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A Comparative Analysis of Linear and
Nonlinear Control of Wave Energy Converter
for a Force Control Application

A. Parwal, M. Fregelius, P.M. Almeida, O. Svensson, | Temiz, J G. Oliveira, C. Bostrom, and M. Leijon

Abstract— The aim of wave energy converters (WECS) is
to harvest the energy from the ocean waves and convert
into electricity. Optimizing the generator output is a vital
point of research. A WEC behaves as a nonlinear system in
real ocean waves and a control that approximates the
behaviour of the system is required. In order to predict the
behaviour of WEC, a controller is implemented with an
aim to track the referenced trajectory for a force control
application of the WEC. A neural model is implemented
for the system identification and control of the nonlinear
process with a neural nonlinear autoregressive moving
average exogenous (NARMAX) model. The neural model
updates the weights to reduce the error by using the
Levenberg-Marquardt back-propagation algorithm for a
single-input -single-output (SISO) nonlinear system . The
performance of the system under the proposed sche me is
compared to the same system under a Pl-controller scheme,
where the PI gains have been tuned accordingly, to verify
the control capacity of the proposed controller. The results
show a good tracking of dq (direct-quadrature) axes
currents by regulatin g the stator currents, and hence aforce
control is achieved at different positions of the translator.
The dynamic performance of the control is verified in a
time domain analysis for the displacement of the
translator .

Keywords—current control, force control, neural
NARMAX, permanent magnet linear generator (PMLG),
wave energy converter .
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l. INTRODUCTION

ODAY the concern about climate change and the

increasing demand for energy makes the demand for
renewable energy production considerable. Among
renewable energy sources, wave power is gaining
increased attention as ocean waves present an untapped
renewable energy source of high energy density in [1].
Over the years, many efforts have been made to harvest
this energy through different kinds of WECs [2] . A review
of the most prominent technologies is found in [3] {26].
The device and the data analysis methods are discussed
and presented with results for controlling the mooring
loads in [3]. A series of 1:25 scale model is experimentally
and numerically compared in [4]. A wave -to-wire
modelling of wave energy arrays for off -grid systems
using low power permanent magnet linear generators is
presented in [7]. The numerical modelling of the
oscillating water column (OWC) wave energy converter
(WEC) integrated into vertical breakwaters is presented
in [15]. The development and testing of a novel pumped
hydro storage concept for storing large amounts of
electrical energy offshore is presented in [24] The power
take-off (PTO) components are presented with a novel
wave energy device called “Symphony Wave Power” in
[9]. Innovative microgrid solution for renewable energy
integration is proposed in [11]. Leijon et al. [13] presented
the development of the Swedish wave energy research
area located dose to Lysekil on the Swedish west coast.A
description of the WEC is shown as in Fig. 1. A case study
of 20 wave energy converters is used to illustrate the
results to investigate the impact of grid -connected farm in
[16]. A critical review is presented for a wave energy
utilization in [19] . There are various ways of categorizing
' Z1le¢™Zel1 el
[27]. These can be categorized into three popular methods
of absorbing the energy: the overtopping device, the
oscillating water column, and the oscillating body. The
latter can be further divided into three sub -categaies,
based on the direction of the radiation force. These are the
attenuators, the terminators, and the point absorbers. The
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significantly smaller than the wavelength of the incoming
waves. The PTO unit may be hydraulic, pneumatic or
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installed on the seabed. Among these topologies, heaving
™~ _e]1Sce™><Z>0e1l
of overall architecture, besides having the ability to
directly convert absorbed energy into electricity [28] .

The energy absorption of a WEC in regular and
irregular waves can be influenced by a declutching
control in [29]. A study about -constrained and
unconstrained optimal control of a heaving point -
absorber was investigated in [30]. A real-time control to a
point-absorber by adjusting the PTO damping was
studied in [31]. Since the input to the controller is

7@E 7S’ —+1 larlwaveg, «inear Pl (proportional-
integral) controllers may not provide the optimal solution
for the output regulation. In reality, most of the systems
are nonlinear and require a suitable controller designing.

~ 7Y Zit has been found that the tuned controller (e.g.
Pl-controller) may not be suitable to achieve the desired
performance [32], [33]. Therefore, a nonlinear model
which can capture the nonlinear behaviour and system
characteristics over the wide range of processes is
required for a stable and desired regulation. Several
advanced strategies such as sliding mode control,
adaptive multi- model sliding have been proposed in
[34]-[36] to control nonlinear systems. Today, the
nonlinear systems are well known for their complexity
and dynamic behaviour .

A. Related work

Artificial neural networks (ANN) is the tool known as
a distributed processing system and inspired by the
biological neurons. These neurons are connected with
their weight functions in ANN and approximate any
nonlinear system with an accuracy. To use ANN as a
controller, the ANN parameters require a tuning by some
method. Most popular is back -propagation method based
upon gradient de scent method [37], [38]. A study for
ensuring the stability of the plant around the equilibrium
point by using a neural network (NN) for a nonlinear
system is discussed in [39] A linear autoregressive
model, which implicitly considers the cyclical behaviour
of waves was studied in [40]. By using an autoregressive
moving average (ARMA) model wave elevation for a
short-term ocean wave forecasting was predicted in [41].
An NN based control is implemented to achieve a set
point using the plant as nonlinear ARMA (NAR MA)
model [42]. A demand forecasting and operational
planning services in distribution networks with
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with applications using a nonlinear
exogenous (NARX) model [43].

autoregressive

B. Motivation and the contribution

The motivation of writing this paper is to present the
performance comparison of the linear (tuned PI) and

1ES—127"+'Z>1«Z hofilthear(NARMNAX)- ZontibHdrin B nonlinear system,

i.e. a WEC in this study. Many papers in the literature

eil1S>Z21™Z>'S™ ahave presented’a Compdrativé adalysie of feedforward

and recurrent type of neural network and a
comparative analysis is merely presented with a tuned
PI controller in a wave energy harvesting application.

Aiming to track a reference value and minimizing the

steady-state error a PI control is much suitable.
Whereas a PD control, will allow the tuning the

transient response hkut would end up with some

steady-state error.

This study presents the response of the WEC as a plant
under high uncertainties. The regulation of the stator
currents is achieved under both the controllers and an
accuracy analysis is presented for tuned Pl and
NARMAX control.

We apply the idea of using input -output parametric
NARMAX model by a neural network (NN) for a
nonlinear system identification [44], [45]. The model of
the nonlinear process and training method is considered.
A nonlinear identification using an NN structure with
back-propagation method is used. The weights of the
network are updated by the back-propagation method to
reduce the difference between the reference model output
and the plant output. The objective of the study is to
regulate the stator currents at different positions of the
translator and investigate the dynamics of both the
controller s relative to the oceanic waves, varying with
wave amplitude and frequencies. The controllers are
validated for the varying position and the speed of the
translator as inputs to the model. The controllers provide
a correction in the force by regulating the generator stator
currents. By keeping the d (direct) axis currents to zero,
the reactive power from t he generator is controlled. The
algorithm of the control s is designed by measuring dq
(direct-quadrature) axes currents of the generator and
providing a reference g-axis current to the controller. The
NARMAX controller perform s fairly efficient ly compared
to tuned PI controller in the varying ocean states and
maintains the system stable with an enhanced accuracy

In this paper, the PTO with all- electric conversion
using a linear generator (LG) is considered[46]-[49]. This
paper presents the control of a permanent magnet linear
generator (PMLG) by regulating the stator currents and
provides a force optimization through an active control.
The electrical model of the PMLG is obtained from the
equations for a PMSM [50], [51]The stator currents are
the controlled variables .which .are under investigation
aﬁﬁ%lgtg%l %o tlze)f%r]ceb%t'h’e_trgh'sﬂator in this study. The
experimental data based verification is from the
generator, namely L9[18], based WEC'’s output installed
at Lysekil research site on the west coast of Sweden
shown in Fig. 1.
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\ Endstop

Translator

Stator

Fig. 1. Description of the WEC developed at Uppsala
University [18].

To obtain the desired force, the measured dq currents
are regulated by the control. The referenced dqcurrents
are calculated at minimum stator current in the reference
controller in a MATLAB/Simulink model . The controllers
regulate the g-axis stator current since the g-axis current is
related to the force. ence a referenced force is predicted
with a good accuracy by the NARMAX control .
Moreover, both the controllers are utilizing the translator
speed from the experimental results as the input obtained
in the previous studies [52], [53].

Il. M

1MODELLING 1 1WEC

A. Themodel of grid connected WEC

A WEC consists of abuoy and a PTO mechanisni54-
55]. The PTO isa combination of a PMLG and a power
converter in a back-to-back topology shown in Fig. 2. The
generator side control regulates the stator currents at
different positions of the translator. A grid side converter,
voltage source inverter (VSI), regulates the DC-link and
conditions the power before feeding it into the grid.

In Fig. 2, the three-phase voltagesy, ., are interfaced
with a voltage rectifier, VSC, and the rectified direct -
current (DC)-power is transferred to the capacitor, C, the
DC-link. The DC-ink serves as a shortterm buffer to
smoothen the WEC power. An inverter, VSI, is connected
to the DC-link to convert and transfer the power to the
alternating -current (AC) -grid/load. The VSC and VSI are
controlled by the pulse width modulation ( PWM)
scheme. At the VSC the stator currentsis,,., are
measured and transformed into dg-axis currents, i; ;. The
measured g-axis current estimates the measured force in

2
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the Force-measured block. The referenced current, i ,..f is
estimated from the Referenced-Current-Command block
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Fig. 2. Block diagram of the system with a heaving WEC.

which depends on the updated value of Fy,,. Fy,is the
difference of referenced force and the measured force.
The referenced force is estimated by the curent i, in a
loop to regulate the parameters. The position, x(t) and
speed, v(t)of the translator are measured and used to
realize the generator's equations to control the switches
of the VSC. The VSI is connected to the grid through a
harmonic (LCL) filter to reduce the switching ripples of

the VSI currents and feeds the grid currents, iy ;. in to
the grid. The VSI is controlled through a PWM scheme
and a Phaselocked-loop is used to synchronize the VSI to
the grid voltages, Vy 4 p ..

B. Linear generator modelling

The three-phase stator in aPMSM can be realized using
an equivalent two-phase machine with the phases
orthogonal to each other. The d and g-axis windings are
decoupled magnetically since the flux linkage of two
orthogonal windings are zero. Also, since inductance is
proportional to the number of turns squared , the
magnetizing inductance is the same asthe three-phase
equivalent. Since the magnetizing inductance and self-

d
Vsa(t) = Rsisa(t) + dt Asa(t) — welsq(t) 1)

Vsq ® = Rsisq ®+ %Asq () + weAsq (T) 2
Asa ) = Lgisq )+ Afd} @)
Asq ®) = Lsisq ®)
inductance are same, therefore, eachdq winding has the
same inductance as each phase of a threphase machine
The d-axis and gaxis equations for a linear generator
are expressed as in (1) {3).
wherevg,(t) is the d-axis voltage anduvy,(t) is the g-axis
voltage, R; is the stator resistance, is4(t) is the g-axis
current, igq(t) is the d-axis current, A, is the excitation
linkage flux of the stator due to flux produced by the
magnets, L, is the stator inductance and w,(t) is the
electrical angular frequency is given asin (4).
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where v, is the speed of the translator, tis the pole pitch
of the PMLG. The force in (5) is the thrust force of the
generator, which reacts on the input force in effect of
electric conversion [56], [57].

3
fpto (t) = % (Afd) isq (t) (5

The captured mechanical power (P,,), when PTO force
and the speedare in phase, is obtained in (6)

Ppto ®) = fpto ®)ve(t) (6)

Total flux in the PMLG is obtained from the following

expression in (7) from the conventional source of
generator designing[58].
V6

Apg = 7KWNTIA((B/1M)M) U]

The converted electrical power can be obtained as

3
P (t) = Ep(/lfd)we(t)isq ® (8

where p is the number of pole pairs. The parameters
appearing in above formulae solely depend on the
generator design and summarized in Table | and Il with

751 ™ZE'ELYSezZ20i111 Z—EZ81+'Z

.ref

controlled by i;,” as in (9) from the referenced current
command block in Fig. 1.

ir@f — Efpto (9)
sq 3T Afd

To test the different strategies in regular and irregular
translator motion, a time -domain simulation model has

TABLE Il
MAIN PARAMETERS OF T 1 1
Electrical Mechanical
. Unit ot Unit
characteristics characteristics
Synchronous . .
. XWiX1-N | d
inductance : ominal spee 0.7 m/s
Winding resistance ViY\1l  Stator length 1.96m
40 A .
Rated armature Stator width 04m
current T lator lenath -
ranslator leng 20m
Rated power 20 kKW )
PO Translator weight 2700 kg
Rated voltage 450 V

been implemented in MATLAB/Simulink. In Table II, the
TABLE |
PARAMETERS OFPMLG
Symbol Quantity Unit
Ky Winding factor 0.93
N No. of turns 1600 (approx.)
T Pole pitch 45.8 cm
la Primary stackwidth 45 cm
(BAsa)ay  pm normal airgap (flux average- 0.7 T

density over the primary slot)

main electrical and mechanical parameters of the linear
generator model are given corresponding to the Lysekil
research project conducted by Uppsala University,
Sweden.

1. CONTROL S

A. NARMAX Controller model for online parameter tuning

The literature studies result in approximation and
realization theory provide s a nonlinear differential model
that is suitable for modelling and control the nonlinear
systems. Any discrete-time nonlinear system can be
represented by the NARMAX model in (10)

i

Updated parameters

L. 2 | S :
‘ Neural
y(k) iController 00 Model
—>  Plant

Fig. 3. The control scheme for the estimation of the weights
using an NN.

y(k) = Fly(k — 1), ....,y(k — p),
u(k = 1),....u(k — q)] (10)

where F[.] is a nonlinear polynomial function, y(k) is the
output of the model, and u(k) is input to the model. The
control scheme using the neural NARMAX model for
estimation of parameters is applied to the online tuning
of the weighted parameters shown in Fig. 3.

In this paper, the concept of using the input -output
parametric nonlinear model in nonlinear system
identification by NN is used [44], [59] . We consider a
single hidden layer NN architecture in Fig. 4. The NN is
composed of 6 neurons in the input layer, 8 neurons in
the hidden layer and one neuron in the output layer. The
NARMAX model represents a generic NN with its one
step ahead output value y(k + 1), depends upon its
present input and the past input values (exogenous
values). The input values to the NN are
defined u(k),u(k — 1), .....u(k —q + 1). The input
neurons excite the input signal to the hidden layer with
proportional weighted parameters, w]-’i(k), for each input
connecting to the hidden layer. The weighted parameter
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represents the individual weight assigned to the
connected ith input neuron to the j th hidden neuron at
instant k. Each hidden neuron is modeled as nonlinear
activation function ¢/(-) =tanh () at each input. The
outputs of the hidden neurons are assigned an individual

weight by ij (k), and processed to the output layer to
yield the output of the controller u(k). The w]-’i(k) and
w]-H(k), are the weights for input and hidden layer

neurons, where subscript I,H defines the input and
hidden layer, i,j defines the number of the input and
hidden layer neurons. The aim of the controller is to track
and follow the referenced signal by reducing the error
between the referenced signal and the plant output, and
to do so the weights for each connection in the network
are trained and updated in MATLAB using the

Levenberg-Marquardt back -propagation algorithm. The
output of the network is given in (11) .

q
y() = ) wi (OH; (k) ay
j=1

where H;(k) is the output of the jth hidden neuron and
expressed in (12).

H; (k)

q
= ¢’ i(kuk —q+1)
Y (Z MR (12)

14
+ Z wji(l)y(k —p + 1))
i=1

Vector output of the hidden layers denoted as H;(k) =
{H,(k), H, (k) ... Hy(k)} and output weight vector W} (k) =

J

{wi (), wl (k) ...wl(k)}. The output of the neural
NARMAX is defined in (13).
q

y(k) = w/! (k)H; (k) (13

1

We considered the concept of using a feedforward
NARMAX model consists an input layer with 6 neurons,
(p = q = 2) one for each input variable, and 8 neurons in
single-hidden layer and an output layer with one neuron.
The updated weights are presented in the Appendix.

Representing the NARMAX model from (10 ) with the
regression-equation in (14), where L is the number of
unknown parameters, ¢ ;(k)is the term in the NARMAX
model, w;(k) updated parameters, and e(k) is the
estimated error. The mean squared error estimation
(MSEE) algorithm is used to minimize the cost -function
as in (15)for N data pairs:

L
y() = " @ (0w () + e(k) (19
j=1

. delay +Y{(_k)
fe(k-1)..e(k-p)}  (Z7) e(k) 1
u(k-1) w;it(K)
u(k-2), w;(k)
uk-q) s (k)
> ——>

y(k-1)

%’cpyut Layer

y(k-2)
y(k:-p) i Hidden Layer
A delay )

Input Layer

Fig. 4. Structure of the neural NARMAX model.

N
J0) = 5 Y (0r )~y = k) (19
i=1

where y (k) and y(k) denote desired and actual plant’s

output, the aim is to reduce the MSEE value so that the

output of the plant begins following the desired output

1) Adjustment of output weight

The procedure of updating the weights of the output vector

is carried out by implementing the following:

0J(k) _ 9] (k) dy(k) du(k)
awf (k) ~ ay(k) du(k) aw/ (k)

(19)

G Iy ;
Wi = H;(k), St S called as Jacobian of the

plant and calculated by the mathematical model of the
plant. Usually, the model of the plant is unknown and
NN- base identifier is used in parallel to the plant to
adjust the parameters of the controller[60]. The
identification with tuned parameters can approximate the
dynamics of the plant/system. Each element in w/’(k) =
[wi' (k),wy (k) ..wl (k)] is updated as w//(k+1)=
wi' (k) + Aw/! (k).

where Aw/ (k) = ne(k)gZ—EgHj(k), n defines the learning
rate. The learning rate is chosen by the discrete
Lyapunov stability method and can be found in details
in [61]. Which satisfies the criteria: 0<7n <

2

where

—_—.
ay(k) ou(k)
6u(k)aw]’.’ (k)

2) Adjustment of input weight
The input weight vectors are updated as in (17)

9J(k) _ 9J(k) dy(k) du(k) OH;(k) dep’ (k)
aw}, (k) — dy(k) du(k) aH;(k) d¢ (k) ow}; (k)

17



44 INTERNATIONAL MARINE ENERGY JOURNAL, VOL. 2, NO. 1, NOVEMBER 2019

where % = w,-”(k) since linear activation function of
J

unity gain is used for output layer and 9H; ()

a¢J (k)
tangent hyperbolic function is used for hidden layer .
Each element inmg’i(k) is updated in a similar way as in

previous sub-section by updating ij’i(k).

I _ ay (k) a9/ (k)
where  Awyj; (k) = ne(k) D) H; (k) W0

parameters are presented as a function of estimated gain
k, = [K.K; K3 ...] . The estimated gains are presented in
the Appendix B.

as a

the updated

B. PI-Controller modefor tuning the parameters

The controller design is based on a Singlelnput -Single-
Output (SISO) control topology. The controller, C (s), is
connected with the plant, G(s), as shown in Fig. 3. Wk)is
the controller output and defined as U(s) in s-domain.
The mathematical relation of the controller and plant are
presented in (18). E(s)is the error between the referenced
Y,.(s) and the measured signal Y(s).

Y(s) = G(s)U(s)
U(S) = C(s)E(s)
E(s) =Y,(s) = Y(s)

(19

Solving for Y (s)/Y,(s), where Y(s) is the output and
Y,.(s) is the referenced input in the s-domain, yields (19).

Y(s)  G(s)C(s)  H(s)
Y.(s) 1+G()C(s) 1+H(s)

(19

Equation(1) and (2) can be presented in the Laplace
domain:

Vsq = lsq (Rs + SLS) + S(Afd) - weLsisq (20
Vsq = isq(Rs + SLg) + we(Lsisq + Apq) (2D
Representation for the d-axis current,
. 1 .
lsg = m (vsd + w, (lesq)) (22
Representation for the g-axis current,
P ( Lsisq + A7) 23
lsq - (Rs T SLS) Usq we( slsd fd) ( )

The stator/plant transf er function is obtained from (22)
and (23). Since both the stator resistance and inductance
are equivalent in the dq reference frame, therefore the
same plant can be used for the controller transfer function
as in (34)As a common practice to decouple the
respective control loops, substitute control variable s are
obtained in (25)-(26).These variables are the outputs of
the controller as functions of compensation
parametersc, 4(s) and c, ,(s) and the errors in the current
asinputs to the controller.

_ Isa (S)

G(S) B (vsd + We (Lsisq))

I5q(s)
= - (249

(vsq - we(lesd + Afd))
1
" (R, +5Ly)

uy(s) = (vsd + we(Lsisq)) (25
Uq (s)= (vsq — we(Lsisq + Afd)) (26)
ug(s) = ¢pa()(i3%r — isa) 27)
Ug(S) = Cpgq (s)(ifzf —isq) (28)

Inserting (25) into (22) and replacing u,(s) by (27)
yields a first-order closed loop transfer function for the d-
axis in (29). The Pl compensatorc, (s) is defined in (34) for
d-axis compensation.

is,d(s) — Cp,d(s)
ir7(s) (Re+sLs+cpa(s)) (29
K; 4
Cpals) = ; +Kpq (30)
The closed-loop transfer function yields in (31)
Kp.d| Kid
is,d(s) _ T[Kp.dﬂ] (31)
i () 52+(%)s+’%¥j
isda(s 1
s,d( ) _ (32)

.s,d - L
L S =S
SO 1+s(Kp’d)

To achieve a transient behaviour of a first-order
system, it is common practice to cancel out the pole of the
stator transfer function in (22) with the zero of the PI-

compensator (30) results in the condition: Ifﬂ = LR—S
p.d s,d

Similarly, the pole -zero compensation is applied for g-

axis and yields (33) for::ﬂ = LR—S, where Ly = Lg,.
P.q S,q

isq(s) 1
.ref - L

isq () 1+s(12)
54 Kpg

(33)

The obtained first-order dynamic system of the
closed-loop defines the parameters of Plregulator.

C. Stability analysis of plant and the controller transfer
function of Pkcontroller

The total loop gain can be expressed as the
multiplication of both the controller and plant transfer
functions and yields in (34).
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(s+1)
s(l +s (;—Z)) Ry

R,=0360 and Ly =212mH in (34)

H(s) = (34)

Solving for
becomes (35)

(s+1)

H(s)= s(1+ 5(0.0589))0.36

(39

A Bode plot is presented for the controller and plant
transfer function in Fig. 5. The plant transfer function has
a phase margin at 44.4 rad/sec. This system will oscillate
towards steady state values without a controller. The
stability point is noted at R,/L, =171 rad/sec. By
cancelling out the pole of the plant with the zero of the
controller, the phase margin will stay at - 90 degrees. It
can be verified from the pole-zero map in Fig. 6 that a
zero is located atw=1 rad/sec and apole is located at w =
17.1 rad/sec. It can be noted that the poles and zero are on
the left side on the pole-zero map which defines a
suitable condition for the stability.
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Fig. 5. Bode plot of plant and the controller open loop
transfer function.

0.998 0996 0991 0.982 0.955 0.82

0.999

T 057

2 1

<]

o

@

-8

2 P18 14 12 10 8 6 4 2

< System: G System: G

g‘ Pole : -17.1 Zero: -1

£ 1 Damping: 1 Damping: 1

& 05 Overshoot (%): 0 Overshoot (%): 0

ED Frequency (rad/s): 17.1 Frequency (rad/s): 1
0.999

0.998
-14

0996 0991 0982 0955 0.82
42 0 8 6 4 2

Real Axis (seconds™)

-1 1
-18  -16 0

Fig. 6. Pole-Zero map of the plant and controller open loop
transfer function.

V.

45

TESTCASE SPECIFICATIONS AND TIME DOMAIN ANALY SIS

In order to investigate the behaviour of the controller,
different ocean waves of different characteristics have
been considered in three cases. To test the control strategy
with the heaving WEC in regular and irregular translator
motions, a time-domain simulation model has been
implemented in MATLAB/SIMULINK The Simulink
results associated with different cases, regular and
irregular waves, entails the robustness and redundancy
of the controller.

The control method is applied to a regular motion of
the translator of an amplitude of 0.5 m and w = 1.047 rad/s
(Case I¥or one wave period of 6 s and two different cases
for irregular translator motion of an amplitude 0.625 m
with a frequency of w = 1.047rad/s Case ), and the
translator’s motion of an amplitude of 0.975 m with the
frequency of w = 1.1423 rad/s Case lll), for the low-
frequency and high-frequency spectrum, respectively
used as theinput s to the model for the investigation. The
translator positions for Cases Il and Il have been
recorded in offshore experiments at Lysekil research site
[52], [53].The mechanical motion of the translator is
discussed in terms of speed and force, for electrical
variables they are referred to by the angle-based values of
0 andw,. The translator electrical angle, 6, covers an
electrical cycle for each time the translator mechanically
travels one length of the machine. The voltage developed
in the stator windings depends on the rate of change of
the flux linkage. Sincethe PMLG design is symmetric, the
variables of the zero sequence are zeroMoreover, the d-
axis component of the stator current is normally
controlled to zero to reduce the power loss in the stator of
the PMLG[19]. The energy transferred from the linear
generator to the voltage sourceconverter (VSC) in current
modeE.can be expressed as a balance between the
average energy extracted by the PTO systent,., and the
linear generator copper losses(,,) in (36).

Ec = Epto — Eloss

(36)

The PMLG delivers the power to the DC-link through
the VSC. The converter is configured for the PMLG in a
generator mode. Another side of the DC-link is connected
to a voltage source inverter (VSI) followed by a filter and
an electric grid. The VSI controls the DC-link and keeps it
constant to the desired level.

A. Accuracy of the controller

The accuracy of the controller is calculated by using the
correlation coefficient (R) and a relative square root error
(RRB in (37) and (38)A correlation coefficient is found in
the performance of the controller in the low and high-
frequency spectrum. It is the ratio between targeted and
simulated values to achieve a percentage of variability in
terms of accuracy by introducing a coefficient of
determination (R?). Where x; is the reference (target)
value, x is the mean of thetarget value, y; is the measured
value, ¥ is mean of the measured value and N is the
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number of data pairs. The obtained results for the
different irregular translator positions are depicted in
Table Il in Section V.

R= T — D)y —9)
VI (i — )23 (v — 9)?
N, O — yi)?
2 — )2

(37

RRE = (38)

V. RESULTS AND DISCUSSION

When a nonlinear or an adaptive controller is used, a
time domain simulation study is showing how the
parameters convergence is usually included when the
weights of the parameters reach a stable point
asymptotically. In this section, we present the time
domain based analysis and results for the three cases (I,
II, and IIl). The proposed control is compared to a tuned
Pl-controller and the compared results are presented for
the force control and the currents regulation. The
proportional gain accelerates the error convergence time
while the integral gain reduces the rise time and increases
the overshoot. Therefore there is a tradeoff between
these parameters to elimnate the steady-state errors. The
selected proportional gain (K,) is 66.56and the integral
gain (K;) is 1131 for a stable operation. The comparison is
done for Case Il and Case lll to investigate the control
capacity during the varying states. The investigation of
Case | is utilizing a sinosoidal wave of one wave period
of 6 s (I, = 6 s) and a wave height of 0.5 m H,= 0.5 m)
which dipicts a regular motion of the translator. The
experimental data are utlized as inputs for the
investigation of Case Il and Case lll. The data for Case Il
is considered for first 29 s, starting from zero and
sampled for 29 s, while the data utilized in Case lll, starts

Il presents a high varying nature of the waves in terms of
the translator speed. Therefore, we present most of the
results for Case Il to present the effectiveness of the
controller in frequently varying states under the
subsection B. The results presented in Fig. 11Fig. 10 are
to verify the controller performance in both Case Il and
Case Il

A. Controller performance for Case |

The performance of the controller is investigated in
Case Ifor a regular motion. The regular motion is chosen
for one wave period of 6 s (T, = 6 s) only. The stator dg
axes currents, §4, and iy, from the PMLG,are shown in
Fig. 5. The output of the dqtransform is normally the DC
values of the signal, the variable amplitude nature of the
generator results in a sinusoidal reference. In Fig. 8 (a),
the fluctuation is very small compared to the reference
and hence it is negligible. Almost zero d-axis component
was found after the de-coupling compensation terms. The
error compared to the reference value is negligible. The
maximum error of the current v alue is 0.4 A, which is
fairly negligible compared to the ¢gaxis component of
26 A, as shown in Fig 8 (b). The controller performance is
presented for the currents and the force control for one
period of the regular motion, see Fig. 7. The controller
continuously trac ks the prescribed generator daxis and ¢
axis currents and force with less phase shift or an
amplitude shift. Keeping almost zero d-axis current, there
is no reactive power production from the generator and
hence, producing unity power factor. A force cont roller is
designed to estimate the referenced force from the
estimated s, repcurrent and to update a new referenced
force used as an input to the force controller block. The
actual graphs are overlapping each other as shown in Fig.
8 (¢). The force output is based upon the parameters and

from 30s and utilized for the next 30 s, ranging from 30 s _ O______.___.____‘a._)__‘_.____.____ ©

to 60 s, to investigate the performance of the controller. < 5l 8 Force referenced

Fig. 7 presents the input waves: used in the study for S 10 ’—‘ld - 6 Foroe generated

three different cases (I, Il, and Ill). A standard PC with 3.5 S 15} == -1d_meas = 4
£1-"E>"™>"EZee™>]1 ScelzeZele">1"’ 1 2 3 4 5 6 Ez-

investigation. Due to the limitation of the PC U ) B S of

microprocessor, the full experimental data are not used. %52._ 1 ___:g:::gas L 2

A stable, robust and vigorous behaviour of the controller E oo T T gl 4

is expected in each case under the investigation, and Case °© T . 3 4 s 6 6 5 . .

o
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Fig. 7. Input wave data; (a) A regular wave for one wave

period of 6 s in Case I; (b) The irregular waves for, Case Il: 029
s, and Case Ill: 3060 s.
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Fig. 8. Controller tracking in Case |. (a) d-axis referenced and
measured currents; (b) g-axis referenced and measured currents;
(c) Force referenced and the forcegeneratedin Case I.

utilized in the simulation as an input for a regular
motion.

B. Controller performance for Case Il and Case llI

In this section, the results based on the experimental
data are presented based on the datafrom the offshore
operation for the verification of the control model. The
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control capacity of the proposed controller is compared to
a traditional PI-controller and the compared results are
presented. The aim of this investigation is to present the
control capacity of the controller during the irregular
translator motions and to verify the redundancy and
robustness of the controller under the high degree of
variations similar to a real ocean stochastic wave of
varying periods and the variable frequency. It is verified
through the experimental data available from the
generator, namely, L9. We implemented a force control
by regulating the currents of the generator and achieved
improved power conversion efficiency (PCE) from the
VSC to the DC-bus. Position, speed and frequency are
shown in Fig.9 for Case Ill. The irregular translator
positions for Case Il and lll are used for the investigation.
The maximum speed of the translator is 0.73 m/s, shown
in Fig.9. The force and speed associated with a common-
place for an irregular translator motion with « = 1.0471
and 1.1423rad/s are extracted in the time domain in Fig.
10. Fig. 10 (a) presents the control capacity of the PRI
controller for the force control depending on the
regulated currents and the proposed control capacity is
presented for the force control for both the cases(l and II)
under investigation in Fig. 10 (b). In Fig. 10 (a), it can be
noted that the PI controller has larger fluctuations, during
the investigations, due to the behaviour of proportional
and integral gains. The control is able to eliminate the
steady-state errors with noticeable overshoots during the
transient periods. Therefore, the regulation of the
currents is not precisely achieved. The Plcontrol strategy
is not able to bring a resonance condition for the force
and the speed hence the power capture ratio could not be
guaranteed to maximize. A power capture ratio defines
the extraction of the power from the waves to the
converter. In Fig. 10 (b), the currents are regulated
precisely and controls the force to achieve a resonance
with the speed. The force and the speedare in almost
resonance condition, the speed is almost inphase with
the force. By this way, the WEC extracts the power from
the waves with an improved efficiency. A correlation
coefficient for Case Il (low-frequency spectrum) and for
Case Il (high-frequency spectrum) is obtained with RRE
and reported in Table lll. The three-phase terminal
voltages and currents from the generator are shown in
Fig.11.

TABLE Il

\% 1 1 1 NTROLLERS.
Control ?r)a dis) R R? Accuracy RRE
Case Il
NN 10471 0.9763 0.9561 95.61 % 0.03735
Pl 1.0471 0.7352 0.5405 54.05% 0.4595
Case I
NN 1.1423 0.9227 0.8565 85.65% 0.0769
PI 1.1423 0.6958 0.4842 48.42% 0.5158

The stable behaviour of the proposed controller can be
appreciated in high-frequencyspectrum regions with a

Posilion of the ranslator
Speed of translator
= = = Elgctrical frequancy

Position (m), Speed (m/s), Electrical frequency (rad/s).

55

=
=
@
o
2
o

(g

Time (s)
(b) Proposed controller performance

less margin of errors due to the online tuning of the
weights which provides a precise control under the
higher nonlinear variations. The controller performs
equally vigorous and timid during the performance in
varying oceanconditions.

Since Case lll has a higher fluctuating and nonlinear
behaviour, therefore most of the results are discussed to
present the performance of the controller in a higher
nonlinear variation. The regulation of the stator currents
is presented with a comparison to a Pl-controller for Case
Il and Case Il to verify the robustness of the proposed
controller for the investigated cases as shown in Fig. 12
and Fig. 13. The behaviour of the Pl-controller for the do
currents regulation is shown in Figure 12.

The results in Fig. 12 (a), clearly depicts that the
measured d-axis current has larger fluctuations which
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leads to a reactive power generation and higher losses
from the generator. In Case I, the control capacity of the

controller was noted up-to 54.05 %. On the other hand,

the control capacity is reduced to 48.42% in Case IIl.This
condition occurs due to the fluctuating nature of the PI -
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Fig. 11. PMLG output in Case lll. (a) Phase votages, (b)
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(L]

.
o

Iq_ref —— | |
q_rel q_meas | NI

Z | A
€ 1}\ o | ﬂ "A' .\ﬂ M NA [
32 VoV ! I X HV N Ik' v N
10 20 30 40 50 60
Time (s)

Fig. 12. Theperformance of Pl-controller for Case Il, 0-29 s, anc
Case lll, 3060s. (a) daxis referenced and measured currents; (b) g
axis referenced and measured currents.

(a)

04
< 02} A
£ {\-‘\-»f.x‘.f‘—-\_r"'_‘—-._""‘—-.f"j" or——r

£ PN A S MM A A a
] " T Ty V
o] [y v W\l !
50.2F lo_ref | i H .II: -

[¥] Dd! —Id_meas| L | B

0 10 20 30 40 50 60
Time (s)

W (b) .

| Iq meas| ,'. III‘| (J.' |

g Gi_l‘\//\ M V/-\v’ | Ir" | I"—\J"ﬂ

S \'I NN N -

0 10 20 30 40 50 60
Time (s)

Fig. 13. Peformance of the proposed controller for Case II, 0-29
s, and Case lll, 3060s. (a) d-axis referenced and measured currents
(b) g-axis referenced and measured currents

= r
g i ]
8 of
w
10} 4
15
=20 |
o5k | [ Force referenced - - Force gcncraled| | |
o 10 20 0 40 50 60
Time {s)

Fig. 14. Referenced and generated force forCase II, 0-29 s, anc
Case lll, 3060 s in the proposed control.
-controller during the transient states and which leads to
a larger phase-sshift between the force and the speed.The
traditional PI -control is not fully able to regulate the

currents in the frequent nonlinear states. Therefore, the
measured d-axis current becomes larger and increases the
losses and the reactive power of the PMLG.

The proposed control scheme adequately improved the
control capacity of the controller and regulated the
currents, precisely. This promising control of the
generator currents provides an optimal force control by
the proposed control scheme as presented in Fig.10 (b)
and Fig. 13. The dgaxis currents are precisely controlled
with a noticeable amount of accuracy. The losses and the
errors are reduced up-to a great extent. By regulating the
g-axis current the referenced force is predicted and
tracked precisely with a slight error deviation as shown
in Fig. 14. The total power extracted, the power delivered
to the converter and the power at the DC-bus are shown
in Fig. 15 for Case Il of irregular translator motion. In
Fig. 15, the mean mechanical power available is 9.2 kW
and the delivered active electrical power to the DC-bus is
7.38 kW. This presents the power conversion efficiency
(PCE), i.e. 80.21%, for Case Il of the irregular translator
motion of a frequency, w= 1.1423 rad/s. The power losses
are due to the resistive losses in the generator, sea cables
and losses at the converter. The results presented in Fig.
10Fig. 15, present the robust control capacity of the
proposed controller during the irregular variations of the
translator.

—— -Mechanical Power at the trarslator
— Elactrical power at the converter
Elactrical powar at the DC-Bus
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Fig. 15. Power captured from the PTO and delivered DC-bus
power in Case Il

VI. CONCLUSION

In this paper, a verification of the nonlinear control for
controlling the force of the generator by regulating the
stator currents of the generator is presented. Moreover,
data from the offshore operation is utilize d as input s to
verify the control and tracking of the generator currents
in two cases of irregular translator motion. The accuracy
of the controller with a nonlinear plant has been
analyzed, compared to a tuned Pl-controller, and verified
through the detailed simulation. The transfer function of
the PI controller and the plant is derived and the stability
of the control with the plant is studied and results
presented in the Bode plot and the pole -zero map. The dg
axes currents are regulated, precisely and the dgaxes
referenced currents are tracked with the minimum errors.
A correction in the force is predicted to the force
controller and the force required by the PMLG is
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regulated by regulating the g-axis current. It can be noted
that the WEC operating under NARMAX control, when
the translator motion is not regular, has reduced the
generator losses byregulating the minimal stator currents

with an improved accuracy . The proposed controller
produces small ripples in the measured d-axis current in
comparison to the measured d-axis current by a PIl-
controller. The ripples are negligible in comparison to the
regulated g-axis current and an improved and prominent

active power generation from the generator is achieved.

A grid -connected system brings a more smoothen way
to handle the DC-bus. It is controlled and maintained
steady by the inverter through a grid side control. It
reduces the power fluctuations into the system and the
power quality could be enhanced. A separate study will
be investigated with an experimental verification of the
controller in near future.

APPENDIX

The updated parameters during the process are shown
below. The total number of the parameter can be
estimated as N, = (I + 1)H + (H + 1)0 = 65, where I, H,
and 0 are the number of neurons in the input, hidden and
the output layers. In this study, we used I = 6, H = 8, and
0 = 1. The green curve shown in Appendix A is one of
the parameters out of 65. The updatd gains are shown in
Appendix .

Updated gains (Kg)x 0.1

|||FL ||||'|| | ,” | I

: J ' |.||

lH i fhn‘f\' “J

Number of samples

Appendix . The updated gain parameters.
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