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Fatih Mehmet Dumanoğulları 5, Halil Yılmaz 5, Mustafa Hayvali 5 and Ayhan Elmali 1

����������
�������

Citation: Tutel, Y.; Sevinç, G.;

Küçüköz, B.; Akhuseyin Yildiz, E.;

Karatay, A.; Dumanoğulları, F.M.;
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Abstract: Meso-substituted borondipyrromethene (BODIPY)-porphyrin compounds that include
free base porphyrin with two different numbers of BODIPY groups (BDP-TTP and 3BDP-TTP) were
designed and synthesized to analyze intramolecular energy transfer mechanisms of meso-substituted
BODIPY-porphyrin dyads and the effect of the different numbers of BODIPY groups connected to
free-base porphyrin on the energy transfer mechanism. Absorption spectra of BODIPY-porphyrin
conjugates showed wide absorption features in the visible region, and that is highly valuable to
increase light-harvesting efficiency. Fluorescence spectra of the studied compounds proved that
BODIPY emission intensity decreased upon the photoexcitation of the BODIPY core, due to the
energy transfer from BODIPY unit to porphyrin. In addition, ultrafast pump-probe spectroscopy
measurements indicated that the energy transfer of the 3BDP-TTP compound (about 3 ps) is faster
than the BDP-TTP compound (about 22 ps). Since the BODIPY core directly binds to the porphyrin
unit, rapid energy transfer was seen for both compounds. Thus, the energy transfer rate increased
with an increasing number of BODIPY moiety connected to free-base porphyrin.

Keywords: borondipyrromethene; porphyrin; Förster resonance energy transfer; ultrafast
pump-probe spectroscopy

1. Introduction

Borondipyrromethene (BODIPY) chromophores have attracted great interest, due
to some favorable features such as sharp absorption and emission bands (500 nm), high
fluorescence quantum yields and molar absorption coefficients, outstanding chemical pho-
tostability, and long excited state lifetimes[1–5]. They also have good solubility in organic
solvents [3,5,6] and fluorescent properties modifiable with structural substations [2]. Fur-
thermore, it is known that they are exceedingly stable dyes because they are relatively
insensitive to the pH of the media [7]. It is a big advantage for BODIPY dyes to have been
used in wide application areas such as biological labeling [8], luminescent devices [9], chem-
ical sensors [10–14], light-harvesting arrays [15–18], supramolecular fluorescent gels [19],
and triplet photosensitizers [20]. Double chromophore systems have been studied recently
to investigate photoinduced intermolecular electron and/or energy transfer process such as
some BODIPY-chromophores which are conjugated to porphyrin [15,21–23], pyrene [2,24],
rhodamine [25], anthracene [26,27], carbazole [28], and BODIPY [29–34].

On the other hand, porphyrins, a group of tetrapyrrolic aromatic macrocycles, demon-
strate a strong Soret band in the 400–800 nm region and four intense Q-bands, while
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metalloporphyrins display a dominant Soret band and one or two Q-bands in the same
spectral region. They form complex structures with metal ions [35–37] and nonmetals [38],
they are also the most widely investigated chromophores, due to their importance in bio-
chemical processes [39–41]. Besides, due to their photosensitizing properties, porphyrins
have been widely used as light-harvesting antennas to capture and transfer light to the
other porphyrin units [42–46]. Since porphyrins do not absorb strongly in the range of 450
and 550 nm wavelength, they have a limited usage area in solar cell applications. In an
attempt to enhance the light-harvesting capability and absorption features of porphyrins
in that region, BODIPY chromophore, with its strong absorbing properties, can be attached
to the porphyrin unit. BODIPY absorbs light strongly around 500 nm, while porphyrin
absorbs strongly in the 420–450 nm region and weakly in the 500–700 nm region. Therefore,
BODIPY and porphyrin have complementary light-absorbing features. Thus, BODIPY-
porphyrin conjugates result in a wide range of absorption in the visible region, either
covalently or non-covalently bonded, which is highly desirable to increase light-gathering
efficiency across the solar spectrum. Generally, such molecular structures demonstrate
efficient and rapid energy transfer from BODIPY to the porphyrin unit in accordance with
the type of conjugation and the position of BODIPY. Increasing or decreasing the energy
transfer rate is important for many applications and modifying this property in organic
molecules provides great advantages [47–49].

By combining different numbers of BODIPY moiety to free-base porphyrin, it is
possible to improve and modify some optical properties of porphyrin. We herein examine
the optical properties and the energy transfer mechanism of the two porphyrin-based
compounds with different numbers of BODIPY groups on the electronic energy levels
of the porphyrin ring. The experimental results of fluorescence, excitation, and ultrafast
pump-probe spectroscopy measurements prove the energy transfer from the BODIPY unit
to porphyrin.

2. Experiment
2.1. Materials and Equipment

Compound formyl-BODIPY was synthesized from the literature procedure [41]. All
other solvents and reagents were purchased from Sigma Aldrich Co. and used as received.
Reactions were monitored by TLC (with F254 indicator) on pre-coated silica gel plates
revealed by exposure to a UV254 lamp. Barnstead Electrothermal 9100 platform was used
for the melting point determinations. Mass spectra data were acquired in an Agilent
Technologies 6224 (LC/MS) and Waters 2695 Alliance Micromass ZQ Mass spectrometer.
NMR were measured by VARIAN Mercury instrument in deuterium chloroform (400 MHz
for 1H and 100 MHz for 13C). Chemical shifts are reported in ppm versus internal Me4Si as
a standard.

2.2. Synthesis

Synthesis of Compounds 5-{4-[8-(2,6-Diethyl-4,4-Difluoro-1,3,5,7-Tetramethyl-4-Bora-3a,4a-
Diaza-S-Indacene)]-Phenyl}-10,15,20-Tris(4-Methylphenyl)Porphyrin (Bdp-Ttp) and 5,10,15-
Tris{4-[8-(2,6-Diethyl-4,4-Difluoro-1,3,5,7-Tetramethyl-4-Bora-3a,4a-Diaza-S-Indacene)]-Phenyl}-
20-(4-Methylphenyl)Porphyrin(3BDP-TTP).

1H-pyrrole (1.08 mmol, 75 µL), 4-methylbenzaldehyde (60 µL, 0.49 mmol) and formyl-
BODIPY (200 mg, 0.49 mmol) were dissolved in absolute CH2Cl2 (50 mL). The reaction
mixture was purged with argon bubbles for 5 min. As a catalyst, one drop of BF3.Et2O was
added, and the solution was stirred for 1 h. At the end of this time, TLC analysis showed
complete consumption of the aldehyde. Then, tetrachloro-p-benzoquinone (p-chloranil,
300 mg, 1.23 mmol) was added. Stirring was continued for another hour, then the crude
product was washed with water, dried over Na2SO4, filtered, and evaporated to dryness.
Column chromatography was conducted with benzene:chloroform elution (1:1; v/v) to
isolate BDP-TTP and 3BDP-TTP, Scheme 1. In addition to isolated compounds, we also
observed some unidentified compounds in trace amounts that could be porphyrin products
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with two and four BODIPY units from the mixture of the final products. According to thin
layer chromatography, the mixture is believed to consist of a number of compounds from
one to four meso-BODIPY substituted porphyrins. Yield: 33 mg (7%) for the compound
3BDP-TTP, mp > 300 ◦C and yield: 83 mg (11%) for the compound BDP-TTP, mp > 300 ◦C.
BDP-TTP; 1H-NMR (400 MHz, CDCl3): δ[ppm]: 8.92–8.84 (m, 8H), 8.35 (d, J = 8.4 Hz,
2H), 8.10 (d, J = 7.6 Hz, 6H), 7.70 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 6H), 2.71 (s,
9H), 2.64 (s, 6H), 2.45 (q, J = 7.5 Hz, 4H), 1.84 (s, 6H), 1.11 (t, J = 7.6 Hz, 6H), −2.76 (s,
1H). 13C-NMR (100 MHz, CDCI3) δ: 154.2 (C=N), 139.0–127.0 (C=C phenyl), 143.2 (Cα),
131.2 (Cβ), 120.7 (Cmeso1), 118.8 (Cmeso2), 21.8, 17.5, 15.0, 12.8, 12.4. HRMS (TOF-ESI):
Calcd. for as [C64H57BF2N6] m/z: 958.47058; found, 959.47618 [M+H]+, (1.75 ppm). 3BDP-
TTP; 1H-NMR (400 MHz, CDCl3): δ [ppm]: 8.98–8.82 (m, 8H), 8.40–8.37 (m, 6H), 8.12 (d,
J = 7.6 Hz, 2H), 7.76–7.73 (m, 6H), 7.58 (d, J = 7.6 Hz, 2H), 2.72 (s, 3H), 2.65 (s, 18H), 2.42 (d,
J = 7.6 Hz, 12H), 1.90–1.85 (m, 18H), 1.15–1.09 (m, 18H), −2.71 (s, 1H). 13C-NMR (100 MHz,
CDCI3) δ: 154.4 (C=N), 140.0–127.1 (C=C phenyl), 142.9 (Cα), 131.2 (Cβ), 119.6 (Cmeso),
17.5, 15.0, 12.9, 12.5, 12.4. ES/MS calculated as [C96H95B3F6N10] m/z: 1534.79246; found,
1535.8119 [M+H]+, (7.92 ppm).
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Scheme 1. The synthesis of porphyrin-borondipyrromethene (BODIPY) sensitizers BDP-TTP and 3BDP-TTP (i acid catalyst
BF3. Et2O, CH2Cl2, 1 h, rt ii) p-Chloranil, 1 h, rt.

2.3. Optical Measurement

The UV-Vis absorption and fluorescence spectra of the BODIPY-porphyrin compounds were
measured with Shimadzu UV-1800 and Perkin Elmer model LS 55 spectrophotometers, respectively.

Ultrafast pump-probe spectroscopy measurements were carried out using Ti: Sapphire
laser amplifier-optical parametric amplifier and a commercial pump-probe experimental
setup (Spectra-Physics, Spitfire Pro XP, TOPAS, Helios). The pump wavelength was chosen
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as 524 nm and 400 nm to excite the singlet state of BODIPY and porphyrin, respectively, in
the pump-probe experimental setup.

3. Results and Discussion
3.1. Steady-State Absorption and Fluorescence Measurements

Figure 1 depicts the linear absorption spectra of BODIPY-porphyrin compounds
(BDP-TTP and 3BDP-TTP) in THF solution. The dominant Soret bands of BDP-TTP and
3BDP-TTP are localized at 416 and 419 nm, respectively. In addition to that, weaker Q bands
in the 500–700 nm region were observed for both compounds [5,41,50,51]. The absorption
peak at 524 nm is attributed to the lowest energy transitions (S0–S1) of the BODIPY unit,
while the strong absorption around 420 nm and weaker Q bands come from the free-base
porphyrin. The Q bands correspond to the transition from S0 to S1 of porphyrin moiety.
As seen in Figure 1, the intensity of the absorption signal at 524 nm increases with an
increasing number of BODIPY units, as is expected.
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Figure 1. Steady-state absorption spectra of BDP-TTP and 3BDP-TTP compounds in THF (2× 10−6 M).

The emission spectra of the BODIPY-porphyrin compounds excited at 524 nm corre-
spond to the BODIPY singlet state excitation, shown in Figure 2. The BODIPY control unit
shows the intense emission at 542 nm (Figure S1). The BODIPY-porphyrin compounds
exhibit emission around 544 nm from BODIPY and around 653 nm and 718 nm from the
porphyrin by the excitation of the BODIPY unit at 524 nm. BODIPY-based fluorescence
is strongly quenched for BODIPY-porphyrin compounds compared to the fluorescence of
the free BODIPY, provided in Figure S1. In addition, the excitation spectrum of BDP-TTP
monitoring at 653 nm, attributed to the fluorescence of porphyrin, shows a similar BODIPY
absorption feature at 524 nm, shown in Figure 3, and the other compound (3BDP-TTP)
also shows similar results. Since the BODIPY absorption band is observed in the excitation
spectra while monitoring the emission band of the porphyrin unit, it indicates the energy
transfer from the BODIPY unit to porphyrin with the excitation of the BODIPY unit. The
overlap of the fluorescence and absorption spectra are seen in Figure 4a,b for BDP-TTP
and 3BDP-TTP, respectively. BODIPY-porphyrin compounds show Förster-type resonance
energy transfer (FRET) from the BODIPY unit to porphyrin, due to the overlapping of
the BODIPY emission spectrum and absorption of porphyrin Q-bands. To gain deeper
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insight of the energy transfer mechanism of the studied compounds, the pump-probe
measurements were carried out.
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3.2. Ultrafast Pump-Probe Spectroscopy Measurements

Ultrafast wavelength-dependent pump-probe spectroscopy measurements were car-
ried out to investigate the excited state dynamics in BODIPY-porphyrin compounds and
understand the energy transfer mechanism. In ultrafast pump-probe experiments, upon
photoexcitation of BODIPY-porphyrin compounds, the energy transfer from BODIPY to
porphyrin is observed via FRET mechanism [21]. Next, the excited state electron transfers
to the triplet state of porphyrin by the intersystem-crossing mechanism. The porphyrin-
based triplet-excited states are lower than the corresponding BODIPY-based triplet-excited
state, so “back transfer” from the porphyrin to the BODIPY triplet is not possible in these
cases. Thus, the porphyrin-based triplet-excited states can be readily generated by initial
excitation of the BODIPY part of the dyads [52]. Therefore, in this paper, we consider
that the triplet-triplet transition is more efficient in the porphyrin unit than in that of
BODIPY, and the ESA around 450 nm was ascribed to triplet transitions of the Porphyrin
unit. For this purpose, BODIPY-porphyrin compounds were probed with a 120 fs white
light continuum laser beam upon 400 nm and 524 nm pump excitation to excite porphyrin
and BODIPY units, respectively.

Femtosecond transient absorption spectra for BDP-TTP and 3BDP-TTP are shown
in Figures 5a and 6a, respectively, with 524 nm pump wavelength. Transient absorption
spectra of studied BODIPY-porphyrin compounds exhibited similar features, as compared
to the literature [52,53]. As seen in these figures, the bleaching signal at the 524 nm has
ascribed to the saturation of the singlet state of the BODIPY unit. The intensity of bleach
signal of 3BDP-TTP is stronger than that of BDP-TTP, due to the higher energy transfer
efficiency for 3BDP-TTP. The intensity of the bleaching signal of the BODIPY singlet-excited
state is greatly diminished with the time delay as a result of the rapid energy transfer from
the BODIPY-based singlet-excited state to singlet state of porphyrin. The decay traces of
the bleaching signals were fitted by using a multiexponential function and probing 524
nm wavelength to obtain the energy transfer rates. The intramolecular energy transfer
rates were obtained as 22 ps for BDP-TTP and 3 ps for 3BDP-TTP at the 524 nm probe
wavelength, provided in Figures 5b and 6b, respectively. The increase in the energy
transfer rate from BODIPY to porphyrin is related to the energy difference between the
singlet states of the BODIPY and porphyrin. The red shifting of the BODIPY emission
spectrum in Figure 2 corresponds to the increasing of energy transfer rate in the BODIPY-
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porphyrin compound. Besides, the excited state absorption (ESA) signals of porphyrin
rise simultaneously, while the intensity of the bleach signal around 524 nm that decreases
over time (Figures 5a and 6a). Similar to previous literature [21,54], the singlet-triplet
transition (Intersystem crossing mechanism-ISC) of the porphyrin was observed for the
studied BODIPY-porphyrin compounds after the fast singlet energy transfer from BODIPY
to porphyrin. Further, the strong excited state absorption signal appeared around 450 nm
which is attributed to the triplet-triplet transition of the porphyrin unit. Porphyrin is a
well-studied molecule in terms of the tendency of the ISC, and the triplet-triplet absorption
of porphyrin is very characteristic and well known in the literature. Our observation on the
ESA from the triplet level of the porphyrin also supports the previous studies. On the other
hand, ultrafast pump probe experiments were also performed for the tetratoly porphyrin
compound, which was used as a reference compound, and 3BDP-TTP compound was
used to confirm whether there is an energy transfer from the porphyrin unit to BODIPY
core or not. The experimental results showed that the transient absorption spectra of
the tetratolyl porphyrin compound exhibits similar transient absorption characteristic
features as compared to the 3BDP-TTP compound by populating the singlet state of the
porphyrin unit at 400 nm pump wavelength (Figures S2 and S3). Upon the photoexcitation
of BODIPY-porphyrin compounds at 400 nm, corresponding to the linear absorption band
of porphyrin, only porphyrin-based transient absorption features were observed, while any
BODIPY-based transient absorption property could not be seen. This result showed that
there is no reverse energy transfer from the porphyrin to BODIPY unit, as seen in Figure S3.
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According to the literature [52], the energy transfer mechanism is attributed to the Förster-
type energy transfer mechanism. The measured energy transfer rates from BODIPY to porphyrin
are faster than in the literature [52], due to the spatial closeness of BODIPY and porphyrin
molecules. In addition, energy transfer rates increase when increasing the number of BODIPY
units, as seen in Figure 7. Therefore, increasing the number of BODIPY units provides not only
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an increasing absorption of the compound but also increases the energy transfer rate, due to
slight energy level changes. The energy transfer diagram was given in Figure 8 .
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4. Conclusions

In summary, we studied the energy transfer mechanism of the novel synthesized
BODIPY-porphyrin compounds, including different numbers of BODIPY units, by per-
forming steady-state absorption and emission spectroscopy and ultrafast pump-probe
spectroscopy techniques. The fluorescence and excitation measurement results confirm
that the energy transfer from the BODIPY unit to porphyrin occurs for the studied com-
pounds and that energy transfer is also supported with ultrafast pump-probe spectroscopy
results. There is a significant fluorescence quenching from the BODIPY unit which is strong
evidence for the efficient energy transfer mechanism. Intermolecular energy transfer rates
were obtained as 22 ps for BDP-TTP and 3 ps for 3BDP-TTP. The energy transfer rate
increases with the increasing number of BODIPY units, due to the bigger overlapping on
absorption and fluorescence spectra. Further, it has been proven that this energy transfer
only happens in one direction (from BODIPY to porphyrin). These findings can lead to
investigating the better antenna effect for the BODIPY-porphyrin compound with varying
numbers of BODIPY units.
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