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Abstract

Protein quantification via label-free mass spectrometry (MS) has become an increas-

ingly popular method for predicting genome-wide absolute protein abundances. A

known caveat of this approach, however, is the poor technical reproducibility, that is,

how consistent predictions are when the same sample is measured repeatedly. Here,

we measured proteomics data for Saccharomyces cerevisiae with both biological and

inter-batch technical triplicates, to analyze both accuracy and precision of protein

quantification via MS. Moreover, we analyzed how these metrics vary when apply-

ing different methods for converting MS intensities to absolute protein abundances.

We demonstrate that our simple normalization and rescaling approach can perform as

accurately, yet more precisely, than methods which rely on external standards. Addi-

tionally, we show that inter-batch reproducibility is worse than biological reproducibil-

ity for all evaluated methods. These results offer a new benchmark for assessing MS

data quality for protein quantification, while also underscoring current limitations in

this approach.
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Mass spectrometry (MS) is currently themain technology used for pre-

dicting genome wide protein copy number per cell, thanks to its high

sensitivity, specificity, and multiplexing capacity [1]. Among the dif-

ferent MS technologies available, quantitative label-free methods are

becoming increasingly popular, due to their relative ease of use and

Abbreviations: FC, Fold Change; FCm, median absolute Fold Change; iBAQ, intensity-Based

Absolute Quantification;MS,Mass Spectrometry; PC, Principal Component; R2, coefficient of

determination; SILAC, Stable Isotope Labeling by Amino acids in Cell culture; TPA, Total

Protein Approach; UPS, Universal Proteomics Standard

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Proteomics published byWiley-VCHGmbH

cost-effectiveness, particularlywhen compared tomore expensive and

laborious methods, such as isotope-labeled peptide based approaches

[2]. In quantitative label-free methods, normalization of the raw data

is a critical step when predicting protein absolute abundance [3–6].

Two fundamental metrics for assessing the quality of these predic-

tions are: (i) accuracy, that is, how far away from the true value the

prediction is, and (ii) precision, that is, how variable different predic-

tions are when the same measurement is repeated (also referred to as

reproducibility).
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There are several factors that affect the precision and accuracy of

absolute protein abundance predictions generated via MS. These are:

(i) the intrinsic biological nature of the proteome, with the dynamic

range of intracellular protein abundance being able to span sev-

eral orders of magnitude; (ii) the physicochemical nature of amino

acids: as peptide molecules can have different ionization proper-

ties, this can lead to two similarly abundant molecules having differ-

ent capacities for detection by the MS; and (iii) the differences in

MS instrumentation (e.g., Orbitraps versus time-of-flight instruments),

chromatography and experimental protocols. All of the above factors

yield only modest results in MS-based analyses when comparing pre-

dictions to the true protein concentrations values [7–9], and is highly

likely to contribute to a large level of variability, the latter which is

observed across different proteomics studies [7, 10, 11].

Studies that compute absolute protein abundance commonly

addressbiological reproducibility by runningbiological replicates in the

same MS batch [7, 12, 13]. However, awareness of how the MS instru-

ment itself impacts protein abundance, that is, technical reproducibil-

ity, has been less studied. This can be determined by running the same

biological sample in the same batch [14], or in separate batches [15];

with the latter often referred to as “the batch effect.” As different nor-

malization/scaling methods can be used to predict protein abundance

from rawMS intensities [16], it is interesting to study how these meth-

ods propagate the inter-batch technical variability into uncertainty in

the final protein abundance predictions. In this study, we analyze both

accuracy and technical precision of intensity-based absolute quantifi-

cation of a proteomics dataset from S. cerevisiae and show how pre-

diction quality can be improved using different normalization/scaling

methods. In particular, we show that a simple rescalingmethod [5] per-

forms as accurately as butmore precisely than alternatives that rely on

the use of costly external standards.

We generated a proteomics dataset using the S. cerevisiae’s strain

CEN.PK113-7D, containing both biological triplicate and technical

replicate samples. Sampleswereobtained fromaerobic glucose-limited

chemostats at a dilution rate of 0.1/h and were mixed with an inter-

nal standard, using stable isotope labeling by amino acids in cell culture

(SILAC). Here, a lysine auxotrophic strainwas grown inmedium supple-

mentedwith double labelled heavy 15N, 13C-lysine (Cambridge Isotope

Laboratories Inc.); samples were then mixed in a 1:1 ratio with each of

the other non-labelled (“light”) samples. The internal standardwas also

mixed with an external standard of known concentrations, in a ratio of

6:1.1. The external standard used here was the Proteomics Dynamic

Range Standard Set (UPS2) mix (Merck), consisting of 48 human pro-

teins in a dynamic concentration range from 500 amol to 50 pmol. All

mixed samples were stored at –80◦C until their analysis, wherein they

were similarly processed; the latter step being crucial in order to iso-

late variability from either the biological source or the MS equipment,

and not from other sources such as sample preparation differences.

For proteome identification, samples were digested with 1:50 LysC

overnight at room temperature. Peptides were separated on an Ulti-

mate 3000 RSLCnano system (Dionex), eluted to a Q Exactive Plus

(Thermo Fisher Scientific) tandem mass spectrometer and identified

with the MaxQuant 1.4.0.8 software package [17], maintaining the

peptide-spectrummatch and the protein false discovery rate below1%

using a target-decoy approach. Each sample was measured six times:

on three separate batches of the MS instrument (with a time differ-

ence of 12 and 30 days), and each time twice, using Top5 and Top10

data-dependent acquisition strategies, wherein only the top five or ten

highest intensity peptide peaks per one MS full scan were selected for

MS/MS analysis, respectively (additional details on the experimental

setup can be found in the SupplementaryMaterial).

Using the described data as a reference, we then evaluated the

ability of four different methods for transforming the MS inten-

sity computed by MaxQuant (which corresponds to the sum of all

associated peptide intensities) to protein abundances of the inter-

nal standard. The first method, known as intensity based absolute

quantification (iBAQ) [3], normalizes each protein MS intensity by

the corresponding number of theoretically observable peptides, then

infers the abundances of each internal standard protein using a lin-

ear model generated from the external standard (normalized pro-

tein MS intensity vs. known protein quantities). As this method yields

abundances that do not always add up to equal amounts of pro-

tein injected per sample (Figures S1-S2), a second method was also

assessed that rescales all abundances from iBAQ to equal the total

injectedmass. The third method tested was the total protein approach

(TPA) [18], which bypasses the need for an external standard and

instead assumes that the sum of MS intensities of all detected pro-

teinsmultiplied by the correspondingmolecularweights should bepro-

portional to the total amount of protein injected. Finally, the fourth

method tested was a variation of the TPA method [5], which first nor-

malizes protein intensitieswith the number of theoretically observable

peptides.

log10 (Pi1) = mES ⋅ log10

(
Ai
Ni

)
+ nES [Method 1]

Pi2 =
Pi1∑

i (MWi ⋅ Pi1)
[Method 2]

Pi3 =
Ai∑

i (MWi ⋅ Ai)
[Method 3]

Pi4 =

Ai
Ni∑

i

(
MWi ⋅

Ai
Ni

) [Method 4]

where Pij is the predicted absolute abundance of protein i by method j

[fmol/µg protein],mES and nES are the parameters of the external stan-

dard curve, Ai is the sum of all peptide intensities associated to protein

i, Ni is the number of theoretically observable peptides for protein i,

andMWi is the molecular weight of protein i [kDa]. The abundances of

the biological triplicates were also computed differently depending on

the method: For Method 1, the corresponding internal standard abun-

dance (i.e., heavy fraction) was used, together with the normalized H/L

ratios obtained from each sample run [19]. For Method 2, the same

transformation as for the internal standard was used, that is, using the

protein predictions from Method 1. Finally, for Methods 3 and 4, the

transformation used for the internal standard was used as well, only

this time on the light fraction.
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Method 1: iBAQ Method 2: iBAQ rescaled Method 3: TPA Method 4: TPA normalized
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F IGURE 1 Cumulative distributions of fold changes (FC) between predictions of all four methods, with respect to (A) accuracy (test 1):
predicted vs known values of the external standard (N= 167), (B) accuracy (test 2): predicted values versus median estimated value for all
ribosomal proteins in the internal standard (N= 312), and (C) precision: all possible combinations between batches of the internal standard
(N= 14,182). A fold change of 2 is indicatedwith a vertical dashed line.

Using thegenerateddataset,weevaluatedaccuracyandprecisionof

predicted abundances by the four differentmethods. To evaluate accu-

racy, we computed the differences as fold changes between the pre-

dicted abundances of the external standard proteins detected by the

MS (n = 31/48) and the known values in the UPS2 mix. Here, Meth-

ods 1, 2 and 4 performed similarly, whereas Method 3 had a signifi-

cantly higher error (Figure 1A, Figure S3). Specifically, more than 50%

of protein abundance predictions from Method 3 deviated from the

true value by less than two-fold. We further evaluated the accuracy

of each method by testing protein predictions in the ribosome, a pro-

tein complex with subunit abundance in equal stoichiometry [20]. Of

these subunits, 62 out of 79 were detected in the internal standard,

after accounting for paralogs, and compared to their median abun-

dance value, with the expectation that each ribosomal subunit has

the same abundance as all others in the complex [21]. Once again,

Methods 1, 2 and 4 performed similarly, and outperformed Method 3

(Figure 1B, Figures S4-S5), whichwe found to be true in the abundance

predictions of both the internal standard and the biological triplicates

(Figures S6-S7).

We next proceeded to evaluate precision, by comparing protein

predictions between all three batches both for the internal standard

and the biological triplicates (Figures S8-S9). A cumulative distribution

of all fold changes within the internal standard (Figure 1C) showed

that Methods 3 and 4 significantly outperformed Methods 1 and 2

(all P-values <0.001). In particular, by using Methods 3 or 4, protein

abundance varied by less than two-fold for nearly 75% of all proteins,

whereas in the case of Method 1 this was under 60%. Similar observa-

tions can also bemadewhen looking at the biological triplicates (Figure

S10). Higher inter-batch variability of Methods 1 and 2 was observed

both for lowly and highly abundant proteins but especially for proteins

below the detection range of the external standard curve (Figures S11-

S12), and can be explained by the bias introduced by the external stan-

dard (Figures S13-S14), whichMethods 3 and 4 did not use.

Taking into consideration results for both the accuracy and preci-

sion tests that we performed (Figure 1), we conclude that the best-

performing method is Method 4, which omits the use of an external

standard and instead rescales normalized MS intensities to equal the

injected sample mass. Even though Methods 1 and 2 perform simi-

larly to Method 4 in terms of accuracy, they are not as precise, while

although Method 3 is as precise as Method 4, it is not as accurate.

Therefore, considering that iBAQ involves significant additional costs

to users (including purchasing of the external standard and additional

MS running time); however, does not yield better performance, we

propose that the rescaling of normalized MS intensities can be used

instead. This method can also be used as a benchmark for assessing

the predictive power of alternative approaches for computing absolute

protein abundances fromMSmethods.

It is noteworthy to mention that for all methods, the variability

between biological replicates in the same MS batch is considerably

lower than the variability between batches of the same biological sam-

ple. We exemplify this with the biological and batch variability from

Method 1 predictions (Figure 2A and B, respectively), and with a prin-

cipal component analysis of the same predictions (Figure 2C), wherein

samples cluster based on batches, not biological replicates. Although

inter-batch variability becomes lowest when using Method 4 (Figure

S8, Table S1), coming much closer to biological variability levels, still

∼25% of predictions in the internal standard have over a two-fold of

variability. This remaining variability is most likely due to the presence

of stochastic and non-linear effects in shotgun proteomics [22, 23]. For

instance, for each protein there were on average close to five pep-

tides that were different between batches (Table S2, Figure S15), due

to a difference in selection of the most intense (top N) precursor ions,



4 of 5

−4 −2 0 2 4
−4

−2

0

2

4

log10 (abundance)

lo
g 1

0
(a

bu
nd

an
ce

)

R2 = 0.99
FCm = 1.08

A

−4 −2 0 2 4
−4

−2

0

2

4

log10 (abundance)

lo
g 1

0
(a

bu
nd

an
ce

)

R2 = 0.8
FCm = 1.7

B

PC1  = 61.2 %

P
C

2
 =

 1
7.

6
%

C

F IGURE 2 (A-B) Variability of predicted abundances [fmol/µg protein] byMethod 1, between biological replicates (A) andMS batches (B). Fold
changes within a two-fold are shown in blue, between a two-fold and ten-fold in yellow, and above a ten-fold in grey. The coefficient of
determination (R2) and themedian absolute fold change (FCm) are also displayed. (C) Principal component analysis of all samples. Different colors
refer to different batches, and different shapes refer to different biological replicates. The amount of variability each of the first two components
explains is shown as a percentage.

ultimately affecting protein abundance predictions. Researcherswork-

ing with computational methods that rely on absolute protein abun-

dances [24] should therefore be aware of these limitations and inter-

pret results accordingly.

In conclusion, we present a comprehensive proteomics dataset of

yeast, designed for assessment of absolute protein quantification for

different biological replicates andbatches of samples. Furthermore,we

show that a simple method of normalization and rescaling can yield

superior results over more complicated and expensive methods such

as iBAQ. As protein intensity is used as input, this method can be used

both on pre-existing and future datasets regardless of how intensity

values were generated, including labeled or unlabeled methods. We

therefore expect both our dataset andmethod to be of benefit to users

when assessing accuracy and precision ofMS-based approaches in cur-

rent and future proteomics studies.
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