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Abstract
To support secure and reliable operation of optical networks, we propose a framework for autonomous
anomaly detection, root cause analysis and visualization of the anomaly impact on optical signal param-
eters. Verification on experimental physical layer security data reveals important properties of different
attack profiles.

Introduction

Optical networks are characterized by costly and
highly human-dependable operation[1]. Optical
Performance Monitoring (OPM) and the detec-
tion of anomalies (e.g., caused by physical layer
intrusions or device degradation) are key tasks
during optical network operation. The detec-
tion of anomalies is particularly challenging to be
performed by humans or analytical models, and
Machine Learning (ML) models for anomaly de-
tection have shown promising performance[2],[3].
However, ML-based anomaly detection (enabled
mainly by semi- or unsupervised learning) typi-
cally only detects the anomaly, without determin-
ing its causes. To achieve trustworthy and agile
optical network operation, investigating the cause
of a detected anomaly is pivotal for triggering ap-
propriate and effective countermeasures.

Anomaly cause investigation is a complex task
that may require significant effort and result in an
excessive response delay[4]. Previous works have
investigated ways to facilitate the identification of
anomaly causes, e.g. via Root Cause Analy-
sis (RCA) using a distance metric[4] or analysing
shifts in OPM parameters correlation[5]. However,
they either work with supervised learning (requir-
ing prior knowledge of the anomalies to be de-
tected) or with a few key OPM parameters.

In this work, we propose a framework to assist
RCA of anomalies. The RCA module uses the in-
formation provided by an anomaly detection mod-
ule based on unsupervised ML to compute the
changes in the OPM parameters incurred by the
anomaly. The framework is validated on a phys-
ical layer security use case, using experimental
data obtained by inserting harmful jamming sig-
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Fig. 1: Framework for Root Cause Analysis (RCA) composed
of Optical Performance Monitoring (OPM), data persistence,

anomaly detection using Window-based Anomaly
Detection (WAD), and visualization modules.

nals and fiber squeezing for external polarization
modulation[3]. While these attacks can cause se-
vere service disruption, no exact theoretical mod-
els for their effects are known to date, which hin-
ders their detection and counteraction. The re-
sults of applying our framework indicate that typ-
ically disregarded OPM parameters can be in-
sightful for RCA of physical-layer attacks.

The Root Cause Analysis Framework
RCA requires a framework that provides insight-
ful information about the anomalies potentially oc-
curring in the network and can accurately detect
emerging anomalies. Such analysis is especially
needed when using semi-supervised and unsu-
pervised learning ML models that flag OPM sam-
ples as anomalies without providing any further
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information on their nature. At this point, network
management staff usually has the difficult task
of analyzing the OPM parameters and identifying
the cause of the anomaly.

To aid automation of this complex task, we pro-
pose an RCA framework comprising 5 modules,
as shown in Fig. 1. The first two modules ((a)
and (b)) retrieve and store the OPM data from
the optical devices. Module (c) performs anomaly
detection by pre-processing the data, executing
the ML anomaly detection model (based on semi-
supervised or unsupervised learning), and exe-
cuting Window-based Anomaly Detection (WAD).
WAD is responsible for reducing the negative im-
pact of sparse false positives or false negatives
common in anomaly detection models, especially
in cases where false negatives have a detrimental
effect, which is the case in security applications[3].

When an anomaly is detected, the framework
invokes the RCA module (d), responsible for ex-
tracting information that can be insightful for the
network management staff. For instance, in Fig.
1 we illustrate a clusterization technique used as
the ML model for anomaly detection. The identi-
fied clusters can provide insight into reasons for
considering certain samples as anomalous. First,
the RCA module identifies clusters closest to the
anomalous samples. Then, a feature-wise anal-
ysis can be performed between the normal and
anomalous samples. Depending on the use case,
different metrics can be used for the feature-wise
analysis, such as distance[4] and correlation[5].
The family of diagnostic tools supporting RCA can
be enriched with the Anomaly Vector (AV) whose
elements contain the average difference between
the OPM features in the baseline and anomaly
condition. Our framework can be used with any
anomaly detection technique. If a used technique
does not perform clusterization, feature-wise dis-
tance calculation can be done between all the
normal and all the anomalous samples. Finally,
the results of anomaly detection and the insights
gathered by the RCA module can be graphically
represented by the visualization module (e).

DBSCAN-based Root Cause Analysis (RCA)
This section details the implementation of the
framework adopted in this work. Our anomaly
detection module uses a combination of Density-
Based Spatial Clustering of Applications with
Noise (DBSCAN) and WAD. DBSCAN is an un-
supervised learning algorithm that clusters the
samples by analyzing their pair-wise distances[6].

Algorithm 1 DBSCAN-based RCA
Data: Set of features F , pre-processed dataset

X, DBSCAN parameters M and ε, WAD
parameters δ and τ

Result: Anomaly detection flag {true, false},
anomaly vector AV (optional)

1 Y ← DBSCAN(M , ε).fit predict(X)
2 w ←WAD(δ, τ , Y )
3 if w then
4 N ←

⋃S
i=0{Xi} : Yi ≥ 0

5 A←
⋃S

i=0{Xi} : Yi = −1
6 P ← cluster in N closest to A

7 AVi ←
∑|A|

j=0 Ai,j

|A| −
∑|P |

k=0 Pi,k

|P | , i=0..F

8 return true,AV

9 else return false ;

The algorithm has two parameters: ε, defining
the neighborhood radius around each sample,
and M , defining the minimum number of neigh-
bors a sample should have to be considered nor-
mal; samples that do not have M neighbors are
considered anomalies. DBSCAN processes a
dataset X with S latest samples collected from
the optical devices, each containing F features
(e.g., OPM parameters). It results in the set Y
(|Y |=S) of cluster indices for each sample, whose
values are non-negative for normal and -1 for
anomalous samples. WAD works by considering
a window with δ samples out of Y , returning true
if τ samples within the window have been flagged
as anomalies, and false otherwise[3].

Alg. 1 presents the proposed RCA method.
The algorithm always returns a flag, informing
whether an anomaly is detected (true) or not
(false). If an anomaly is detected, the algorithm
also returns the Anomaly Vector (AV), which con-
tains the RCA results. First, DBSCAN is executed
over the dataset X (line 1). The resulting set Y is
used by WAD (line 2) to determine whether an
alarm should be triggered or not. In the positive
case (lines 3–8), the RCA module is executed
(lines 4–7). It first extracts the normal samples
N (line 4) and the anomalous samples A from X

(line 5). Then, it identifies the cluster from N that
is the closest to the anomaly samples in A (line
6). The AV is formed by computing the differ-
ence between the average value of each feature
in the anomaly samples and the average value in
the closest cluster P (line 7).

Use Case and Numerical Results
The proposed framework is validated on a phys-
ical layer security use case, where the anoma-



lies are characterized by physical layer at-
tacks. An experimental optical network testbed
with coherent transceivers is used to obtain
OPM parameter samples. The OPM param-
eters of interest are: pre-FEC Bit Error Rate
(BER-FEC), post-FEC Bit Error Rate (BER-PF),
Loss of Signal (LOS), Optical Power Received
(OPR), Chromatic Dispersion (CD), Differential
Group Delay (DGD), Optical Signal-to-Noise Ra-
tio (OSNR), Polarization Dependent Loss (PDL)
and Q-factor. Two optical channels are moni-
tored characterizing a baseline (no attack) sce-
nario. Then, three attack strategies are launched
in the network, namely, In-Band (IB) and Out-of-
Band (OOB) jamming, and Polarization Modula-
tion (PM). Each attack strategy is launched with
two intensities (light and strong). We refer to our
previous work for more information[3].

DBSCAN is configured with M=15 and ε=1.5,
which results in a 0.034 false positive rate and
0.189 false negative rate. WAD is configured with
δ=20 and τ=9, obtaining a false detection rate of
7.24e-9 and 0.9999 true detection rate, which il-
lustrates the benefits of using WAD over consid-
ering the results from DBSCAN directly.

Fig. 2 shows the AVs of the proposed RCA.
The results are averaged over 50 random contin-
uous sample windows containing 10:1.5 normal
to attack sample ratio. Negative values mean that
the attack incurs a lower value of a feature than
in the baseline, while positive values mean that
the attack incurs a higher value. Comparing the
three attack strategies, IB jamming causes the
most significant change in the feature values (up
to -3), PM causes a medium change (up to -1.5),
while OOB jamming changes the values least sig-
nificantly (up to -0.75). As expected, light intensity
attacks impact the values less significantly than
their stronger counterparts.

For IB jamming (Fig. 2a), OSNR and Q-factor
are the most affected features, followed by DGD
and OPR. OOB jamming (Fig. 2b) shows a simi-
lar profile as the IB, but with a milder effect on the
feature values. PM attack (Fig. 2c), on the other
hand, exhibits a very different profile. Besides
OSNR and Q-factor, this attack also significantly
changes the CD and DGD of the received sig-
nal. Moreover, an increase in the BER-PF is ob-
served. It is interesting to note that, looking at the
physical nature of the attack, CD and DGD fea-
tures should not be affected by the OOB jamming
attack where just OSNR, Q-factor and BER-PF
are expected to vary. AV visualization equips
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Fig. 2: The anomaly vectors, i.e. the average difference
between the detected anomaly samples and the closest

cluster for each feature.

the operators with deep insight into the anomaly
structure and eases the physical interpretation of
the anomaly thus complementing the ML-assisted
RCA tool. AV visualization goes beyond the typi-
cal historical data plot that is provided by Network
Management Systems today, where simple time
series of OPM parameters are presented to the
operators. This is especially significant when a
new, previously undetected anomaly is analyzed.

Conclusions
This study combines RCA with a visualization tool
to enable anomaly identification in optical network
scenarios. Verified on a physical layer security
use case, it shows that some physical layer pa-
rameters that are not at the center of usual anal-
yses (e.g., CD) can be a good source of insight.
Moreover, some of these parameters are not con-
sidered in analytical models because they should
not be affected by attacks, but showed significant
changes in the real system. The framework and
the findings have important implications on the
subsequent development of tailored anomaly re-
mediation strategies.
Acknowledgements: VR (2019-05008).
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