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ABSTRACT: Transformation products ought to be an important
consideration in chemical alternatives assessment. In this study, a
recently established hazard ranking tool for alternatives assessment
based on in silico data and multicriteria decision analysis (MCDA)
methods was further developed to include chemical transformation
products. Decabromodiphenyl ether (decaBDE) and five proposed
alternatives were selected as case chemicals; biotic and abiotic
transformation reactions were considered using five in silico tools. A
workflow was developed to select transformation products with the
highest occurrence potential. The most probable transformation products of the alternative chemicals were often similarly persistent
but more mobile in aquatic environments, which implies an increasing exposure potential. When persistence (P), bioaccumulation
(B), mobility in the aquatic environment (M), and toxicity (T) are considered (via PBT, PMT, or PBMT composite scoring), all six
flame retardants have at least one transformation product that can be considered more hazardous, across diverse MCDA. Even when
considering transformation products, the considered alternatives remain less hazardous than decaBDE, though the range of hazard of
the five alternatives was reduced. The least hazardous of the considered alternatives were melamine and bis(2-ethylhexyl)-
tetrabromophthalate. This developed tool could be integrated within holistic alternatives assessments considering use and life cycle
impacts or additionally prioritizing transformation products within (bio)monitoring screening studies.

■ INTRODUCTION

Transformation of chemicals is an important but often
neglected issue in chemical risk assessment. The toxicological
risks associated with chemicals can be underestimated if only
parent compounds are considered, as some chemicals can
transform into more hazardous compounds. For example, the
dry cleaning solvent perchloroethylene, which was widely used
before the 1990s, can reductively degrade to the more toxic
vinyl chloride.1 Bronopol (2-bromo-2-nitro-1,3-propanediol),
which has been used as a preservative in pharmaceutical and
personal care products, can undergo transformations to the
persistent and toxic products 2-bromo-2-nitroethanol and
bromonitromethane in aquatic environments.2 Carbamazepine,
an antiepileptic pharmaceutical agent, has been shown to
photodegrade into the more toxic products acridine and
acridone.3

Chemical regulation and risk assessment guidelines have
been created to address the importance of including trans-
formation products. For example, the European chemical
regulation Registration, Evaluation, Authorisation and Re-
striction of Chemicals (REACH) emphasizes that trans-
formation products should be included in the persistence,
bioaccumulation, and toxicity (PBT) assessment.4 The
importance of considering transformation products in risk
assessment has been an ongoing topic of discussion for several

substances,5,6 such as for the flame retardant decabromodi-
phenyl ether (decaBDE).7,8 Although decaBDE itself is
considered to have low bioaccumulation potential and low
toxicity, it can undergo environmental transformation reactions
into dozens of other polybromodiphenyl ethers (PBDEs) that
are more bioaccumulative and toxic than decaBDE; therefore,
it was evaluated under REACH as a PBT substance.7,8

Alternatives assessment frameworks assess substances with
the same or similar uses considering both environmental and
human health aspects, including life cycle impacts, product
performance, technical suitability, cost, and social responsi-
bility, to minimize the risk of regrettable substitutions.9,10 The
importance of including transformation products is often
pointed out in chemical hazard assessments used in alternatives
assessment frameworks like GreenScreen,11 U.S. Environ-
mental Protection Agency (EPA) Design for Environment
(DfE) Program,12 and recently by Martin.13 However, this
remains a difficult task, as many of the chemicals considered in
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alternatives assessments are novel compounds that have been
subjected to a few experimental investigations themselves.
Experimental data on their transformation products are even
more scarce. Therefore, using recommended experimental
approaches to identify transformation products that pose the
most risk, such as combining exposure assessment with effect-
driven assessments using ecotoxicity assays,14 is not generally
an option at the initial, screening stage. In such cases, in silico
tools can be useful to predict transformation products as well
as their hazardous properties. For example, GreenScreen11

suggests the use of models provided by the OECD QSAR
Toolbox15 for predicting chemical transformation when there
are no experimental data available. Martin13 used the Chemical
Transformation Simulator (CTS)16,17 provided by USEPA to
predict biotransformation products for case chemicals. There is
a range of other in silico tools available that have been used for
the prediction of transformations products for chemical risk
assessment of organic chemicals, including commercial tools
such as Metasite,18 Stardrop,19 Zeneth,20 and Meteor Nexus,21

as well as open-source tools such as BioTransformer22 and the
EAWAG-biocatalysis/biodegradation database pathway pre-
diction system (EAWAG-BBD/PPS).23 A key challenge when
using such tools is a meaningful interpretation of their output.
They typically generate a large number of different trans-
formation products, especially if the software includes a large
variety of transformation pathways. Even if estimations of the
relative fraction of the products formed or the likelihood of
formation are provided by the software, they are always
associated with some uncertainty. Further, even if some
experimental data are available, it must be considered that the
transformation rate as well as exposure level for each product
are hard to measure since they are highly dependent on
environmental conditions (e.g., temperature, microbial com-
munities, pH) and exposure routes (e.g., sludge, soil,
atmospheric, and aquatic).13,24 These challenges all contribute
to there being very few published alternatives assessment case
studies that take transformation products into consideration.
One exception to this was Martin,13 which concerns decaBDE
as well as three proposed organophosphate-based alternative
flame retardants. In that study, transformation products
predicted by CTS16,17 were considered and hazard information
was given for each of the parent compounds and trans-
formation products, though without providing a hazard ranking
for alternative selection. Herein, we wish to expand on such a
study by considering a broader array of in silico tools, flame
retardants, hazard criteria, and hazard ranking approaches via
applying multiple multicriteria decision analyses (MCDA) to
assist in evaluating this larger dataset. The use of MCDA
methods has become increasingly popular in the field of
alternatives assessment, as these methods can be used not only
for drawing more trustworthy conclusions but also for
identifying the most critical criteria.25

In our previous study,26 an efficient hazard ranking tool was
established for alternatives assessment by combining open-
source quantitative structure−activity relationship (QSAR)
model hazard data and MCDA methods with the consideration
of data uncertainties. Herein, we extend this hazard ranking
tool to include and select important transformation products
predicted by in silico tools and use multiple MCDA methods
for a joint hazard ranking. The specific aims are to: (a) use
available in silico tools, especially the open-source ones, to
predict transformation products of the case chemicals to see
the availability and any limitations of these tools; (b) develop a

strategy to select the most important transformation products
from all available tools to reduce uncertainty, and validate with
experimental data; (c) adapt the MCDA methods used in the
previous study to include transformation products; and finally
(d) see if the hazard ranking of alternative flame retardants
changes when transformation products are considered.

■ MATERIALS AND METHODS
Case Chemical Selection and Hazard Data Calcu-

lation. Our previous study26 derived hazard ranking results of
decaBDE and 16 possible alternative flame retardants using
different MCDA methods. This was mainly done using in silico
data, as available experimental data were not sufficient for a
complete assessment of all hazard endpoints of each alternative
flame retardant (though, in general, high-quality experimental
data are favored when available). Four hazard properties
including persistence (P), bioaccumulation (B), mobility in
water (M), and toxicity (T) were considered, and hazard
ranking was done using three MCDA methods: heat mapping,
multiattribute utility theory (MAUT), and Elimination Et
Choix Traduisant la Realite ́ (ELECTRE III). In the present
study, decaBDE, which was identified among the most
hazardous chemicals in the previous study,26 was selected
with the three chemicals that were evaluated to have the
relatively lowest hazard; decabromodiphenyl ethane
(DBDPE), bis(2-ethylhexyl) tetrabromophthalate (BEH-
TEBP), and melamine (MA). Additionally, organophosphate
flame retardants (OPFRs) were considered, even though they
were not amongst the least hazardous alternatives, because
they are an important class of flame retardants considered in a
similar study.13 Here two OPFRs were included to represent
halogenated and nonhalogenated OPFRs, respectively: tris-
(tribromoneopentyl) phosphate (TTBNPP) and triphenyl
phosphate (TPHP). Collectively, these alternatives cover a
broad array of hazard criteria and substance classes:
brominated flame retardants, brominated OPFRs, halogen-
free OPFRs, and melamine. Chemical information for these six
case chemicals is shown in Table S1 in the Supporting
Information (SI).
Hazard data were calculated using the same models as in the

previous study for both the six flame retardants and their
transformation products.26 In brief, chemical structure
information (SMILES) was used to derive data from 55
QSAR models including models from the open-source tools
EPISUITE,27 VEGA,28 TEST,29 and OECD QSAR Toolbox;15

models for endocrine related responses on the OCHEM
platform30 from the USEPA organized Collaborative Estrogen
Receptor Activity Prediction Project (CERAPP),31 Collabo-
rative Modelling Project for Androgen Receptor Activity
(CoMPARA),32 and the literature33 (Table S2). These models
covered 20 hazard criteria for P, B, M, and T (Table S2). It is
noted that for the selection of QSARs, it was an intentional
focus to use open-source/access models that can easily be
applied by potential users.26

Decision Analysis. Three MCDA methods were used for
hazard ranking including heat mapping, MAUT, and
ELECTRE III. Thresholds for all three MCDA methods are
presented in Table S3. For the heat map, the range of each
criterion was divided into four color-coded intervals (green =
benign, yellow = moderate hazard, orange = high hazard, red =
very high hazard). For the MAUT approach, each hazard
criterion was scaled from 0 (worst) to 1 (best) based on the
distance between the hazard level of target flame retardants to
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a set level for this criterion (further explained in SI). As
pointed out by the previous study,26 chemical applicability
domain and prediction quality data of the QSAR models
vary34−36 and are not transparent or in some cases available for
the diverse range of in silico tools used for hazard predictions.
Comparisons between outputs of different models for the same
hazard criteria as well as modeling outputs with experimental
data suggest that there can be substantial prediction
uncertainties. Therefore, for ELECTRE III, pairwise compar-
isons were conducted for target chemicals on each hazard
criterion, and the significant difference levels between
chemicals for each criterion (i.e., the indifference thresholds
and preference thresholds in ELECTRE III) were set based on
standard deviations of different model results for the same
criteria to consider model uncertainties (see the SI). In this
study, thresholds were kept from the previous study as the
same in silico tools were used. For both MAUT and ELECTRE
III, each hazard criterion for P, B, T, or M properties was
assigned the same weight, and final scores were calculated by
treating the composite criteria of PBT, PMT, or PBMT as
equally important (referred to as PBT, PMT, or PBMT score).
Further explanation of MAUT and ELECTRE III are
presented in the SI. In this study, these three decision
methods were used to compare the hazard of transformation
products with their parent compounds. In addition, they were
used for an overall alternatives assessment including both
parent and potential transformation products.
Predictions of Transformation Products. To cover

different transformation pathways and to compare the
predictive abilities of different in silico tools, several open-
source software platforms were considered: OECD QSAR
Toolbox,15 CTS,16,17 BioTransformer,22 and EAWAG-BBD/
PPS.23 In addition, one commercial software package, Meteor
Nexus,21 was included as a complement including both a rule-
based expert system providing a classification rank from
“improbable” to “probable” for each transformation product
and machine learning methods that yield probability scoring
for different products. The open-source tools provide either a
likelihood of transformation reactions (CTS and EAWAG-
BBD/PPS) or only indicate whether the product is formed (no
ranking) (QSAR Toolbox and BioTransformer). The selected
tools cover a wide range of transformation pathways, where
QSAR Toolbox, CTS, BioTransformer, and Meteor can

predict mammalian metabolism for different species; QSAR
Toolbox, EAWAG-BBD/PPS, and BioTransformer include
predictions for microbial metabolisms; and CTS and QSAR
Toolbox also cover some abiotic transformation pathways
(Table 1). Photodegradation is not covered by the selected
tools, though there have been some advances to predict
photodegradation.37

Selection of Predicted Transformation Products. An
important limitation for all used in silico tools for the
prediction of transformation products is that there is no
obvious information regarding the modeling applicability
domain. It is therefore hard to evaluate the quality of
predictions. To address this, we developed a strategy using
in silico data to prioritize predicted transformation products
that have the highest probability of occurrence, i.e., the highest
occurrence potential, and that exhibit a similar or greater
intrinsic hazard compared to the parent compound. This was
inspired by similar approaches for selecting important
transformation products by previous studies.14,38−41

One such approach was the framework by Escher and
Fenner14 to prioritize transformation products that meet both
an exposure-based threshold (via fractions of formation
through relevant transformation pathways) and toxicity-based
threshold compared to the parent structure. Another key
approach was Ng et al.,38 who developed an in silico framework
to select key transformation pathways (with EAWAG-BBD)
and prioritize products with the most persistence and exposure
potential compared to the parent (with EPISuite and a
multimedia fate model). The in silico framework we develop
here shares similar elements with both of these approaches but
expands and deviates on many aspects. Here, we deploy an
array of transformation models, not just EAWAG-BBD, to
prioritize the transformation products for consideration by
cross-validation; and instead of looking at exposure via a
multimedia approach as in Ng et al.,42 we assess the P, B, and
M criteria separately to be more consistent with the current
REACH framework. Finally, we additionally consider toxicity
(T) as in Escher and Fenner,14 as a basis for selecting
transformation products.
Selecting compounds with highest occurrence potential is

not straightforward since transformation rates are not given by
the in silico tools, and these rates are anyway dependent on
environmental conditions and pathways. To address these

Table 1. Overview of In Silico Tools Used for Transformation Product Prediction, Presenting the Transformation Pathways,
Number of Transformation Steps, and Probability Ranking System Included in Each

process software transformation pathways
stepwise transformation

predictions probability ranking

mammalian
metabolism

Meteor Nexus phase I and phase II metabolism for mammals
(human, dog, and rat)

yes, with a limitation of maximum
5000 metabolites

one classification ranking and
two scoring methods

CTS phase I metabolism for human yes, up to four steps classification ranking
QSAR Toolbox phase I and phase II metabolism for rat no not provided
BioTransformer phase I and phase II metabolism for mammals only one step at a time not provided

microbial
metabolism

QSAR Toolbox environmental and biotic microbial
transformations

no not provided

EAWAG-BBD/
PPS

yes classification ranking

BioTransformer only one step at a time not provided

abiotic
transformation

CTS hydrolysis and reduction yes, up to four steps classification ranking

QSAR Toolbox autoxidation, dissociation, and hydrolysis no not provided
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concerns, herein, we defined the transformation products with
highest occurrence potential based on the following criteria: (i)
they are predicted to occur through the greatest number of in
silico pathways/models, i.e., have a high occurrence frequency
across models, and (ii) they have a high predicted persistency.
The reason for the first condition is in part a quality control
check. When the different models, different pathways, and
different calibration datasets lead to the same transformation
reactions and/or products, at least some cross-model validation
is provided. The reason for the second condition is that
transformation products with high persistence can accumulate
over time and potentially cause high exposure depending on
the fraction of formation.38,43 Based on these assumptions, a
workflow was developed for prioritization of potential
transformation products, as shown in Figure 1.

To address stage B (Figure 1) regarding a high occurrence
frequency, the following strategy was implemented; the first
generation of transformation products is given primary focus,
but the second, third, and subsequent generations are
considered under specific circumstances. The specific rules
for stage B are:

• For mammalian metabolism, all first-step products from
phase I or phase II metabolism that were predicted by
more than one in silico tool are included; for second and
third steps, metabolic products, i.e., only metabolism
products from reactions that are both predicted “likely”
(all the way from parent compound to the target
metabolites) by CTS (which marks the likelihood of
reactions as unlikely, probable, and likely) and given a
site of metabolism (SOM) score of more than 300 by
Meteor Nexus are included. Meteor Nexus has three
methods for probability ranking of metabolites, wherein

SOM was reported elsewhere to be the most accurate
one44 and thus chosen for this study.

• For microbial metabolism, BioTransformer and
EAWAG-BBD/PPS give very similar results since
BioTransformer adopted the EAWAG-BBD biotransfor-
mation rule library. Products identified by both QSAR
Toolbox and EAWAG-BBD/PPS (which marks the
likelihood of reactions as unlikely, neutral, likely, and
very likely) with a probability of reactions not lower than
neutral (all the way from parent compound to the target
metabolites) within three steps were included.

• For abiotic transformation, products identified by CTS
with a predicted probability of reactions considered
likely (all the way from parent compound to the target
metabolites) and by QSAR Toolbox within three steps
were included.

For stage C in Figure 1, prioritization based on persistence,
only compounds with at least a moderate persistence level in
sediment were considered. The cutoff values for moderate
persistence level were taken from the heat mapping in a
previous study26 based on regulation and literature levels
(Table S3). The reason for using sediment as the environ-
mental compartment for P is that half-lives predicted in
EPISuite for water, soil, and sediment are proportional to each
other with a ratio 1:2:9 as they are all derived from the same
BIOWIN output within EPISuite, and therefore predictions for
sediment are the most conservative. This type of extrapolation
is one of the many uncertainties associated with half-life
predictions using EPISuite.45 However, since EPISuite remains
the most common, open-source predictor of half-lives, these
models were used in this study for hazard assessment as in our
previous study.
Finally, regarding step D in Figure 1 on the initial hazard

evaluation, only one structure example was selected for each
considered homologue group of the PBDEs, hydroxylated
PBDEs, and bromodiphenyl ethanes, i.e., one structure per
number of bromine substituents (e.g., one tribrominated, one
tetrabrominated, etc., selected structure examples are pre-
sented in Table S5) and small compounds with a benign
hazard (e.g., NH3, CO2) were excluded.

■ RESULTS AND DISCUSSION
Transformation Products Predicted by In Silico Tools.

The number of transformation products of the case chemicals
that were predicted by the selected tools for the various
pathways are presented in Table S4. An illustrative example of
such outcomes for all substances, and how such data were
interpreted following the workflow in Figure 1, is presented in
Figure 2. This figure shows the predicted results of three
consecutive steps of mammalian metabolites of melamine
predicted by BioTransformer, CTS, and Meteor Nexus (QSAR
Toolbox identified no metabolites). Since BioTransformer can
predict only one generation at a time, all predicted phase I
products were used as input again until no further products
were predicted, or the third generation was reached. The phase
I transformation products are quite similar for CTS and
Meteor Nexus, while BioTransformer appeared to deliver fewer
predicted compounds. In average, 31% of the first-step
mammalian metabolites were predicted by more than one in
silico tool and 6% by all available tools (Table S4). However,
for some chemicals, the output differed widely between the
tools. For example, Meteor Nexus predicted many trans-

Figure 1. Workflow for the prioritization of predicted transformation
products based on the highest occurrence potential (stages B and C
combined) and hazard (stages D and E).
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formation products for decaBDE, DBDPE, and TTBNPP,
including 300−400 unique transformation products for the
first three steps of mammalian metabolism for each of these
three flame retardants (Table S4), while the other tools
predicted no or very few mammalian metabolites. The large
number of metabolites predicted by Meteor Nexus is caused by
the parent compound being predicted to be very persistent,
making the SOM algorithm give all metabolites a relative score
“0” and preventing proper ranking of the metabolites.
Therefore, according to the rules presented above in relation
to Figure 1, the output of Meteor Nexus for decaBDE,
DBDPE, and TTBNPP was excluded. For the other three
compounds (BEH-TEBP, TPHP, and TTBNPP), the numbers
of transformation products predicted by Meteor Nexus and
CTS are closer (Table S4). For phase II transformations,
Meteor Nexus predicted more phase II transformation
products compared to other software, as evident in Figure 2
for melamine. Since the open-access tools are not as
transparent regarding which pathways/enzymes were included
and how probability was assessed compared with Meteor
Nexus, it is difficult to determine the exact reason for the
differences between the predictions of the different tools. The
outcomes of the microbial metabolism predictions were similar
in that the selected tools gave similar results for some target
chemicals and gave disparate results for the others. For
example, 112 microbial metabolites of DBDPE were predicted
by QSAR Toolbox, while EAWAG-BBD/PPS only predicted 4.
Examples for other substances can be found in Table S4.
A number of different transformation mechanisms were

predicted for the case chemicals. Step-by-step oxidation,
hydroxylation, and debromination of polybrominated com-
pounds are the most frequently observed reactions for phase I
transformations. More complex reactions such as ring cleavage,

e.g., from cyanuric acid (from melamine, MA-M4) to biuret
and allophanate (MA-M5 and MA-M6), were more commonly
encountered in microbial transformation simulations than
mammalian or abiotic. Abiotic transformation simulations are
composed exclusively of autoxidation, dissociation, reductive
debromination, and hydrolysis mechanisms.

Persistence Evaluation. The outcomes of the workflow in
Figure 1 to prioritize predicted transformation products are
listed in Table S5. The number of prioritized transformation
products ranged from five to nine for each of the case
chemicals. Each of the melamine transformation products
ammeline, ammelide, and cyanuric acid has two tautomer
structures (alcohol and ketone), and both structures are
included in this study (MA-M2, M2′, M3, M3′, M4, and M4′).
Interestingly, none of the transformation products selected by
stage B (occurrence frequency) were ruled out by stage C
(persistence), as the predicted half-lives in sediment are all
beyond the moderate persistence limitation that was used here
as a cutoff for persistence (Table S3). This indicates that many
transformation products of persistent compounds are also
likely to be persistent. According to the BIOWIN results, this is
due to stable fragments within the parent substances (carbon−
bromine bonds, highly aromatic triazine structures, etc.) being
generally retained in the transformation products. Also, the
high molecular weights of some transformation products
contributed to a similar P estimation.

Comparison with Experimental Data. Most of the
experimentally identified transformation products for decaBDE
and melamine available in the literature (Table S6) were
identified by the in silico tools and prioritized by the workflow.
For example, nonaBDEs, octaBDEs, hydroxylated nonaBDE,
and hydroxylated octaBDEs are formed from decaBDE and
were predicted by the in silico tools.46−49 Ammeline, ammelide,

Figure 2. Mammalian metabolites of melamine predicted by different in silico tools. Structures given in boxes are tautomers.
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and cyanuric acid have been identified experimentally as
transformation products of melamine42,50,51 and were also
prioritized via the in silico approach here. The most widely
identified transformation product for TPHP, diphenylphos-
phate,52−56 and the only studied transformation product for
BEH-TEBP, mono(2-ethyhexyl) tetrabromophthalate57 (Table
S6), were also predicted by the in silico tools and identified as
having high occurrence potential. This gives some validation of
the appropriateness of our tools and presented workflow for
hypothesizing transformation products with a relevant
occurrence potential.

However, in addition to these matches, there were a large
number of predicted transformation products that could not be
found in the literature, even for decaBDE and melamine. At
face value, these in silico tools are overpredicting based on the
available experimental data and are likely introducing false
positives due to low selectivity precision in pathway
prediction,58 but this cannot be formally evaluated for these
test compounds in this study due to limited simulation and
analytical data.
There are some metabolites in the literature that were not

predicted, which could be considered false negatives, but these
are exceptional cases or of low fractions of formation. Notably,

Figure 3. Heat map of the six flame retardants and their selected transformation products, where red indicates that a hazard criterion has been met,
orange and yellow indicate high and moderate hazard levels, respectively, though below the cutoff for the red level, and green indicates that the
chemical has properties that fulfilled a set safe level. The levels were set based on regulations and literature values according to our previous study.26

Metabolites marked with and without an apostrophe, e.g., M4 and M4′, refer to tautomeric forms.
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methoxylated PBDEs were identified as metabolites of
decaBDE in rats,46−48 while they were not identified by any
of the applied in silico tools. Some additional transformation
products, for example, PBDEs with three to seven bromines for
decaBDE,49,59−62 and biuret and allophanate as ring cleavage
products of melamine,42,50 have been identified in some
experimental studies, though at relatively low concentrations
(Table S6). These compounds are degradation products
beyond the first three transformation steps and are either not
identified by the in silico tools or not prioritized by our
approach since it focuses on transformation products with high
occurrence potential. Pentabromodiphenyl ethers (pentaBDE)
did not have a high occurrence potential through our approach
as a transformation product for decaBDE, despite this being a
major consideration in decaBDE hazard and risk assess-
ments.8,13 Part of the explanation for this is the lack of
predictive tools for photodegradation since pentaBDE has
been considered as an important photodegradation product of
decaBDE7,8,61,62 and also that this would be a transformation
product after five subsequent debromination reactions.
However, because pentaBDE is considered a critical trans-
formation product of decaBDE, it was also included herein for
further hazard assessment. Biuret and allophanate were also
included as transformation products of melamine, as such
experimental data should be integrated when available.
Hazard Comparison between Studied Flame Retard-

ants and Their Transformation Products. A heat map was
produced based on regulation or literature set levels for the
various hazards under consideration (Figure 3). At least two
red flags occurred for all compounds, including all selected
transformation products. This implies that the major trans-
formation products of these hazardous compounds are all
hazardous in some way. Another heat map was produced to
compare each case chemical with its selected transformation
products (Figure S1). One intrinsic consideration here with
heat maps is that that the longer the list of included hazard
criteria, the more likely a red flag will occur, hence the need for
MCDA methods in this context. Nevertheless, the heat maps
are useful in rapidly comparing burden-shifting of hazards
across parent compounds or their transformation products.
It can be seen from both figures that most of the selected

transformation products have similar environmental persis-
tence compared with the parent compounds (32 of the 41
selected transformation products were predicted to have no
considerable difference, as defined by the veto threshold, in
persistence in all environmental media; see Figure S1). The
workflow (Figure 1) is biased toward this result, as the
predicted transformation products have to meet the
implemented cutoffs for persistency (stage C in Figure 1, i.e.,
predicted estimated sediment half-life > 60 days). The
transformation products for the polybrominated compounds
(decaBDE, DBDPE, and TTBNPP) with a high occurrence
frequency are persistent in the sediment with an estimated half-
life of more than 180 days, and many of them are also
persistent in biota with an estimated biodegradability half-life
of more than 60 days.
Almost all transformation products are more mobile than

their parent compounds. This is consistent with the outcome
of a study that compared persistency and mobility of predicted
hydrolysis products of all REACH registered substances with
the parent substances,34 as well as an earlier study with
pesticides.63 These studies reported overall increased mobility

for transformation products, due to additional polar functional
groups, but no substantial change in predicted persistence.
Some transformation products were also more bioaccumu-

lative; these were products from decaBDE, DBDPE, and BEH-
TEBP, whereas others were less bioaccumulative (the two
OPFRs) or showed no change (melamine). Note that B was
assessed by bioconcentration factors (BCF), as suggested by
REACH, while as discussed in our previous study, dietary
uptake might be of more importance for these hydrophobic
chemicals; thus, bioaccumulation factors (BAF) might be a
more appropriate choice. The only available BAF model was
through EPISuite, and a comparison between BAF and average
BCF shows that if BAF was used to create the heat map, most
of the compounds would be marked as the same color except
for DBDPE-M5; DBDPE-M6 and decaBDE-M2 would shift
from green to yellow; decaBDE-M1 and decaBDE-M4 would
shift from green to red; and decaBDE-M6 would shift from
yellow to red (Table S7). As a result, changing BCF to BAF
would have no substantial impact on the studied flame
retardants except for possible worse ranking for decaBDE,
which however already appeared to be the worst alternative.
Also, the uncertainty for estimated BAF is overall higher as it
only has one model. Consequently, later, MCDA approaches
were based on BCF for the sake of consistency.
Accounting for changes in toxicity during transformation is

complex; however, in general, burden-shifting was observed for
all transformation products. All 45 identified transformation
products are considerably worse than the parent compound for
at least one toxicity criterion, and 42 of them are also
considerably better than the parent compound for at least one
toxicity criterion (Figure S1). The burden-shifting of toxicity
for transformations was also observed by Martin.13 Adding to
the complexity, toxicity data from animal studies could
potentially be caused by the dosed parent compound or
formed metabolites. Although the heat maps clearly show the
burden-shifting between different kinds of toxicity, they are
insufficient for making aggregated hazard rankings; thus
ranking methods such as MAUT and ELECTRE III are
required.
The outcome of MAUT was that five of the six target flame

retardants (except for melamine) transformed into at least one
compound that was ranked worse according to the PBT score,
and all six transformed into at least one more hazardous
compound according to the PBMT score (Table S10). Among
the 41 selected transformation products for the six flame
retardants, 13 of them were ranked more hazardous compared
to their own parent compound for the PBT score and 24 of
them were more hazardous for the PBMT score. The average
MAUT score for PBMT of transformation products for each of
the three brominated flame retardants is worse than their
parent compound and, notably, all transformation products of
DBDPE and BEH-TEBP are more hazardous than their parent
compounds. The uncertainty in in silico hazard data needs to
be taken into consideration in hazard ranking, as recently
discussed by Muir et al.;36 thus, the MAUT results were
examined by ELECTRE III, which considered the prediction
uncertainty. ELECTRE III results generally agreed with
MAUT (wherein 19 of the 41 transformation products ranked
more hazardous than their parent compounds by PBT and 20
by PBMT; Tables S11−S22), indicating that the uncertainty in
the in silico hazard data has generally low impact in this specific
case study. This does not imply that this uncertainty is a minor
issue in general; it just happened to be so here because the
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differences in the PBT and PBMT hazard scoring between the
transformation products were generally similar to or larger
than the uncertainty of the scoring.
A fundamental limitation for most in silico tools is that they

were either not trained with ionizable compounds or even if
they were (e.g., the KOCWIN fragment-based method module
is trained with both neutral and ionized substances) they may
not make explicit pKa-based corrections for changes in
ionization over an environmental pH range. This might, in
particular, have an impact on the assessment of P, B, and M,
depending on the pKa value of the compound. Previous studies
also suggest that EPISuite has poor predictions for B and M for
ionic or ionizable compounds that dissociate within an
environmental relevant pH range of 4−9.34,45 For the 47
studied compounds (both parent compounds and trans-
formation products), based on the pKa values estimated by
Chemaxon, 18 are not always in neutral form in the pH range
of 4−9,64 and 16 are not in neutral form at pH 7 (Table S8). If
the minimum octanol−water partition coefficient (logDow)
estimated by Chemaxon within the pH range of 4−9 was used
to assess mobility instead of the organic carbon−water
partition coefficient of the neutral form (log Koc), BEH-
TEBP-M1 would shift from orange to red in the heat map,
while eight compounds (mostly transformation products of
DBDPE) would shift from yellow to green (Table S9). It is
worth pointing out that Chemaxon is the only tool we applied
for the estimation of pKa and logDow, and the uncertainty can
be high for some compounds.34,35 For example, the pKb1 for
the protonated form of melamine is estimated to be 9.5, while
the experimental measured value is 5.0.65 A needed advance-
ment for this hazard ranking tool is to identify, develop, and
further develop the tool to be suitable for ionic compounds.
Alternatives Assessment with Consideration of

Transformation Products. Our previous study26 identified
BEH-TEBP, melamine, and DBDPE as the least hazardous
alternatives for decaBDE using both MAUT and ELECTRE III
considering both PBT and PBMT. According to the PBMT
ranking of the most hazardous transformation products, BEH-
TEBP, melamine, and DBDPE still retain their status of the
least hazardous alternatives (Figure 4a). The two worst
transformation products identified by MAUT (PBMT) for
each flame retardant were assessed by ELECTRE III together
with their parent compounds (i.e., for TPHP, TPHP-M3,
TTBNPP, and TTBNPP-M1). ELECTRE III also considered
BEH-TEBP and melamine preferable, whereas TTBNPP
ranked better than with MAUT, and DBDPE ranked worse
than with MAUT for both PBT and PBMT (Figure 4a and
Tables S23 and S24). The MAUT scores are presented for
both the parent compound and the worst transformation
products (Figure 4b). DecaBDE is clearly more hazardous
compared to the five alternatives regarding both PBT and
PBMT if the worst transformation products are considered,
while the differences among the five alternatives are minor
(Table S10 and Figure 4b). Pentabromophenol (decaBDE-M3,
MAUT PBMT score = 0.34) has the lowest MAUT score
followed by PentaBDE (decaBDE-M6, MAUT PBMT score =
0.38), which were clearly more hazardous than any other of the
studied compounds (both parents and transformation
products, MAUT PBMT score = 0.51−0.73). These two
compounds are both much more bioaccumulative and mobile
in the aquatic environment compared to their parent
compound decaBDE (Table S10). PentaBDE was included
as a photodegradation product of decaBDE, and based on the

literature, DBDPE can also photodegrade and form bromodi-
phenyl ethanes substituted with five to eight bromines.66,67

This suggests the importance of including photodegradation
and the need to develop prediction tools to cover this pathway.
If the least hazardous transformation product is considered,

BEH-TEBP, melamine, and TPHP are less hazardous
concerning both PBT and PBMT, while all six parent flame
retardants have similar PBMT scores (Figure 4b and Table
S10). Melamine is the best or second best alternative (PBT
and PBMT) according to its MAUT scores, regardless of
whether the ranking is done on parent compounds, or when
including their transformation products.

Environmental Implications. This study presents an
efficient hazard screening tool for chemical alternatives with
the consideration of chemical transformations by in silico tools.
The tool requires only access to (mostly) freely available in
silico tools, such as those used here, and to follow the protocols
presented for prioritizing predicted transformation products
and conducting the PBMT assessment. As such, this approach
could be automated or adapted to new in silico tools to address
diverse alternatives of hazardous chemicals as part of an
alternatives assessment framework. The approach to identify
transformation products could be optimized in future with
improved or additional models to predict transformation

Figure 4. MAUT and ELECTRE III PBMT results with the
consideration of transformation products: (a) rankings of the six
flame retardants, based on parent compounds and the worst
transformation products by MAUT and ELECTRE III; (b) MAUT
scores of the six flame retardants (presented in the order of
brominated flame retardants, organophosphates, and melamine)
ranked by parent compounds, the least hazardous and the most
hazardous transformation products (lower score means higher
hazard).
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pathways or use of experimental data directly. Most of the
experimental studies on transformation reactions for the
substances in this study were through target chemical analysis.
There is also a need for more suspect and nontarget

chemical analysis to further improve and validate in silico tools
for predicting transformation products and to identify
transformation products with high occurrence potential. This
would form the basis to further validate, calibrate, and refine
the tool presented in this study. Besides informing alternatives
assessments, the tool can be used to point out potential
hazardous transformation products with a high occurrence
potential for environmental (bio)monitoring and screening.
In the case study, the selection of least hazardous

alternatives for decaBDE was not significantly influenced by
the inclusion of transformation products. It appears from this
study and elsewhere that persistent chemicals are also likely to
transform into similarly persistent chemicals,34,63 potentially
with a higher or similar hazard level.63 The question of whether
this is a general finding could have important implications for
the role of persistency in risk assessments and alternatives
assessments, as this essentially indicates persistent substances
exhibit hazards in the environment over a longer time window
than when just considering the parent compounds. For the
persistence assessment, it is also possible to further develop the
tool by considering a “joint persistence” of both parent
compounds and key transformation products simultaneously.38

Future studies should also consider less persistent case
chemicals, where the transformation products may play a
more significant role in the selection of less hazardous
alternatives.
Besides similar persistence, the transformation products had

higher mobility in the aquatic environment compared to the
parent compounds,34 which was also identified in an earlier
study on pesticides as a general finding.63 This implies that
groundwater transport and riverbank filtration breakthrough of
transformation products can occur more quickly than for
parent compounds. This further implies that the likelihood of
aquatic exposure (e.g., via drinking water) and subsequent risk
increases when considering both the parent and transformation
products than when just considering parent substances.
By providing a reduced number of potential least hazardous

alternatives, the output from this initial hazard assessment can
be integrated into higher-tier alternatives assessments, such as
those that combine multimedia exposure-driven and effect-
driven assessment13,14 (e.g., by integrating the RAIDAR model
in the case of neutral substances68,69) and life cycle impact
assessment (e.g., using the USEtox model70 for life cycle
impact assessment). Within such higher-tier models, exposure
and emissions of alternatives and their transformation products
over the chemical life cycle can be accounted for. For instance,
here, the workflow and decision making could weigh the
“mobility” relative to exposure to water over the product life
cycle, and thus the importance of the PMT score output in
MAUT or ELECTRE, as PMT is mainly relevant to water
exposure. Similarly, the importance of photodegradation vs
microbial degradation as transformation pathways could be
weighed based on exposure to sunlight vs soil over the product
life cycle. In many cases, the least hazardous substance may not
be the best in terms of risk, if such multimedia life cycle aspects
are taken into consideration. This developed tool could already
be integrated in a more holistic alternatives assessment
framework considering exposure, life cycle impacts, material
or product performance, and cost-benefit.
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