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. . . . All-Polymer Solar Cells (All-PSCs)
ABSTRACT: The ternary polymerization strategy of incorporating " PeESS ST
different donor and acceptor units forming terpolymers as photovoltaic £, .
materials has been proven advantageous in improving power conversion g, —
efficiencies (PCEs) of polymer solar cells (PSCs). Herein, a series of low '~ e comtonts ooy _
band gap nonconjugated terpolymer acceptors based on two different ‘Mererissedler polymer Accepiers iPemér Bonct:

fused-ring electron-deficient building blocks (IDIC16 and ITIC) with
adjustable photoelectric properties were developed. As the third
component, ITIC building blocks with a larger z-conjugation structure,
shorter solubilizing side chains, and red-shifted absorption spectrum were %+
incorporated into an IDIC16-based nonconjugated copolymer acceptor
PF1-TS4, which built up the terpolymers with two conjugated building
blocks linked by flexible thioalkyl chain-thiophene segments. With the
increasing ITIC content, terpolymers show gradually broadened
absorption spectra and slightly down-shifted lowest unoccupied molecular orbital levels. The active layer based on terpolymer
PF1-TS4-60 with a 60% ITIC unit presents more balanced hole and electron mobilities, higher photoluminescence quenching
efficiency, and improved morphology compared to those based on PF1-TS4. In all-polymer solar cells (all-PSCs), PF1-TS4-60,
matched with a wide band gap polymer donor PM6, achieved a similar open-circuit voltage (V) of 0.99 V, a dramatically increased
short-circuit current density (J,.) of 15.30 mA cm ™, and fill factor (FF) of 61.4% compared to PF1-TS4 (V,. = 0.9V, J,. = 11.21
mA cm, and FF = 55.6%). As a result, the PF1-TS4-60-based all-PSCs achieved a PCE of 9.31%, which is ~50% higher than the
PF1-TS4-based ones (6.17%). The results demonstrate a promising approach to develop high-performance nonconjugated
terpolymer acceptors for efficient all-PSCs by means of ternary polymerization using two different A—D—A-structured fused-ring
electron-deficient building blocks.

PF1-TS4 m:n=100:0
PF1-TS4-20 m:n=80:20

PF1-TS4-40 m:n=60:40
PF1-TS4-60 m:n=40:60
PF1-TS4-80 m:n=20:80

KEYWORDS: all-polymer solar cells, copolymer, nonconjugated polymer acceptor, power conversion efficiency, terpolymer

1. INTRODUCTION severely constrained, and their corresponding PCEs still lag
During the past S years, progress in polymer solar cells (PSCs), behind those of fused-ring SMA-based devices. Tracing the
with their merits of light weight, low cost, semitransparency, roadmap of PCEs, only a few polymer acceptors have achieved
and flexibility, has been dominated by the development of PCEs over 9% in all-PSCs, with such limited structural
polymer donors and A—D—A-structured fused-ring small- electron-deficient units as perylene-diimide,"> naphthalene
molecule acceptors (SMAs)."” This rational molecular design diimide, ¢~"° thiophene-fused diimide,” and B — N-bridged

of active layer materials and systematic processing and

engineering of devices has led to the state-of-the-art power 4 . .
conversion efficiencies (PCEs) exceeding 17% so far> "0 (~10" em™) of these polymer acceptors limit their short-

Compared to the fused-ring SMA-based systems, all-polymer circuit current density (J,.) and PCEs in all-PSCs.
solar cells (all-PSCs) composed of polymer donor and polymer

building blocks.*"** However, the low absorption coeflicients

acceptor materials have some special advantages, such as Received:  October 2, 2020
excellent morphological stability and mechanical properties, Accepted:  January 12, 2021
which can cater to the requirements of practical application of Published: January 26, 2021

flexible devices fabricated by roll-to-roll printing techni-
ques."'™'* Mainly because of the lack of high-performance
polymer acceptors, progress toward efficient all-PSCs has been

© 2021 American Chemical Society https://dx.doi.org/10.1021/acsami.0c17722
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Scheme 1. Molecular Structures of (a) Nonconjugated Copolymer Acceptor PF1-TS4 and Terpolymer Acceptors PF1-TS4-xx
with Different IDIC16/ITIC Ratios and (b) the Polymer Donor PM6

(a) Nonconjugated Terpolymer Acceptors

PF1-TS4

PF1-TS4-20 m:n=80:20
PF1-TS4-40 m:n=60:40
PF1-TS4-60 m:n=40:60
PF1-TS4-80 m:n=20:80

(b) Polymer Donor

Recently, in the search for polymer acceptors with improved
absorption properties, a novel polymer acceptor PZ1 with a
low band gap of 1.55 eV and a high maximum absorption
coefficient (>10° cm™") was successfully synthesized by Li et al.
by polymerizing a large z-fused-ring SMA building block
(IDIC16) with long solubilizing sidechains and achieved an
impressive PCE of 9.19% in all-PSCs.”’ Subsequently, some
derivatives with similar molecular structures, including
PFBDT-IDTIC,** PF2-DTSi,*® PN1,*° PE3-DTCO,” and
PSF-IDIC,”® were developed by modifying either the fused-
ring SMA building blocks or donor units and achieved PCEs of
over 10% in their all-PSCs. Moreover, by incorporating the
booming fused-ring SMA building blocks of YS derivatives
with different alkyl chain lengths, few polymer accegtors with
an ultralow band &P of ~1.40 €V, named A701,>> PTPBT-
ET, PYT,” PJ1,”> L14,>> PFS-YS5,** PY-IT,*® and PYAI*
have been produced and have demonstrated high PCEs of 11—
15% in the resulting all-PSCs. In addition to high PCE, good
long-term thermal stability is also a key factor in the practical
application of all-PSCs. Very recently, a new class of acceptor,
that is, a nonconjugated polymer named PF1-TS4 based on the
IDIC16 building block linked by a thioalkyl segment in the
mainchain was first developed by our group and showed
excellent photophysical properties with a high absorption
coefficient, low optical band gap, and high lowest unoccupied
molecular orbital (LUMO) level,”” which are similar to the
IDIC16-based full-conjugated polymer acceptors.””~>> More-
over, compared to IDIC16 with a strong tendency of self-
aggregation in blends due to its highly ordered multi-
crystallinity,”>*>?” the PF1-TS4 film presents reduced
crystallinity and good compatibility with the polymer donor
in active layers, thus leading to an improved morphological
stability in blend films. As a result, its all-PSCs achieved
excellent long-term thermal stability under annealing at 85 °C.
Although nonconjugated PF1-TS4 has great potential for
practical applications in all-PSCs, it still shows a relatively low
device efficiency compared to those fused-ring SMA-based full-
conjugated polymer acceptor counterparts.B_Z’

The strategy to synthesize terpolymer acceptors by
introducing two different electron-withdrawing (Al and A2)
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or electron-donating (D1 and D2) moieties forming a 1D/2A
or 2D/1A structure in the molecular backbones has been
considered as an efficient approach to synergistically optimize
the molecular absorption, energy levels, electron mobility, and
aggregation of the resulting polymers.*”**~* However, the
application of terpolymer acceptors based on two different
fused-ring SMA building blocks in all-PSCs has not been
reported. Herein, to explore the effect of the terpolymer
strategy for nonconjugated polymer acceptors, we developed a
series of nonconjugated terpolymer acceptors with a 1D/2A
structure by incorporating two different fused-ring SMA
building blocks of five-ring-fused IDIC16°>*° with long
hexadecyl sidechains and seven-ring-fused ITIC' with short
4-hexylphenyl sidechains. The different molecular structures of
IDIC16 and ITIC resulted in significantly different solubility,
absorption, crystallinity, and aggregation properties.”””*”** By
simply modulating the IDIC16/ITIC ratios, four non-
conjugated terpolymer acceptors (PF1-TS4-xx, where xx is
the molar percentage of ITIC unit relative to the total SMA
building blocks) were synthesized, and the corresponding
optical and electrical properties are conveniently tailored.
Matched with a wide band gap polymer donor PM6," all-
PSCs from PF1-TS4-60 achieved a PCE of 9.31% with a high
open-circuit voltage (V,.) of 0.99 V, J,. of 15.30 mA cm ™, and
fill factor (FF) of 61.4%, which is ~50% higher PCE than the
copolymer PF1-TS4 based one (6.17%).

2. RESULTS AND DISCUSSION

The molecular structures of five nonconjugated polymer
acceptors, including the copolymer PF1-TS4 and the
terpolymers PF1-TS4-xx (xx = 20, 40, 60, and 80), are
shown in Scheme 1. The copolymer PF1-TS4-100, with a
100% molar percentage of ITIC unit, possessed a very poor
solubility to be used for device fabrication. As shown in
Scheme S1, these polymer acceptors were systematically
synthesized by Stille-coupling polymerization of three mono-
mers, including two brominated fused-ring SMA building
blocks of IDIC16-Br and ITIC-Br with different feeding ratios
and a stannylated nonconjugated linkage of bis-

(trimethylstannyl)-substituted dithiobutyl bithiophenes (TS4-

https://dx.doi.org/10.1021/acsami.0c17722
ACS Appl. Mater. Interfaces 2021, 13, 6442—6449
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Figure 1. (a) Normalized absorption spectra in neat films and (b) energy-level diagrams of active layer photovoltaic materials in neat films.
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Figure 2. (a) J—V plots of the all- PSCs under the illumination of AM 1.5G, 100 mW cm ™2 (b) Thermal stability of the devices with an annealing
temperature of 85 °C in the N,-filled glovebox under dark conditions. (c) External quantum efficiency (EQE) spectra of all-PSCs. (d) Normalized
absorption spectra of all-polymer active layers based on PM6 and different nonconjugated polymer acceptors.

Sn). Because of the long alkyl sidechains in the IDIC16
building block and the nonconjugated flexible TS4 segment,
terpolymers (except PF1-TS4-100) show good solubility in
common warm organic solvents.

As shown in Figure la of the ultraviolet—visible (UV—vis)
absorption spectra, the effect of the third ITIC unit on
molecular optical properties of the nonconjugated polymer
acceptors in neat films was investigated. With the increase of
ITIC content, these polymer acceptors display gradually red-
shifted absorption spectra, which follow well the trend of
broadened absorption spectra from IDIC16 to ITIC (Figure
S1). Among them, the absorption onset of PF1-TS4-80 with
the smallest band gap (~1.55 eV) is located at ~800 nm,
which is red-shifted by ~50 nm compared to the original PF1-
TS4. Notably, compared to its fused-ring SMA building block
ITIC, PF1-TS4-60 and PF1-TS4-80 show identical absorption
onsets but red-shifted and sharper absorption peaks (Figure
S1), indicating the improved optical absorption capability. As
shown in Figure S2 of cyclic voltammograms and Figure 1b of
the corresponding energy-level diagrams, although our random
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ternary polymerization strategy obviously broadens the
molecular absorption spectra, the molecular energy levels of
these polymer acceptors only show slight variations in their
LUMO levels (~0.02 V), which may be due to the similar
LUMO levels of the two building blocks IDIC16% (—3.87 eV)
and ITIC**! (—3.85 eV). On the other hand, their HOMO
levels are varied (~0.05 eV) to a larger extent compared to the
LUMO levels when the ITIC portion in terpolymers is
increased, which is consistent with their gradually decreased
optical band gap and conducive to achieving a better tradeoff
between V. and ] in all-PSC devices. As shown in Figure S3a,
with the increase of ITIC content, the electron mobility (y,) of
polymer acceptors increases first and then decreases, as
measured by means of a space charge limited current
(SCLC) method, which may be attributed to the improved
intermolecular interactions; however in the case of PF1-TS4-
80, the relatively poor solubility in a nonhalogenated solvent
(o-xylene) leads to a nonoptimized morphology and therefore
slightly lower electron mobility. Among them, the terpolymer

https://dx.doi.org/10.1021/acsami.0c17722
ACS Appl. Mater. Interfaces 2021, 13, 6442—6449


http://pubs.acs.org/doi/suppl/10.1021/acsami.0c17722/suppl_file/am0c17722_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.0c17722/suppl_file/am0c17722_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.0c17722/suppl_file/am0c17722_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.0c17722/suppl_file/am0c17722_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.0c17722/suppl_file/am0c17722_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.0c17722/suppl_file/am0c17722_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig2&ref=pdf
www.acsami.org?ref=pdf
https://dx.doi.org/10.1021/acsami.0c17722?ref=pdf

ACS Applied Materials & Interfaces

www.acsami.org

Research Article

PF1-TS4-60 has the highest . value of 3.54 X 107> cm® V!
s”!, which is ~2.5 times that of the copolymer PF1-TS4.

To investigate the effect on photovoltaic performance of the
introduction of the third ITIC unit into the nonconjugated
PF1-T'S4 backbone, all-PSCs with a device structure of ITO/
PEDOT:PSS/active layer/PFN-Br/Ag were fabricated. As
opposed to the PM6-based all-PSCs with the nonconjugated
copolymer acceptor PF1-TS4 in our previous work,® the
PM6-based active layers with different nonconjugated polymer
acceptors (copolymer PF1-TS4 and terpolymers PF1-TS4-xx)
in this work were prepared by spin-coating the blend solutions
with a D/A ratio of 1:1 (wt/wt %) and a total solid
concentration of 16 mg mL™" that was prepared using the
nonhalogenated solvent o-xylene and the high boiling point
additive of 1-chloronaphthalene (2% in v/v). Detailed
fabrication processes of all-PSCs are described in Supporting
Information, and the corresponding current density—voltage
(J=V) curves and photovoltaic parameters are summarized in
Figure 2a and Table 1, respectively. With the increase of ITIC

Table 1. Photovoltaic Data of the PM6-Based All-PSCs with
Different Nonconjugated Polymer Acceptors

Jse FF

VOC
(vl

D:A [mA em™2]*  [%] PCE [%]°
PM6:PF1-TS4 099 1121 (1091) 556  6.17 (5.80 = 0.23)
PM6:PFI-TS4-20 099  13.73 (13.31)  59.7 8.2 (7.73 + 0.27)
PM6:PF1-TS4-40 099  14.67 (14.32) 60.8 8.83 (8.56 + 0.19)
PM6:PF1-TS4-60 099 1530 (14.94) 614 931 (9.13 + 0.16)
PM6:PF1-TS4-80 097  15.51 (15.03) 603  9.16 (8.87 + 0.20)

“The integrated J,. in parenthesis from the EQE curves. "The average
and standard deviation of PCEs in parenthesis calculated from 10
devices.

contents, these polymer acceptors achieved gradually improved
J. from 11.21 to 15.51 mA cm ™2 and almost unchanged V. of
0.97—-0.99 V in all-PSCs, which means that the random ternary
polymerization strategy by coupling two fused-ring SMA
building blocks (IDIC16 and ITIC) and a nonconjugated
donor linkage (TS4) can effectively balance the tradeoff
between J. and V,_ in all-PSCs. Moreover, all terpolymers
demonstrated the obviously increased FF of 59.7—61.4% in all-
PSCs compared to the copolymer PF1-TS4, while PF1-TS4-60
obtained the highest FF of 61.4%. As a result, the PM6:PF1-
TS4-60-based all-PSCs achieved a champion PCE of 9.31%,
which is ~50% higher than that of PM6:PF1-TS4-based ones
(6.17%, note: the different batches of PF1-TS4 and different
device architectures used in this work may cause the different
device performances from our previous study’ ). The highest
PCE of PF1-TS4-60 among all-PSCs indicates the strong
benefit of our random ternary polymerization strategy with the
finely regulated IDIC16/ITIC ratio. The influence of our
terpolymer strategy on the thermal stability of devices was also
investigated. As shown in Figure 2b, the PM6:PF1-TS4-60-
based all-PSC has a better thermal stability in comparison with
the PM6:PF1-TS4-based all-PSC at an annealing temperature
of 85 °C in the Nj-filled glovebox under dark conditions.
Because these terpolymer acceptors are formed in a random
order of TS4, ITIC and IDIC16 random distribution in
backbones may cause batch-to-batch variations in performance.
Therefore, two additional batches of terpolymer PF1-TS4-60
were synthesized by using the same procedure as the first batch
to investigate the effect of batch-to-batch variations on the
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device performance. As shown in Figure S4 and Table S2,
three batches of PF1-TS4-60 achieved PCEs varying from 8.54
to 9.31%, even though V,. and ], pronounced good
reproducibility, which suggests that PF1-TS4-60 has a slight
batch-to-batch dependence on device performance. Moreover,
as shown in Scheme S2 and Table S3, among the all-PSCs
based on IDIC16-containing polymer acceptors, the all-PSCs
based on PF1-TS4-60 in this work achieved a PCE in the high
end.

As shown in Figure 2c¢, with the increase of ITIC content in
nonconjugated polymer acceptors, the corresponding all-PSCs
display gradually red-shifted EQE responses, which are
consistent with the absorption spectra of polymer acceptors
in neat films (Figure la) and their related all-polymer blend
films (Figure 2d). Compared to the PF1-TS4-based all-PSCs,
all the all-PSCs based on terpolymers exhibit dramatically
increased EQE values over the whole wavelength region of
400—800 nm, while the PF1-TS4-60-based device obtained the
highest EQE value close to 70% and the PF1-TS4-80-based
device presents the broadest EQE response, indicating that our
terpolymer strategy by introducing ITIC as the third unit can
effectively improve the conversion of incident photons to
electrons. The integrated J,. values calculated from the
corresponding EQE curves are 10.91, 13.31, 14.32, 14.94,
and 15.03 mA cm™2 for the devices based on PM6:PF1-TS4,
PM6:PF1-TS4-20, PM6:PF1-TS4-40, PM6:PF1-TS4-60, and
PM6:PF1-TS4-80, respectively, which are all well consistent
with the measured . values from the corresponding J—V plots,
with deviations of less than 5%.

Photoluminescence (PL) quenching experiments were
performed to study the exciton dissociation and charge transfer
behavior of all-polymer blend films. As shown in the PL spectra
of nonconjugated polymer acceptor neat films in Figure 3a, the
terpolymers PF1-TS4-xx show red-shifted PL peaks and
onsets, compared to the copolymer PF1-TS4, as well as
significantly increased PL intensities. Moreover, terpolymers
PF1-TS4-60 and PF1-TS4-80 with an IDIC16/ITIC molar
ratio <1 produce higher PL intensities compared to those
terpolymers of PF1-TS4-20 and PF1-TS4-40 with an IDIC16/
ITIC molar ratio >1, while the PL intensities are found to be
quite similar between the former two and the latter two, which
may be due to the better coplanarity and increased
intermolecular interaction of the ITIC unit. Because the
nonradiative recombination of devices is generally inversely
proportional to the PL yield of the pristine film of photovoltaic
materials,”” the higher PL efficiencies of the terpolymers PF1-
TS4-60 and PF1-TS4-80 are in favor of a lower nonradiative
recombination loss in the resulting all-PSCs. The above-
mentioned results may partially explain why terpolymers PF1-
TS4-60 and PF1-TS4-80 with obviously red-shifted absorption
spectra exhibit little change in their LUMO levels and V.
values in all-PSCs compared to the original PF1-TS4. As
shown in Figure 3b—h, compared to the polymer acceptor neat
films, the corresponding PM6:terpolymer blend films display
significantly increased PL quenching efficiencies of 80—90% in
comparison with the PM6:PF1-TS4 blend film (64.3%). The
PM6:PF1-TS4-60 blend film has the highest PL quenching
efficiency of 88.2%. A similar phenomenon is also found in the
PL measurements of the PM6 neat film and related blend films
(Figure 3gh), indicating better compatibility and more
efficient photoinduced hole and electron transfer between
PM6 and terpolymers in devices, especially between PM6 and
PF1-TS4-60, which is consistent with the trend of J in their
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Figure 3. PL spectra of these polymer photovoltaic materials in neat
films and related blend films (a) excited at 680 or 685 nm for polymer
acceptors; (b,c) excited at 680 nm for PF1-TS4, PF1-TS4-20, and
related blend films; (d—f) excited at ~685 nm for PF1-TS4-40, PF1-
TS4-60, PF1-TS4-80, and related blend films; and (g) excited at ~550
nm for PM6 and related blend films. (h) PL quenching efficiencies of
blend films relative to the related polymer acceptor neat films (black
line, extracted from b to f) and the PM6 neat film (red line, extracted
from g).

all-PSCs. Compared to the PM6:PF1-TS4-60 film, the
PM6:PF1-TS4-80 film shows slightly lower PL quenching
efficiencies, which is probably due to the relatively weak
compatibility between PM6 and PF1-TS4-80 in blend films
and the poor solubility of PF1-T'S4-80, which is consistent with
the fact that the PM6:PF1-TS4-80 film has an obviously
stronger shoulder peak belonging to polymer acceptors (see
Figure 2d).

The atomic force microscopy (AFM) and transmission
electron microscopy (TEM) measurements were carried out to
probe the effect of the introduction of the third ITIC unit into
the molecular backbone of nonconjugated polymer acceptors
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on the nanoscale morphologies of polymer neat films and their
related all-polymer active layers. As shown in Figure 4a—e of
AFM images, with the increase of ITIC content, the neat films
of these nonconjugated polymer acceptors show gradually
increased root-mean-square (RMS) roughness values from
0.27 to 1.03 nm, which may be due to the increased
intermolecular interaction and decreased solubility resulting
from the relatively larger backbone of ITIC. As shown in
Figure 4f, the PM6:PF1-TS4 blend film displays a very coarse
domain structure, resulting in a very rough surface with an
excessive RMS roughness of 4.07 nm. With the progressively
increasing ITIC content in the polymer acceptors, it is clearly
seen that the related all-polymer blend active layers produce a
gradually dwindling domain structure and reducing RMS
roughness values from 4.07 to 1.63 nm in turn (Figures 4g—j),
which is contrary to the trend of the RMS roughness values of
the AFM images of polymer acceptor neat films. This opposite
trend indicates that the introduction of the third ITIC building
block into the polymer acceptor backbone can improve the
compatibility of the terpolymer with the polymer donor PM6.
Among them, the PM6:PF1-TS4-60 and PM6:PF1-TS4-80
blend films show more suitable domain structures with a
smoother surface and a smaller RMS roughness of ~1.65 nm.
Moreover, this trend is confirmed by the TEM images, as
shown in Figures 4k—o, where the PM6:PF1-TS4-60 blend
film demonstrates a more uniform fibril structure with an
appropriate domain size, which can facilitate the charge
transport of its all-PSCs. As shown in Figure S3b and Table
S1, with the increasing ITIC content in the polymer acceptors,
the related all-polymer blend films also show gradually
improved hole mobilities from 0.84 X 107* cm* V™' 57! for
PM6:PF1-TS4 to 1.94 X 10™* cm* V™! s™' for PM6:PF1-TS4-
80, while their electron mobilities firstly increase from 1.44 X
107 em® V™' s for PM6:PF1-TS4 t0 2.94 X 107° em* V' 57"
for PM6:PF1-TS4-60 and then decrease to 2.54 X 1075 cm?
V~'s™! for PM6:PF1-TS4-80. As a result, the PM6:PF1-TS4-
60 blend films exhibit more balanced hole and electron
mobilities, which implies less accumulation of space charge in
devices.

3. CONCLUSIONS

In conclusion, we developed a series of low band gap
nonconjugated terpolymer acceptors based on two different
fused-ring SMA building blocks IDIC16 and ITIC, where ITIC
with a larger n-fused structure, shorter solubilizing sidechains,
and red-shifted absorption spectrum is incorporated as the
third component into the copolymer acceptor PF1-TS4 based
on the IDIC16 linked by flexible thioalkyl chain—thiophene
segments. With the increasing ITIC contents, terpolymers
show adjustable photoelectric properties, while the active layer
based on the terpolymer PF1-TS4-60 with the 60% ITIC unit
shows an optimized blend morphology, increased PL
quenching efficiency, and improved charge transport properties
compared to those based on other polymer acceptors. In all-
PSCs, the one based on PF1-TS4-60 achieved the same V_ of
0.99 V, but obviously increased J,. of 15.30 mA cm 2 and FF of
61.4% compared to the one based on PF1-TS4 (V.. =099V,
Jio = 11.21 mA cm 2, and FF = 55.6%). As a result, a promising
PCE of 9.31% was obtained by the PF1-TS4-60-based devices,
which is ~50% higher than that of the PF1-TS4-based one
(6.17%). The results strongly suggest that the ternary
polymerization by incorporating two different fused-ring
SMA building blocks is a useful approach for the development
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Figure 4. AFM height images of (a—e) nonconjugated polymer acceptor pure films and (f—j) related all-polymer blend films. (k—0o) TEM images

of the all-polymer blend films.

of high-performance nonconjugated polymer acceptors toward
efficient all-PSCs.

4. EXPERIMENTAL SECTION

4.1. Materials. A polymer donor PM6, two brominated fused-ring
SMA building blocks of IDIC16-Br and ITIC-Br, a monomer TS4-Sn,
and a polymer acceptor PF1-TS4 were synthesized according to
previous works. The detailed processes of the synthesis of four
nonconjugated terpolymer acceptors (PF1-TS4-20, PF1-TS4-40, PF1-
TS4-60, and PF1-TS4-80) and related device fabrication and
characterization are summarized in the Supporting Information.

B ASSOCIATED CONTENT

@ Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsami.0c17722.

Synthesis of nonconjugated terpolymer acceptors, SCLC
mobility measurements, thin-film fabrication and char-
acterization, UV—vis spectra, cyclic voltammograms,
device performance of all-PSCs based on PF1-TS4-60
with different batches, and the summary of IDIC16-
based polymer acceptors and related photovoltaic
performance (PDF)

B AUTHOR INFORMATION

Corresponding Authors

Qunping Fan — Department of Chemistry and Chemical
Engineering, Chalmers University of Technology, SE-412 96
Géteborg, Sweden; © orcid.org/0000-0002-7268-8065;
Email: qunpifan@cityu.edu.hk

Lintao Hou — Guangdong Provincial Key Laboratory of
Optical Fiber Sensing and Communications, Guangzhou Key
Laboratory of Vacuum Coating Technologies and New
Energy Materials, Siyuan Laboratory, Department of Physics,
Jinan University, 510632 Guangzhou, China; Email: thlt@
jnu.edu.cn

Ellen Moons — Department of Engineering and Physics,
Karlstad University, SE-651 88 Karlstad, Sweden;

6447

orcid.org/0000-0002-1609-8909; Email: ellen.moons@

kau.se

Ergang Wang — Department of Chemistry and Chemical
Engineering, Chalmers University of Technology, SE-412 96
Goteborg, Sweden; School of Materials Science and
Engineering, Zhengzhou University, 450001 Zhengzhou,
China; © orcid.org/0000-0002-4942-3771;
Email: ergang@chalmers.se

Authors

Wenyan Su — Guangdong Provincial Key Laboratory of
Optical Fiber Sensing and Communications, Guangzhou Key
Laboratory of Vacuum Coating Technologies and New
Energy Materials, Siyuan Laboratory, Department of Physics,
Jinan University, 510632 Guangzhou, China; Department of
Chemistry and Chemical Engineering, Chalmers University of
Technology, SE-412 96 Goteborg, Sweden; Department of
Engineering and Physics, Karlstad University, SE-651 88
Karlstad, Sweden

Ishita Jalan — Department of Engineering and Chemical
Sciences, Karlstad University, SE-651 88 Karlstad, Sweden

Yufei Wang — Guangdong Provincial Key Laboratory of
Optical Fiber Sensing and Communications, Guangzhou Key
Laboratory of Vacuum Coating Technologies and New
Energy Materials, Siyuan Laboratory, Department of Physics,
Jinan University, 510632 Guangzhou, China

Wenhong Peng — Department of Chemistry and Chemical
Engineering, Chalmers University of Technology, SE-412 96
Géteborg, Sweden; School of Materials Science and
Engineering, Jiangsu Key Laboratory of Environmentally
Friendly Polymeric Materials, Jiangsu Engineering Laboratory
of Light-Electricity-Heat Energy-Converting Materials and
Applications, Changzhou University, 213164 Changzhou,
China

Tao Guo — Department of Chemistry and Chemical
Engineering, Chalmers University of Technology, SE-412 96
Géteborg, Sweden; School of Chemistry and Chemical
Engineering, Henan University of Technology, 450001
Zhengzhou, China

https://dx.doi.org/10.1021/acsami.0c17722
ACS Appl. Mater. Interfaces 2021, 13, 6442—6449


http://pubs.acs.org/doi/suppl/10.1021/acsami.0c17722/suppl_file/am0c17722_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acsami.0c17722/suppl_file/am0c17722_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qunping+Fan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-7268-8065
mailto:qunpifan@cityu.edu.hk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lintao+Hou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:thlt@jnu.edu.cn
mailto:thlt@jnu.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ellen+Moons"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-1609-8909
http://orcid.org/0000-0002-1609-8909
mailto:ellen.moons@kau.se
mailto:ellen.moons@kau.se
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ergang+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-4942-3771
mailto:ergang@chalmers.se
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenyan+Su"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ishita+Jalan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yufei+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenhong+Peng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tao+Guo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Weiguo+Zhu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?fig=fig4&ref=pdf
www.acsami.org?ref=pdf
https://dx.doi.org/10.1021/acsami.0c17722?ref=pdf

ACS Applied Materials & Interfaces

Research Article

www.acsami.org

Weiguo Zhu — School of Materials Science and Engineering,
Jiangsu Key Laboratory of Environmentally Friendly
Polymeric Materials, Jiangsu Engineering Laboratory of
Light-Electricity-Heat Energy-Converting Materials and
Applications, Changzhou University, 213164 Changzhou,
China; ® orcid.org/0000-0002-4244-2638

Donghong Yu — Department of Chemistry and Bioscience,
Aalborg University, DK-9220 Aalborg, Denmark; Sino-
Danish Center for Education and Research, DK-8000
Aarhus, Denmark

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsami.0c17722

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

We thank the Swedish Research Council (2015-04853, 2016-
06146, and 2019-04683), the Swedish Research Council
Formas, and the Knut and Alice Wallenberg Foundation
(2017.0186, 2016.0059) for financial support. E.M. thanks the
Swedish Energy Council for financial support (project 48598-
1). W.S. thanks the project funded by China Postdoctoral
Science Foundation (2020M673054), Postdoctoral Fund of
Jinan University, and National Natural Science Foundation of
China (22005121). L.H. thanks the NSFC project (61774077)
for financial support. The support from Sino-Danish Centre for
Education and Research and the Open Fund of the State Key
Laboratory of Luminescent Materials and Devices (South
China University of Technology, 2020-skllmd-07) is fully
acknowledged. Leif K. E. Ericsson is acknowledged for the
helpful discussion.

B REFERENCES

(1) Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H; Li, Y.; Zhu, D.; Zhan, X.
An Electron Acceptor Challenging Fullerenes for Efficient Polymer
Solar Cells. Adv. Mater. 2015, 27, 1170—1174.

(2) Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K;
Lu, X; Zhu, C; Peng, H,; Johnson, P. A; Leclerc, M,; Cao, Y,;
Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell with
over 15% Efficiency Using Fused-Ring Acceptor with Electron-
Deficient Core. Joule 2019, 3, 1140—1151.

(3) Yao, J.; Qiu, B.; Zhang, Z.; Xue, L.; Wang, R.; Zhang, C.; Chen,
S.; Zhou, Q; Sun, C,; Yang, C.; Xiao, M.; Meng, L.; Li, Y. Cathode
engineering with perylene-diimide interlayer enabling over 17%
efficiency single-junction organic solar cells. Nat. Commun. 2020,
11, 2726.

(4) Liu, Q; Jiang, Y,; Jin, K; Qin, J.; Xy, J.; Li, W.; Xiong, J; Liu, J;
Xiao, Z.; Sun, K;; Yang, S.; Zhang, X.; Ding, L. 18% Efficiency organic
solar cells. Sci. Bull. 2020, 65, 272—275.

(5) Meng, L.; Zhang, Y.; Wan, X;; Li, C.; Zhang, X.; Wang, Y.; Ke,
X.; Xiao, Z.; Ding, L.; Xia, R; Yip, H. L.; Cao, Y.; Chen, Y. Organic
and solution-processed tandem solar cells with 17.3% efficiency.
Science 2018, 361, 1094—1098.

(6) Lin, Y.; Adilbekova, B.; Firdaus, Y.; Yengel, E.; Faber, H.; Sajjad,
M.,; Zheng, X,; Yarali, E.; Seitkhan, A; Bakr, O. M.; El-Labban, A,;
Schwingenschlogl, U.; Tung, V.; McCulloch, I; Laquai, F;
Anthopoulos, T. D. 17% Efficient Organic Solar Cells Based on
Liquid Exfoliated WS2 as a Replacement for PEDOT:PSS. Adv. Mater.
2019, 31, 1902965.

(7) Liu, L; Kan, Y,; Gao, K;; Wang, J.; Zhao, M.; Chen, H.; Zhao,
C,; Jiu, T.; Jen, A-K.-Y,; Li, Y. Graphdiyne Derivative as Multifunc-
tional Solid Additive in Binary Organic Solar Cells with 17.3%
Efficiency and High Reproductivity. Adv. Mater. 2020, 32, 1907604.

6448

(8) Cui, Y.; Yao, H; Zhang, J.; Xian, K; Zhang, T.; Hong, L.; Wang,
Y,; Xu, Y,; Ma, K; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J. Single-
Junction Organic Photovoltaic Cells with Approaching 18%
Efficiency. Adv. Mater. 2020, 32, 1908205.

(9) Wang, T.; Sun, R; Shi, M.; Pan, F; Hu, Z; Huang, F,; Li, Y,;
Min, ]J. Solution-Processed Polymer Solar Cells with over 17%
Efficiency Enabled by an Iridium Complexation Approach. Adv.
Energy Mater. 2020, 10, 2000590.

(10) Liu, T.; Ma, R.; Luo, Z.; Guo, Y.; Zhang, G.; Xiao, Y.; Yang, T.;
Chen, Y; Li, G; Yi, Y; Lu, X; Yan, H; Tang, B. Concurrent
improvement in J;. and V. in high-efficiency ternary organic solar
cells enabled by a red-absorbing small-molecule acceptor with a high
LUMO level. Energy Environ. Sci. 2020, 13, 2115—-2123.

(11) Genene, Z.; Mammo, W.; Wang, E.; Andersson, M. R. Recent
Advances in n-Type Polymers for All-Polymer Solar Cells. Adv. Mater.
2019, 31, 1807275.

(12) Wang, G.; Melkonyan, F. S.; Facchetti, A,; Marks, T. J. All-
Polymer Solar Cells: Recent Progress, Challenges, and Prospects.
Angew. Chem., Int. Ed. 2019, 58, 4129—4142.

(13) Yang, J.; Xiao, B.; Tang, A.; Li, ].; Wang, X.; Zhou, E. Aromatic-
Diimide-Based n-Type Conjugated Polymers for All-Polymer Solar
Cell Applications. Adv. Mater. 2019, 31, 1804699.

(14) Lee, C.; Lee, S,; Kim, G.-U,; Lee, W.,; Kim, B. J. Recent
Advances, Design Guidelines, and Prospects of All-Polymer Solar
Cells. Chem. Rev. 2019, 119, 8028—8086.

(15) (a) Chen, H,; Guo, Y.; Chao, P.; Liu, L.; Chen, W.; Zhao, D.;
He, F. A chlorinated polymer promoted analogue co-donors for
efficient ternary all-polymer solar cells. Sci. China Chem. 2019, 62,
238—244. (b) Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade,
H.; Yan, H.; Zhao, D. Improved Performance of All-Polymer Solar
Cells Enabled by Naphthodiperylenetetraimide-Based Polymer
Acceptor. Adv. Mater. 2017, 29, 1700309.

(16) Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R;; Dotz,
F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting
polymer for printed transistors. Nature 2009, 457, 679—686.

(17) Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; Xia, R;
Liu, F; Yip, H. L;; Li, N.; Ma, Y,; Brabec, C. J; Huang, F.; Cao, Y.
Surpassing the 10% efficiency milestone for 1-cm” all-polymer solar
cells. Nat. Commun. 2019, 10, 4100.

(18) Zhu, L.; Zhong, W.; Qiu, C.; Lyu, B.; Zhou, Z.; Zhang, M,;
Song, J.; Xu, J.; Wang, J.; Ali, J.; Feng, W.; Shi, Z,; Gu, X,; Ying, L,;
Zhang, Y.; Liu, F. Aggregation-Induced Multilength Scaled Morphol-
ogy Enabling 11.76% Efficiency in All-Polymer Solar Cells Using
Printing Fabrication. Adv. Mater. 2019, 31, 1902899.

(19) Xu, Y.; Yuan, J.; Liang, S.; Chen, J.-D.; Xia, Y.; Larson, B. W,;
Wang, Y.; Su, G. M.; Zhang, Y.; Cui, C.; Wang, M.; Zhao, H.; Ma, W.
Simultaneously Improved Efficiency and Stability in All-Polymer Solar
Cells by a P-i-N Architecture. ACS Energy Lett. 2019, 4, 2277—2286.

(20) Sun, H.; Tang, Y.; Koh, C. W,; Ling, S.; Wang, R;; Yang, K;; Yu,
J.; Shi, Y.; Wang, Y.,; Woo, H. Y,; Guo, X. High-Performance All-
Polymer Solar Cells Enabled by an n-Type Polymer Based on a
Fluorinated Imide-Functionalized Arene. Adv. Mater. 2019, 31,
1807220.

(21) Zhao, R;; Wang, N.; Yu, Y.; Liu, J. Organoboron Polymer for
10% Efficiency All-Polymer Solar Cells. Chem. Mater. 2020, 32,
1308—1314.

(22) Li, Y; Meng, H.; Liu, T.; Xiao, Y,; Tang, Z.; Pang, B,; Li, Y,;
Xiang, Y,; Zhang, G.; Lu, X;; Yu, G,; Yan, H,; Zhan, C,; Huang, J;
Yao, J. 8.78% Efficient All-Polymer Solar Cells Enabled by Polymer
Acceptors Based on a B«~N Embedded Electron-Deficient Unit. Adv.
Mater. 2019, 31, 190458S.

(23) Zhang, Z.-G; Yang, Y.; Yao, J; Xue, L.; Chen, S; Li, X;
Morrison, W.; Yang, C.; Li, Y. Constructing a Strongly Absorbing
Low-Bandgap Polymer Acceptor for High-Performance All-Polymer
Solar Cells. Angew. Chem., Int. Ed. 2017, 56, 13503—13507.

(24) Yao, H,; Bai, F.; Hu, H.; Arunagiri, L.; Zhang, J.; Chen, Y.; Yu,
H.; Chen, S.; Liu, T.; Lai, J. Y. L,; Zou, Y.; Ade, H,; Yan, H. Efficient
All-Polymer Solar Cells based on a New Polymer Acceptor Achieving

https://dx.doi.org/10.1021/acsami.0c17722
ACS Appl. Mater. Interfaces 2021, 13, 6442—6449


http://orcid.org/0000-0002-4244-2638
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Donghong+Yu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c17722?ref=pdf
https://dx.doi.org/10.1002/adma.201404317
https://dx.doi.org/10.1002/adma.201404317
https://dx.doi.org/10.1016/j.joule.2019.01.004
https://dx.doi.org/10.1016/j.joule.2019.01.004
https://dx.doi.org/10.1016/j.joule.2019.01.004
https://dx.doi.org/10.1038/s41467-020-16509-w
https://dx.doi.org/10.1038/s41467-020-16509-w
https://dx.doi.org/10.1038/s41467-020-16509-w
https://dx.doi.org/10.1016/j.scib.2020.01.001
https://dx.doi.org/10.1016/j.scib.2020.01.001
https://dx.doi.org/10.1126/science.aat2612
https://dx.doi.org/10.1126/science.aat2612
https://dx.doi.org/10.1002/adma.201902965
https://dx.doi.org/10.1002/adma.201902965
https://dx.doi.org/10.1002/adma.201908205
https://dx.doi.org/10.1002/adma.201908205
https://dx.doi.org/10.1002/adma.201908205
https://dx.doi.org/10.1002/aenm.202000590
https://dx.doi.org/10.1002/aenm.202000590
https://dx.doi.org/10.1039/d0ee00662a
https://dx.doi.org/10.1039/d0ee00662a
https://dx.doi.org/10.1039/d0ee00662a
https://dx.doi.org/10.1039/d0ee00662a
https://dx.doi.org/10.1002/adma.201807275
https://dx.doi.org/10.1002/adma.201807275
https://dx.doi.org/10.1002/anie.201808976
https://dx.doi.org/10.1002/anie.201808976
https://dx.doi.org/10.1002/adma.201804699
https://dx.doi.org/10.1002/adma.201804699
https://dx.doi.org/10.1002/adma.201804699
https://dx.doi.org/10.1021/acs.chemrev.9b00044
https://dx.doi.org/10.1021/acs.chemrev.9b00044
https://dx.doi.org/10.1021/acs.chemrev.9b00044
https://dx.doi.org/10.1007/s11426-018-9371-0
https://dx.doi.org/10.1007/s11426-018-9371-0
https://dx.doi.org/10.1002/adma.201700309
https://dx.doi.org/10.1002/adma.201700309
https://dx.doi.org/10.1002/adma.201700309
https://dx.doi.org/10.1038/nature07727
https://dx.doi.org/10.1038/nature07727
https://dx.doi.org/10.1038/s41467-019-12132-6
https://dx.doi.org/10.1038/s41467-019-12132-6
https://dx.doi.org/10.1002/adma.201902899
https://dx.doi.org/10.1002/adma.201902899
https://dx.doi.org/10.1002/adma.201902899
https://dx.doi.org/10.1021/acsenergylett.9b01459
https://dx.doi.org/10.1021/acsenergylett.9b01459
https://dx.doi.org/10.1002/adma.201807220
https://dx.doi.org/10.1002/adma.201807220
https://dx.doi.org/10.1002/adma.201807220
https://dx.doi.org/10.1021/acs.chemmater.9b04997
https://dx.doi.org/10.1021/acs.chemmater.9b04997
https://dx.doi.org/10.1002/adma.201904585
https://dx.doi.org/10.1002/adma.201904585
https://dx.doi.org/10.1002/anie.201707678
https://dx.doi.org/10.1002/anie.201707678
https://dx.doi.org/10.1002/anie.201707678
https://dx.doi.org/10.1021/acsenergylett.8b02114.s001
https://dx.doi.org/10.1021/acsenergylett.8b02114.s001
www.acsami.org?ref=pdf
https://dx.doi.org/10.1021/acsami.0c17722?ref=pdf

ACS Applied Materials & Interfaces

Research Article

www.acsami.org

10.3% Power Conversion Efficiency. ACS Energy Lett. 2019, 4, 417—
422.

(25) Fan, Q.; Su, W.; Chen, S.; Kim, W.; Chen, X;; Lee, B,; Liu, T.;
Meéndez-Romero, U. A;; Ma, R; Yang, T.; Zhuang, W,; Li, Y,; Li, Y,;
Kim, T.-S.; Hou, L,; Yang, C.; Yan, H,; Yu, D.; Wang, E. Mechanically
Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors
with Hetero-Bridging Atoms. Joule 2020, 4, 658—672.

(26) Wu, J; Meng, Y.; Guo, X;; Zhu, L; Liu, F.,; Zhang, M. All-
polymer solar cells based on a novel narrow bandgap polymer
acceptor with power conversion efficiency over 10%. J. Mater. Chem. A
2019, 7, 16190—16196.

(27) Fan, Q.; Ma, R; Liu, T.; Su, W.; Peng, W.; Zhang, M.; Wang,
Z.; Wen, X.; Cong, Z.; Luo, Z.; Hou, L.; Liu, F.; Zhu, W.; Yu, D.; Yan,
H.; Wang, E. 10.13% Efficiency All-Polymer Solar Cells Enabled by
Improving the Optical Absorption of Polymer Acceptors. Sol. RRL
2020, 4, 2000142.

(28) Huang, S.; Wy, F; Liu, Z; Cui, Y.; Chen, L.; Chen, Y. Novel
polymer acceptors achieving 10.18% efficiency for all-polymer solar
cells. J. Energy Chem. 2021, 53, 63—68.

(29) Tang, A.; Li, J.; Zhang, B.; Peng, J.; Zhou, E. Low-Bandgap n-
Type Polymer Based on a Fused-DAD-Type Heptacyclic Ring for All-
Polymer Solar Cell Application with a Power Conversion Efficiency of
10.7%. ACS Macro Lett. 2020, 9, 706—712.

(30) Dy, J; Hu, K; Meng, L.; Angunawela, L; Zhang, J.; Qin, S;
Liebman-Pelaez, A,; Zhu, C; Zhang, Z; Ade, H,; Li, Y. High-
Performance All-Polymer Solar Cells: Synthesis of Polymer Acceptor
by a Random Ternary Copolymerization Strategy. Angew. Chem., Int.
Ed. 2020, 59, 15181—15185.

(31) Wang, W.; Wy, Q; Sun, R.; Guo, J.; Wu, Y.; Shi, M.; Yang, W.;
Li, H,; Min, J. Controlling Molecular Mass of Low-Band-Gap Polymer
Acceptors for High-Performance All-Polymer Solar Cells. Joule 2020,
4, 1070—1086.

(32) Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K; Dong, S.;
Ying, L,; Liu, F.; Wang, X,; Huang, F.; Cao, Y. 14.4% efficiency all-
polymer solar cell with broad absorption and low energy loss enabled
by a novel polymer acceptor. Nano Energy 2020, 72, 104718.

(33) Sun, H; Yu, H,; Shi, Y;; Yu, J; Peng, Z.; Zhang, X; Liu, B;
Wang, J.; Singh, R.; Lee, J.; Li, Y.; Wei, Z.; Liao, Q; Kan, Z.; Ye, L;
Yan, H,; Gao, F.; Guo, X. A Narrow-Bandgap n-Type Polymer with an
Acceptor-Acceptor Backbone Enabling Efficient All-Polymer Solar
Cells. Adv. Mater. 2020, 32, 2004183.

(34) Fan, Q; An, Q; Lin, Y.; Xia, Y;; Li, Q; Zhang, M.; Su, W,;
Peng, W.; Zhang, C; Liu, F.; Hou, L.; Zhu, W,; Yu, D,; Xiao, M,;
Moons, E.; Zhang, F.; Anthopoulos, T. D.; Inganas, O.; Wang, E.
Over 14% efficiency all-polymer solar cells enabled by a low bandgap
polymer acceptor with low energy loss and efficient charge separation.
Energy Environ. Sci. 2020, 13, 5017—5027.

(35) Luo, Z.; Liu, T.; Ma, R; Xiao, Y.; Zhan, L.; Zhang, G.; Sun, H.;
Ni, F; Chai, G.; Wang, J.; Zhong, C.; Zou, Y,; Guo, X;; Lu, X.; Chen,
H.; Yan, H; Yang, C. Precisely Controlling the Position of Bromine
on the End Group Enables Well-Regular Polymer Acceptors for All-
Polymer Solar Cells with Efficiencies over 15%. Adv. Mater. 2020, 32,
2005942.

(36) Peng, F.; An, K; Zhong, W.; Li, Z.; Ying, L.; Li, N.; Huang, Z.;
Zhu, C.; Fan, B,; Huang, F.; Cao, Y. A Universal Fluorinated Polymer
Acceptor Enables All-Polymer Solar Cells with >15% Efficiency. ACS
Energy Lett. 2020, S, 3702—3707.

(37) Fan, Q; Su, W;; Chen, S.; Liu, T.; Zhuang, W.; Ma, R.; Wen,
X.; Yin, Z.; Luo, Z.; Guo, X,; Hou, L.; Moth-Poulsen, K; Li, Y,
Zhang, Z.; Yang, C; Yu, D; Yan, H,; Zhang, M.; Wang, E. A Non-
Conjugated Polymer Acceptor for Efficient and Thermally Stable All-
Polymer Solar Cells. Angew. Chem., Int. Ed. 2020, 59, 19835—19840.

(38) Dang, D.; Yu, D; Wang, E. Conjugated Donor—Acceptor
Terpolymers Toward High-Efficiency Polymer Solar Cells. Adv.
Mater. 2019, 31, 1807019.

(39) Chen, D.; Yao, J.; Chen, L.; Yin, J.; Lv, R;; Huang, B; Liu, S;
Zhang, Z.-G.; Yang, C.,; Chen, Y,; Li, Y. Dye-Incorporated
Polynaphthalenediimide Acceptor for Additive-Free High-Perform-

6449

ance All-Polymer Solar Cells. Angew. Chem., Int. Ed. 2018, 57, 4580—
4584.

(40) Liu, X; Zhang, C.; Duan, C,; Li, M,; Hu, Z.; Wang, J; Liu, F.;
Li, N; Brabec, C. J.; Janssen, R. A. J.; Bazan, G. C.; Huang, F.; Cao, Y.
Morphology Optimization via Side Chain Engineering Enables All-
Polymer Solar Cells with Excellent Fill Factor and Stability. . Am.
Chem. Soc. 2018, 140, 8934—8943.

(41) Wu, Y.; Schneider, S.; Walter, C.; Chowdhury, A. H.; Bahrami,
B; Wu, H.-C; Qiao, Q; Toney, M. F; Bao, Z. Fine-Tuning
Semiconducting Polymer Self-Aggregation and Crystallinity Enables
Optimal Morphology and High-Performance Printed All-Polymer
Solar Cells. J. Am. Chem. Soc. 2020, 142, 392—406.

(42) Kolhe, N. B,; Tran, D. K; Lee, H.; Kuzuhara, D.; Yoshimoto,
N,; Koganezawa, T.; Jenekhe, S. A. New Random Copolymer
Acceptors Enable Additive-Free Processing of 10.1% Efficient All-
Polymer Solar Cells with Near-Unity Internal Quantum Efficiency.
ACS Energy Lett. 2019, 4, 1162—1170.

(43) Liy, S; Song, X.; Thomas, S.; Kan, Z.; Cruciani, F.; Laquai, F,;
Bredas, J.-L.; Beaujuge, P. M. Thieno[3,4-c]Pyrrole-4,6-Dione-Based
Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar
Cells. Adv. Energy Mater. 2017, 7, 1602574.

(44) Lee, J.-W,; Sung, M. J.; Kim, D,; Lee, S.; You, H,; Kim, F. S;
Kim, Y.-H;; Kim, B. J,; Kwon, S.-K. Naphthalene Diimide-Based
Terpolymers with Controlled Crystalline Properties for Producing
High Electron Mobility and Optimal Blend Morphology in All-
Polymer Solar Cells. Chem. Mater. 2020, 32, 2572—2582.

(45) Li, Z; Xu, X; Zhang, W.; Meng, X,; Ma, W.; Yartsev, A;
Inganis, O.; Andersson, M. R.; Janssen, R. A. J; Wang, E. High
Performance All-Polymer Solar Cells by Synergistic Effects of Fine-
Tuned Crystallinity and Solvent Annealing. J. Am. Chem. Soc. 2016,
138, 10935—10944.

(46) Sun, H; Liu, B.; Koh, C. W.; Zhang, Y.; Chen, J.; Wang, Y,;
Chen, P; Tu, B,; Su, M,; Wang, H,; Tang, Y.; Shi, Y.; Woo, H. Y,;
Guo, X. Imide-Functionalized Heteroarene-Based n-Type Terpol-
ymers Incorporating Intramolecular Noncovalent Sulfur--Oxygen
Interactions for Additive-Free All-Polymer Solar Cells. Adv. Funct.
Mater. 2019, 29, 1903970.

(47) Li, H; Zhao, Y.; Fang, J.; Zhu, X,; Xia, B,; Lu, K; Wang, Z;
Zhang, J.; Guo, X.; Wei, Z. Improve the Performance of the All-Small-
Molecule Nonfullerene Organic Solar Cells through Enhancing the
Crystallinity of Acceptors. Adv. Energy Mater. 2018, 8, 1702377.

(48) Li, Y,; Zheng, N.; Yu, L.; Wen, S.; Gao, C.; Sun, M.; Yang, R. A
Simple Phenyl Group Introduced at the Tail of Alkyl Side Chains of
Small Molecular Acceptors: New Strategy to Balance the Crystallinity
of Acceptors and Miscibility of Bulk Heterojunction Enabling Highly
Efficient Organic Solar Cells. Adv. Mater. 2019, 31, 1807832.

(49) Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A Large-Bandgap
Conjugated Polymer for Versatile Photovoltaic Applications with
High Performance. Adv. Mater. 2015, 27, 4655—4660.

(50) Fan, Q.; Xu, Z.; Guo, X.; Meng, X.; Li, W.; Su, W.; Ou, X;; Ma,
W.; Zhang, M; Li, Y. High-Performance Nonfullerene Polymer Solar
Cells with Open-Circuit Voltage over 1 V and Energy Loss as Low as
0.54 eV. Nano Energy 2017, 40, 20—26.

(51) Su, W.; Fan, Q.; Guo, X,; Meng, X,; Bi, Z.; Ma, W.; Zhang, M;
Li, Y. Two Compatible Nonfullerene Acceptors with Similar
Structures as Alloy for Efficient Ternary Polymer Solar Cells. Nano
Energy 2017, 38, 510—517.

(52) Hou, J.; Inganis, O.; Friend, R. H.; Gao, F. Organic solar cells
based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119—128.

https://dx.doi.org/10.1021/acsami.0c17722
ACS Appl. Mater. Interfaces 2021, 13, 6442—6449


https://dx.doi.org/10.1021/acsenergylett.8b02114.s001
https://dx.doi.org/10.1016/j.joule.2020.01.014
https://dx.doi.org/10.1016/j.joule.2020.01.014
https://dx.doi.org/10.1016/j.joule.2020.01.014
https://dx.doi.org/10.1039/c9ta04611a
https://dx.doi.org/10.1039/c9ta04611a
https://dx.doi.org/10.1039/c9ta04611a
https://dx.doi.org/10.1002/solr.202000142
https://dx.doi.org/10.1002/solr.202000142
https://dx.doi.org/10.1016/j.jechem.2020.04.075
https://dx.doi.org/10.1016/j.jechem.2020.04.075
https://dx.doi.org/10.1016/j.jechem.2020.04.075
https://dx.doi.org/10.1021/acsmacrolett.0c00234
https://dx.doi.org/10.1021/acsmacrolett.0c00234
https://dx.doi.org/10.1021/acsmacrolett.0c00234
https://dx.doi.org/10.1021/acsmacrolett.0c00234
https://dx.doi.org/10.1002/anie.202005357
https://dx.doi.org/10.1002/anie.202005357
https://dx.doi.org/10.1002/anie.202005357
https://dx.doi.org/10.1016/j.joule.2020.03.019
https://dx.doi.org/10.1016/j.joule.2020.03.019
https://dx.doi.org/10.1016/j.nanoen.2020.104718
https://dx.doi.org/10.1016/j.nanoen.2020.104718
https://dx.doi.org/10.1016/j.nanoen.2020.104718
https://dx.doi.org/10.1002/adma.202004183
https://dx.doi.org/10.1002/adma.202004183
https://dx.doi.org/10.1002/adma.202004183
https://dx.doi.org/10.1039/d0ee01828g
https://dx.doi.org/10.1039/d0ee01828g
https://dx.doi.org/10.1002/adma.202005942
https://dx.doi.org/10.1002/adma.202005942
https://dx.doi.org/10.1002/adma.202005942
https://dx.doi.org/10.1021/acsenergylett.0c02053
https://dx.doi.org/10.1021/acsenergylett.0c02053
https://dx.doi.org/10.1002/anie.202005662
https://dx.doi.org/10.1002/anie.202005662
https://dx.doi.org/10.1002/anie.202005662
https://dx.doi.org/10.1002/adma.201807019
https://dx.doi.org/10.1002/adma.201807019
https://dx.doi.org/10.1002/anie.201800035
https://dx.doi.org/10.1002/anie.201800035
https://dx.doi.org/10.1002/anie.201800035
https://dx.doi.org/10.1021/jacs.8b05038
https://dx.doi.org/10.1021/jacs.8b05038
https://dx.doi.org/10.1021/jacs.9b10935
https://dx.doi.org/10.1021/jacs.9b10935
https://dx.doi.org/10.1021/jacs.9b10935
https://dx.doi.org/10.1021/jacs.9b10935
https://dx.doi.org/10.1021/acsenergylett.9b00460
https://dx.doi.org/10.1021/acsenergylett.9b00460
https://dx.doi.org/10.1021/acsenergylett.9b00460
https://dx.doi.org/10.1002/aenm.201602574
https://dx.doi.org/10.1002/aenm.201602574
https://dx.doi.org/10.1002/aenm.201602574
https://dx.doi.org/10.1021/acs.chemmater.0c00055
https://dx.doi.org/10.1021/acs.chemmater.0c00055
https://dx.doi.org/10.1021/acs.chemmater.0c00055
https://dx.doi.org/10.1021/acs.chemmater.0c00055
https://dx.doi.org/10.1021/jacs.6b04822
https://dx.doi.org/10.1021/jacs.6b04822
https://dx.doi.org/10.1021/jacs.6b04822
https://dx.doi.org/10.1002/adfm.201903970
https://dx.doi.org/10.1002/adfm.201903970
https://dx.doi.org/10.1002/adfm.201903970
https://dx.doi.org/10.1002/aenm.201702377
https://dx.doi.org/10.1002/aenm.201702377
https://dx.doi.org/10.1002/aenm.201702377
https://dx.doi.org/10.1002/adma.201807832
https://dx.doi.org/10.1002/adma.201807832
https://dx.doi.org/10.1002/adma.201807832
https://dx.doi.org/10.1002/adma.201807832
https://dx.doi.org/10.1002/adma.201807832
https://dx.doi.org/10.1002/adma.201502110
https://dx.doi.org/10.1002/adma.201502110
https://dx.doi.org/10.1002/adma.201502110
https://dx.doi.org/10.1016/j.nanoen.2017.07.047
https://dx.doi.org/10.1016/j.nanoen.2017.07.047
https://dx.doi.org/10.1016/j.nanoen.2017.07.047
https://dx.doi.org/10.1016/j.nanoen.2017.05.060
https://dx.doi.org/10.1016/j.nanoen.2017.05.060
https://dx.doi.org/10.1038/nmat5063
https://dx.doi.org/10.1038/nmat5063
www.acsami.org?ref=pdf
https://dx.doi.org/10.1021/acsami.0c17722?ref=pdf

