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ABSTRACT
Outflows, spanning a wide range of dynamical properties and spatial extensions, have now been associated with a variety of
accreting astrophysical objects, from supermassive black holes at the core of active galaxies to young stellar objects. The role
of such outflows is key to the evolution of the system that generates them, for they extract a fraction of the orbiting material
and angular momentum from the region close to the central object and release them in the surroundings. The details of the
launching mechanism and their impact on the environment are fundamental to understand the evolution of individual sources
and the similarities between different types of outflow-launching systems. We solve semi-analytically the non-relativistic, ideal,
magnetohydrodynamics equations describing outflows launched from a rotating disc threaded with magnetic fields using our new
numerical scheme. We present here a parameter study of a large sample of new solutions. We study the different combinations
of forces that lead to a successfully launched jet and discuss their global properties. We show how these solutions can be applied
to the outflow of the water fountain W43A for which we have observational constraints on magnetic field, density and velocity
of the flow at the location of two symmetrical water maser emitting regions.
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1 IN T RO D U C T I O N

Jets, and more generally speaking outflows, are a widespread phe-
nomena in many different systems, from protostars to supermassive
black holes. Until only recently, outflows were believed to be
launched by extraction of rotational energy either from a magneti-
cally threaded disc (Blandford & Payne 1982) or from a rotating black
hole (Blandford & Znajek 1977). In fact, it was common to think
that there were at least two separated kinds of jets, the magnetically
dominated jets from black holes and the pressure-dominated jets from
any other jetted source. However, with the advent of cutting-edge
GRMHD simulations and the first post-processed emission spectrum
associated with it (Mościbrodzka, Falcke & Shiokawa 2016; Liska
et al. 2017; Davelaar et al. 2019), it is becoming clear that there is
not such a dichotomy and, most likely, at least in black hole systems,
the two mechanisms can coexist. Furthermore, the emission is likely
dominated by the outer, more mass loaded, jet sheath rooted on
to the accretion disc, whereas the inner core of the jet is lighter
and magnetically dominated (Mościbrodzka et al. 2016). Similarly,
when the jet-launching object is a protostar or a (non-BH) compact
object, the outflow is likely to be a composition of a stellar wind
(e.g. Shu et al. 1994) or an equivalent Blandford–Znajek process for
highly magnetized neutron stars (Parfrey, Spitkovsky & Beloborodov
2016) and a disc-driven outflow (e.g. Pudritz & Norman 1983;
Contopoulos & Lovelace 1994; Ferreira 1997; Vlahakis et al. 2000).

� E-mail: chiara.ceccobello@chalmers.se

Semi-analytical models describing the various launching mech-
anisms listed above have been continuously developed in parallel
with simulations because they capture the underlying physics while
allowing a time-efficient exploration of the parameter space and
fitting of astrophysical sources. However, in order to make the equa-
tions treatable with a semi-analytical approach, the dimensionality
of the problem is reduced by assuming symmetries in the system and
a non-linear separation of variables is performed. The separation of
variables is commonly referred to as the self-similarity assumption.
There are two distinct classes of self-similar models depending on
how the separation of variables is carried out (Vlahakis & Tsinganos
1998): the meridional self-similar models (e.g. Sauty & Tsinganos
1994; Trussoni, Tsinganos & Sauty 1997; Sauty, Tsinganos &
Trussoni 1999; Chantry et al. 2018), where the dependent variables
are functions of r and radial self-similar models (e.g. Contopoulos &
Lovelace 1994; Ferreira 1997; Vlahakis et al. 2000; Vlahakis &
Königl 2003; Polko, Meier & Markoff 2010, 2013, 2014; Ceccobello
et al. 2018), where the independent variable is θ . In both classes of
self-similar models, we are left with a mixed system of differential
and algebraic equations describing the accelerating flow along a
magnetic field line threading a rotating disc. To determine the motion
of the fluid element, one needs to solve simultaneously the forces
acting along and perpendicular to a streamline. This is a notoriously
cumbersome problem, which can be tackled by introducing further
simplifications, such as assuming a fixed structure of the magnetic
field and/or neglecting the gas pressure force and/or using asymptotic
extensions of the models to replace the region of the solutions at large
distance from the disc.
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Figure 1. System of coordinates we adopt to describe a solution of the MHD
system of equations presented in VTST. We identify a solution with the
‘reference’ streamline identified with the label α ≡ � 2

A/� 2∗ = 1. The two
dependent variables (M, G), together with all the other quantities describing
the system, are functions of θ (the independent variable in radial self-
similarity), which is the angle between a point on the streamline and the
z-axis. The angle ψ is defined by the tangent to the streamline and the
horizontal axis, while the distance from a point on the streamline to the z-axis
is defined by its cylindrical radius � in units of the Alfvén cylindrical radius
� A.

In Ceccobello et al. (2018, hereafter Paper I), we presented our
newly developed algorithm to self-consistently solve the poloidal
and transverse forces, given by the Bernoulli and Grad–Shafranov
equations, respectively, for a relativistic fluid in the presence of
gravity, under the assumption of radial self-similarity. We showed
that with our numerical algorithm it is possible to obtain solutions
with a broad variety of jet structures and dynamical properties and
work is ongoing to couple these solutions with a radiative code and
apply those to black hole systems (Lucchini et al., in preparation). In
this paper, we adopt the equations presented in Vlahakis et al. (2000,
hereafter VTST00) and we adapt our algorithm, described in Paper
I, to perform a parameter study to model astrophysical sources with
more moderate speeds, such as young stellar objects and evolved
stars outflows.

In Section 2, we summarize the basic equations and give a short
description of the algorithm. In Section 3, we show the results of our
parameter space exploration and discuss the solution properties as
they transition from cold jets to hot ones. In Section 4, we show an
example of an application to the post-AGB star W43A and we give the
selection criteria we used to isolate the solutions that better resemble
the jet of W43A and discuss the characteristics of the selected jet
configuration in relation to the source. Finally, in Section 5, we
summarize the study presented in this paper.

2 EQUAT I O N S A N D N U M E R I C A L M E T H O D

2.1 Problem description

The equations that we are going to solve with our numerical algorithm
are the ones describing an axisymmetric, radial self-similar, non-
relativistic, disc-driven outflow with non-negligible enthalpy (Fig. 1).
Since we adopted the prescription given in Vlahakis et al. (2000),1

1We will use � for the polytropic index and F for the power-law exponent,
instead of the symbols γ and x as was done in VTST00 to maintain the same
convention we had for the relativistic equations in Paper I.

we present here just a brief summary. In Appendix B, we report the
conversion from dimensionless to physical quantities as a function
of the input parameters and the scaling relations. The dependent
variables of the equations described in VTST00 are the poloidal Mach
number M, the dimensionless cylindrical radius, G, and the angle
describing the inclination of the streamline with respect to the disc
plane, ψ . These are all functions of θ once their radial dependence
has been defined as power laws of the function α ≡ � 2

A/� 2
∗ , where

� A is the cylindrical radius at the Alfvén point (AP) and � ∗ is the
chosen scaling length of the problem and effectively is the cylindrical
radius of the AP on the streamline with α = 1 (see Fig. 1).

To obtain a full solution, i.e. a streamline rooted at the disc mid-
plane and terminating infinity, the adopted numerical scheme must
handle three singular points that are present in the Bernoulli and
Grad–Shafranov equations when solved simultaneously: the AP and
the magnetosonic fast/slow points (MFP/MSP).2 At each singular
point the equations can be regularized either analytically, in the case
of the AP, or numerically, for the MSP and the MFP, analogously to
the simpler case of the sonic point in the Parker wind model (Parker
1958). The AP has been studied extensively, due to the possibility of
manipulating the equations analytically there. The other two singular
points present a more complex case. On the one hand, the position
of both the MSP and the MFP is not known before the full solution
for a given set of initial parameters is calculated, on the other hand,
a full solution cannot be computed without knowing the position of
these two singular points and the AP. Due to this intrinsic difficulty,
the MSP and MFP are often neglected by assuming cold flows, i.e.
thermal pressure plays no role in accelerating the flow (no MSP),
and/or by adopting a given asymptotic behaviour of the streamline
once the flow has become superalfvenic, which effectively pushes the
MFP at infinity. Typically, either one or both of the above assumptions
are made to avoid dealing with the complexity of determining
these singular points. Moreover, when the MSP and/or the MFP
are not removed from the equations, finding solutions across large
volumes of the parameter space is a difficult task that requires a solid
numerical algorithm capable of recovering the unknown positions
of the singular points and properly handling the equations at these
locations for wide ranges of the input parameters. However, the role
of the MFP in self-similar theories is fundamental when solving
the Bernoulli and Grad–Shafranov equations combined, because it
is the singular point where the flow loses causal contact with the
source (Li, Chiueh & Begelman 1992; Bogovalov & Tsinganos 1999;
Meier 2012). Downstream of the MFP the flow starts to focus rapidly
towards the polar axis up until the last recollimation point (LRP). We
identify the LRP with the region where the jet terminates in our
solutions (see Paper I). This region has been connected in relativistic
jets with the standing shock/particle acceleration regions in active
galactic nuclei and in stellar-mass black hole systems (e.g. Markoff,
Falcke & Fender 2001; Markoff, Nowak & Wilms 2005; Markoff
2010; Polko et al. 2010; Meier 2012; Cohen et al. 2014; Ceccobello
et al. 2018).

Weber & Davis (1967) showed that there can be multiple families
of solutions with different velocity profiles, crossing either none or
one/two/three singular points. We are looking at those that cross all
three points, which are characterized by an increasing poloidal Mach

2Note that after the separation of variables, they are points (not surfaces) on a
single streamline and they are modified because their position and definition
of the phase speeds of the slow and fast magnetosonic waves are affected by
the geometry of the magnetic field (e.g. Sauty & Tsinganos 1994; Ferreira &
Pelletier 1995).
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Non-relativistic MHD jet models 2073

number. VTST00 were the first to calculate complete solutions with
all these characteristics for the non-relativistic case.

2.2 Non-relativistic MHD system of equations

The Bernoulli and Grad–Shafranov equations for a steady-state
axisymmetric system describe the energy flux balance along the
poloidal direction and the equilibrium configuration of the magnetic
field lines.

Both can be derived from the conservation of momentum equation,
which describes the forces acting on a streamline:

ρ(V · ∇)V − 1

4π
B × (∇ × B) + ∇P − ρ∇ GM

r
= 0, (1)

where ρ, P , V , B are the density, pressure, velocity, and magnetic
field of the flow. G and M are the gravitational constant and the mass
of the central object, respectively.

If we adopt either cylindrical ( ẑ, �̂ , φ̂) or spherical coordinates
(r̂, θ̂ , φ̂), the poloidal and perpendicular unit vectors (b̂, n̂) can be
written as follows:

n̂ = cos(ψ) ẑ − sin(ψ)�̂ = cos(θ + ψ)r̂ − sin(θ + ψ)θ̂, (2)

b̂ = sin(ψ) ẑ + cos(ψ)�̂ = sin(θ + ψ)r̂ + cos(θ + ψ)θ̂ , (3)

φ̂ = φ̂. (4)

The projection of equation (1) along b̂, the Bernoulli equation,
describes how the different types of energies can be converted to one
another. The projection of equation (1) along n̂, the Grad–Shafranov
equation or transfield equation, provides the shape of the magnetic
field lines.

The projections of the Bernoulli and the transfield equation can be
rewritten using the scaling equations given in Appendix B and then
rearranged in the following form:

Ai

dM2

dθ
+ Bi

dψ

dθ
= Ci, (5)

with i = 1 representing the coefficients of the Bernoulli equation and
i = 2 the coefficients of the transfield equation. The Bernoulli and
transfield equations arranged in the way described above can further
be recast into a system of two first-order differential equations for the
evolution of the poloidal Mach number M(θ ) = √

4πρVp/Bp and
the angle ψ describing the inclination of the streamline with respect
to the horizontal axis:

dM2

dθ
= N1

D = B2C1 − B1C2

A1B2 − A2B1
, (6)

dψ

dθ
= N2

D = A1C2 − A2C1

A1B2 − A2B1
, (7)

with the numerators Ni (i = 1, 2) and the denominator D being
functions of the coefficients Ai, Bi, Ci (i = 1, 2) which are given in
Appendix A.

As described in Paper I, in order to minimize the intrinsic errors
we chose not to solve equation (7), but instead derive ψ(θ ) from the
Bernoulli integral equation (12) (see also VTST00, and Appendix A)
from the MSP to the LRP. Upstream of the MSP, the streamlines can
undergo oscillations, depending on the given set of input parameters,
so the sign of cos (ψ + θ ) can change. Hence, equation (7) must be
integrated with care in this region to ensure the correct radial profile
of the solutions from the disc to the MSP.

Additionally, we solve a differential equation for the unknown
function G(θ ), which is defined as the cylindrical radius to the polar

axis of a streamline labelled by α, normalized to its cylindrical radius
at the AP. The equation for G is the following:

G(θ ) = �

�α

= �

��

α−1/2, (8)

dG2

dθ
= 2G2 cos(ψ)

sin(θ ) cos(ψ + θ )
. (9)

The solution of these equations depends on six parameters: �, F,
kVTST, λVTST, μVTST, and εVTST (see VTST00). The first parameter
� is the polytropic index in the equation of state q = P/ρ� , where q
is the specific gas entropy and a constant of motion of the problem.
The parameter F determines the initial current distribution in the
radial direction, −�Bφ = C2 sin(θ )rF−1, which is an increasing or
decreasing function of r depending on the value of F. This parameter
also determines the radial dependence of the magnetic field lines
through B ∼ � F − 2. kVTST is proportional to the ratio between the
Keplerian speed and the poloidal flow speed at the Alfvén radial
distance, and often is referred to as the mass-loss parameter (see
e.g. Ferreira 1997, but also VTST00). λVTST is the specific angular
momentum in units of V��� and μVTST is proportional to the gas
entropy. The parameters kVTST, μVTST, and λVTST are defined by the
following relations:

kVTST =
√

GM
��V 2

�

; μVTST = 8πP�

B2
�

; λVTST = L

V���

. (10)

It is worth noticing that the starred quantities found across the paper
are scaling factors and can be related to the quantities calculated at
the AP on the reference streamline (α = 1), namely ρ� = ρA, �� =
� A, and

(B∗, V∗) = − cos(θA + ψA)

sin(θA)

(
Bp,A, Vp,A

)
, with B∗ =

√
4πρ∗V∗

(11)

Finally, εVTST is the sum of kinetic, enthalpy, gravitational, and
Poynting energy flux densities per unit of mass flux density, rescaled
by α−1/2V 2

� , i.e.

εVTST = α1/2

V 2
�

E = [
εK,p + εK,φ + εT + εM + εG

]

=
[

1

2

(
M2

G2

sin(θ )

cos(θ + ψ)

)2

+ 1

2

(
λVTST

G2

G2 − M2

1 − M2

)2

+ μVTST

2

�

� − 1
M2(1−�) + λ2

VTST

1 − G2

1 − M2
− k2

VTST

sin(θ )

G

]
.

(12)

The total energy flux per unit mass can be rescaled with the
Alfvén poloidal velocity as 2E/V 2

A,p = 2εVTSTV 2
∗ α−1/2/V 2

A,p, which
becomes

ε̃ = 2εVTST
cos2(θA + ψA)

sin2(θA)
(13)

and with the use of the De L’Hôpital rule to regularize the indefinite
terms (see equation 18), we can write it at the AP and obtain the
Alfvén Regularity Condition (ARC, see VTST00) in the compact
form

ε̃ = 1 + cos2(θA + ψA)

sin2(θA)

[
−2k2

VTST sin(θA) + μVTST
�

� − 1

+λ2
VTST

(
1 + g2

A

)]
. (14)

The function gA is the fastness parameter calculated at the AP. A
general definition of the fastness parameter given by Pelletier &
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Pudritz (1992) is

Vφ

�
= �(1 − g), (15)

where

� = 1

�

(
Vφ − Vp

Bφ

Bp

)
(16)

is the angular frequency of the streamline, which is a constant of
motion of the problem. The fastness parameter gives a measure of
how large the angular velocity of the gas is in relation to the angular
velocity of the magnetic surface on which it moves. We can derive
gA from the application of the De L’Hôpital rule to the indefinite
forms

1 − G2

1 − M2

∣∣∣∣
A

≡ gA = 2 cos(ψA)

pA sin(θA) cos(θA + ψA)
, (17)

G2 − M2

1 − M2

∣∣∣∣
A

= 1 − gA, (18)

where pA = dM2/dθ |A. In the following section, we summarize the
method we developed in Paper I that we now adapt to solve the non-
relativistic equations. For the details of the algorithm, we address the
interested reader to Paper I. Indeed, there is no substantial difference
in the mechanics of the algorithm, although the non-relativistic
equations are noticeably easier to handle.

2.3 Method

In Paper I, we described a new numerical method to find solutions
to the relativistic radial self-similar magnetohydrodynamics (MHD)
equations for a disc-launched jet in the presence of gravity (Vla-
hakis & Königl 2003; Polko et al. 2014). As discussed in Section 2.1,
even under the simplifying assumption of self-similarity, solving self-
consistently and simultaneously the Bernoulli and Grad–Shafranov
equations is known to be a rather difficult task because of the singular
surfaces. At the location of the singular points, the equations (6) and
(7) are indeterminate but finite, e.g.

dM2

dθ
= N1

D = 0

0
= finite. (19)

However, only at the AP one can derive an analytical expression
that gives the finite value of the derivative of the poloidal Mach
number (ARC). The location of the AP and G2

A, M2
A, dG2/dθ |A and

dM2/dθ |A can be determined from the values of the input parameters
and the ARC (equation 14). The regularity conditions at the MFP
and MSP can exclusively be derived numerically together with their
position on the streamline.

As a result, the most frequent approach is to determine all the
unknown functions and parameters at AP and then integrate the
system with a shooting method towards the other two singular points.
However, given the high accuracy needed to determine the values of
the parameters and the intrinsic numerical difficulties of treating,
under these conditions, the form 0/0, this method presents serious
drawbacks and does not allow to easily find and convincingly identify
solutions to the required accuracy threshold. Therefore, it impedes a
full exploration of the parameter space.

The structure of our numerical method is the following:

1. We guess the locations of the critical points, θMSP and θMFP, and
derive values for M2, G2, and their derivatives given by the condition
that the numerators and the denominator of equation (19), and of the
similar equation for ψ , i.e. dψ/dθ = N2/D = 0/0, are zero at the
MSP/MFP of choice.

Table 1. Model parameters. The parameters are equivalent to VTST00,
but we changed the notation of some of them to avoid confusion with the
relativistic parameters and physical quantities described in Paper I.

Input parameters

F Exponent of the radial scaling of the current
� Polytropic index of the gas
θA Angular distance of the AP from the jet axis
ψA Inclination of the streamline with respect to the

horizontal axis at the AP
kVTST Mass-loss parameter

Fitted parameters
θMFP Angular distance of the MFP from the jet axis
θMSP Angular distance of the MSP from the jet axis
μVTST Scaling of the gas-to-magnetic pressure ratio
λVTST Specific angular momentum in units of V���

2. We integrate away from AP, MSP, and MFP towards the mid-
points θmid,MSP = (θA + θMSP)/2, and θmid,MFP = (θA + θMFP)/2.

3. We determine the parameters that give a match at the mid-points
using the Bayesian open-source code MULTINEST (Feroz & Hobson
2008; Feroz, Hobson & Bridges 2009; Feroz et al. 2013).

The specific choice of input parameters and fitted parameters is
given in Table 1. Once a particular family of solutions is specified
through the choice of F, �, θA, ψA, and kVTST, we identify the
location of the MSP and MFP and the best-fitting values of the
remaining parameters μVTST and λVTST and we extend the solutions
upstream of the MSP towards the disc mid-plane and downstream
of the MFP towards the LRP. In Paper I, we defined this point as
the last point we were able to calculate with our algorithm. The last
few integration points before LRP seem to indicate the onset of a
recollimation shock where the fluid is compressed in a small section
around the polar axis. Indeed, we noticed that the denominator is
approaching zero again in equations (6) and (7), while the numerator
is not. This means that both the derivative of M2 and ψ become
infinite close to LRP, making the integration towards this (singular)
point impossible.

3 PARAMETER STUDY

Given the wealth of solutions that we are able to retrieve using this
algorithm, we focus on a grid of solutions obtained by fixing the
adiabatic index � to 5/3, the exponent of the radial scaling of the
current F to 0.75, as in Blandford & Payne (1982, hereafter BP), and
the mass-loss parameter kVTST between 1.5 and 5.0 in steps of 0.5.
We note that the resulting solutions will be generally different from
the stereotypical BP-like solution because we include gas pressure
and the crossing of all the three singular points. For each kVTST,
we seek solutions with all the allowed combinations of θA and ψA,
which are the angles determining the position and the collimation
of the streamline at the AP, respectively. In Fig. 2, we show the
distribution of these solutions in the plane of dimensionless angular
momentum and entropy, i.e. the (λVTST, μVTST)-plane. Each line
represents solutions for a constant kVTST and θA, while only ψA

varies.
As the upper panel of Fig. 2 shows, although our solutions cover

a good extent of this region of the parameter space, a few series
could not be completed because of the disappearing of the MSP
below the disc mid-plane, e.g. for kVTST = 2.5 (grey line), which are
physically not meaningful. In the lower panel of Fig. 2, we show
how the collimation angle at the AP, ψA, is changing for a few lines
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Figure 2. Upper panel: Grid of solutions presented in the angular momentum
and entropy plane, i.e. (λVTST, μVTST)-plane for � = 5/3, F = 0.75. The
location (θA) of the AP, collimation (ψA) at the AP, and the mass-loss
parameter kVTST are allowed to vary within a chosen grid. In each kVTST =
constant subset, the lines connect solutions with constant θA and variable
ψA. Lower panel: Same plot for a subset of solutions for kVTST = 3.0.
Neighbouring lines differ in θA by 5◦. Along each line we have indicated the
value of ψA for some of them to illustrate how sensitive the equations are for
a small change of this angle. Particularly, a tiny change in ψA translates into
a large step in μVTST, when λVTST is large.

on which the position of the AP, θA, is constant and the mass-loss
parameter, kVTST, has been set to 3.0 for all the lines. We see that
the parameters of a solution change significantly with only a small
change in ψA. This is particularly true in the top part of the figure
where the dimensionless angular momentum, λVTST, is large.

We only find a solution when the sum of the angles θA + ψA is
roughly within the interval 93–111◦. This range varies depending on
the value of kVTST (see Table 2). In general, the allowed range of
this sum is between 90◦ and 180◦ to ensure that the derivative of
the poloidal Mach number is negative, i.e. the fluid is accelerating
at Alfvén. For a constant location of the AP, θA, the collimation
angle ψA is small when the entropy μVTST approaches zero and
is large when the angular momentum λVTST approaches zero. As
we will discuss later, the combination of these two angles ultimately
determines the dynamics and the geometry of the jet and the narrower
range of their sum that we find is likely due to the minimum and
maximum energy fluxes allowed in this region of the parameter
space (see Fig. 4).

The lowest value of the sum, i.e. 93 (small θA, large ψA), coincides
with the jet configurations with lowest total energy-to-mass flux
ratios which is around ∼ V 2

A,p/2 at the jet base (z = 0) for kVTST

Table 2. The maximum value of θA and the sum θA + ψA with a constant
kVTST. The minimum of θA = 10◦ and of the sum θA + ψA = 93◦ are the
same for all kVTST values.

kVTST θA,max (θA + ψA)max

1.5 30◦ 98◦
2.0 45◦ 102◦
2.5 65◦ 106◦
3.0 65◦ 107◦
3.5 70◦ 109◦
4.0 75◦ 110◦
4.5 75◦ 110◦
5.0 80◦ 111◦

Figure 3. The rotational energy as a function of the total energy scaled with
the poloidal velocity at Alfvén for all solutions (yellow dots). In blue is shown
the total energy in a frame rotating with the constant angular frequency �

versus the total energy in the inertial frame, also scaled with the poloidal
velocity at Alfvén. The red crosses are solutions with kVTST = 3.0 and θA =
60◦. They will be used to discuss other trends later on.

of the order of unity (equation 14). These solutions have little-to-
none magnetic field (λVTST → 0), and represent a tenuous jet (low
total energy flux, see Sections 3.1 and 3.2) supported by some (μVTST

small) gas pressure, which provides the balance to gravity. By varying
the two angles within the allowed range, we recover a large collection
of solutions where we see low-energy hot jets transform into cold
and fast jets with a large angular momentum (λVTST � 20) and a
relatively small contribution of the gas pressure (small μVTST) to
the total energy. The large variety of physical properties within this
sample of solutions provides an ideal framework to study the different
jet configurations and to devise a method for the comparison of such
solutions to astrophysical sources.

3.1 General trends

In this section, we discuss some general properties and trends
observed while inspecting the whole ensemble of solutions. In Fig. 3,
we show how the total energy is divided up between rotational energy
and generalized pressure (Ferreira 1997). The rotational energy is the
difference between the total energy in an inertial frame and the total
energy in a frame rotating with a frequency � (equation 16), i.e.

Erot = L� = � 2
A�2. (20)
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Figure 4. Ratio between the thermal energy and magnetic energy as a
function of the total energy with respect to the poloidal kinetic energy at
Alfvén for all solutions.

In the above equation, L is the angular momentum, defined as

L = �

(
Vφ − Bφ

4πρ

Bp

Vp

)
, (21)

which is also a constant of motion along the streamline. Fig. 3 shows
the total energy in the rotating frame rescaled by the poloidal kinetic
energy at the AP (blue dots):

2
E − L�

V 2
A,p

= ε̃ − ε̃rot (22)

and the rotational energy rescaled, 2L�/V 2
A,p = ε̃rot (yellow dots)

versus the rescaled total energy in the inertial frame ε̃ = 2E/V 2
A,p .

All the points lie on two narrow curves. The solutions highlighted
in the bottom panel of Fig. 2 are marked as red crosses in Fig. 3.
The total energy in the rotational frame, ε̃–ε̃rot (blue dots), otherwise
called the generalized pressure (Pelletier & Pudritz 1992; Ferreira
1997), achieves a maximum when. the rotational energy, ε̃rot (yellow
dots), is negligible. Since the total energy flux sustaining a jet, i.e. the
Bernoulli constant, is positive, the generalized pressure can change
sign depending on the relative contribution of the rotational energy,
ε̃rot, to the total energy. As the rotational energy, ε̃rot, increases, it
approaches equipartition with the generalized pressure which occurs
in the regime where the latter is still positive. When the sign flip
occurs, we start to see a dominant contribution of the magnetic
energy in the Bernoulli equation (equation 12).

Based on the ratio between the thermal energy and the magnetic
energy flux we distinguish three categories of solutions: thermally
dominated hot, equipartition/centrifugal and magnetically dominated
cold jets (see Fig. 4). We show this ratio at the disc mid-plane (blue
squares) and at the MSP (pink crosses) for the full sample of solutions
versus the total energy rescaled with the poloidal kinetic energy. The
vertical lines are drawn to guide the eye. We see that the distribution of
the jet models in this plane is very similar between z = 0 and the MSP.
The hot jets are low-energy solutions and as the ETH/EM increases the
total energy flux, ε̃, remains constant and at its minimum value. When
the thermal and magnetic energy flux are roughly at equipartition,
the total energy is increasing steadily as the solutions become
more magnetically dominated. As we enter the cold regime, the
magnetic energy grows more rapidly for a small variation of the input
parameters (see bottom panel of Fig. 2), but the jet configurations
do not increase so much in total energy anymore, approaching its

Figure 5. The total energy at the base (top panel) and at the MSP (bottom
panel) split up in its components for a series of solutions for kVTST = 3.0 and
θA = 60◦. All energies have been scaled with the poloidal kinetic energy at
Alfvén.

maximum. Since there is this correspondence between total energy
and hot/cold regime, we will use it interchangeably across the paper.

In Fig. 5, we show the different contributions to the total energy
at the base (top panel) and at the MSP (bottom panel) for a series
of solutions with kVTST = 3.0 and θA = 60◦. The trends discussed
here are also observed in other series. We start by noticing that when
the magnetic energy is larger, the total energy is larger too. When
the total energy is low, the gravitational energy and the thermal
energy dominate with almost equal magnitude, cancelling each other.
Only at higher total energies the thermal energy becomes negligible.
Apart from the most energetic solutions, the kinetic energy consists
mainly of the poloidal component. At higher energies the poloidal
component of the velocity of the gas leaving the mid-plane is
relatively low while the toroidal speed gives the largest contribution
to the total kinetic energy.

In Fig. 6, we present the components of the velocity and of
the angular frequency � of the streamlines (equation 16) for the
same series of solutions presented in Fig. 5. At lower total energies
the poloidal velocity is relatively large with respect to the toroidal
velocity. As a consequence, even when the ratio of the magnetic field
components (grey line with dots) is low, i.e. the magnetic field is
almost not twisted at all, the second term on the RHS of the equation
describing � (equation 16, magenta line with stars) is dominant,
while the toroidal velocity (brown line with pentagons) is negative
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Non-relativistic MHD jet models 2077

Figure 6. Velocities at the base (top panel) and at the MSP (bottom panel)
scaled by the poloidal velocity at Alfvén as a function of the scaled total
energy for a series of solutions for kVTST = 3.0 and θA = 60◦.

and smaller. This means that the gas is lagging behind the rotation of
the disc and the magnetic field is weak, while � is at its minimum.

Only the very last solution with the highest energy of this series
is rotating at Keplerian speed, which can be seen by noticing that
the last dot of the pink line with crosses (Vk) coincides with the last
point of the brown line with pentagons (Vφ) in the top panel of Fig. 6.
As expected by the non-negligible contribution of the enthalpy, the
overwhelming majority of the solutions in this ensemble is sub-
Keplerian at the disc mid-plane, with a deviation increasingly larger
as the solutions become warmer and warmer.

This means that the typical approximation � ∼ �gas = Vφ /� ∼
�k cannot be taken as a general property of this sample of solutions.
Only a small fraction of the solutions presented in this paper can
be considered corotating with the disc, like for instance the last
three high-energy solutions in Fig. 6, where we see that �� (green
line with crosses) matches Vφ (brown line with pentagons), while
−VpBφ /Bp (magenta line with stars) is close to zero.

From a geometrical point of view, the radial profile of the
streamlines varies depending on how hot the jet is, typically with
highly oscillating jet bases for cold jets while no oscillations are
present for warm and hot jets (see Fig. 7). This is a consequence of
the oscillatory nature of the transverse component of the forces that
define the collimation of the streamline. We will discuss this topic in
detail in Section 3.2. Since it is very likely that such oscillations may

Figure 7. Examples of streamlines of a series of solutions for increasing
μVTST.

Figure 8. Acceleration fraction versus the total energy rescaled.

be unstable and considering that the MSP is a more robust point in
our solutions, we identify the MSP with the jet base from now on.

Different jet configurations can be also classified based on the
amount of acceleration that the gas experiences from the MSP to the
MFP, being that the point where the flow loses causal contact with
the source and the flow upstream. In Fig. 8, we plot all the solutions
divided in subgroups with constant kVTST in the plane defined by the
increase in the poloidal velocity experienced by the matter from the
MSP to the MFP and the rescaled total energy flux. The low-energy
flux, pressure-driven, solutions have also low �V/VMFP since they are
characterized by large poloidal velocities at the MSP which do not
increases much approaching the MFP. As the energy flux increases,
the poloidal velocity decreases (see bottom panel of Fig. 6) and the
increment of the velocity �V/Vp ,MFP approaches 1.

Similarly, the acceleration of the flow is also traced by the increase
in the poloidal kinetic energy. In Fig. 9, we show the relative
increment/decrement of the energy fluxes between the MSP and
the AP (first phase of the acceleration, top three panels) and the AP
and the MFP (second phase of acceleration, bottom three panels) in
a transition from hot to cold solutions (low- to high-energy flux).
In the first phase of the acceleration, hot solutions are driven by
the thermal energy which suffers the largest decrement. However,
as highlighted by the zoom around zero, a fraction of the thermal
energy is transferred to the magnetic energy, which is increasing
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Figure 9. Upper panels: Relative increment of the energy fluxes with respect
to the total energy flux, (E·,AP − E·,MSP)/Etot, versus the total energy rescaled
from the MSP to the AP. The small left panel is a zoom around zero. The small
right panel shows the relative increment of the components of the angular
momentum with respect to the total angular momentum between the MSP and
the AP versus the total energy rescaled. The solutions are obtained for θA =
65◦ and kVTST = 4.0. Lower panels: Same as the upper panel but between
the AP and the MFP.

for hot solutions with energy fluxes <5. This behaviour is followed
closely by the relative increment/decrement of the components of
the angular momentum. For these hot solutions the hydrodynamical
component of L decreases, while the magnetic component increases,
showing that the angular momentum of the gas is transferred to the
angular momentum of the magnetic field. Such additional channel of
energy transfer has been seen in simulations such as e.g. Komissarov
et al. (2009), Cayatte et al. (2014), and in Paper I. This effect is
seen as well in the bottom panel of Fig. 13 as a small rise in

the magnetic energy around the AP. As the jet models move to
higher energy configurations, the magnetic energy increases while
the thermal energy is still important, leading to an increasing poloidal
kinetic energy. The peak of the poloidal kinetic energy occurs in
correspondence to �EM/Etot 
 �ETH/Etot. Then, it decreases again
due to a decrease in toroidal kinetic energy. In the second phase
of the acceleration, the thermal energy still dominates for hot low-
energy solutions. Equipartition/MC and cold solutions instead are
accelerated all the way from the MSP to the MFP by the magnetic
field. In the upper part of the jet, the relative increment of the
components of the angular momentum do not change sign and
the magnetic angular momentum is always transferred to the gas
component.

Moreover, since the downstream portion of the MFP might be
already affected by a shock given by the loss of causal contact with
the flow upstream, we take as a proxy the total jet length the distance
between the MSP and the MFP. The top panel of Fig. 10 shows
that low-energy solutions can be as short as 102/� ∗ and as long as
106/� ∗. As the total energy increases this interval narrows by ∼2
order of magnitude (103−7 × 104). We note that when the streamlines
become more vertical (increasing ψA), this leads to a decrease in total
energy (the lines in the plot are drawn for constant angular position
of the AP, θA), while increasing θA (from top to bottom) makes the
�z decrease. If we were to focus on one of the most extended lines
across the energy range, for instance the red dashed line that is for an
intermediate constant value of the angular position of the AP (θA =
50◦) and a fixed mass-loss parameter (kVTST = 4.0), we would see a
correlation between the distance between the MSP and the MFP and
the total energy: the higher the energy the larger is the distance, until
it reaches an almost constant length (∼20 000/� ∗). We note that the
maximum of �z does not coincide though with the highest energy in
the line. Therefore, beyond a certain total energy, the jets do not grow
taller, but their �V/Vp,MSP increases as shown in the middle panel of
Fig. 10 and in Fig. 8. Low-energy hot solutions increase in length by
a factor of 10 as the collimation angle, ψA, increases, maintaining
their velocity increment roughly constant (bottom panel of Fig. 10).

Lastly, we discuss the variation of the plasma-β and mass load η

at the MSP, which we identify with the jet base as discussed above.
These two quantities are given by

β = P

B2/8π
and η = 4πρVp��

B2
p

, (23)

following the definitions of e.g. Anderson et al. (2005) and Spruit
(1996). Since the general trend is the same within subsets of solutions
with constant kVTST, we present here the series of solutions obtained
for kVTST = 4.5 and for Alfvén position angle (PA), θA, going from
10◦ to 75◦ roughly from the bottom up (Fig. 11) and then discuss how
they change for increasing kVTST at constant θA (Fig. 12). Solutions
in both figures have increasing collimation angle, ψA, along each line
from left to right (from 28◦ to 83◦ in Fig. 11 and from 48◦ to 57◦ in
Fig. 12). In Fig. 11, we see that thermally dominated, low-energy flux
solutions have the largest plasma-β (∼1). Then as the collimation
angle, ψA, decreases, the energy flux increases and the plasma-β
experiences a first decrease. For the Alfvén angular positions for
which more ψA values are allowed, we see the plasma-β remaining
constant for many consecutive solutions of increasing energy flux.
However, when the solutions become magnetically dominated, the
plasma-β has a drop. The mass load has a minimum which coincides
with the beginning of the plateaux of the plasma-β, to again rise to
higher energy fluxes. The relatively large mass load of the low-energy
flux solutions is due to high density of the gas, while a similar value
is reached for the high-energy flux solutions because the magnetic
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Figure 10. Upper panel: Distance between the MFP and MSP versus total
energy rescaled ε̃ = 2Etot/V

2
p,A. The lines are connecting solutions with

constant angular position of the AP (θA) and the colours mark different
values of the mass-loss parameter kVTST. The red dashed line is a series of
solutions obtained with θA = 50◦ and kVTST = 4.0. Middle panel: Poloidal
velocity scaled with the Alfvén poloidal velocity (Ṽp = Vp/Vp,A) along the
streamline for a set of solutions with θA = 50◦ and kVTST = 4.0. The solutions
in this plot have a total energy flux rescaled (ε̃) going from 1.5 to 10.5 and
distances between the MSP and MFP changing by a factor of ∼50. Bottom
panel: Same plot as the middle one, but for θA = 30◦. The solutions in this
plot have roughly a constant total energy flux rescaled (ε̃ ∼ 1.3) and distances
between the MSP and MFP changing by one order of magnitude, going from
7900 to 72 500. The second solutions in the middle and bottom panel have
the largest �z, but not the largest ε̃.

Figure 11. Plasma-β (black lines with dots, top panel) and mass load η (red
lines with crosses, bottom panel) versus total energy flux rescaled for all the
solutions with kVTST = 4.5 at the MSP. Each line connects solutions with
constant θA and increasing ψA. The arrows show the approximate direction
of increasing θA and ψA.

Figure 12. Plasma-β (lines with dots, top panel) and mass load η (lines with
crosses, bottom panel) versus total energy flux rescaled for all the solutions
with θA = 45◦ and kVTST = 3.0 (blue), 3.5 (pink), 4.0 (grey), 4.5 (green), 5.0
(yellow) at the MSP. Each line connects solutions with constant θA = 45◦
and varying ψA.

field is more tightly wound up (|Bφ /Bp| > 1, see e.g. Spruit 1996;
Anderson et al. 2005).

In Fig. 12, we show how the same quantities vary in relation to
an increase in kVTST. The plasma-β and the mass load, η, show a
similar behaviour with respect to the mass-loss parameter, kVTST: the
larger is kVTST the larger is the plasma-β and the mass load. However,
we notice that η has a weaker dependence on kVTST both at low- and
high-energy fluxes, while the plasma-β responds to a change in kVTST

more homogeneously across the energy flux interval.

3.2 Hot and cold jets

To illustrate the qualitative changes of the outflow properties along a
series of solutions for increasing collimation angle ψA, we describe
the transition looking at the two extreme solutions plots of the compo-
nents of the Bernoulli equation (equation 12) and an intermediate one
which resembles a more classical magneto-centrifugally launched
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Table 3. Parameters of the solutions used in Section 3.2. The solutions have
the following common parameters kVTST = 3.0, θA = 60◦, � = 5/3, and
F = 0.75. The cold jet and the hot jet models are the extremes of the series,
while the MC jet is an intermediate one which is closest to the classical
magneto-centrifugal jets encountered in the literature.

Model μVTST λVTST θMFP θMSP ψA

Cold jet 7.58 × 10−2 17.3853 0.11803 1.2462 37.07
MC jet 0.5396 16.8723 0.11778 1.2578 37.09
Hot jet 6.5510 1.6861 0.12347 1.3852 46.00

jet. We will refer to these solutions as cold, magneto-centrifugal
(MC), and hot jet models and list their parameters in Table 3. As
shown in Fig. 13, the energy fluxes along the poloidal direction
are substantially different going from the cold (upper panel) to the
hot (lower panel) jet solution. The cold jet has a high Poynting-
to-enthalpy flux ratio. The magnetic energy is then converted into
kinetic energy downstream of the AP. Upstream of the MSP, all
the energy fluxes are oscillating, following the oscillations of the
radial profile of the streamline (see Fig. 7). The intermediate MC jet
solution has qualitatively the same characteristics of the cold one,
but the oscillations are gone. The hot jet has an uneventful behaviour
of the energy fluxes along the streamline. The enthalpy is dominant
and roughly equal to gravity in absolute value and opposite in sign.
Right after the AP, initially the thermal energy flux is the main source
of energy being transformed into kinetic energy and into magnetic
energy, which shows a small increase, as discussed in Section 3.1.
Then, the magnetic energy flux takes over the final acceleration.
For constant mass-loss parameter, kVTST, the total energy flux is
∼2 orders of magnitude larger for the cold jet. This larger energy
reservoir allows the cold jet to extend in length a factor of ∼100
more than the hot jet, when the same reference scale length, � ∗ is
applied.

The forces acting along (b̂) and perpendicular (n̂) to the streamline
highlight the transition from cold to hot jet configurations. Here, we
give the compact form of the forces in both direction, while we
provide the full derivation in Appendix C.

b̂ :
ρ

2

∂V 2
p

∂l
= ρV 2

φ

cos(ψ)

�
− ∂P

∂l
+ ρ

∂

∂l

(GM
r

)

− 1

8π

∂B2
φ

∂l
− B2

φ

cos(ψ)

4π�
, (24)

n̂ :

(
ρV 2

p − B2
p

4π

)
∂ψ

∂l
= +ρV 2

φ

sin(ψ)

�
− ∂P

∂n
+ ρ

∂

∂n

(GM
r

)

− 1

8π

∂

∂n

(
B2

p + B2
φ

) + B2
φ

sin(ψ)

4π�
. (25)

The term on the LHS of the equation (24) is the acceleration along
the streamline, the first term on the RHS is the centrifugal force,
the second term is the gas pressure force, the third term is the
gravitational force, and the last two terms are the magnetic pressure
gradient and the magnetic tension. On the LHS of equation (25)
there is the derivative of the angle ψ along the streamline. The
inverse of this derivative is also called the collimation radius, Rc =
(∂ψ /∂l)−1. On the RHS there are the centrifugal force, the gas
pressure force, the gravitational force, and the magnetic pressure
gradient and the magnetic tension. In the following discussion, we
refer to accelerating/collimating forces when such terms are positive,
and to decelerating/decollimating forces when they are negative. In
Fig. 14, we show the forces perpendicular to the streamline and in
Fig. 15 the forces along the streamline for the same three solutions.

Figure 13. Energy fluxes along the streamline. The green line is Poynting
flux, the pink line is the enthalpy energy flux, the brown line is the kinetic
energy flux, and the dashed purple line is the gravitational energy with
reversed sign. The total energy flux is shown as a solid black line. Note
that the y-axis scale is different in the three plots, while the x-axis scale is the
same. From top to bottom the solutions go from cold to hot. The parameters
are listed in Table 3.

The cold jet has a troublesome start, since it lacks a vertical velocity
component that allows for a straightforward launching (top panel in
Fig. 16). At the very beginning, the jet is decollimating (∂ψ /∂l <

0, black thin line) under the action of the gas pressure force (pink
line). Soon, the gas pressure gradient changes sign and together with
the other positive forces, i.e. gravity (purple line), centrifugal (brown
line), and magnetic tension (teal line), is collimating the jet against
magnetic pressure gradients. Around the peak of gravity and the
centrifugal force, the pressure gradient becomes negative but smaller
in modulus, resulting in a converging streamline (thick solid black
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