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Abstract. Many fitness functions—such as those targeting test suite diversity—
do not yield sufficient feedback to drive test generation. We propose that diversity
can instead be improved through adaptive fitness function selection (AFFS), an
approach that varies the fitness functions used throughout the generation process
in order to strategically increase diversity. We have evaluated our AFFS frame-
work, EvoSuiteFIT, on a set of 18 real faults from Gson, a JSON (de)serialization
library. Ultimately, we find that AFFS creates test suites that are more diverse
than those created using static fitness functions. We also observe that increased
diversity may lead to small improvements in the likelihood of fault detection.
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1 Introduction
In search-based test generation, testers seek input that attains their testing goal. An
optimization algorithm systematically samples the space of possible test input in search
of a solution to that goal, guided by feedback from one or more fitness functions—
numeric scoring functions that judge the optimality of the chosen input [8].

During this search, the fitness functions embody the high-level goals of the tester [1].
Feedback from the fitness function will shape the resulting test suite, and we choose fit-
ness functions based on their suitability for those goals. For example, a common goal is
to attain Branch Coverage—to ensure that all outcomes of control-diverging statements
have been executed. Search-based test generation generally attains this goal using a fit-
ness function based on the branch distance—a fine-grained measurement of how close
we came to covering each branch outcome. If our goal is Branch Coverage, we know
how to attain it through search-based test generation. For other goals, we may not be so
fortunate. Many goals do not have an effective fitness function formulation.

One such goal is test suite diversity. When testing, it is generally impossible to
try every input. It follows, then, that different test cases are more effective than sim-
ilar ones [2,9]. This intuition has led to effective automated test generation, prioriti-
zation, and reduction [2]. While numerous diversity metrics exist—for example, the
Levenshtein distance [9]—these metrics serve as poor fitness functions, as they may no
present sufficient actionable feedback to optimize.

This does not mean that test suite diversity cannot be attained. Rather, we do not yet
know what fitness functions will be effective. There are many fitness functions used in
search-based test generation for attainment of other goals. Careful selection of one or
more of those functions—paired with, or even excluding, a diversity metric—could pro-
vide that missing feedback. In fact, we may even attain higher diversity by reevaluating
our choice of fitness functions over time based on the test suite population.
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We previously introduced adaptive fitness function selection (AFFS)—a hyperheuris-
tic that adapts the test generating process, using reinforcement learning [7], to adjust the
fitness functions in service of optimizing attainment of a higher-level goal [1]. We used
AFFS to increase the number of exceptions thrown by test suites [1]. In this study, we
extend our AFFS framework, EvoSuiteFIT, to a new goal—increasing test suite diver-
sity. We have implemented the Levenshtein distance as both a fitness function and as
a target for reinforcement learning in EvoSuiteFIT, and made improvements to the two
implemented RL approaches, UCB and DSG-Sarsa [7].

As a case study to evaluate the ability of AFFS to increase test suite diversity, we
perform a case study on the Gson library1. Gson is an open-source library for serializ-
ing and deserializing JSON input, and is an essential tool of Java and Android devel-
opment [5]. A set of 18 real-world faults from Gson are available in the Defects4J fault
database [3]. Previous work has found that this framework is a challenging target for
test generation [3]. We evaluate EvoSuiteFIT on these examples in terms of attained
test suite diversity and fault detection, comparing against two static baselines.

Ultimately, we find that EvoSuiteFIT creates test suites that are more diverse than
those created using static fitness functions. While results on fault detection are incon-
clusive, we observe that diversity may lead to small improvements in the likelihood of
fault detection. We make EvoSuiteFIT available for use in research and practice.

2 Adaptive Fitness Function Selection
Careful selection and reevaluation of fitness functions could result in test suites that are
more diverse than those generated targeting a single diversity metric alone or a naively
chosen set of fitness functions. Identifying this set of fitness functions is a secondary
search problem—one that can be tackled as an additional step within the normal test
generation process using reinforcement learning (RL). This process is known as adap-
tive fitness function selection (AFFS) [1].

Due to space constraints, we present only a brief overview of AFFS2. Adjusting the
set of fitness functions can be considered as an instance of the n-armed bandit prob-
lem [7]. Given a measurement of diversity, each action—a choice of fitness functions—
has an expected reward—increase in diversity—when it is selected. The modified test
generation process is illustrated in Figure 1. At a defined interval, the RL agent will
reevaluate the set of fitness functions and refine its estimation of their ability to increase
diversity. Because the population of test suites at round N depends on the population
from round N − 1, RL can not only choose effective fitness functions, but can strategi-
cally adjust that choice based on the test suite state.

AFFS has been implemented within the standard Genetic Algorithm in the EvoSuite
test generation framework [8]. Two RL algorithms—Upper Confidence Bound (UCB)
and Differential Semi-Gradient Sarsa (DSG-Sarsa) [7]—have been implemented. UCB
is a classic reinforcement learning approach that works well for many problems, while
DSG-Sarsa is an approximate approach adapted for problems with large state spaces [7]—
i.e., test generation. We refer to the overall framework as EvoSuiteFIT3.

1
https://github.com/google/gson

2 For full details, refer to our prior work [1].
3 EvoSuiteFIT is available from https://github.com/HusseinAlmulla/evosuite/tree/evosuitefit.

https://github.com/google/gson
https://github.com/HusseinAlmulla/evosuite/tree/evosuitefit
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Fig. 1: Overview of the test generation process with AFFS.

Diversity-Based Fitness Function: We have implemented a fitness function to mea-
sure test suite diversity based on the Levenshtein distance [9]. The Levenshtein dis-
tance is the minimal cost of the sum of individual operations—insertions, deletions,
and substitutions—needed to convert one string to another (i.e., one test to another).
The distance between two tests (ta and tb) can be calculated as follows [9]:

levta,tb(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max(i, j) if min(i, j) == 0

min

⎧⎪⎨⎪⎩
levta,tb(i − 1, j) + 1

levta,tb(i, j − 1) + 1

levta,tb(i − 1, j − 1) + 1(tai ̸=tbj)

otherwise
(1)

where i and j are the letters of the strings representing ta and tb. To calculate the diver-
sity of a test suite (TS), we calculate the sum of the Levenshtein distance between each
pair of test cases: div(TS) =

∑︁TS
ta,tb levta,tb. To attain a normalized value between

0-1 for use in a multi-fitness function environment, we then calculate and attempt to
minimize the final fitness as 1

1+div(TS) .

RL Implementation in EvoSuiteFIT: Every five generations, EvoSuiteFIT will select
one to four fitness functions from the following: Diversity, Exception Count, Branch
Coverage, Direct Branch Coverage, Method Coverage, Method Coverage (Top-Level,
No Exception), Output Coverage, and Weak Mutation Coverage. Rojas et al. provide
more details on each [8]. To constrain the number of combinations, we (1) use only
the combinations that include the diversity score, and (2), remove a small number of
semi-overlapping combinations (i.e., Branch and Direct Branch). Ultimately, the RL
agent can choose from 44 combinations of fitness functions. To seed reward estimates,
EvoSuiteFIT will make sure that all the actions have been tried (in a random order)
before it starts using the UCB or DSG-Sarsa selection mechanisms. After selecting
fitness functions, EvoSuiteFIT will proceed through the normal population evolution
mechanisms. After five generations, the reformulated population is used to calculate
the reward and update the expected reward. This allows sufficient population evolution
to judge the effect of changing fitness functions. Over time, the combination that gains
the highest reward will be more likely to be selected again until reaching convergence.
Related Work: Hyperheuristic search—often based on reinforcement learning—has
been employed to improve search-based test generation. For instance, it has been used
to tune the metaheuristic during Combinatorial Interaction Testing [6] or for addressing
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the test ordering problem [4]. In all of these cases, the hyperheuristic is used to tune the
algorithm, and not the fitness functions. Although AFFS has been performed in other
domains, such as production scheduling, we were the first to apply this concept in test
generation [1]. We extend our earlier approach to test suite diversity.

3 Case Study

We have assessed EvoSuiteFIT using 18 real faults from the Gson project in order to
address the following research questions: (1) Is EvoSuiteFIT able to yield more diverse
test suites than static fitness function choices? (2) Does increased test suite diversity
lead to greater likelihood of fault detection?
In order to investigate these questions, we have performed the following experiment:
(1) Collected Case Examples: We use 18 real faults from the Gson project from the
Defects4J fault database. We target the affected classes for each fault for test generation.
(2) Generated Test Suites: For each class, we generate 10 suites per approach (the
two reinforcement learning algorithms—UCB and DSG-Sarsa—and two baselines—
generation guided by diversity score alone and a combination of all eight fitness func-
tions). A search budget of 10 minutes is used per suite.
(3) Removed Non-Compiling and Flaky Tests: Any tests that do not compile, or that
return inconsistent results, are removed.
(4) Assessed Results: We measure the diversity of each test suite and the likelihood of
fault detection (proportion of failing suites to the number generated) for each fault.

Case Examples: Defects4J is an extensible database of real faults extracted from Java
projects4. For each fault, Defects4J provides access to the faulty and fixed versions of
the code, developer-written test cases that expose each fault, and a list of classes and
lines of code modified to fix the fault. The current version contains 18 faults mined from
the Gson framework [3]. We target the classes affected by faults for test generation.

Baselines: We have generated test suites using both reinforcement learning approaches,
UCB and DSG-Sarsa. In addition, we generate tests for two baseline approaches repre-
senting current practice. The first is the diversity score alone. This would be the likely
starting point for a tester interested in improving suite diversity. The second is the com-
bination of all eight functions that are used in this study. This configuration represents
a “best guess” at what would produce effective test suites, and would be considered a
reasonable approach in the absence of a known, informative fitness function.

Test Generation: Tests are generated using the fixed version of the class and applied
to the faulty version because EvoSuite generates assertions for use as oracles. Tests that
fail on the faulty version display behavioral differences between the two versions5. To
perform a fair comparison between approaches, each is allocated a ten minute search
budget. To control experiment cost, we deactivated assertion filtering—all possible re-
gression assertions are included. All other settings were kept at their default values. As
results may vary, we performed 10 trials for each approach and fault. We automatically
remove tests that return inconsistent results over five executions and non-compiling test
suites. On average, less than one percent of tests are removed from each suite.

4 Available from http://defects4j.org
5 This is the same practice followed by other studies using EvoSuite, i.e. [1,3]

http://defects4j.org
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4 Results & Discussion

Below, we illustrate the final diversity fitness score attained by each test suite, the me-
dian fitness for each technique, and the median likelihood of fault detection for the
four detected faults (faults 4, 9, 12, and 17). Because we minimize fitness, lower scores
indicate higher diversity.

DSG-Sarsa UCB Combination Diversity-Only
Diversity 1.47E-06 9.99E-07 1.93E-06 3.91E-06
Fault Detection Likelihood 0.60 0.75 0.60 0.05

We can clearly see that the diversity score is
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a difficult fitness function to optimize on its own.
When the sole target of test generation, the diver-
sity score gives the worst final results. There is also
a wide variance (distance between first and third
quartile) in its results. Diversity alone not offer ac-
tionable feedback to the test generation algorithm.
The combination of all eight fitness functions at-
tains more stable results, with a better median. By
adding additional fitness functions, we offer the test
generation framework detailed feedback, leading to
improvements in the final diversity.

Both RL approaches outperform the static approaches. DSG-Sarsa attains a 62%
median improvement over diversity-only and 24% improvement over the combination.
UCB is even better, attaining a 75% median improvement over diversity-only and 49%
over the combination. UCB also attains a 33% median improvement over DSG-Sarsa.
Both RL approaches also demonstrate lower variance in the results they attain.

A one-sided (strictly lesser) Mann-Whitney-Wilcoxon rank-sum (α = 0.05) con-
firms (p-values < 0.01) that UCB outperforms all other approaches and that DSG-Sarsa
outperforms the static approaches. The Vargha-Delaney A measure indicates that UCB
outperforms DSG-Sarsa with small, the combination with medium, and diversity-only
with large effect size. DSG-Sarsa outperforms the combination with small and diversity-
only with large effect size. Both EvoSuiteFIT techniques—particularly UCB—increase
test suite diversity over static fitness function choices with significance.

There is limited evidence that we can use to assess the impact of diversity on the
likelihood of fault detection. Only four faults are detected by any of the approaches—
faults 4, 9, 12, and 17. We identified several factors impacting fault detection in Gson,
including faults that are easier to expose through system-level testing, complex datatypes,
and faults exposed through stronger test requirements [3]. Increased diversity may not
overcome these broader issues. However, our observations suggest a positive impact
from increased diversity.

Examining fault detection across the four faults, we see that (1) all approaches out-
perform diversity-alone, and (2) the approach with the greatest diversity—UCB—also
attains the highest likelihood of fault detection. In addition, Fault 17 is uniquely de-
tected by DSG-Sarsa. This fault is based around serialization of date values6. Increased

6 See https://github.com/google/gson/issues/1096

https://github.com/google/gson/issues/1096
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diversity could lead to a wider range of attempted input and method calls. AFFS may
improve likelihood of fault detection. However, more examples are needed to draw
clear conclusions on the impact of diversity.

5 Conclusions
We find that AFFS creates test suites that are more diverse than those created using static
fitness functions. While results on fault detection are inconclusive, we also observe that
increased diversity may lead to small improvements in the likelihood of fault detection.
However, additional research is needed to tackle the particular challenges presented by
Gson. Future work on AFFS will extend this study beyond Gson to a greater pool of
faults and examine other goals that can be optimized in a similar manner. We make the
EvoSuiteFIT available for use in test generation research or practice.
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