcφn,F ∧ δXF
) = ddcφ1 ∧ . . . ∧ ddcφn ∧ δX ,

where φi,F is the pullback of φi to Li,F and p : Xan
F → Xan is the canonical 

projection.

Proof. (i) is straightforward. (ii) is classical in the Archimedean case, and proved in [20, 
Proposition 6.4.3] in the non-Archimedean case. (iii) is a consequence of the Stokes 
formula (see [20, Théorème 3.12.2] in the non-Archimedean case). In the Archimedean 
case, (iv) is nontrivial only when K = R, F = C, in which case it holds by definition 
(see Remark 8.1). In the non-Archimedean case, it is implicit in [20], and can be checked 
as follows. Pick a smooth, compactly supported function f on Xan, and consider the 
smooth, compactly supported (n, n)-form α := f ddcφ1 ∧ . . . ∧ ddcφn. According to [43, 
Proposition 5.13], there exists a Zariski open subset U ⊂ X with a closed embedding 
U ↪→ Gr

m,K and a compactly supported smooth (n, n)-superform on Rr such that α is 
obtained by pulling-back η by the tropicalization map Trop : Uan → Rr, and∫

f ddcφ1 ∧ · · · ∧ ddcφn ∧ δX =
∫
X

α

is defined as the integral of η on the tropical cycle Trop(U). Unraveling the definitions, 
it is clear that the pull-back αF of α to Xan

F is simply the pull-back of η by the tropi-
calization map TropF : Uan

F → Rr. The construction of the tropical cycle of an algebraic 
variety being invariant under ground field extension, we have TropF (UF ) = Trop(U) as 
tropical cycles, and we conclude as desired that 

∫
X
α =

∫
XF

αF . �
Recall from §7.3 that a continuous metric on a Q-line bundle L is psh-regularizable 

iff it is a uniform limit of smooth semipositive metrics on L. If L is semiample, then any 
continuous psh metric (in the sense of Definition 7.2, i.e. a uniform limit of Fubini–Study 
metrics) is psh-regularizable, by Theorem 7.14.

Theorem 8.4. Let L1, . . . , Ln be Q-line bundles on X. The measure-valued operator

(φ1, . . . , φn) �→ ddcφ1 ∧ . . . ∧ ddcφn ∧ δX ,
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defined so far on smooth metrics, admits a unique continuous extension to tuples of 
continuous, psh-regularizable metrics on the Li, with respect to uniform convergence for 
tuples of metrics, and the weak topology on Radon measures.

As a direct consequence of Proposition 8.3, we get:

Proposition 8.5. For each tuple of continuous, psh-regularizable metrics (φi),

ddcφ1 ∧ . . . ∧ ddcφn ∧ δX =
∑
α

mα ddcφ1 ∧ . . . ∧ ddcφn ∧ δXα

is a positive Radon measure on Xan, of total mass (L1 · . . . ·Ln). It is further symmetric 
and multiadditive as a function of the φi.

Theorem 8.4 follows from the classical Bedford–Taylor theory [2] in the Archimedean 
case, and from its analogue in the non-Archimedean case [20, Corollaire 5.6.5]. In the 
present global setting, one can however provide a simple direct argument, based on the 
following global version of the classical Chern–Levine–Nirenberg inequality that will be 
put to use again a bit later.

Lemma 8.6. Let L0, . . . , Ln be line bundles on X, and suppose given a pair of smooth, 
semipositive metrics φi, φ′

i on each Li. Then∣∣∣∣∫ (φ0 − φ′
0) ddcφ1 ∧ . . . ∧ ddcφn ∧ δX −

∫
(φ0 − φ′

0) ddcφ′
1 ∧ . . . ∧ ddcφ′

n ∧ δX

∣∣∣∣
≤ C

n∑
i=1

sup |φi − φ′
i|

with C := 2 max1≤i≤n(L0 · L1 · . . . · L̂i · . . . · Ln).

Proof. For brevity of notation, set T := ddcφ2 ∧ . . . ∧ ddcφn ∧ δX . By (8.2),∫
(φ0 − φ′

0) ddcφ1 ∧ T −
∫

(φ0 − φ′
0) ddcφ′

1 ∧ T

=
∫

(φ0 − φ′
0) ddc(φ1 − φ′

1) ∧ T =
∫

(φ1 − φ′
1) ddc(φ0 − φ′

0) ∧ T

=
∫

(φ1 − φ′
1) ddcφ0 ∧ T +

∫
(φ1 − φ′

1) ddcφ′
0 ∧ T.

Since ddcφ0 ∧ T and ddcφ′
0 ∧ T are both positive measures of mass (L0 ·L2 · . . . ·Ln), we 

infer∣∣∣∣∫ (φ0 − φ′
0) ddcφ1 ∧ T −

∫
(φ0 − φ′

0) ddcφ′
1 ∧ T

∣∣∣∣ ≤ 2(L0 · L2 · . . . · Ln) sup |φ1 − φ′
1|.

We conclude by symmetry and multilinearity. �
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Proof of Theorem 8.4. Assume first that K is non-Archimedean, and pick f ∈PLR(Xan). 
By Lemma 5.17, we can find a pair of Fubini–Study metrics on an ample line bundle 
L0 such that f = φ0 − φ′

0. By Theorem 7.14, φ0 and φ′
0 are uniform limits of smooth, 

semipositive metrics on L0. Lemma 8.6 thus shows that

(φ1, . . . , φn) �→
∫

f ddcφ1 ∧ . . . ∧ ddcφn ∧ δX

is Lipschitz continuous with respect to the supnorm on tuples of smooth, semiposi-
tive metrics (with Lipschitz constant depending on f), and hence extends continuously 
to tuples of continuous, psh-regularizable metrics. For each tuple of continuous, psh-
regularizable metrics (φi), the linear form on PLR(Xan) f �→

∫
f ddcφ1∧ . . .∧ddcφn∧δX

is positive, hence continuous, and it thus extends to a positive linear form on C0(X), by 
density of PLR(Xan).

In the Archimedean case, the argument is similar, arguing with a smooth function 
f instead. It is in fact even simpler, since f can directly be written as a difference of 
smooth psh metrics on some ample line bundle. �

In order to exploit the multilinearity of the previous construction, it is convenient to 
introduce the following terminology.

Definition 8.7. We say that a continuous metric φ on a line bundle L is dpsh if it can be 
written as a difference of continuous, psh-regularizable metrics.

A dpsh metric is thus the same as an approachable metric in the sense of [20, §6.3].

Lemma 8.8. Every line bundle L admits a smooth, dpsh metric.

Proof. By Theorem 7.14, any ample line bundle admits a smooth, semipositive metric, 
and the result follows since L can be written as a difference of ample line bundles. �
Example 8.9. If K is Archimedean, every smooth metric is dpsh.

While this is probably true in the non-Archimedean case as well, it is less obvious, 
since strictly positive (1, 1)-forms do not exist globally in this context.

Example 8.10. If K is non-Archimedean, every R-PL metric is dpsh, by Lemma 5.17.

The operator (φ1, . . . , φn) �→ ddcφ1 ∧ . . . ∧ ddcφn ∧ δX , being symmetric and mul-
tiadditive on tuples of continuous, psh-regularizable metrics, extends to a symmetric, 
multilinear operator on continuous dpsh metrics, with values in signed Radon measure. 
Note that Proposition 8.3 still holds for such metrics.
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Example 8.11. If K is non-Archimedean and φ1, . . . φn are R-PL metrics, then ddcφ1 ∧
. . .∧ddcφn∧δX has finite support. By ground field invariance, we may indeed assume that 
K is algebraically closed, and that its value group is large enough to ensure that the φi

become pure after base change. By Proposition 5.16, φ1, . . . , φn are then induced by Q-
models L1, . . . , Ln of L1, . . . , Ln determined on a projective model X of X. By linearity 
with respect to the fundamental class [X], we may further assume that X is (geometri-
cally) irreducible, which allows us to assume that Xs is reduced, by Theorem 4.20. Each 
irreducible component Y of Xs then determines a unique Shilov point xY ∈ Γ(X ), and

ddcφ1 ∧ . . . ∧ ddcφn ∧ δX =
∑
Y

(L1|Y · . . . · Ln|Y )δxY
, (8.3)

by [20, Proposition 6.9.2] (compare [42, Proposition 3.11]).

8.2. A Poincaré–Lelong formula

We start with the following integrability result.

Theorem 8.12. Let φ1, . . . , φn be continuous, psh-regularizable metrics on line bundles 
L1, . . . , Ln, and let s ∈ H0(X, L) be a regular section of a line bundle L, equipped with 
any continuous metric φ. Then log |s|φ is integrable with respect to ddcφ1∧. . .∧ddcφn∧δX , 
and ∫

log |s|φ ddcφ1 ∧ . . . ∧ ddcφn ∧ δX

depends continuously on the φi with respect to uniform convergence.

Lemma 8.13. We can find two ample line bundles A, A′, a decreasing sequence (ψj) of 
smooth, semipositive metrics on A, and a smooth, semipositive metric ψ′ on A′ such that 
L = A −A′ and ψj − ψ′ → log |s| pointwise.

Proof. Pick a very ample line bundle A′ such that A := L + A′ is also very ample. Let 
(sα) and (s′β) be bases of H0(A) and H0(A′), respectively, and set

ψj := 1
2 log

⎛⎝∑
β

|s · s′β |2 + e−j
∑
α

|sα|2
⎞⎠ , ψ′ := 1

2 log

⎛⎝∑
β

|s′β |2
⎞⎠ .

These metrics are smooth and semipositive (both in the Archimedean and non-
Archimedean cases), and

log |s| + ψ′ = 1
2 log

⎛⎝∑
β

|s · s′β |2
⎞⎠

is the decreasing limit of ψj . �
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Proof of Theorem 8.12. Given any other metric φ′ on L, log |s|φ − log |s|φ′ = φ′ − φ is 
a continuous function on Xan, and Theorem 8.12 for φ or φ′ are thus equivalent, by 
Theorem 8.4. By Lemma 8.8, we may therefore assume that φ is smooth dpsh.

Write log |s| as the decreasing limit of a sequence of smooth dpsh metrics ψj − ψ′ as 
in Lemma 8.13, so that

fj := ψj − ψ′ − φ → f := log |s|φ,

where ψj and ψ′ + φ are metrics on a fixed (ample) line bundle A. By Lemma 8.6, there 
exists C > 0 only depending on the Li and A such that for any other tuple φ′

1, . . . , φ
′
n

of continuous, psh-regularizable metrics on L1, . . . , Ln we have∣∣∣∣∫ fj dd
cφ1 ∧ . . . ∧ ddcφn ∧ δX −

∫
fj dd

cφ′
1 ∧ . . . ∧ ddcφ′

n ∧ δX

∣∣∣∣ ≤ C
n∑

i=1
sup |φi − φ′

i|.

(8.4)
By monotone convergence, we infer

− C
n∑

i=1
sup |φi − φ′

i| +
∫

f ddcφ1 ∧ . . . ∧ ddcφn ∧ δX ≤
∫

f ddcφ′
1 ∧ . . . ∧ ddcφ′

n ∧ δX

≤
∫

f ddcφ1 ∧ . . . ∧ ddcφn ∧ δX + C

n∑
i=1

sup |φi − φ′
i|

in [−∞, +∞). It thus remains to show that f = log |s|φ is integrable with respect to 
ddcφ1 ∧ . . . ∧ ddcφn ∧ δX for some choice of continuous, psh-regularizable metrics (φi), 
which holds as soon as the φi are smooth (see [20, 4.6.2] for the non-Archimedean case, 
where we could alternatively take the (φi) to be model metrics, since ddcφ1∧. . .∧ddcφn∧
δX is then supported in a finite set of Shilov points, by Example 8.11). �

We are now in a position to state the following version of the Poincaré–Lelong formula, 
which plays a key role in the proof of Theorem A.

Theorem 8.14. Let φ2, . . . , φn be continuous dpsh metrics on line bundles L2, . . . , Ln, and 
set for brevity T := ddcφ2∧. . .∧ddcφn. Suppose also given a regular section s ∈ H0(X, L)
of a line bundle L, with divisor Z, a continuous dpsh metric φ on L, and a continuous 
dpsh function f . Then∫

log |s|φ ddcf ∧ T ∧ δX =
∫

f T ∧ δZ −
∫

f ddcφ ∧ T ∧ δX . (8.5)

Note that the first integral is well-defined, by Theorem 8.12 and multilinearity.

Proof. Given any other continuous dpsh metric φ′ on L, we have log |s|φ − log |s|φ′ =
φ′ − φ, hence
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∫
log |s|φ ddcf ∧ T ∧ δX −

∫
log |s|φ′ ddcf ∧ T ∧ δX =

∫
(φ′ − φ) ddcf ∧ T ∧ δX

=
∫

f ddcφ′ ∧ T ∧ δX −
∫

f ddcφ ∧ T ∧ δX ,

by integration by parts. As a result, the desired formula for φ is equivalent to that for 
φ′, and we may thus assume from the start that φ is smooth, by Lemma 8.8.

Assume next that f and φ2, . . . , φn are also smooth. The Poincaré–Lelong formula 
(cf. [20, Theorem 4.6.5] in the non-Archimedean case) implies that

ddc log |s|φ ∧ δX = δZ − ddcφ ∧ δX

in the sense of currents, which yields (8.5). Assume finally that f and φ2, . . . , φn are 
merely continuous dpsh. We can then find line bundles M, M2, M ′

2, . . . , Mn, M ′
n and 

continuous, psh-approchable metrics τ, τ ′ on M , ψi, ψ′
i on Mi, M ′

i such that f = ψ−ψ′, 
Li = Mi−M ′

i and φi = ψi−ψ′
i. Choose sequences (τj), (τ ′j), (ψi,j) and (ψ′

i,j) of smooth, 
semipositive metrics on M , Mi and M ′

i such that τj → τ , τ ′j → τj , ψi,j → ψi and 
ψ′
i,j → ψ′

i uniformly. Set fj := τj−τ ′j , φi,j := ψi,j−ψ′
i,j , and Tj := ddcφ2,j∧ . . .∧ddcφn,j . 

Theorem 8.12 and multilinearity yield

lim
j

∫
log |s|φ ddcfj ∧ Tj ∧ δX =

∫
log |s|φ ddcf ∧ T ∧ δX

By Theorem 8.4, we have weak convergence of measures

Tj ∧ δZ → T ∧ δZ , ddcφ ∧ Tj ∧ δX → ddcφ ∧ T ∧ δX ,

and hence∫
fjTj →

∫
Z

fT and
∫

fj dd
cφ ∧ Tj ∧ δX →

∫
f ddcφ ∧ T ∧ δX ,

by uniform convergence fj → f . Thus (8.5) in the smooth case implies the general 
case. �
8.3. Metrics on Deligne pairings

As a special case of a general construction discussed extensively in Appendix A, 
the Deligne pairing associates to an (n + 1)-tuple of line bundles L0, . . . , Ln on an n-
dimensional projective K-scheme X a line bundle 〈L0, . . . , Ln〉 on SpecK, i.e. a one-
dimensional K-vector space.

Following F. Ducrot’s approach [34], we view the Deligne pairing as the (n + 1)-st 
iterated difference of the determinant of cohomology. In our situation, the determinant 
of cohomology of a line bundle L on X can simply be described as
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λ(L) =
∑
i

(−1)i detHi(L),

and

〈L0, . . . , Ln〉 =
∑

I⊂{0,...,n}
(−1)n+1−|I|λ

(∑
i∈I

Li

)
.

This pairing is functorial, symmetric, multilinear, and the data of a regular section 
s ∈ H0(X, L0) with zero divisor Z induces a canonical isomorphism

〈L0, . . . , Ln〉 = 〈L1|Z , . . . , Ln|Z〉. (8.6)

Example 8.15. When n = 0, a regular section s of L0 is a trivializing section of L0, 
and (8.6) thus yields a generator 〈s0〉 ∈ 〈L0〉. Any other trivializing section of L0 is of 
the form us0 with u ∈ A× a unit, and

〈us0〉 = NA/K(u)〈s0〉 (8.7)

where NA/K(u) ∈ K× is the norm of u, i.e. the determinant of the endomorphism of 
the K-vector space A given by multiplication by u. In other words, the Deligne pairing 
coincides with norm functor when n = 0.

In line with Deligne’s program [28] and the work of Elkik [35], we prove:

Theorem 8.16. There exists a unique way to associate to each tuple of continuous dpsh 
metrics φ0, . . . , φn on line bundles L0, . . . , Ln over an n-dimensional projective K-
scheme X a metric 〈φ0, . . . , φn〉 on 〈L0, . . . , Ln〉, such that the following holds:

(i) the pairing (φ0, . . . , φn) �→ 〈φ0, . . . , φn〉 is symmetric and multilinear;
(ii) if s ∈ H0(L0) is a regular section with zero divisor Z, the following restriction 

formula holds:

〈φ0, . . . , φn〉 = 〈φ0|Z , . . . , φn|Z〉 −
∫

log |s|φ0dd
cφ1 ∧ . . . ∧ ddcφn ∧ δX (8.8)

as metrics on 〈L0, . . . , Ln〉 = 〈L1|Z , . . . , Ln|Z〉.

Note that (ii) implies the change of metric formula

〈φ0, φ1, . . . , φn〉 − 〈φ′
0, φ1, . . . , φn〉 =

∫
(φ0 − φ′

0)ddcφ1 ∧ . . . ∧ ddcφn ∧ δX (8.9)

for all continuous dpsh metrics φ0, φ′
0 on L0 and φ1, . . . , φn on L1, . . . , Ln. This follows 

indeed by applying (8.8) to the dpsh metrics φ0 − φ′
0, φ1, . . . , φn on OX , L1, . . . , Ln and 

the regular section s = 1 ∈ H0(X, OX).
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Lemma 8.17. Let φ0, . . . , φn be continuous dpsh metrics on line bundles L0, . . . , Ln. Let 
s0 ∈ H0(L0), s1 ∈ H0(L1) be regular sections with divisors Z0, Z1, and assume that s1|Z0

and s0|Z1 are also regular. Then:

(i) the induced isomorphisms

〈L0, L1, L2, . . . , Ln〉 = 〈L1|Z0 , L2|Z0 , . . . , Ln|Z0〉 = 〈L2|Z0∩Z1 , . . . , Ln|Z0∩Z1〉

and

〈L0, L1, L2, . . . , Ln〉 = 〈L1, L0, L2, . . . , Ln〉
= 〈L0|Z1 , L2|Z1 , . . . , Ln|Z1〉 = 〈L2|Z0∩Z1 , . . . , Ln|Z0∩Z1〉

coincide;
(ii) setting for brevity T := ddcφ2 ∧ . . . ∧ ddcφn, we have∫

log |s0|φ0 T ∧ δZ1 −
∫

log |s0|φ0 dd
cφ1 ∧ T ∧ δX

=
∫

log |s1|φ1 T ∧ δZ0 −
∫

log |s1|φ1 dd
cφ0 ∧ T ∧ δX .

When X, Z0 and Z1 are smooth over an Archimedean field K and the metrics are 
smooth, the result is a special case [35, Lemma I.1.2]. The proof we propose here fol-
lows standard monotone regularization arguments in pluripotential theory (compare for 
instance [29, Proposition III.4.9]).

Proof. To prove (i), recall from Theorem A.22 that the restriction isomorphism

〈L0, L1, L2, . . . , Ln〉 = 〈L1|Z0 , L2|Z0 , . . . , Ln|Z0〉

is induced by (8.6) and the restriction isomorphism

λ(L) − λ(L− Z0) = λZ0(L|Z0),

valid for any line bundle L on X. Thus

〈L0, L1, L2, . . . , Ln〉 = 〈L2|Z0∩Z1 , L2|Z0∩Z1 , . . . , Ln|Z0∩Z1〉

is induced by

λ(L) − λ(L− Z0) − λ(L− Z1) + λ(L− Z0 − Z1) = λZ0∩Z1(L),

whose symmetry with respect to Z0 and Z1 implies (i).
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We turn to (ii). By Lemma 8.8 and multilinearity, we may assume that φ2, . . . , φn are 
smooth and semipositive, and also that φ0, φ1 are smooth dpsh.

For i = 0, 1, set fi := log |si|φi
. As in the proof of Theorem 8.12, we can choose an 

(ample) line bundle Hi, a decreasing sequences of smooth, semipositive metrics (ψi,j)j
on Hi and a smooth, semipositive metric ψ′

i such that fi,j := ψi,j − ψ′
i converges to fi

as j → ∞. By integration by parts,

∫
f0,j dd

cf1,j ∧ T ∧ δX =
∫

f1,j dd
cf0,j ∧ T ∧ δX ,

and we will thus be done if we prove that

∫
f0,j dd

cf1,j ∧ T ∧ δX →
∫

f0 T ∧ δZ1 −
∫

f0 dd
cφ1 ∧ T ∧ δX , (8.10)

and ∫
f1,jdd

cf0,j ∧ T ∧ δX →
∫

f1 T ∧ δZ0 −
∫

f1 dd
cφ0 ∧ T ∧ δX ,

the first of these being enough, by symmetry. Pick indices j ≥ k. Then f0,j ≤ f0,k, and 
hence∫

f0,j dd
cf1,j ∧ T ∧ δX =

∫
f0,jdd

cψ1,j ∧ T ∧ δX −
∫

f0,j dd
cψ′

1 ∧ T ∧ δX

≤
∫

f0,k dd
cψ1,j ∧ T ∧ δX −

∫
f0,j dd

cψ′
1 ∧ T ∧ δX

=
∫

f0,k dd
cf1,j ∧ T ∧ δX +

∫
(f0,k − f0,j) ddcψ′

1 ∧ T ∧ δX .

Letting first j → ∞, we infer

lim sup
j

∫
f0,j dd

cf1,j ∧ T ∧ δX ≤
∫

f0,k dd
cf1 ∧ T ∧ δX +

∫
(f0,k − f0) ddcψ′

1 ∧ T ∧ δX

=
∫

f0,k T ∧ δZ1 −
∫

f0,k dd
cφ1 ∧ T ∧ δX +

∫
(f0,k − f0) ddcψ′

1 ∧ T ∧ δX ,

and letting next k → ∞ yields

lim sup
j

∫
f0,j dd

cf1,j ∧ T ∧ δX ≤
∫

f0 T ∧ δZ1 −
∫

f0 dd
cφ1 ∧ T ∧ δX ,

by monotone convergence. For the converse, pick now indices j ≤ k. Then
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∫
f0,j dd

cf1,j ∧ T ∧ δX

=
∫

f1,j dd
cf0,j ∧ T ∧ δX =

∫
f1,j dd

cψ0,j ∧ T ∧ δX −
∫

f1,j dd
cψ′

0 ∧ T ∧ δX

≥
∫

f1,k dd
cψ0,j ∧ T ∧ δX −

∫
f1,j dd

cψ′
0 ∧ T ∧ δX

=
∫

f1,k dd
cf0,j ∧ T ∧ δX +

∫
(f1,k − f1,j) ddcψ′

0 ∧ T ∧ δX

=
∫

f0,j dd
cf1,k ∧ T ∧ δX +

∫
(f1,k − f1,j) ddcψ′

0 ∧ T ∧ δX .

As k → ∞, ddcf1,k ∧T ∧ δX → ddcf1 ∧T ∧ δX = T ∧ δZ1 +ddcφ1 ∧T ∧ δX in the sense of 
currents, while 

∫
f1,k dd

cψ′
0 ∧ T ∧ δX →

∫
f1 dd

cψ′
0 ∧ T ∧ δX , by monotone convergence. 

Thus ∫
f0,jdd

cf1,j ∧ T ∧ δX

≥
∫

f0,jT ∧ δZ1 −
∫

f0,j dd
cφ1 ∧ T ∧ δX +

∫
(f1 − f1,j) ddcψ′

0 ∧ T ∧ δX ,

and hence

lim inf
j→∞

∫
f0,jdd

cf1,j ∧ T ∧ δX ≥
∫

f0 T ∧ δZ1 −
∫

f0 dd
cφ1 ∧ T ∧ δX ,

using again monotone convergence. �
Proof of Theorem 8.16. We argue by induction on n. Assume n = 0, i.e. X = SpecA
with A finite, flat over K. We can then pick a trivializing section s ∈ H0(X, L0), and (8.8)
yields

log |〈s〉|〈φ0〉 =
∫

log |s|φ0δX . (8.11)

In view of (8.7), (8.11) defines a metric 〈φ0〉 on 〈L0〉 iff∫
log |u| δX = log |NA/K(u)|. (8.12)

To see this, we may assume that A is local, by Example 8.2. Then∫
log |u| δX = (dimK A) log |u(x)|,

with x is the unique point of Xan, corresponding to the absolute value on the residue 
field K ′ of A. A standard computation gives NA/K(u) = NK′/K(u|K′)m with m =
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dimK′ A the length of A (see for instance [56, Lemma 1.16.2]). It is also well-known that 
|NK′/K(u)| = |u|[K

′:K]
K′ = |u(x)|[K′:K], and (8.12) follows since dimK A = m[K ′ : K].

We now consider a tuple of continuous dpsh metrics on line bundles L0, . . . , Ln on 
a projective K-scheme X of dimension n, and argue basically as in the proof of [35, 
Théorème I.1.1]. Given a regular section s0 ∈ H0(L0) with divisor Z0, we force the 
restriction formula by setting temporarily

〈(φ0, s0), φ1, . . . , φn〉 := 〈φ1|Z0 , . . . , φn|Z0〉−
∫

log |s0|φ0 dd
cφ1∧ . . .∧ddcφn∧δX , (8.13)

as metrics on 〈L0, . . . , Ln〉 = 〈L1|Z0 , . . . , Ln|Z0〉, where the right-hand side is well-defined 
by induction and Theorem 8.12. By induction, this pairing is multilinear and symmetric 
in (φ1, . . . , φn).

Assume next given a regular section s1 ∈ H0(L1), with divisor Z1, such that s1|Z0 is 
also regular. We are going to show that

〈(φ0, s0), φ1, . . . , φn〉 = 〈(φ1, s1), φ0, φ2, . . . , φn〉 (8.14)

as metrics on 〈L0, L1, L2, . . . , Ln〉 = 〈L1, L0, L2, . . . , Ln〉. We first claim that s0|Z1 is 
regular as well. Indeed, the sequence (s0, s1) is regular at each point of Z0 ∩ Z1, and 
hence so is (s1, s0), by general properties of regular sequences in a Noetherian local ring. 
This means that s0|Z1 is regular at each point of Z0, and also trivially at each point not 
in Z0 = div(s0), proving the claim. By induction, the restriction formula applies to Z0, 
and yields

〈φ1|Z0 , . . . , φn|Z0〉 = 〈φ2|Z0∩Z1 , . . . , φn|Z0∩Z1〉 −
∫

log |s1|φ1 T ∧ δZ0

with T := ddcφ2 ∧ . . . ∧ ddcφn. Using the commutativity property of Lemma 8.17, we 
infer

〈(φ0, s0), φ1, . . . , φn〉

= 〈φ2|Z0∩Z1 , . . . , φn|Z0∩Z1〉 −
∫

log |s1|φ1 T ∧ δZ0 −
∫

log |s0|φ0 dd
cφ1 ∧ T ∧ δX

= 〈φ2|Z0∩Z1 , . . . , φn|Z0∩Z1〉 −
∫

log |s0|φ0 T ∧ δZ1 −
∫

log |s1|φ1 dd
cφ0 ∧ T ∧ δX

= 〈φ0|Z1 , φ2|Z1 , . . . , φn|Z1〉 −
∫

log |s1|φ1 dd
cφ0 ∧ T ∧ δX

= 〈(φ1, s1), φ0, φ2, . . . , φn〉

as metrics on

〈L0, . . . , Ln〉 = 〈L2|Z0∩Z1 , . . . , Ln|Z0∩Z1〉 = 〈L0|Z1 , . . . , Ln|Z1〉 = 〈L1, L0, L2, . . . , Ln〉,

using again induction, which proves (8.14).
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Assume now that L0 admits two regular sections s0, s′0 ∈ H0(L0), with divisors Z0, Z ′
0. 

We claim that

〈(φ0, s0), φ1, . . . , φn〉 = 〈(φ0, s
′
0), φ1, . . . , φn〉

as metrics on 〈L0. . . . , Ln〉. By linearity with respect to φ1, we may assume that L1 is 
ample. For m 	 1, we then find a regular section s1 ∈ H0(mL1) such that s1|Z0 and 
s1|Z′

0
are also regular, since this amounts to requiring that s1 is nonzero at each of the 

finitely many associated points of X, Z0 and Z ′
0. Applying (8.14) twice, we infer

〈(φ0, s0), φ1, . . . , φn〉 = m−1〈(mφ1, s1), φ0, φ2, . . . , φn〉 = 〈(φ0, s
′
0), φ1, . . . , φn〉

which proves the claim. Given a tuple of continuous dpsh metrics φ0, . . . , φn on line 
bundles L0, . . . , Ln such that L0 admits a regular section, we can thus set

〈φ0, . . . , φn〉 := 〈(φ0, s0), φ1, . . . , φn〉

for any choice of regular section s0 ∈ H0(L0). If φ′
0 is a continuous dpsh metric on another 

line bundle L′
0 admitting a regular section, then L0 + L′

0 also admits a regular section, 
and (8.14) shows that

〈φ0 + φ′
0, φ1, . . . , φn〉 = 〈φ0, φ1, . . . , φn〉 + 〈φ′

0, φ1, . . . , φn〉.

Consider finally a continuous dpsh metric φ0 on an arbitrary line bundle L0. After adding 
to L0 a sufficiently large multiple of an ample line bundle, we can write L0 = M0 −M ′

0
with M0, M ′

0 both admitting a regular section. Since M ′
0 admits a continuous dpsh metric 

ψ′
0, we get φ0 = ψ0 − ψ′

0 with ψ0 := φ0 + ψ′
0 continuous dpsh on M0, and we set

〈φ0, φ1, . . . , φn〉 := 〈ψ0, φ1, . . . , φn〉 − 〈ψ′
0, φ1, . . . , φn〉.

By the previous additivity property, this is independent of the choice of ψ0, ψ′
0, and 

multiadditive with respect to φ0. By (8.14), the pairing 〈φ0, φ1, . . . , φn〉 is symmetric 
with respect to φ0, φ1, and hence with respect to any permutation of φ0, . . . , φn, being 
already symmetric with respect to φ1, . . . , φn by induction. Finally, the pairing satisfies 
by construction the restriction formula, and we are done. �
8.4. The non-Archimedean case

We assume in this section that K is non-Archimedean, possibly trivially valued. By 
the change of metric formula (8.9), the Deligne pairing is basically determined by its 
values on model metrics, which are described by the following result.
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Theorem 8.18. Let L0, . . . , Ln be line bundles on a projective K-scheme X of dimension 
n. Let L0, . . . , Ln be models of L0, . . . , Ln, determined on a projective model X of X, 
and denote by φ0, . . . , φn the corresponding model metrics. Then

〈φ0, . . . , φn〉 = φ〈L0,...,Ln〉. (8.15)

Here 〈L0, . . . , Ln〉 is the Deligne pairing with respect to the flat projective morphism 
X → SpecK◦, cf. Appendix A. Since Deligne pairings commute with base change, 
〈L0, . . . , Ln〉 is a model of 〈L0, . . . , Ln〉, and φ〈L0,...,Ln〉 denotes the corresponding model 
metric.

Proof. We argue by induction on n. Assume first n = 0, and hence X = SpecA with 
A finite free over K◦. As recalled in Lemma A.19, any line bundle on X is trivial in 
a neighborhood of the special fiber of X , and hence trivial on X . A trivializing section 
s ∈ H0(L0) induces a trivializing section 〈s〉 = NX/K◦(s) of 〈L0〉 = NX/K◦(L0), as well 
as a trivializing section s ∈ H0(X, L0), such that |s|φ0 = 1 on Xan. By (8.11), we infer

log |〈s〉|〈φ0〉 =
∫

log |s|φ0δX = 0,

which is equivalent to 〈φ0〉 = φ〈L0〉.
Let now L0, . . . , Ln be line bundle on a projective K-scheme X of dimension n, and 

L0, . . . , Ln be models of L0, . . . , Ln determined on a projective model X of X. Since any 
line bundle on X can be written as a difference of ample line bundles, we may assume 
that L0 is ample, by linearity. After passing to a large enough multiple, we assume that 
there exists a relatively regular section s ∈ H0(L0), by Proposition A.15. Denote by Z its 
divisor, with generic fiber Z. By the restriction property of Deligne pairings on models, 
s induces an isomorphism

〈L0, · · · ,Ln〉 = 〈L1|Z , . . . ,Ln|Z〉

of models of 〈L0, . . . , Ln〉 = 〈L1|Z , . . . , Ln|Z〉. By induction, we get

φ〈L0,··· ,Ln〉 = φ〈L1|Z ,...,Ln|Z〉 = 〈φ1|Z , . . . , φn|Z〉

= 〈φ0, . . . , φn〉 +
∫

log |s|φ0 dd
cφ1 ∧ . . . ∧ ddcφn ∧ δX ,

using the restriction property of Theorem 8.16. It remains to show that the right-hand 
integral vanishes, which follows from the fact that ddcφ1 ∧ . . .∧ ddcφn ∧ δX is supported 
on Γ(X ) (cf. Example 8.11) together with Lemma 8.19 below. �
Lemma 8.19. If s is a relatively regular section of a line bundle L on a model X , then 
|s|φL = 1 on Γ(X ).



84 S. Boucksom, D. Eriksson / Advances in Mathematics 378 (2021) 107501
Proof. Since s doesn’t vanish at the associated points of Xs, s is nonzero on the reduction 
ξ := redX (x) of any Shilov point x ∈ Xan defined by X . In other words, s defines a 
trivializing section of L on an open neighborhood U of ξ, and we infer |s|φL ≡ 1 on U�, 
by definition of the model metric φL. �

Using Theorem 8.18, we relate Deligne pairings and Gubler’s intersection theory on 
models [41].

Definition 8.20. If D is a vertical Cartier divisor and L1, . . . , Ln are line bundles on a 
projective model X of X, we define their intersection number as the real number

(D · L1 · . . . · Ln) := φ〈OX (D),L1,...,Ln〉.

Here the right-hand side is a model function on SpecK, identified with its value on 
the unique point of SpecK. Equivalently, (D · L1 . . . · Ln) = vK(f) for any choice of 
generator f of the free K◦-module

〈O(D),L1, . . . ,Ln〉 ↪→ K.

In particular, (D · L1 . . . · Ln) belongs to the (additive) value group ΓK ⊂ R.
As a special case of Theorem 8.18, we have

(D · L1 . . . · Ln) =
∫

φD ddcφL1 ∧ . . . ∧ ddcφLn
∧ δX . (8.16)

On the other hand, in [41, §3] Gubler associates to every vertical Cartier divisor D on X
an n-dimensional cycle cyc(D) with coefficients in ΓK on the finite type K̃-scheme Xs, 
such that the following holds:

(i) if μ : X ′ → X is a morphism of projective models, then cyc(D) = μ	 cyc(μ	D);
(ii) if F/K is a non-Archimedean extension and DF is the pull-back of D to the base 

change of X to F ◦, then cyc(DF ) = cyc(D)F̃ ;
(iii) if Xs is reduced, every irreducible component Y of Xs determines a unique Shilov 

point xY ∈ Γ(X ), and

cyc(D) =
∑
Y

φD(xY )[Y ].

Corollary 8.21. Let L1, . . . , Ln be line bundles on a model X of X, and D be a vertical 
Cartier divisor on X . Then

(D · L1 · . . . · Ln) = (cyc(D) · L1|Xs
· . . . · Ln|Xs

) .
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Proof. By (8.16), (D · L1 · . . . · Ln) is invariant under ground field extension, and we may 
thus assume that K is algebraically closed and nontrivially valued. By multilinearity, we 
may further assume that X is (geometrically) reduced. After replacing X with a higher 
model, we can arrange for Xs to be reduced, by Theorem 4.20. By (8.3), we then have

(D · L1 · . . . · Ln) =
∫

φD ddcφ1 ∧ · · · ∧ ddcφn

=
∑
Y

φD(xY ) (L1|Y · . . . · Ln|Y ) = (cyc(D) · L1|Xs
· . . . · Ln|Xs

) . �

8.5. General metrics on the norm functor

We extend the previous discussion on metrics on Deligne pairings to the setting of 
general finite flat morphisms f : Y → X. In this setting, we will abbreviate N = NX/Y

when there is no risk for ambiguity.
The formula (8.11) provides a general definition of a metric N(φ) on N(L), provided 

we are given a metric φ on L. Namely, for x ∈ Xan, and a section s of H0(L|f−1(U)) for 
some open neighborhood U of X such that Uan is an open neighborhood of x, we define

log |N(s)|N(φ)(x) =
∫
X

log |s|φδ[f−1(x)]. (8.17)

Here [f−1(x)] denotes the fundamental cycle of f−1(x), defined in a way analogous to 
Example 8.2. The definition extends in a natural way to Q-line bundles.

We have the following proposition.

Proposition 8.22. Suppose f : Y → X is a finite flat morphism of projective geometrically 
reduced K-schemes, and L an ample Q-line bundle on Y . If φ is a continuous psh metric 
on L, then so is N(φ) on N(L).

Proof. Arguing on the components of X and Y , we may assume wlog that f has constant 
degree e > 1. The claim is standard in the Archimedean setting since it is straightforward 
to verify that the curvature of N(L) is the direct image under f of the curvature of L.

Suppose now that K is non-trivially valued and non-Archimedean. As it follows from 
(8.17), the map φ �→ N(φ) is Lipschitz continuous. By Theorem 7.8 we can hence restrict 
ourselves to the case when φ = φL, for a nef model L of L on a model Y. By multi-
plicativity of the norm we may assume they are actual line bundles. By Proposition 5.13
(and its proof) we can assume f extends to a proper and flat morphism f : Y → X
of models. Flatness together with properness implies that the fiber dimension is locally 
constant, and hence f is quasi-finite. As f is automatically finitely presented these facts 
taken together imply it is also finite by [32, IV.8.11.1]. We can thus consider the norm 
of line bundles L which are models of N(L).
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An application of the Riemann–Roch theorem for singular curves shows that N(L)
is nef if L is. We claim that N(φL) = φN(L) (compare with the first part of the proof 
of Theorem 8.18), in which case we conclude that N(φL) is a nef metric. To prove the 
claim, pick a point x ∈ X , and an open neighborhood U of x, and a trivialization τ of 
L on f−1(U). Since |τ |φL(y′) = 1 for y′ ∈ f−1(x′) for x′ ∈ U�, it follows from definition 
(8.17) that N(φL) is the model metric induced by N(L).

The trivially valued case can be deduced from the non-trivially valued case, in a 
straightforward application of Lemma 1.26 and Theorem 7.31. �
Remark 8.23. It is possible to prove that the norm functor maps continuous metrics to 
continuous metrics.

Proposition 8.24. Let f : Y → X be a finite, flat morphism of geometrically reduced pro-
jective K-schemes. Suppose we are given an ample line bundle L on Y with a continuous 
metric φ. Then P (f	φ) = f	P (φ). In particular, if P (φ) is continuous, so is P (f	φ).

Proof. In the Archimedean case, this is a special case of [5, Proposition 2.9]. The state-
ment in the trivially valued case follows from the non-Archimedean non-trivially valued 
one by comparing with a non-trivially valued field extension as in the previous lemma. 
We will henceforth suppose K is non-Archimedean non-trivially valued.

It follows from Proposition 5.13 and Lipschitz continuity of f	 that f	
(
C0 ∩ PSH(L)

)
⊆ C0 ∩ PSH(f	L), from which we infer the inequality f	P (φ) ≤ P (f	φ).

To show the reverse inequality we show that any continuous psh metric ψ on f	L with 
ψ ≤ f	φ admits a majoration ψ ≤ f	ψ∞ ≤ f	φ, where ψ∞ is continuous psh. Since P
is non-decreasing we conclude that

ψ ≤ f	ψ∞ ≤ f	P (φ) ≤ P (f	φ)

which implies the statement by taking supremum over all continuous psh metrics ψ. �
Lemma 8.25. Suppose that f : Y → X is a finite flat morphism of connected projective 
geometrically reduced K-schemes, of degree e, and ψ is a continuous psh metric on f	L. 
Inductively define ψ0 = ψ and ψk = max

{1
ef

∗φN(ψk−1), ψ
}
. Then all ψk are continuous 

psh, and converge uniformly to f∗ψ∞, where

ψ∞(x) = sup
y′∈f−1(x)

ψ(y′)

is a continuous psh metric on 1
eN(L).

Proof. The fact that all the metrics ψk are continuous psh follows from Proposition 8.22
together with the statement that continuous psh metrics are closed under max. Without 
loss of generality we suppose that e > 1. Here we can define
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f	ψ∞(x) = sup
y′∈f−1(x)

(ψ − f	φ) (x) + φ(f(x))

for an auxiliary metric φ on L. It is independent of φ, and ψ∞ defines a metric on 1eN(L).
By construction we have

0 ≤ (f	ψ∞ − ψk) (y) ≤ f	ψ∞(y) −

⎡⎣1
e

∑
y′∈f−1(f(y))

ψk−1(y′)

⎤⎦ .

Here the sum is computed with taking the multiplicities of the points into account. 
For any x ∈ Xan, there is always at least one y ∈ f−1(x) such that ψk(y) =
max{ψk−1, ψ}(y) = f	ψ∞(y). It follows that an upper bound Mk of f	ψ∞ − ψk can 
be chosen so that Mk ≤

(
1 − 1

e

)
Mk−1 ≤

(
1 − 1

e

)k
M0. We conclude that ψk → f	ψ∞

uniformly so that f	ψ∞ is continuous psh, and hence so must ψ∞ be. �
9. Asymptotics of relative volumes

This section introduces graded norms and their relative volumes, reviews the basic 
properties of the Monge–Ampère energy functional, and then proves Theorem A, the 
main result of this paper.

As before, K denotes a complete valued field. Throughout this section, X is a geo-
metrically reduced6 projective K-scheme, and n := dimX.

9.1. Relative volumes of graded norms

Let L be any line bundle on X, and consider the graded K-algebra R = R(X, L) with 
graded pieces Rm := H0(X, mL). Set also

Nm := dimRm = h0(X,mL).

Definition 9.1. A graded norm ‖ · ‖• on the graded algebra R is defined as a sequence of 
norms ‖ · ‖m on the graded pieces H0(mL), m ∈ N, which is

(i) submultiplicative, i.e.

‖s · s′‖m+m′ ≤ ‖s‖m · ‖s′‖m′

for all m, m′ ∈ N, s ∈ Rm, s′ ∈ Rm′ ;
(ii) bounded, i.e.

d∞ (‖ · ‖m, ‖ · ‖mφ) = O(m)

for some (hence any) bounded metric φ on L.

6 If K is perfect (e.g. of characteristic 0), this is equivalent to being reduced.
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Example 9.2. Each bounded metric φ on L determines a graded supnorm ‖ · ‖•φ, with 
graded pieces ‖ · ‖mφ.

Example 9.3. If L is a model of L, then the lattice norms ‖ · ‖H0(mL) form a graded 
sequence, denoted by ‖ · ‖H0(•L). Boundedness is a consequence of Theorem 6.4.

Graded norms are preserved under ground field extension:

Lemma 9.4. Let F/K be a complete field extension. For any graded norm ‖ · ‖• on R =
R(X, L), the sequence of ground field extensions (‖ · ‖m)F forms a graded norm on 
RF = R(XF , LF ). Further,

vol ((‖ · ‖m)F , (‖ · ‖′m)F ) = vol(‖ · ‖m, ‖ · ‖′m) + o(mn+1). (9.1)

Proof. Submultiplicativity of the sequence (‖ · ‖m)F follows from directly from Defini-
tion 1.24. To see that the sequence is bounded, pick any continuous metric φ on L. By 
Proposition 1.25,

d∞((‖ · ‖m)F , (‖ · ‖mφ)F ) = d∞(‖ · ‖m, ‖ · ‖mφ) = O(m),

and it is thus enough to show that d∞ ((‖ · ‖mφ)F , ‖ · ‖mφF
) = O(m), which follows 

from Theorem 6.6. Finally, (9.1) is a consequence of Proposition 2.14 combined with the 
estimate

Nm logNm = O(mn logm) = o(mn+1). � (9.2)

The next result is basically due to Chen and Maclean [22], following the strategy 
of Witt Nyström [78], itself finding its roots in the work of Zaharjuta [80]. For the 
convenience of the reader, we review the argument below.

Theorem 9.5. Assume that X is geometrically integral. Let L be a line bundle on X, and 
pick two graded norms ‖ · ‖•, ‖ · ‖′• on R = R(X, L). Then m−(n+1) vol(‖ · ‖m, ‖ · ‖′m)
admits a limit in R.

Definition 9.6. The relative volume of the graded norms ‖ · ‖•, ‖ · ‖′• is defined as

vol(‖ · ‖•, ‖ · ‖′•) := lim
m→∞

n!
mn+1 vol(‖ · ‖m, ‖ · ‖′m).

Proof of Theorem 9.5. Observe first that the result is trivial when L is not big. Set 
indeed Nm := h0(mL). By the Lipschitz property of relative volumes (Proposition 2.14),

|vol(‖ · ‖m, ‖ · ‖′m)| ≤ Nm d∞(‖ · ‖m, ‖ · ‖′m) = O(mNm).

If L is not big, then Nm = o(mn), and hence m−(n+1) vol(‖ · ‖m, ‖ · ‖′m) → 0.
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We henceforth assume that L is big. By Lemma 9.4, we may further pass to a complete 
field extension and assume that K is algebraically closed.

We now follow the approach of [78,22], which combines the strategy of Zaharjuta [80], 
relying on a multivariate version of Fekete’s Lemma on subadditive sequences, with the 
Okounkov body construction [54,50]. Pick a regular point p ∈ X(K), a regular sequence 
(z1, . . . , zn) in OX,p, and consider the valuation ν : K(X)× → (Zn, lex) defined as 
follows: by Cohen’s structure theorem, every f ∈ OX,p admits a formal power series 
expansion f =

∑
α∈Nn fαz

α, fα ∈ K, and we set

ν(f) := min{α ∈ Nn | fα �= 0},

where the min is understood with respect to the lexicographic order. Note that ν is 
trivial on K, and has center p on X.

The valuation ν can be naturally evaluated on sections s ∈ Rm = H0(mL), by setting 
ν(s) := ν(f) with f ∈ OX,p the function corresponding to s in some choice of local 
trivialization of L at p (the definition being independent of the choice of trivialization). 
This induces an Nn-filtration on Rm, with the key property that its graded pieces

grα Rm = {s ∈ Rm | ν(s) ≥ α}
{s ∈ Rm | ν(s) > α}

have dimension at most 1 for all α ∈ Nn. Thus

Γm := ν (Rm \ {0}) ⊂ Nn

is finite, of cardinality Nm = dimRm, and grα Rm is one-dimensional for each α ∈ Γm

(see for instance [12, Lemme 2.11]). The fact that L is big implies that the semigroup

Γ :=
⋃

m∈N
({m} × Γm) ⊂ Nn+1

generates Zn+1 as a group (cf. [12, Proposition 3.3]). Further, Γm grows linearly with 
m, i.e. there exists C > 0 such that

|α| :=
∑
i

|αi| ≤ Cm for all α ∈ Γm. (9.3)

Indeed, the closure 
⋃

m≥1 m
−1Γm in Rn is a convex body Δ(L), the Okounkov body of L

with respect to ν.
Next fix a local trivialization τ of L at p. For each α ∈ Γm, one can find a section 

s ∈ H0(mL) with Taylor expansion s = zα + higher order terms (in the trivialization 
τm). The class of s in grα Rm is independent of the choice of s, and hence a canonical 
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generator sm,α of grα Rm. The norm ‖ · ‖m induces a subquotient norm on grα H0(mL), 
characterized by

‖sm,α‖m = inf{‖s‖m | s ∈ H0(mL), s = zα + higher order terms}. (9.4)

This gives rise to a superadditive function Φ : Γ → R, defined by

Φ(m,α) := − log ‖sm,α‖m.

We similarly have a superadditive function Φ′ : Γ → R attached to ‖ · ‖′•, and a repeated 
application of Proposition 2.14 (vi), combined with the estimate Nm logNm = o(mn+1), 
yields

vol(‖ · ‖m, ‖ · ‖′m) =
∑

α∈Γm

(Φ(m,α) − Φ′(m,α)) + o(mn+1),

and hence

1
mn+1 vol(‖ · ‖m, ‖ · ‖′m) = 1

mn

∑
α∈Γm

(
m−1Φ(m,α) −m−1Φ′(m,α)

)
+ o(1).

Now 
∣∣m−1Φ(m,α) −m−1Φ′(m,α)

∣∣ ≤ m−1 d∞(‖ · ‖m, ‖ · ‖′m) = O(1) and |Γm| = Nm ∼
mn

n! vol(L). By the general convergence result of [22, Theorem 4.3] (see also [78, Theorem 
1.3]), it remains to check that

sup
m≥1, α∈Γm

m−1Φ(m,α) < ∞,

which will then also hold for Φ′, by symmetry. By (9.3) and (9.4), this is equivalent to 
the existence of a uniform constant C > 0 such that

log ‖s‖m ≥ −C(m + |α|) (9.5)

for all s ∈ Rm with Taylor expansion s = zα + higher order terms. Thanks to the 
boundedness property of ‖ · ‖•, it is enough to check this when ‖ · ‖• = ‖ · ‖•φ is the 
graded supnorm attached to a continuous metric φ, which we now prove along the lines 
of [78, Lemma 5.4]. By the K-analytic inverse function theorem, the coordinates (zi) at 
p induce a K-analytic isomorphism of an open neighborhood U of p in X(K) with an 
open polydisc D(r)n in Kn. The section s induces an analytic function f on U , with 
s = fτm, and hence log |s|mφ = log |f | + m log |τ |φ. The function log |τ |φ being locally 
bounded, it will be enough to show that any analytic function f on D(r)n such that

f = zα + higher order terms

satisfies supD(r)n |f | ≥ r|α|, which follows from a repeated application of the maximum 
principle in one variable. �



S. Boucksom, D. Eriksson / Advances in Mathematics 378 (2021) 107501 91
By (9.1), relative volumes are invariant under ground field extension:

Proposition 9.7. Assume that X is geometrically integral. Let ‖ ·‖•, ‖ ·‖′• be graded norms 
on R, and F/K be a complete field extension. Then

vol ((‖ · ‖•)F , (‖ · ‖′•)F ) = vol(‖ · ‖•, ‖ · ‖′•).

9.2. Relative volumes of metrics

We come back here to the general setting of Section 9, and thus assume that X is 
geometrically reduced. Using Theorem 9.5, we prove:

Theorem 9.8. Assume that X is geometrically reduced, and let L be a line bundle on X.

(i) The volume

vol(L) := lim
m→∞

n!
mn

h0(mL)

exists in R≥0.
(ii) For any two bounded metrics φ, ψ on L, the relative volume

vol(L, φ, ψ) := lim
m→∞

n!
mn+1 vol(‖ · ‖mφ, ‖ · ‖mψ)

exists in R.

Denote further by (Xα)α∈A the set of top-dimensional irreducible components of X, and 
let φα, ψα be the pullbacks of φ, ψ to Lα := L|Xα

. Then

vol(L) =
∑
α

vol (Lα) (9.6)

and

vol(L, φ, ψ) =
∑
α

vol(Lα, φα, ψα). (9.7)

Lemma 9.9. Using the notation of Theorem 9.8, we have

h0(X,mL) =
∑
α∈A

h0(Xα,mLα) + o(mn) (9.8)

and

vol(‖ · ‖mφ, ‖ · ‖mψ) =
∑

vol(‖ · ‖mφα
, ‖ · ‖mψα

) + o(mn+1). (9.9)

α∈A
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Proof. Set Y :=
∐

α∈A Xα, and denote by μ : Y → X the canonical morphism. For each 
m, we have an exact sequence

0 → H0(X,mL) → H0(Y,mμ	L) =
⊕
α∈A

H0(Xα,mL) → H0(X,F(mL))

with F := μ	OY /OX . Note that μ is an isomorphism over the complement of 
⋃

α 	=β Xα∩
Xβ , which has dimension at most n − 1. Thus SuppF has dimension at most n −
1, and hence h0(X, F(mL)) = O(mn−1), which proves (9.8). Under the identification 
H0(Y, mμ	L) =

⊕
α∈A H0(Xα, mLα), the supnorm ‖ ·‖mμ�φ corresponds to maxα ‖ ·‖mφα

, 
and a repeated application of Proposition 2.14, combined with (9.2), yields (9.9). �
Proof of Theorem 9.8. By (9.1), we may assume that K is algebraically closed. By 
Lemma 9.9, it is enough to prove the result with X replaced by any of its top-dimensional 
irreducible component. We may thus assume that X is (geometrically) integral, in which 
case the result follows from Theorem 9.5. �

We each m ∈ Z>0, we note the obvious homogeneity property

vol(mL,mφ,mψ) = mn+1 vol(L, φ, ψ). (9.10)

As a result, we can make sense of relative volumes of metrics on a Q-line bundle L. As 
usual, we say that L is big if vol(L) > 0.

Corollary 9.10. Let L be a Q-line bundle on X.

(i) L is big iff L|Xα
is big for some top-dimensional irreducible component Xα of X.

(ii) If L is nef, then vol(L) = (Ln).

Proof. By homogeneity, we may assume that L is a honest line bundle. (i) is then a direct 
consequence of (9.6). Assume that L is nef. Since Xα is irreducible, it is well-known that 
the volume of the nef line bundle L|Xα

is given by vol(L|Xα
) = (L|Xα

)n = c1(L)n · [Xα]. 
By (9.6), we get

vol(L) =
∑
α

c1(L)n · [Xα] = c1(L)n · [X] = (Ln). �

Proposition 9.11. The following properties hold for all bounded metrics on a Q-line bun-
dle L:

(i) cocycle formula: vol(L, φ1, φ2) + vol(L, φ2, φ3) + vol(L, φ3, φ1) = 0;
(ii) monotonicity: φ ≤ φ′ =⇒ vol(L, φ, ψ) ≤ vol(L, φ′, ψ);
(iii) scaling: vol(L, φ + c, ψ) = vol(L, φ, ψ) + vol(L)c for c ∈ R;
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(iv) Lipschitz continuity:

|vol(L, φ, ψ) − vol(L, φ′, ψ′)| ≤ vol(L) (sup |φ− φ′| + sup |ψ − ψ′|) .

(v) birational invariance: for any projective birational morphism μ : X ′ → X, we have

vol(μ	L, μ	φ, μ	ψ) = vol(L, φ, ψ);

(vi) envelopes: if L is semiample, then the psh envelopes P(φ), P(ψ) satisfy

vol(L, φ, ψ) = vol(P(φ),P(ψ)).

In particular, if L is not big, i.e. vol(L) = 0, then vol(L, φ, ψ) = 0 for all bounded 
metrics on L.

Proof. We may assume that L is a line bundle, by homogeneity. Properties (i) and (ii) 
follow immediately from the analogous properties for relative volumes of norms. Further, 
‖ · ‖m(φ+c) = e−mc‖ · ‖mφ, hence

vol(‖ · ‖m(φ+c), ‖ · ‖mψ) = vol(‖ · ‖mφ, ‖ · ‖mψ) + m h0(mL)c,

by Proposition 2.14. Since n! h0(mL)/mn → vol(L), this yields (iii), and (iv) is a formal 
consequence of (i), (ii) and (iii). To see (v), note that the embedding

H0(X,mL) ↪→ H0(X ′,mμ	L)

is an isometry with respect to the supnorms. By the projection formula, the quotient

Wm := H0(X ′,mμ	L)/H0(X,mL)

injects into H0(X, F(mL)), where F := μ	OX′/OX . The support of the latter sheaf is 
contained in the image of the exceptional locus of μ, and hence has dimension at most 
n − 1, and hence dimWm = o(mn). By Proposition 2.14, we infer

|vol (‖ · ‖mμ�φ, ‖ · ‖mμ�ψ) − vol (‖ · ‖mφ, ‖ · ‖mψ)|

≤ (dimWm) d∞ (‖ · ‖mμ�φ, ‖ · ‖mμ�ψ) + O(Nm logNm)

≤ (dimWm)m sup |φ− ψ| + O(Nm logNm) = o(mn+1),

which implies (v). Assume finally that L is semiample. Corollary 7.27 shows that ‖ ·‖mφ =
‖ · ‖mP(φ) and ‖ · ‖mψ = ‖ · ‖mP(ψ) for all m, hence (vi). �
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Proposition 9.12. Let φ, ψ be continuous metrics on L, F/K a complete field extension, 
and φF , ψF the pullbacks of φ, ψ to the base change LF . Then

vol(LF , φF , ψF ) = vol(L, φ, ψ).

Proof. By Theorem 6.6, we have

d∞ ((‖ · ‖mφ)F , ‖ · ‖mφF
) = o(m), d∞ ((‖ · ‖mψ)F , ‖ · ‖mψF

) = o(m).

By the Lipschitz property of relative volumes and Lemma 9.4, we infer

vol (‖ · ‖mφF
, ‖ · ‖mψF

) = vol ((‖ · ‖mφ)F , (‖ · ‖mψ)F ) + o(mn+1)

= vol (‖ · ‖mφ, ‖ · ‖mψ) + o(mn+1),

and the result now follows. �
9.3. Monge–Ampère energy

In this section, X is geometrically reduced, and L is a semiample Q-line bundle on 
X. Since L is in particular nef, we have

V := vol(L) = (Ln),

by Corollary 9.10.

Definition 9.13. Let φ, ψ be continuous psh metrics on L. We define the relative Monge–
Ampère energy7 of φ, ψ as

E(φ, ψ) := 1
n + 1

n∑
j=0

∫
(φ− ψ)(ddcφ)j ∧ (ddcψ)n−j ∧ δX . (9.11)

Recall that φ − ψ is a continuous function on Xan, which may thus be integrated 
against each positive Radon measure (ddcφ)j ∧ (ddcψ)n−j ∧ δX . By (8.9), we have

E(φ, ψ) = 1
n + 1

(
〈φn+1〉 − 〈ψn+1〉

)
. (9.12)

Given a continuous psh metric ψ, the functional φ �→ E(φ, ψ) is characterized as the 
unique antiderivative of the Monge–Ampère operator φ �→ (ddcφ)n that vanishes at ψ, 
in the sense that

7 Note that the present normalization, which is more convenient for the purpose of this paper, is not 
uniform across the literature.
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d

dt

∣∣∣∣
t=0

E((1 − t)φ + tφ′, ψ) =
∫

Xan

(φ′ − φ)(ddcφ)n (9.13)

for any two continuous psh metrics φ, φ′, see [16, §3.8].

Proposition 9.14. The Monge–Ampère energy satisfies the following properties.

(i) cocycle formula: E(φ1, φ2) + E(φ2, φ3) + E(φ3, φ1) = 0;
(ii) monotonicity: φ ≤ φ′ =⇒ E(φ, ψ) ≤ E(φ′, ψ);
(iii) scaling: E(φ + c, ψ) = E(φ, ψ) + V c for c ∈ R;
(iv) homogeneity: E(aφ, aψ) = an+1 E(φ, ψ) for a ∈ Z>0;
(v) Lipschitz continuity:

|E(φ, ψ) − E(φ′, ψ′)| ≤ V (sup |φ− φ′| + sup |ψ − ψ′|) ;

(vi) for each complete field extension F/K we have

E(φF , ψF ) = E(φ, ψ);

(vii) birational invariance: for any projective birational morphism μ : X ′ → X we have

E(μ	φ, μ	ψ) = E(φ, ψ).

Proof. (i) follows from (9.13), and (ii)— (iv) follow directly from (9.11), using that∫
(ddcφ)j ∧ (ddcψ)n−j ∧ δX = (Ln) = V.

(v) is a formal consequence of (ii) and (ii), and (vi) follows from (9.11) and the compati-
bility of mixed Monge–Ampère measures with ground field extension, cf. Proposition 8.3. 
Finally, (vii) is a consequence of (9.11) and the projection formula μ	δX′ = δX . �
9.4. Proof of Theorem A

The following result corresponds to Theorem A in the introduction. It was first es-
tablished in [5] when K is Archimedean, and in [18] when K is discretely valued.

Theorem 9.15. Let X be a geometrically reduced projective K-scheme, and L be a semi-
ample Q-line bundle on X. For any two continuous psh metrics φ, ψ on L, we then 
have

vol(L, φ, ψ) = E(φ, ψ).
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Corollary 9.16. Let φ, ψ be arbitrary continuous metrics on L. Let ν : X̃ → X be the 
normalization morphism, and assume that Conjecture 7.30 holds. Then

vol(L, φ, ψ) = E (P(ν	φ),P(ν	ψ)) .

Proof. By Proposition 9.11, vol(L, φ, ψ) = vol(ν	φ, ν	ψ) = vol (P(ν	φ),P(ν	ψ)). Since 
X̃ is normal, Conjecture 7.30 implies that P(ν	φ) and P(ν	ψ) are continuous and psh, 
and Theorem 9.15 yields the result. �
Lemma 9.17. Assume that K is non-Archimedean, and let L, M be models of L, with as-
sociated model metrics φL, φM and graded norms ‖ ·‖H0(•L), ‖ ·‖H0(•M) (cf. Example 9.3). 
Then

vol (L, φL, φM) = lim
m→∞

n!
mn+1 vol

(
‖ · ‖H0(mL), ‖ · ‖H0(mM)

)
.

Proof. By Theorem 6.4, we have

d∞
(
‖ · ‖mφL , ‖ · ‖H0(mL)

)
= O(1), d∞

(
‖ · ‖mφM , ‖ · ‖H0(mM)

)
= O(1).

By Lipschitz continuity of relative volumes of norms (Proposition 2.14), this yields

vol (‖ · ‖mφL , ‖ · ‖mφM) = vol
(
‖ · ‖H0(mL), ‖ · ‖H0(mM)

)
+ O(Nm),

which implies the result. �
Proof of Theorem 9.15. We claim that it is enough to prove the result when K is alge-
braically closed and nontrivially valued, X is irreducible, and L is an ample line bundle. 
The first condition can be reached by passing to an appropriate complete field extension 
of K, by invariance of relative volumes and the Monge–Ampère energy under ground 
field extension (Proposition 9.12 and Proposition 9.14). By Lemma 9.4, we may fur-
ther assume that X is irreducible and L is big. By Lemma 5.5, there exists a birational 
morphism f : X → Y and an ample Q-line bundle A, unique up to isomorphism, such 
that L = f	A and f	OX = OY , and φ, ψ descend to continuous psh metrics on A. By 
birational invariance of relative volumes (Proposition 9.11) and of the Monge–Ampère 
energy (Proposition 9.14), we may thus replace L with A and assume that L is ample. 
By homogeneity (9.10), we may finally assume that L is an honest (ample) line bundle, 
which concludes the proof of the claim.

Consider first the Archimedean case, i.e. K = C. By birational invariance of relative 
volumes and of the Monge–Ampère energy, we can replace X with a resolution of singu-
larities. Then X is smooth, L is big and semiample, and the result is then a special case 
of [5, Theorem A] (which deals with an arbitrary big line bundle).

We now assume that K is non-Archimedean. We claim that it is enough to prove 
Theorem 9.15 when φ, ψ are model metrics determined by ample models L, M of L on 
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some model X . By Theorem 7.8, φ and ψ are uniform limits of model metrics determined 
by nef Q-models L, M of L. Thanks to the Lipschitz continuity of relative volumes 
(Proposition 9.11) and of the Monge–Ampère energy (Proposition 9.14), it is thus enough 
to prove the result for such model metrics. After pulling-back to a higher model, we can 
assume that L, M are determined on the same model X of X, and also that L further 
extends to an ample Q-line bundle H on X (cf. [45, Lemma 4.12]). Denote by D, E
the vertical Q-Cartier divisors on X such that H − L = D, H − M = E. For each 
δ ∈ Q ∩ (0, 1), the Q-line bundles

Lδ := (1 − δ)L + δH = L + δD, Mδ := (1 − δ)M + δH = M + δE

are ample, and the model metrics φLδ
= φL + δφD, φMδ

= φL + δφE they determine 
converge uniformly to φL, φM. Replacing L, M with Lδ, Mδ, we may thus assume that 
L, M are ample on X . After replacing L with a multiple, we can finally assume that L, 
M are honest line bundles, by homogeneity of vol and E, which proves the claim above.

Suppose thus φ = φL, ψ = φM with L, M ample models of L on a model X of X. By 
Lemma 9.17,

vol(L, φ, ψ) = lim
m→∞

n!
mn+1 vol

(
‖ · ‖H0(mL), ‖ · ‖H0(mM)

)
. (9.14)

By Serre vanishing, the higher cohomology of mL and mM vanishes for m 	 1, and 
Corollary A.23 yields Knudsen–Mumford expansions

detH0(mL) = mn+1

(n + 1)! 〈L
n+1〉 + O(mn)

and

detH0(mM) = mn+1

(n + 1)! 〈M
n+1〉 + O(mn),

as Q-line bundles on SpecK◦. Thus

vol
(
‖ · ‖H0(mL), ‖ · ‖H0(mM)

)
= log

det ‖ · ‖H0(mM)

det ‖ · ‖H0(mL)

= φdet H0(mL) − φdet H0(mM) = mn+1

(n + 1)!
(
φ〈Ln+1〉 − φ〈Mn+1〉

)
+ O(mn).

By Theorem 8.18, we have φ〈Ln+1〉 = 〈φn+1〉 and φ〈Mn+1〉 = 〈ψn+1〉. We thus get as 
desired

vol(L, φ, ψ) = 1
n + 1

(
〈φn+1〉 − ψn+1〉

)
= E(φ, ψ),

by (9.12). �
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10. Transfinite diameter and Fekete points

Following the strategy developed in [5,6] in the (complex) Archimedean case, we rely 
on Theorem 9.15 to show the existence of transfinite diameters, and then use it to es-
tablish an equidistribution result for Fekete points, assuming a differentiability property 
that holds under appropriate assumptions on K and X, by [13,18,16].

As in the previous section, X is a geometrically reduced, projective scheme over a 
complete valued field K.

10.1. Existence of the transfinite diameter

Let L be a line bundle on X. Set N := h0(X, L), and define the Vandermonde em-
bedding

Ψ : det H0(X,L) ↪→ H0(XN , L�N )

as the composition of the antisymmetrization operator

det H0(X,L) ↪→ H0(X,L)⊗N

s1 ∧ · · · ∧ sN �→
∑

σ∈SN

(−1)sgnσsσ(1) ⊗ · · · ⊗ sσ(N)

with the canonical isomorphism H0(X, L)⊗N � H0(XN , L�N ). Given a basis (s1, . . . , sN )
of H0(L), Ψ(s1∧. . .∧sN ) can be more informally written as the Vandermonde (or Slater) 
determinant

Ψ(s1 ∧ . . . ∧ sN )(x1, . . . , xN ) = det(si(xj))1≤i,j≤N .

Definition 10.1. Let φ be a continuous metric on L, and ‖ · ‖ be a norm on H0(L). We 
define the Vandermonde function of φ relative to ‖ · ‖ as

Vφ,‖·‖ :=
|Ψ(ω)|φ�N

det ‖ω‖ ∈ C0
((

XN
)an)

,

and the diameter of φ relative to ‖ · ‖ as

δ (φ, ‖ · ‖) := sup
(XN )an

Vφ,‖·‖ =
‖Ψ(ω)‖φ�N

det ‖ω‖ .

Here ω is a generator of detH0(L), the definition being independent of the choice of ω.

Remark 10.2. While the canonical map (XN )an → (Xan)N is of course a homeomorphism 
in the Archimedean case, it is merely continuous and surjective in general in the non-
Archimedean case.
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Using Theorem 9.5, we are going to establish the following existence result for trans-
finite diameters.

Theorem 10.3. For any two continuous metrics φ, ψ on L, the transfinite diameter

δ∞ (φ, ψ) := lim
m→∞

δ (mφ, ‖ · ‖mψ)n!/mn+1

exists in R+. Further,

log δ∞ (φ, ψ) = vol(L,ψ, φ). (10.1)

Combining (10.1) with Theorem 9.15 and Corollary 9.16, we get:

Corollary 10.4. Assume that L is semiample, and let φ, ψ be continuous metrics on L.

(i) If φ, ψ are psh, then δ∞(φ, ψ) = exp E(ψ, φ).
(ii) If Conjecture 7.30 holds, then

δ∞(φ, ψ) = exp E(P(ν	ψ),P(ν	φ)),

with ν : X̃ → X the normalization morphism.

For each m, denote by

Ψm : detH0(mL) ↪→ H0
(
(mL)�Nm

)
the Vandermonde embedding. Via Ψm, the supnorm ‖ · ‖(mφ)�Nm restricts to a norm 
on the line detH0(mL), which we denote by Ψ	

m‖ · ‖(mφ)�Nm . The key fact leading to 
Theorem 10.3 is the following estimate.

Lemma 10.5. For each φ ∈ C0(L) we have

d∞
(
det ‖ · ‖mφ,Ψ	

m‖ · ‖(mφ)�Nm

)
= o(mn+1).

Observe first that d∞
(
det ‖ · ‖mφ,Ψ	

m‖ · ‖(mφ)�Nm

)
is a Lipschitz continuous function 

of φ ∈ C0(L), with Lipschitz constant O(mn+1). It is thus enough to prove the result for 
φ in a dense subset of C0(L). The proof will proceed by comparison with certain pure 
diagonalizable norms, an L2 norm in the Archimedean case, and a lattice norm in the 
non-Archimedean.

Lemma 10.6. Assume K is Archimedean, pick a continuous metric φ on L and a smooth 
volume form μ on X, and denote by ‖ · ‖μ,φ and ‖ · ‖μN ,φ�N the induced L2-norms on 
H0(L) and H0(L�N ). Then
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Ψ	‖ · ‖μN ,φ�N =
√
N ! det ‖ · ‖μ,φ

as norms on det H0(L).

Proof. The statement is equivalent to [5, Lemma 5.3], and goes as follows. By Fubini, 
the L2-norm ‖ · ‖μN ,φ�N on H0(L�N ) corresponds to the tensor norm ‖ · ‖⊗N

μ,φ under 
the isomorphism H0(L�N ) � H0(L)⊗N . If (si) is an orthonormal basis of H0(L) with 
respect to ‖ · ‖μ,φ, then the tensors si1 ⊗· · ·⊗siN form an orthonormal basis of H0(L)⊗N

with respect to ‖ · ‖⊗N
μ,φ . This implies that the norm of s1 ∧ . . . ∧ sN under the anti-

symmetrization operator detH0(L) ↪→ H0(L)⊗N has squared-norm equal to N !, and the 
result follows. �
Lemma 10.7. Assume K is non-Archimedean. Let L be a model of L, and ‖ · ‖H0(L), 
‖ · ‖H0

(
L�N

) be the induced lattice norms on H0(L) and H0 (L�N
)
. Then

Ψ	‖ · ‖H0
(
L�N

) = det ‖ · ‖H0(L).

Proof. The isomorphism H0(XN , L�N ) � H0(X , L)⊗N shows that ‖ · ‖H0
(
L�N

) corre-
sponds to the tensor norm ‖ · ‖⊗N

H0(L) under the isomorphism H0 (L�N
)
� H0(L)⊗N . On 

the other hand, if (si) is an orthonormal basis of H0(L) with respect to ‖ ·‖H0(L), then the 
tensors si1 ⊗ · · · ⊗ siN form an orthonormal basis of H0(L)⊗N with respect to ‖ · ‖⊗N

H0(L), 
which implies this time that the anti-symmetrization operator detH0(L) ↪→ H0(L)⊗N is 
an isometric embedding with respect to det ‖ · ‖H0(L) and ‖ · ‖⊗N

H0(L). �
Proof of Lemma 10.5. Assume first that K is Archimedean, and pick a smooth volume 
form μ. By the Bernstein-Markov inequality [5, Lemma 3.2], the supnorm ‖ · ‖mφ and 
the L2-norm ‖ · ‖μ,mφ on H0(mL) satisfy

d∞ (‖ · ‖mφ, ‖ · ‖μ,mφ) = o(m),

and hence

d∞ (det ‖ · ‖mφ,det ‖ · ‖μ,mφ) = |vol (‖ · ‖mφ, ‖ · ‖μ,mφ)| = o(mn+1), (10.2)

by Lipschitz continuity of relative volumes. As in [5, Step 2, p. 378], a successive ap-
plication of the Bernstein–Markov inequality in each variable similarly shows that the 
induced supnorm ‖ · ‖(mφ)�Nm and L2-norm ‖ · ‖μNm ,(mφ)�Nm on H0((mL)�Nm) satisfy

d∞
(
‖ · ‖(mφ)�Nm , ‖ · ‖μNm ,(mφ)�Nm

)
= o(mn+1),

and hence

d∞
(
Ψ	

m‖ · ‖(mφ)�Nm ,Ψ	
m‖ · ‖μNm ,(mφ)�Nm

)
= o(mn+1) (10.3)
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as well. Finally, since log (Nm!) = O(mn logm) = o(mn+1), Lemma 10.6 yields

d∞
(
det ‖ · ‖μ,mφ,Ψ	

m‖ · ‖μNm ,(mφ)�Nm

)
= o(mn+1),

which combines with (10.2) and (10.3) to yield the desired estimate

d∞
(
det ‖ · ‖mφ,Ψ	

m‖ · ‖(mφ)�Nm

)
= o(mn+1).

Assume now that K is non-Archimedean. Arguing as in §9, we may assume after ground 
field extension that K is nontrivially valued, so that model metrics are dense in C0(L). 
As already noticed, d∞

(
Ψ	

m‖ · ‖(mφ)�Nm ,det ‖ · ‖mφ

)
is a Lipschitz continuous function 

of φ ∈ C0(L), with Lipschitz constant O(mn+1); by density, it is thus enough to prove 
the result when φ = φL is a model metric, determined by a Q-line bundle L extending 
L on some projective model X of X. After replacing X with a higher model, we may 
assume that L also admits a model M determined on X (Lemma 5.8). As in the proof of 
Theorem 6.6, fix a ≥ 1 such that aL is a line bundle, and write m = qa + r with q, r ∈ N

and r < a. Since aL and M are line bundles on X , Theorem 6.5 shows the existence of 
C > 0 independent of m such that

d∞
(
‖ · ‖(qaφ+rφM)�Nm , ‖ · ‖H0

(
(qaL+rM)�Nm

)) = O(Nm).

As φ − φM and r are bounded, it follows that

d∞
(
‖ · ‖(mφ)�Nm , ‖ · ‖H0

(
(qaL+rM)�Nm

)) = O(Nm),

and hence

d∞
(
Ψ	

m‖ · ‖(mφ)�Nm ,Ψ	
m‖ · ‖H0

(
(qaL+rM)�Nm

)) = O(Nm). (10.4)

By Lemma 10.7, we have

Ψ	
m‖ · ‖H0

(
(qaL+rM)�Nm

) = det ‖ · ‖H0(qaL+rM).

On the other hand, Theorem 6.4 yields

d∞
(
‖ · ‖qaφ+rφM , ‖ · ‖H0(qaL+rM)

)
= O(Nm),

hence

d∞
(
det ‖ · ‖mφ,det ‖ · ‖H0(qaL+rH)

)
= O(Nm)

by boundedness of φ − φM, and we conclude that
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d∞
(
Ψ	

m‖ · ‖(mφ)�Nm ,det ‖ · ‖mφ

)
= O(Nm)

when φ is a model metric. �
Proof of Theorem 10.3. For any choice of generator ω ∈ detH0(mL), we have

sup
(XN )an

Vmφ,‖·‖mψ
=

‖Ψm(ω)‖(mφ)�Nm

det ‖ω‖mψ

=
(‖Ψm(ω)‖(mφ)�Nm

det ‖ω‖mφ

)(
det ‖ω‖mφ

det ‖ω‖mψ

)
.

By Lemma 10.5, we infer

n!
mn+1 log δ(mφ, ‖ · ‖m) = n!

mn+1 vol (‖ · ‖mψ, ‖ · ‖mφ) + o(1),

and hence

n!
mn+1 log δ(mφ, ‖ · ‖m) → vol(‖ · ‖•, ‖ · ‖•φ). �

10.2. Equidistribution of Fekete points

Definition 10.8. Let φ ∈ C0(L) be a continuous metric on a line bundle L. A Fekete 
configuration for φ is a point P ∈ (XN )an such that

‖Ψ(ω)‖φ�N = sup
(XN )an

|Ψ(ω)|φ�N

is achieved at P for some, hence any, generator ω ∈ detH0(L).

In terms of the Vandermonde function Vφ,‖·‖ relative to any given norm ‖ ·‖ on H0(L), 
P ∈ (XN )an is a Fekete configuration iff

sup
(XN )an

Vφ,‖·‖ = Vφ,‖·‖(P ).

Our final result is an equidistribution result for Fekete configurations of mφ as m → ∞, 
first established in the Archimedean case in [6]. In order to cover various cases in one 
stroke, we introduce the following terminology.

Definition 10.9. Let L be a semiample line bundle, and φ be a continuous metric on L. 
For brevity, we shall say that differentiability holds at φ if:

(i) the psh envelope P(φ) is continuous (hence psh);
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(ii) for all f ∈ C0(Xan) we have

d

dt

∣∣∣∣
t=0

vol(L, φ + tf, φ) =
∫

f (ddc P(φ))n ∧ δX . (10.5)

Differentiability is known to hold at all continuous metrics when X is smooth, L is 
ample, and one of the following conditions is satisfied:

• K is Archimedean [5];
• K is non-Archimedean, trivially or discretely valued, of residue characteristic 

zero [14,16];
• K is discretely valued of characteristic p, (X, L) is defined over a function field 

of transcendence degree d, and resolution of singularities is assumed in dimension 
n + d [44,18].

Theorem 10.10. Let L be a big and semiample line bundle, of volume V := vol(L) = (Ln). 
Let φ be a continuous metric on L, and assume that differentiability holds at φ. For each 
m 	 1, pick a Fekete configuration Pm ∈ (XNm)an for mφ. Then Pm equidistributes to 
the probability measure

μφ := V −1 (ddc P(φ))n ∧ δX .

In particular, Fekete configurations for mφ become asymptotically unique as m → ∞. 
Equidistribution means that ∫

X

f δPm
→
∫
X

f μφ

for all f ∈ C0(Xan). Here δP denotes the averaging measure over P ∈ (XN )an, or rather 
its image in (Xan)N (see Remark 10.2).

The proof of Theorem 10.10 follows the strategy of [6], itself inspired by a variational 
argument due to Szpiro–Ullmo–Zhang [71].

Proof. Set for any continuous metric ψ

Fm(ψ) := − n!
mn+1 log Vmψ,‖·‖mφ

(Pm).

Then

Fm(ψ) ≥ − n!
mn+1 log δ(mψ, ‖ · ‖mφ),

with equality for ψ = φ, since Pm is a Fekete configuration for mφ. By Theorem 10.3, 
we infer
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lim inf
m→∞

Fm(ψ) ≥ vol(L,ψ, φ), lim
m→∞

Fm(φ) = vol(L, φ, φ) = 0,

and hence

lim inf
m→∞

(Fm(ψ) − Fm(φ)) ≥ vol(L,ψ, φ). (10.6)

For each f ∈ C0(Xan), observe that

Fm(φ + f) = Fm(φ) + cm

∫
X

f δPm

with

cm := n!
mn

Nm → vol(L) = V.

By (10.6), we get

lim inf
m→∞

∫
f δPm

≥ V −1 vol(L, φ + f, φ).

Replacing f with tf , t > 0, and using the differentiability property (10.5), we infer

lim inf
m→∞

∫
f δPm

≥ V −1 lim
t→0+

t−1 vol(L, φ + tf, φ) =
∫

f μφ.

Applying this to −f in place of f , we conclude as desired limm→∞
∫
f δPm

=
∫
f μφ. �

10.3. A pullback formula for transfinite diameters

In this section, we assume that L is an ample line bundle on X, and consider a 
polarized endomorphism f of (X, L), i.e. a morphism f : X → X together with the data 
of an isomorphism f	L � dL for some positive integer d > 1. Since f	L is ample and 
(f	L)n = dn(Ln), f is finite, of degree dn. By Theorem A.22, we thus have a canonical 
isomorphism

〈(f	L)n+1〉 � dn〈Ln+1〉,

which combines with the given isomorphism f	L � dL to yield

dn+1〈Ln+1〉 � dn〈Ln+1〉.

This defines a canonical section

Rf ∈ dn(d− 1)〈Ln+1〉, (10.7)
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which we call the resultant section (see Corollary 10.16 below for the choice of terminol-
ogy).

On the other hand, the map C0(L) → C0(L) defined by φ �→ d−1f	φ, being 1/d-
Lipschitz continuous, admits a unique fixed point φf , the equilibrium metric of f . For 
any choice of Fubini–Study metric φ, the metrics d−j(f j)	φ are Fubini–Study as well, 
and they converge uniformly to φf , which is thus psh.

Example 10.11. For any d ≥ 2, the equilibrium metric of the polarized endomorphism f
of (Pn, O(1)) induced by (x0, . . . , xn) �→ (xd

0 : · · · : xd
n) is φf = maxi log |xi|.

Lemma 10.12. The resultant Rf ∈ dn(d −1)〈Ln+1〉 has norm 1 with respect to the induced 
metric dn(d − 1)〈φn+1

f 〉.

Proof. For any continuous psh metric φ on L, the isomorphism 〈(f	L)n+1〉 � dn〈Ln+1〉
is an isometry with respect to 〈(f	φ)n+1〉 and dn〈φn+1〉. By definition of φf , the isomor-
phism f	L � dL is an isometry with respect to f	φf and dφf . It follows that the induced 
isomorphism dn(d − 1)〈Ln+1〉 � K is an isometry with respect to dn(d − 1)〈φn+1

f 〉 and 
the canonical metric on K, hence the result. �

We now get the following pull-back formula for the transfinite diameter, which gen-
eralizes [31], [5, §6.3] in view of Corollary 10.16 below.

Theorem 10.13. For each continuous psh metric ψ, and let c(f, ψ) be the positive constant 
such that

log c(f, ψ) = − 1
(n + 1)dn+1 log |Rf |dn(d−1)〈ψn+1〉.

Then

δ∞(d−1f	φ, ψ) = c(f, ψ) δ∞(φ, ψ)1/d,

all continuous psh metrics φ.

Lemma 10.14. For any two continuous psh metrics φ, ψ on L we have

E
(
d−1f	φ, d−1f	ψ

)
= d−1 E(φ, ψ).

Proof. By (9.11),

E
(
d−1f	φ, d−1f	ψ

)
= 1

n + 1

n∑∫ (
d−1f	φ− d−1f	ψ

) (
ddc(d−1f	φ)

)i ∧ (ddc(d−1f	ψ)
)n−i ∧ δX
i=0
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= 1
(n + 1)dn+1

n∑
i=0

∫
f	
(
(φ− ψ) (ddcφ)i ∧ (ddcψ)n−i

)
∧ δX

= dn

(n + 1)dn+1

n∑
i=0

∫
(φ− ψ) (ddcφ)i ∧ (ddcψ)n−i ∧ δX = d−1 E(φ, ψ)

since f	δX = dnδX . �
Proof of Theorem 10.13. Since d−1f	φf = φf , Corollary 10.4 and the cocycle formula 
for E yield

log δ∞(d−1f	φ, ψ) = E
(
ψ, d−1f	φ

)
= E(ψ, φf ) + E

(
d−1f	φf , d

−1f	φ
)

= E(ψ, φf ) + d−1 E(φf , φ) = (1 − d−1) E(φf , ψ) + d−1 log δ∞(φ, ψ).

On the other hand, Lemma 10.12 yields

log |Rf |dn(d−1)〈ψn+1〉 = dn(d− 1)
(
〈φn+1

f 〉 − 〈ψn+1〉
)

= dn(d− 1)(n + 1) E(φf , ψ),

and hence

1
(n + 1)dn+1 log |Rf |dn(d−1)〈ψn+1〉 = (1 − d−1) E(φf , ψ),

and we are done. �
10.4. The case toric varieties

We now illustrate the previous pull-back formula in the toric case. We assume that 
(X, L) is a smooth projective polarized toric variety with respect to a split torus T � Gn

m

with character lattice M = Hom(T, Gm), which thus corresponds to a Delzant polytope 
Δ ⊂ MR.

For each integer d ≥ 2, multiplication by d on the dual of M induces a polarized 
endomorphism md of (X, L), defining an equilibrium metric φd on L and a resultant 
section Rd ∈ dn(d − 1)〈Ln+1〉. The next lemma describes the moduli space of polarized 
endomorphisms of degree d of (X, L).

Lemma 10.15. Set N = dim H0(L) = #(M ∩ Δ). The space of polarized morphisms of 
degree d of (X, L) is parametrized by a Zariski open subset of

P
(
Hom

(
H0(L),H0(dL)

))
� P

(
H0(dL)N

)
whose complement Z has codimension N − n. In particular, Z has codimension greater 
than 1 unless (X, L) � (Pn, O(1)).
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Proof. Since X is smooth, R(X, L) is generated in degree one, the data of a polarized 
endomorphism of (X, L) of degree d is equivalent to that of a linear map H0(L) → H0(dL)
whose image is basepoint free. As a result, the space of polarized endomorphisms of degree 
d is isomorphic to the complement in P

(
H0(dL)N

)
of the projection Z of the incidence 

variety

I =
{
([s1 : · · · : sN ], x) ∈ P

(
H0(dL)N

)
×X, s1(x) = · · · = sN (x) = 0

}
Since dL is basepoint free, the elements of H0(dL) vanishing at a given closed point 
x ∈ X is a hyperplane, and it follows that dim I = n −1 +N(Nd−1). We claim that the 
restriction to I of the first projection H0(dL)N×X → H0(dL)N is generically finite, which 
will imply codimZ = NNd−1 −dim I = N−n. Indeed, if s1, . . . , sn ∈ H0(dL) is a regular 
sequence of sections, the fiber of I over the N -tuple (s1, . . . , s1, s2, . . . , sn) ∈ H0(dL)N is 
finite.

The last point of the lemma follows from the embedding X ↪→ P H0(L), which is an 
isomorphism iff N − n = 1. �

In the case N = n − 1, i.e. (X, L) � (Pn, O(1)), any polarized morphism of degree d
is given by z �→ [f0(z) : . . . : fn(z)] for homogeneous polynomials f0, . . . , fn, of degree 
d, without common zeros, and the locus Z ⊂ P

(
H0(L)n+1) is an irreducible divisor of 

degree (n + 1)dn. As a result, it is defined by a unique polynomial Res(f0, . . . , fn) of 
degree (n + 1)dn in the coefficients of the fi and normalized by Res(xd

0, . . . , x
d
n) = 1, 

cf. [38, Ch. 13].

Corollary 10.16. Let f be a polarized morphism of degree d of the smooth polarized toric 
variety (X, L).

• If (X, L) � (Pn, O(1)), then Rf = Res(f)Rd;
• if not, then Rf = Rd.

Proof. If (X, L) � (Pn, O(1)), we can restrict along the hyperplane determined by xn =
0 and inductively compare how the Deligne products and the resultants change. In the 
case of the resultant, the transformation is described by the Poisson formula [38, Ch. 
13, Theorem 1.2], and the Deligne products transform accordingly. This shows they are 
equal up to some constant, and the constant is equal to 1 by evaluating at the polarized 
endomorphism md.

If (X, L) is not isomorphic to (Pn, O(1)), the previous lemma shows that the space 
of polarized degree d endomorphisms of (X, L) is isomorphic to an open subset U ⊂
P
(
H0(dL)N

)
whose complement Z has codimension at least 2. The map f �→ Rf/Rd

defines a morphism U → Gm, which is thus constant by normality and properness of 
P
(
H0(dL)N

)
, and hence equal to 1 by evaluating at f = md. �



108 S. Boucksom, D. Eriksson / Advances in Mathematics 378 (2021) 107501
Appendix A. Determinant of cohomology and Deligne pairings

The goal of this Appendix is to discuss a generalization to arbitrary schemes of results 
of Knudsen–Mumford [53], Deligne [28], Elkik [35], Munoz-Garcia [57] and Ducrot [34], 
which provide a rough Riemann–Roch theorem for the determinant of cohomology.

A.1. Discussion of the results

For a projective scheme X over a field K, the determinant of cohomology of a line 
bundle L is the line (i.e. one-dimensional K-vector space)

λ(L) :=
n∑

i=0
(−1)i detHi(X,L),

where we use additive notation for tensor products of lines. If π : X → Y is now a 
flat projective morphism of locally Noetherian schemes, it was shown by Knudsen and 
Mumford in [53] that the fiberwise determinant of cohomology of a line bundle L on X
glues together to define a line bundle λX/Y (L) on Y . Indeed, the derived direct image 
Rπ	L is a perfect complex, i.e. locally on Y there exists a bounded complex E• of vector 
bundles with Rqπ	L as its q-th cohomology sheaf, and the determinant of cohomology 
of L can then be locally described as

λX/Y (L) =
∑
i

(−1)i detEi.

Denoting by n the relative dimension of π, the main result in F. Ducrot’s paper [34]
implies that the functor λX/Y : P(X) → P(Y ) so defined between the Picard categories 
of line bundles on X and Y admits a unique polynomial structure of degree n +1 compat-
ible with base change and restriction to a relative Cartier divisor (see §A.8 for a precise 
statement). This result recovers in one stroke the construction of Deligne pairings [36,57]
and the Knudsen–Mumford expansion [53]. Indeed, it implies that the (n +1)-st iterated 
difference

〈L0, . . . , Ln〉X/Y :=
∑

I⊂{0,...,n}
(−1)n+1−|I|λX/Y

(∑
i∈I

Li

)

defines a multi-additive symmetric functor P(X)n+1 → P(Y ), the Deligne pairing, and 
that we have for each L ∈ P(X) an expansion

λX/Y (mL) =
n+1∑
i=0

(
m + i

i

)
Mi
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as a function of m ∈ Z, the coefficients being line bundles Mi on Y , and Mn+1 =
〈Ln+1〉X/Y . Whenever a Grothendieck–Riemann–Roch theorem is available, we infer

c1
(
〈L0, . . . , Ln〉X/Y

)
= π	(c1(L0) · . . . · c1(Ln)〉,

so that Deligne pairings lift the natural push-forward operation on the right-hand side 
to the level of line bundles.

In the main body of the present paper, a version of these results in the possibly non-
Noetherian setting of models over the valuation ring of a complete non-Archimedean 
field is required. The purpose of this appendix is to summarize the results leading to a 
generalization of the above results for arbitrary schemes.

A.2. Polynomial maps

In order to motivate the definitions in §A.3, we briefly recall some background on 
polynomial maps and difference calculus. It is well-known that a map f : Z → Z is 
polynomial of degree (at most) n if and only if it admits an expansion

f(m) =
n∑

i=0

(
m + i

i

)
bi

with coefficients bi ∈ Z. More generally, a map f : A → B between commutative groups 
is said to be polynomial of degree n if for any given x1, . . . , xr ∈ A we have an expansion

f(m1x1 + · · · + mrxr) =
∑

0≤i1,...,ir≤n

(
m1 + i1

i1

)
. . .

(
mr + ir

ir

)
bi1...ir

for all mi ∈ Z, with coefficients bi1...ir ∈ B.
Polynomiality can be characterized in terms of difference calculus. For a map f : Z →

B, define the difference Δf : Z → B by

(Δf)(m) := f(m + 1) − f(m).

Then

Δ
(
m + i

i

)
=
(
m + i− 1

i− 1

)
,

which can be used to show by induction on n that f : Z → B is a polynomial map of 
degree n if and only if Δn+1f = 0. For a map f : Zr → B, one can introduce partial 
difference operators Δi, and f is polynomial of degree n if and only if Δαf = 0 for all 
multi-indices α ∈ Nr of length |α| :=

∑
i αi = n +1, where we have set Δα = Δα1

1 . . .Δαr
r .
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Consider now a map f : A → B between commutative groups. Mimicking differential 
calculus, one defines the difference δxf : A → B of f at x ∈ A by setting

(δxf)(y) = f(x + y) − f(x),

and the k-th iterated difference δkxf : Ak → B by

(δkxf)(x1, . . . , xk) := δx
(
y �→ (δk−1

y f)(x2, . . . , xk)
)
(x1)

= (δk−1
x+x1

f)(x2, . . . , xk) − (δk−1
x f)(x2, . . . , xk).

The map δkxf : Ak → B so defined is symmetric, as follows from the explicit expression

(δkxf)(x1, . . . , xk) =
∑

I⊂{1,...,k}
(−1)k−|I|f

(
x +

∑
i∈I

xi

)
. (A.1)

Given x1, . . . , xr ∈ A, the map g : Zr → B defined by g(m1, . . . , mr) = f(
∑

i mixi)
satisfies

(Δαg)(m1, . . . ,mr) = (δ|α|∑
i mixi

f)(xa1
1 , . . . , xar

r ) (A.2)

for all α ∈ Nr.
Using this, we conclude that f : A → B is polynomial of degree n if and only if 

δn+1
x f = 0 for all x ∈ A. It is in fact enough to check this condition for x = 0. Indeed, 

the operator δk := δk0 determines all δkx by

(δkxf)(x1, . . . ) = (δkf)(x + x1, . . . ) − (δkf)(x, . . . ). (A.3)

It further satisfies

(δk+1f)(x1, y1, . . . ) = (δkf)(x1 + y1, . . . ) − (δkf)(x1, . . . ) − (δkf)(y1, . . . ),

and we thus see that f is polynomial of degree n if and only if δnf is multi-additive. Note 
also that δk can be understood as a polarization operator, in the sense that δk(L(xk)) =
k!L for any symmetric multi-additive map L : Ak → B; we can thus view the multi-
additive map δnf : An → B associated to a polynomial map f : A → B of degree n as 
the polarization of its degree n part.

Example A.1. Let X be an n-dimensional projective scheme over a field K, with structure 
morphism π : X → SpecK, and pick a line bundle L on X. The Euler characteristic

χ(L) :=
n∑

i=0
(−1)i dimK Hi(X,L)
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only depends on the class of L in the Picard group Pic(X), and Snapper’s theorem 
implies that χ : Pic(X) → Z is a polynomial map of degree n, with degree n polarization 
given by the intersection pairing, i.e.

(δnχ)(L1, . . . , Ln) = (L1 · . . . · Ln) := deg π	 (c1(L1) · . . . · c1(Ln) · [X]) .

For later use, we note:

Lemma A.2. Let f : A → B is a polynomial map of degree n, and set for all 0 ≤ i ≤ n

fn,i(x) :=
n∑

k=i

(−1)k−i

(
k

i

)
(δkf)(xk).

Then f(mx) =
∑n

i=0
(
m+i
i

)
fn,i(x) for all x ∈ A and m ∈ Z.

Proof. Since f is polynomial of degree n, we have

g(m) := f(mx) =
n∑

i=0

(
m + i

i

)
bi

for some bi ∈ B. Since Δk
0
(
m+i
i

)
= 1 for k ≤ i and 0 otherwise, (A.2) yields

(δkf)(xk) = Δk
0g =

∑
i≥k

bi,

and hence bi = fn,i(x). �
A.3. Polynomial functors

A commutative Picard category is a ‘category version’ of a commutative group, or 
more precisely a symmetric monoidal groupoid where every object is invertible with 
respect to the monoidal structure. In other words, it is a category A in which all arrows 
are isomorphisms, together with an additivity functor and functorial associativity and 
commutativity isomorphisms satisfying the expected compatibility conditions, and such 
that for any object x the endofunctors y �→ x + y and y �→ y + x are autoequivalences.

These axioms imply the existence of a neutral object 0 and of an inverse −x for 
each object x, both unique up to unique isomorphism. The sum 

∑
i∈I xi of a finite 

family (xi)i∈I of objects in A is well-defined up to unique isomorphism, and satisfies the 
expected associativity rules. A commutative Picard category A is strictly commutative
if the commutativity isomorphism induces the identity on x +x for each x, in which case 
x and −x can be contracted within a sum without raising any sign issue.

In practice for us, A will be the category of line bundles or Q-line bundles on a given 
scheme, and isomorphisms between them, both of which are strictly commutative Picard 
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categories. Note that a commutative group can also be viewed as a strictly commutative 
Picard category.

In what follows, A and B are strictly commutative Picard categories. An additive 
functor F : A → B is a functor equipped with a functorial additivity isomorphism 
F (x + y) � F (x) + F (y) which is commutative, expressed by the commutativity of the 
induced diagram

F (x + y) F (x) + F (y)

F (y + x) F (y) + F (x)

,

and associative, i.e. the commutativity of the diagram

F ((x + y) + z) F (x + y) + F (z) (F (x) + F (y)) + F (z)

F (x + (y + z)) F (x) + F (y + z) F (x) + (F (y) + F (z)) .

These conditions then yield a consistent system of functorial additivity isomorphisms 
F (
∑

i∈I xi) �
∑

i∈I F (xi) for all finite families (xi)i∈I in A. If A and B are small, the 
associated sets of isomorphism classes A and B are commutative groups, and F induces 
a homomorphism F : A → B.

A multi-additive functor F : An → B is defined as a functor equipped with functo-
rial commutative and associative additivity data in each variable, such that expanding 
out sums in the variables does not depend on the order the operation is performed. A 
symmetric functor F : An → B is a functor equipped with symmetry isomorphisms

F (xσ(1), . . . , xσ(n)) � F (x1, . . . , xn)

for each permutation σ ∈ Sr, compatible with the group law on Sr, and a symmetric, 
multi-additive functor has both structures, with the expected compatibility condition.

Define the k-th iterated difference at an object x in A of a functor F : A → B as the 
symmetric functor δkxF : Ak → B defined by setting

(δkxF )(x1, . . . , xk) :=
∑

I⊂{1,...,k}
(−1)k−|I|F

⎛⎝x +
∑
j∈I

xj

⎞⎠ .

For x = 0, we simply set δk := δk0 . Recalling from §A.2 that a map f between commuta-
tive groups is polynomial of degree n if and only if δnf is multi-additive, we introduce:
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Definition A.3. A polynomial structure of degree n on F is defined as a structure of a 
multi-additive functor on δnF , compatible with its canonical symmetry.

Ducrot introduces in [34, Definition 1.6.1] the notion of k-cube structure on F . By [34, 
Proposition 1.9], an (n + 1)-cube structure on F induces a polynomial structure of de-
gree n on F (and the converse is probably true as well, by [34, 1.5.1, (d)]). Ducrot’s 
terminology comes from the following well-known result.

Example A.4. If L is a line bundle on an abelian variety A, the theorem of the cube asserts 
that for any variety S, the functor FL : A(S) → P(S) defined by FL(x) := x	L admits a 
3-cube structure. It is thus quadratic in our sense, i.e. (x, y) �→ (x +y)	L −x	L −y	L +0	L
is biadditive. Further, the whole structure is compatible with base change.

In analogy with Lemma A.2, we have:

Lemma A.5. Suppose that F : A → B admits a polynomial structure of degree n, and 
define for 0 ≤ i ≤ n a functor Fn,i : Ai → B by setting

Fn,i(x) :=
∑
k=i

(−1)k−i

(
k

i

)
(δkf)(xk).

For all x ∈ A and m ∈ Z, we then have canonical functorial isomorphisms

F (mx) �
n∑

i=0

(
m + i

i

)
Fn,i(x).

Proof. Define g : Z → B by g(m) := F (mx) −
∑n

i=0
(
m+i
i

)
Fn,i(x). Since

Δk
mF (mx) =

k∑
i=0

(−1)k−i

(
k

i

)
F ((m + ix) = (δkmxF )(xk),

and Δk
0
(
m+i
i

)
= 1 for k ≤ i and 0 otherwise, we have canonical isomorphisms (Δkg)(0) �

0 for k = 0, . . . , n. Further,

(Δn−1g)(m + 1) − (Δn−1g)(m) = (Δng)(m) = (δnmxF )(xn) − (δnF )(xn)

� (δnF )((m + 1)x, x, . . . , x) − (δnF )(mx, x, . . . , x) − (δnF )(x, . . . , x) � 0,

for all m ∈ Z, by multiadditivity of δnF . Summing up these relations, we get

(Δn−1g)(m) � (Δn−1g)(0) � 0,

and iterating the argument finally yields g(m) � 0 for all m. �
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A.4. Coherence of direct images

The following discussion is inspired in part by [77]. Let X be a scheme. A vector bundle
on X is a finite, locally free OX -module. A complex F • of OX -modules is pseudo-coherent
(resp. perfect) if F • is locally quasi-isomorphic to a bounded above (resp. bounded) com-
plex of vector bundles. In particular, an OX-module F is pseudo-coherent (resp. perfect) 
if it locally admits a resolution (resp. a finite resolution) by vector bundles.

A morphism of schemes f : X → Y is pseudo-coherent if X is locally realized as 
a closed subscheme of a smooth Y -scheme Z such that OX is pseudo-coherent as an 
OZ-module. In particular, f is locally finitely presented; conversely, every flat, locally 
finitely presented morphism is pseudo-coherent [70, Tag 0695].

The following general results hold for arbitrary schemes X, Y , and are respectively 
proved in [51, Theorem 2.9], [69, III, Corollaire 2.3], and [70, Tag 0B91].

Theorem A.6. Let f : X → Y be a proper, pseudo-coherent morphism, and let F be a 
pseudo-coherent OX-module. Then:

(i) the derived direct image Rf	F is pseudo-coherent;
(ii) if Y is quasi-compact and L is an f -ample line bundle on X, then Rqf	F (mL) = 0

for all q ≥ 1 and m 	 1.

Theorem A.7. Let f : X → Y be proper, flat, finitely presented (and hence pseudo-
coherent) morphism. If F • is a perfect complex on X, then Rf	F

• is perfect on Y , and 
the construction is further compatible with arbitrary base change.

We now discuss the relation between Theorem A.6 and their better known versions 
in the Noetherian case (coherence of direct images and Serre vanishing).

Recall that a ring A is coherent if every finitely generated ideal is finitely presented; 
the ring A is stably coherent if every polynomial ring A[t1, . . . , tr] is coherent. We shall 
say that a scheme X is coherent (resp. stably coherent) if it is locally the spectrum of a 
coherent (resp. stably coherent) ring. A scheme X is coherent iff its structure sheaf OX

is coherent.

Example A.8. Every locally Noetherian scheme is stably coherent.

By [69, I, Corollaire 3.5], we have:

Lemma A.9. On a coherent scheme X, the following conditions for an OX-module F are 
equivalent:

(i) F is coherent;
(ii) F is locally finitely presented;
(iii) F is pseudo-coherent.



S. Boucksom, D. Eriksson / Advances in Mathematics 378 (2021) 107501 115
More generally, a complex of OX-modules F • is pseudo-coherent iff its cohomology 
sheaves Hq(F •) are coherent for all q, and zero for q sufficiently large, locally uniformly 
on X.

A Prüfer domain is an integral domain A which satisfies one of the following equivalent 
conditions:

(i) every localization of A at a prime ideal is a valuation ring;
(ii) every finitely generated ideal of A is invertible;
(iii) every torsion-free A-module is flat.

The main example for us is the valuation ring K◦ of a non-Archimedean field K.

Example A.10. Every Prüfer domain A is stably coherent. Indeed, every finitely generated 
ideal I of A[t1, . . . , tr] is torsion free, and hence flat over A. By [63, Théorème 3.4.6], I
is thus a finitely presented A[t1, . . . , tr]-module.

Lemma A.11. Let f : X → Y be a locally finitely presented morphism of schemes, and 
assume that Y is stably coherent. Then:

(i) f is pseudo-coherent;
(ii) X is (stably) coherent.

Proof. After passing to affine open subschemes, we may assume that X and Y are spectra 
of rings A, B such that B = A[t]/I with I ⊂ A[t] = A[t1, . . . , tr] a finitely generated ideal. 
By assumption, A is stably coherent, and hence A[t] is coherent. By Lemma A.9, the 
finitely presented A[t]-module B is thus pseudo-coherent, which proves (i).

Let now J ⊂ B be a finitely generated ideal. As modules over A[t], B is finitely 
presented, and J is a finitely generated submodule. By coherence of A[t], J is a finitely 
presented as an A[t]-module, and hence also as a B-module, which proves (ii). �

We can now state a version of Theorem A.6 that recovers in particular the usual 
statement for locally Noetherian schemes.

Corollary A.12. Let f : X → Y be a proper, locally finitely presented morphism of 
schemes. Assume that Y is stably coherent (e.g. locally Noetherian, or locally finitely 
presented over a Prüfer domain), and let F be a coherent OX-module. Then:

(i) Rqf	F is coherent for all q;
(ii) if Y is quasi-compact and L is an f -ample line bundle on X, then Rqf	F (mL) = 0

for all q ≥ 1 and m 	 1.
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Proof. By Lemma A.11, f is pseudo-coherent, and X is coherent. Thus F is pseudo-
coherent. Theorem A.6 directly yields (ii), and shows that Rf	F is pseudo-coherent. 
Since Y is coherent, this amounts to (i), by Lemma A.9. �
A.5. The determinant of a perfect complex

Let X be a scheme. The determinant of a vector bundle E on X is the line bundle 
detE :=

∧rkE
E. If

0 → E′ → E → E′′ → 0 (A.4)

is an exact sequence of vector bundles, then there is a canonical isomorphism

detE � detE′ + detE′′, (A.5)

where, in additive notation, + denotes the tensor product of line bundles. However, given 
two vector bundles E, F , the isomorphism

detE + detF � det(E ⊕ F ) � det(F ⊕ E) � detF + detE

induced by the canonical isomorphism E ⊕ F � F ⊕ E coincides with the canonical 
commutativity isomorphism only up to a factor (−1)(rkE)(rkF ).

To deal with this sign issue, one introduces the graded determinant functor E �→
(detE, rkE) with values in the (non-strictly) commutative Picard category P(X) ×Z of 
graded line bundles, in which the commutativity isomorphism is modified according to 
the Koszul rule of signs as above. For the purpose of the present paper, it will however be 
enough to view detE as an object in the strictly commutative Picard category P(X)Q
of Q-line bundles on X, and we can thus ignore the previous sign issue.

In [53, Theorem 2], Knudsen and Mumford showed that setting

detE• :=
∑
i

(−1)i detEi

for each bounded complex of vector bundles E• gives rise to a functor F • �→ detF •

from the category of perfect complexes on X and quasi-isomorphims between them to 
P(X)Q. This functor commutes with base change, it is additive with respect to short 
exact sequences of complexes in the sense of (A.5). It can be uniquely characterized up 
to unique isomorphism by imposing further properties. By [53, p. 43, (b)], we have:

Lemma A.13. If the cohomology sheaves Hq(F •) of a perfect complex F • are perfect (e.g. 
locally free), then

detF • =
∑

(−1)q detHq(F •).

q
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A.6. Regular sections

Let f : X → Y be a flat, locally finitely presented morphism of schemes, and let s be 
a global section of a line bundle L on X, defining a closed subscheme Z ⊂ X. Recall that 
s is f -regular at x ∈ X if Z is a relative Cartier divisor at x, i.e. s is a nonzerodivisor in 
OX,x, and Z is f -flat at x. If this holds for all x ∈ X, then s is simply called f -regular. 
By [32, IV.11.3.7], s is f -regular at x if and only the restriction of s to the fiber through 
x is not a zerodivisor at x, and the set of x ∈ X at which this holds is open.

Lemma A.14. Let f : X → Y be flat, proper, finitely presented morphism of schemes, and 
s be a global section of a line bundle L on X. Pick y ∈ Y , and assume that s is nonzero 
at each associated point of Xy. Then s is relatively regular over an open neighborhood 
of y.

Proof. Denote by U ⊂ X the open set of points at which s is relatively regular. Since 
Xy is Noetherian (being of finite type over a field), the assumption implies that s|Xy

is 
a nonzerodivisor at each x ∈ Xy, and hence that Xy ⊂ U by the above results. As f is 
closed, it follows that f−1(V ) ⊂ U for some open neighborhood V of y. �

As a consequence, we then have the following useful existence result for relatively 
regular sections.

Proposition A.15. Let f : X → Y be a flat, projective, finitely presented morphism of 
schemes, and let L be a f -ample line bundle on X. Then mL admits a relatively regular 
section locally over Y for m 	 1.

Proof. Pick y ∈ Y . After replacing Y with an affine neighborhood of y and L with a large 
enough multiple, we may assume that there exists a closed embedding X ↪→ PN

Y over 
Y with L = O(1)|X . The set of associated points S of Xy being finite, prime avoidance 
yields for m 	 1 a section s ∈ H0(PN

Y , O(m)) that does not vanish at any point of 
S, and the restriction of s to X is thus relatively regular over a neighborhood of y, by 
Lemma A.14. �
A.7. The determinant of cohomology

Let f : X → Y be a flat, proper, finitely presented morphism between arbitrary 
schemes X, Y , with Picard categories P(X), P(Y ). By Theorem A.7, Rf	 takes a perfect 
complex to a perfect complex, and we can thus consider its determinant. We will only 
be concerned with the case when the source perfect complex is a line bundle, so we will
be content with the following definition, which could be stated more generally:

Definition A.16. The determinant of cohomology is the functor λX/Y : P(X) → P(Y )Q
that takes a line bundle L on X to the Q-line bundle

λX/Y (L) := detRf	L.
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By Lemma A.13, we have:

Lemma A.17. Let L be a line bundle on X is such that Rqf	L is a vector bundle, for all 
q. Then

λX/Y (L) =
∑
q∈N

(−1)q detRqf	L.

This holds in particular when f has relative dimension 0, i.e. a finite flat morphism. 
Indeed, any finite morphism f : X → Y satisfies Rqf	F = 0 for any OX -module F and 
any q > 0 [70, Tag 03QP]. By [70, Tag 02KB], f is flat iff f	OX is a vector bundle, and 
we then have λX/Y (L) = det f	OX .

Proposition A.18. The determinant of cohomology satisfies the following two compatibil-
ity properties.

(i) It commutes with arbitrary base change: for any morphism g : Y ′ → Y , let

X ′ h

f ′

X

f

Y ′ g
Y

be the corresponding Cartesian square. Then we have a canonical functorial isomor-
phism

λX′/Y ′(h	L) � g	λX/Y (L).

(ii) If Z is an effective relative Cartier on X, then we have a canonical functorial iso-
morphism

λX/Y (L) − λX/Y (L− Z) � λZ/Y (L|Z). (A.6)

Proof. Since L is flat over Y , we have Rf ′
	h

	L = Lg	Rf	L, cf. [70, Tag 0A1D]. On 
the other hand, the determinant functor satisfies detLg	 = g	 det, hence (i). If Z is an 
effective relative Cartier divisor on X, then the natural exact sequence 0 → L(−Z) →
L → L|Z → 0 induces an exact sequence of perfect complexes 0 → Rf	L(−Z) →
Rf	L → R(f |Z)	L|Z → 0, and (ii) follows by additivity of det in exact sequences. �
A.8. Deligne pairings and Knudsen–Mumford expansion

In this section, we fix a flat, projective, finitely presented morphism f : X → Y of 
constant relative dimension n.



S. Boucksom, D. Eriksson / Advances in Mathematics 378 (2021) 107501 119
When n = 0, f : X → Y is a finite flat morphism, and the determinant of cohomology 
λX/Y provides a canonical and functorial construction of the norm of a line bundle [32, 
II.6.5] (compare for instance [37, Proposition 3.3]). To see this, recall first that the norm 
NX/Y (h) ∈ OY of h ∈ f	OX is defined as the determinant of the endomorphism of the 
vector bundle f	OX defined by multiplication by h, yielding a multiplicative map

NX/Y : f	OX → OY . (A.7)

Now define a functor NX/Y : P(X) → P(Y ) by setting

NX/Y (L) = (det f	L) − (det f	OX)

= λX/Y (L) − λX/Y (OX) = (δλX/Y )(L).

Lemma A.19. For each line bundle L on X, NX/Y (L) coincides with the norm of L as 
defined in [32, II.6.5].

Proof. Observe that if u ∈ H0(X, O	
X) is a unit and L is a line bundle on X, multiplica-

tion by u defines an isomorphism L � L, whose induced isomorphism det f	L � det f	L, 
and hence also NX/Y (L) � NX/Y (L), are both given by multiplication by NX/Y (u).

By [70, Tag 0BUT], L is trivial in a neighborhood of each fiber of f , and Y therefore 
admits an open cover (Yi) with L|Xi

� OXi
on Xi := f−1(Yi). Set Yij = Yi ∩ Yj , 

Xij = Xi ∩ Xj = f−1(Yij), and denote by uij ∈ H0(Xij , O	
Xij

) the corresponding 
cocycle. The transition isomorphism OXij

� L|Xij
� OXij

is given by multiplication 
by uij . By the above observation, applying the functor NX/Y yields an isomorphism 
OYij

� NX/Y (L)|Yij
� OYij

given by multiplication by NXij/Yij
(uij), which precisely 

means that NX/Y (L) coincides with the norm of L as defined in [32, II.6.5]. �
When Y is the spectrum of a field K and X is the spectrum of a finite flat K-algebra 

A, the norm functor admits the following concrete description (see e.g. [56, Lemma 1.13]). 
For a ∈ A, we have

NA/K(a) =
∏

ni∈Spec(A)

N(A/ni)/K(ai)mi . (A.8)

Here ai is the image of a in A/ni, mi = lengthBni
Ani

so that 
∑

mi[ai] is the fundamental 
cycle of [A].

Arguing as in [34, 4.1.1], we next prove:

Proposition A.20. There is a unique way to assign to each finite flat morphism f : X → Y

an additivity structure on the norm functor NX/Y : P(X) → P(Y ) that is compatible 
with base change and such that the following diagram commutes
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NX/Y (L) NX/Y (L)

NX/Y (L + OX) NX/Y (L) + NX/Y (OX)

.

Here the upper row is the identity, the lower row is the additivity isomorphism, and the 
vertical rows are deduced from the natural isomorphism of the type L � L +OX and the 
identification NX/Y (OX) = OY .

Proof. Pick two line bundles L, L′ on X, and choose an open cover (Yi) of Y with trivi-
alizations L|Xi

� OXi
, L′|Xi

� OXi
on Xi := f−1(Yi). Given an additivity isomorphism

NX/Y (L + L′) � NX/Y (L) + NX/Y (L′)

with the desired properties, the induced isomorphisms

NXi/Yi
(OXi

+ OXi
) � NXi/Yi

(OXi
) + NXi/Yi

(OXi
)

are necessarily equal to the canonical ones obtained by multiplicativity of (A.7), which 
proves uniqueness. To establish existence, it is then enough to argue locally on Y , since 
compatibility on overlaps will follow from uniqueness, and the result is then straightfor-
ward, using again that any line bundle on X is trivial locally over Y . �

In the terminology of §A.3, Proposition A.20 says that the functor λX/Y is polynomial 
of degree 1 when n = 0. This is generalized by the next result, due to F. Ducrot.

Theorem A.21. [34, Theorem 4.2] There exists a unique way to assign to each flat, pro-
jective, finitely presented morphism f : X → Y of relative dimension n a polynomial 
structure of degree n + 1 on λX/Y : P(X) → P(Y )Q with the following properties:

(i) it commutes with base change;
(ii) it coincides with the above one when n = 0;
(iii) for any relative effective divisor Z on X, the polynomial structures on λX/Y and 

λZ/Y are compatible with the canonical restriction isomorphism

λX/Y (L) − λX/Y (L− Z) � λZ/Y (L|Z).

More precisely, [34, Theorem 4.2] proves the existence of a canonical (n + 2)-cube 
structure on λX/Y , which yields (and is probably equivalent to) a polynomial structure 
of degree n +1 on λX/Y , as discussed in §A.3. Stricty speaking, the proof of Theorem A.21
assumes X and Y to be locally Noetherian, but all the arguments apply in the general 
case, once Theorem A.7 and Proposition A.15 are available. Since a polynomial structure 
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of degree n + 1 on λX/Y is by definition a multi-additive structure on the (n + 1)-st 
difference

(δn+1λX/Y )(L0, . . . , Ln) =
∑

I⊂{0,...,n}
(−1)n+1−|I|λX/Y

(∑
i∈I

Li

)
,

and we can thus define the Deligne pairing as the functor P(X)n+1 → P(Y )Q that takes 
line bundles L0, . . . , Ln on X to the Q-line bundle

〈L0, . . . , Ln〉X/Y := (δn+1λX/Y )(L0, . . . , Ln). (A.9)

Theorem A.22. The Deligne pairing satisfies the following properties.

(i) it is multi-additive, symmetric, and commutes with base change;
(ii) for each relative effective Cartier divisor Z on X, we have canonical multi-additive 

functorial isomorphisms

〈OX(Z), L1, . . . , Ln〉X/Y � 〈L1|Z , . . . , Ln|Z〉Z/Y ;

(iii) if g : X ′ → X is a finite flat of degree e, then we have canonical functorial isomor-
phisms

〈g	L0, . . . , g
	Ln〉X′/Y � e〈L0, . . . , Ln〉X/Y .

Proof. (i) follows directly from Theorem A.21. Given Z as in (ii), taking the n-th iterated 
difference of the restriction isomorphism

λZ/Y (L|Z) � λX/Y (L) − λX/Y (L− Z)

yields

〈L1|Z , . . . , Ln|Z〉Z/Y = (δnλZ/Y )(L1|Z , . . . , Ln|Z)

� (δnλX/Y )(L1, . . . , Ln) − (δn−ZλX/Y )(L1, . . . , Ln) � −(δn+1λX/Y )(−Z,L1, . . . , Ln),

which is isomorphic to

(δn+1λX/Y )(Z,L1, . . . , Ln) = 〈Z,L1, . . . , Ln〉X/Y ,

by multiadditivity of δn+1λX/Y . Finally, let g : X ′ → X be finite and flat of degree e, 
so that E := g	OX′ is a rank e vector bundle. By the projection formula we have

R(f ◦ g)	(g	L) = Rf	Rg	(g	L) = Rf	(L⊗E).
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Thus (iii) follows from [34, Proposition 4.7.1], as the latter yields a canonical isomorphism 
between the (n + 1)-st difference of L �→ detRf	(L ⊗E) and e δn+1λX/Y . �

By Lemma A.5, we finally get the following generalization of [53, Theorem 4].

Corollary A.23. For each 0 ≤ i ≤ n + 1, define a functor Fn+1,i : P(X)i → P(Y )Q by

Fn+1,i(L) :=
n+1∑
k=i

(−1)k−i

(
k

i

)(
δkλX/Y

)
(Lk)

For each line bundle L on X and m ∈ Z, we then have functorial isomorphisms

λX/Y (mL) �
n+1∑
i=0

(
m + i

i

)
Fn+1,i(L) = mn+1

(n + 1)! 〈L
n+1〉X/Y + O(mn),

compatible with base change.
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