
Synthesis and Electronic Properties of Diketopyrrolopyrrole-Based
Polymers with and without Ring-Fusion

Downloaded from: https://research.chalmers.se, 2024-03-13 10:24 UTC

Citation for the original published paper (version of record):
Zhuang, W., Wang, S., Tao, Q. et al (2021). Synthesis and Electronic Properties of
Diketopyrrolopyrrole-Based Polymers with and without
Ring-Fusion. Macromolecules, 54(2): 970-980. http://dx.doi.org/10.1021/acs.macromol.0c02326

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Synthesis and Electronic Properties of Diketopyrrolopyrrole-Based
Polymers with and without Ring-Fusion
Wenliu Zhuang,‡ Suhao Wang,‡ Qiang Tao,‡ Wei Ma, Magnus Berggren, Simone Fabiano,*
Weiguo Zhu,* and Ergang Wang*

Cite This: Macromolecules 2021, 54, 970−980 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Diketopyrrolopyrroles (DPP) have been recognized
as a promising acceptor unit for construction of semiconducting
donor−acceptor (D−A) polymers, which are typically flanked by
spacers such as thiophene rings via a carbon−carbon single bond
formation. It may suffer from a decrease in the coplanarity of the
molecules especially when bulky side chains are installed. In this
work, the two N atoms in the DPP unit are further fused with C-3
of the two flanking thiophene rings, yielding a π-expanded, very
planar fused-ring building block (DPPFu). A novel DPPFu-based
D−A copolymer (PBDTT-DPPFu) was successfully synthesized,
consisting of a benzo[1,2-b:4,5-b′]dithiophene (BDTT) unit as a donor and a DPPFu unit as an acceptor. For comparison, the
unfused DPP-based counterpart PBDTT-DPP was also synthesized. Two dodecyl alkyl chains were attached to thiophene rings of
DPP moieties to ensure good solubility of the DPPFu-based polymer. The influence of the ring-fusion effect on their structure,
photophysical properties, electronic properties, molecular packing, and charge transport properties is investigated. Ring-fusion
enhances the intermolecular interactions of PBDTT-DPPFu polymer chains as indicated by density functional theory calculation and
analysis of electrostatic potential and van der Waals potential and results in significantly improved molecular packing for both the in-
plane and out-of-plane directions as suggested by X-ray measurements. Finally, we correlate the molecular packing to the device
performance by fabricating field-effect transistors based on these two polymers. The charge carrier mobility of the ring-fused polymer
PBDTT-DPPFu is significantly higher as compared to the PBDTT-DPP polymer without ring-fusion, although PBDTT-DPPFu
exhibited a much lower number-average molecular weight of 17 kDa as compared to PBDTT-DPP with a molecular weight of 108
kDa. The results from our comparative study provide a robust way to increase the interchain interaction by ring-fusion-promoted
coplanarity.

■ INTRODUCTION

Solution-processable semiconducting polymers have attracted
wide attention thanks to their versatile chemical synthesis and
the opportunity for low-cost fabrication of large-area flexible
devices such as smart cards, bendable displays, radiofrequency
identification (RFID) tags, and distributed sensors.1,2 In recent
years, great efforts in molecular design have boosted the critical
field-effect charge mobility of the conjugated polymers, with
values now exceeding 10 cm2 V−1 s−1.3−9 One of the successful
keys to achieve high mobility in semiconducting polymers is to
maximize the intra- and intermolecular charge transport by
means of improving: (i) polymer backbone coplanarity,3,10 (ii)
molecular weight,11,12 (iii) orientation of polymer chains,13−22

and (iv) intermolecular interactions between neighboring
molecules.23 In line with such considerations, donor−acceptor
(D−A) copolymers have shown great potential owing to their
tunable energy levels, strong intramolecular charge transfer
(ICT), and intermolecular interactions between adjacent
polymer chains.24−27 Moreover, recent experimental evidences
have shown that local aggregation in this class of polymers over

just a few chains is a sufficient mesoscopic structure to ensure
high mobility and thus desired swift operation in organic field-
effect transistors (OFETs).28

Diketopyrrolopyrroles (DPP) have been recognized as a
promising acceptor unit for high-performance semiconducting
polymers due to their tight π−π stacking and long-range order
that is induced by the high coplanarity and cross-axis
dipole.8,29,30 In the past decade, the incorporation of DPP
into polymers for OFETs has attracted much attention in
academe, with charge carrier mobility surpassing 10 cm2 V−1

s−1.7,8,31−33 They are typically flanked by spacers such as
thiophene rings via a carbon−carbon single bond forma-
tion.8,9,34−37 However, when bulky side chains are needed and
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installed to prepare soluble conjugated polymers, they may
suffer from a decrease in the coplanarity of the molecules.
Making the backbone rigid and planar by means of ring-fusion
can be an effective method under such occasions. Gryko and
co-workers reported a synthetic approach for S-shaped π-
expanded DPP analogues with very high overall yield.38 Such a
method facilitates the introduction of electron-rich, or
electron-neutral, aryl or heteroaryl rings within the DPP
scaffold. A strong bathochromic shift of the absorption maxima
was observed as a result of the extended conjugation length.38

Chen et al. also reported a novel thiophene-fused DPP unit
(PTI) to construct D−A small molecules for organic
photovoltaics (OPV).30 Shi et al. reported a half-fused DPP-
based D−A polymer showing redshifted absorption.39 Until
recently, Scherf et al. reported a series of DPPFu-based D−A
polymers with promising absorption and emission properties.40

So far, research efforts are still needed to further explore the
potential of ring-fused DPP-based polymers. To this purpose,
ring-fused DPP-based polymers are expected to induce a
strong intermolecular interaction due to extended conjugation
along the backbone and retainment of high molecular

coplanarity as compared to conventional DPP-based copoly-
mers with bulky side chains.39,40

Herein, we designed and synthesized two new DPP-based
D−A copolymers for a comparative study. The two N atoms in
the DPP unit are fused with C-3 of the two flanking thiophene
rings, yielding a π-expanded, planar fused-ring building block
(DPPFu). A novel DPPFu-based D−A copolymer (PBDTT-
DPPFu) was successfully synthesized, consisting of a benzo-
[1,2-b:4,5-b′]dithiophene (BDTT) unit as a donor and a
DPPFu unit as an acceptor. For comparison, the unfused DPP-
based counterpart PBDTT-DPP was also synthesized (Scheme
1). Two dodecyl alkyl chains were attached to thiophene rings
of DPP moieties to ensure solubility of the resulting polymers
for high molecular weights. The influence of ring-fusion on
their structure, photophysical properties, molecular packing,
and charge transport properties is investigated. Ring-fusion
increases the planarity of PBDTT-DPPFu polymer chains and
results in significantly improved molecular packing for both in-
plane and out-of-plane directions. Finally, the molecular
packing is correlated to the device performance by fabricating
OFETs based on these two polymers. The charge carrier

Scheme 1. Synthetic Routes to the Polymers PBDTT-DPP and PBDTT-DPPFu
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mobility of the ring-fused polymer PBDTT-DPPFu is
significantly improved as compared to the PBDTT-DPP
polymer without ring-fusion.

■ RESULTS AND DISCUSSION

Material Synthesis. The synthetic routes of the polymers
PBDTT-DPP and PBDTT-DPPFu are shown in Scheme 1.
The preparation of monomers 1−4 is described in the
Supporting Information. The polymerization was realized via
Pd2(dba)3-catalyzed Stille coupling of bis(trimethylstannyl)-
benzo[1,2-b:4,5-b′]dithiophene with dibromo-substituted
monomers 3 or 4, respectively. The reaction mixture was
refluxed in toluene with vigorous stirring for 24 h. Further
purification was carried out by Soxhlet extraction and column
chromatography. Both polymers are readily soluble in organic
solvents such as chloroform, toluene, and o-dichlorobenzene
(oDCB) thanks to the long dodecyl chains of the DPP
moieties. The choice of dodecyl chains is a trade-off between
polymer solubility for high molecular weights and backbone
planarity for favorable interchain interactions. We also
synthesized a DPPFu monomer without any side chains but
did not succeed in obtaining a soluble polymer out of it with
high enough molecular weights. The molecular weights of the
polymers were determined by size exclusion chromatography
(SEC). The molecular weights (Mn) and molar mass dispersity
(ĐM) are listed in Table 1. The ring-fused monomer 4 exhibits
decreased solubility, which results in a much lower Mn of the
polymer PBDTT-DPPFu (17 kDa) as compared to that of
PBDTT-DPP (108 kDa). Both polymers exhibit a small ĐM
(2.0 for PBDTT-DPPFu and 2.3 for PBDTT-DPP). A doubled
number of alkyl side chains may have to be attached in order to
obtain PBDTT-DPPFu with molecular weight as high as
PBDTT-DPP.
Optical and Electrochemical Properties. The normal-

ized UV−vis absorption spectra of PBDTT-DPP and PBDTT-
DPPFu in chloroform solution and in film are shown in Figure
1. Both polymers exhibit two distinct high and low energy

absorption bands, which can be attributed to manifold π−π*
transitions and are primarily originated from local excitations
and/or intramolecular charge-transfer excitations. In chloro-
form solution, the maximum absorption wavelength (λmax) of
PBDTT-DPPFu at 710 nm is redshifted by 50 nm as compared
to that of PBDTT-DPP at 660 nm. In contrast, both polymers
show a similar λmax located at ∼760 nm when spin-coated as
films, suggesting that both polymers have good backbone
planarity and π−π stacking in the solid state and that in
solution, PBDTT-DPP may assume more twisted backbone
conformations originated from the single bond rotation
freedom within the acceptor segments, which is not possible
after ring-fusion. This, in conjunction with the above-
mentioned molecular weight difference of the two polymers,
indicates that the backbone of PBDTT-DPPFu exhibits
relatively planar conformation in solution due to the
enforcement of the molecular coplanarity by ring-fusion. It is
worth noting that PBDTT-DPPFu presents redshifted
absorption by 19 nm at maximum and much broader
absorption as compared to its analogue PEDDPTHD-BDT
(steep absorption edges and small Stokes shifts), which is
probably due to the use of dialkyl thiophenes as side groups on
BDT units instead of alkoxyl side chains.40

We then investigate the influence of the ring-fusion effect on
the frontier energy levels of the copolymer. The energy levels
and energy gaps of polymers are estimated from their
corresponding redox potentials by cyclic voltammetry (CV)
measurements. Figure 2 shows the cyclic voltammograms of

the two polymers. According to the equations HOMO = −(Eox
+ 5.13) eV and LUMO = −(Ered + 5.13) eV,41−43 the HOMO
levels of PBDTT-DPP and PBDTT-DPPFu are estimated to
be −5.66 and −5.50 eV and the LUMO levels are −3.97 and
−3.88 eV, respectively. According to the equation, Eg

ec =
LUMO − HOMO, the electrochemical energy gaps of the two
polymers are estimated to be 1.69 and 1.62 eV for PBDTT-
DPP and PBDTT-DPPFu, respectively. It is interesting to note
that when going from PBDTT-DPP to PBDTT-DPPFu, both
HOMO and LUMO levels upshift with the HOMO level

Table 1. Molecular Weights and Optical and Electrochemical Properties of the Polymers

solution film

polymer Mn (kDa) ĐM λabs (nm) λabs (nm) Eg
opt (eV)a HOMO (eV) LUMO (eV) Eg

ec (eV)b

PBDTT-DPP 108 2.3 660 764 1.52 −5.66 −3.97 1.69
PBDTT-DPPFu 17 2.0 710 758 1.49 −5.50 −3.88 1.62

aOptical gap estimated from the optical absorption edge of the film. bEg
ec = LUMO − HOMO.

Figure 1. Normalized absorption spectra of the two polymers (solid:
in chloroform; dashed: in film).

Figure 2. Cyclic voltammetry (CV) curves of the two polymers.
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shifted in a larger extent, resulting in a slightly narrowed energy
gap for PBDTT-DPPFu. The electrochemical gaps follow the
same trend as optical gaps deduced from onsets of the solid-
state absorption.
Theoretical Calculations. To gain insight into how ring-

fusion can affect the backbone of the conjugated molecules,
DFT and TD-DFT calculations via an oligomer approach were
performed on the two synthesized conjugated polymers
(PBDTT-DPP and PBDTT-DPPFu) for comparison in the
gas phase. Computations were performed on the models based
on one and two repeating units for comparison. The bulky
alkyl or alkoxyalkyl side chains are simplified to methyl groups.
The geometries were optimized at the B3LYP-D3(BJ)/def2-
SVP level.44−46 It is found that without bulky side chains, the
two backbone molecules show almost comparable backbone
coplanarity, the main difference of which lies in the DAD
segment of the PBDTT-DPP and the fused acceptor unit of
the PBDTT-DPPFu. If there are no sterically hindering side
chains attached, it is possible for both backbones to assume
much more planar coplanarity upon solid-state stacking.
However, when bulky side chains are installed, the backbone
coplanarity of the fused backbones can be better guaranteed
than that of the unfused one due to ring-fusion-promoted
backbone rigidity.
It has to be noted that for the PBDTT-DPP polymer

without ring-fusion, the DPP unit may assume different
conformations originated from the single bond rotation
freedom between the acceptor core and the flanking thiophene

units, for example, if forced by steric hindrance caused by bulky
side chains attached, while this is not possible for the PBDTT-
DPPFu with ring-fusion in the acceptor segments. To
understand how this can affect the properties of the resulting
polymers, two conformations of the DPP units in the two-
repeating-unit model of PBDTT-DPP polymer were calculated
at the same level of theory (Figure S1 and Table S1). It is
found that PBDTT-DPP is dominated by the conformer
PBDTT-DPPa, which is 8.05 kcal mol−1 lower in Gibbs free
energy in the gas phase and is 3.50 kcal mol−1 lower in Gibbs
free energy in chloroform solution. According to the
Boltzmann distribution law, at room temperature, the
Boltzmann population of the predominant conformer
PBDTT-DPPa in both cases will be over 99%. The
conformational effect on the calculated HOMO and LUMO
energies cannot be neglected especially if there is influence
from bulky side chains. The HOMO and LUMO energies are
calculated to be −4.76 and −2.94 eV for PBDTT-DPPa and
−4.74 and −2.86 eV for PBDTT-DPPb, respectively, at the
B3LYP-D3(BJ)/def2-SVP level, corresponding to a HOMO−
LUMO gap of 1.82−1.89 eV. For PBDTT-DPPFu with ring-
fusion, the HOMO, LUMO, and HOMO-LUMO gap energies
are −4.66, −2.79, and 1.87 eV, respectively. It is noted that
ring-fusion of the DAD segment results in upshifted HOMO
and LUMO energy levels as also observed by electrochemical
measurements. Theoretically, it would be expected for
PBDTT-DPP to have a more narrowed energy gap than
PBDTT-DPPFu, which is contrary to the experimental results

Figure 3. Optimized geometries, frontier molecular orbitals (isovalue: 0.02 a.u.), and molecular dipole moments.
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obtained by optical and electrochemical measurements. This
may infer that unlike PBDTT-DPPFu, PBDTT-DPP may
suffer from a decrease in backbone planarity and/or stacking
order or have a steric hindrance-driven conformational
preference due to the rotation freedom of the single bonds
between the acceptor core and flanking thiophenes when bulky
side chains are used. Nevertheless, unless otherwise specified,
the energetically favored PBDTT-DPPa will be still taken as a
representative conformer of PBDTT-DPP for later discus-
sion.41−43 Additionally, it should be mentioned that the
simplification of the diethoxy ethyl side group as the methyl
group in the calculation model for computational cost is
reasonable since the oxygen atoms in the side chains are not
directly bonded to the backbone and should have limited
influence on the photophysical properties of the polymer.
Calculations (Figure S1) show that the ether side groups on
the DPP units of the PBDTT-DPP polymer slightly lower the
HOMO and LUMO levels simultaneously by around 0.05 eV
while keeping the HOMO−LUMO gaps almost unchanged as
compared to the counterpart with methyl side chains. Note
that by comparing these values to their counterparts obtained
under the same conditions for the one-repeating-unit model
compounds, the energy gaps of the ring-fused structures
narrow with extending the conjugation backbones less
significantly. This holds also true when we look at the vertical
excitation energy as is discussed later.
For all the molecules, both HOMOs and LUMOs are

delocalized over the whole backbones (Figure 3), but ring-
fusion on the acceptor units caused the HOMO wave function
to partially localize more to these acceptor units while the
distribution of LUMOs are almost unchanged, which can be
accountable for the change in energy levels and gaps. To
further understand these differences and to compare their
orbital delocalization extent, we calculated their orbital

delocalization index (ODI) based on the Hirshfeld meth-
od.47,48 The ODI is an indicator of quantifying the extent of
orbital spatial delocalization, calculated by the Multiwfn
program. The smaller ODI value means that the orbitals are
spatially more distributed to more atoms within a molecule
and are therefore deemed as being more delocalized. The ODI
versus molecular orbital index of each structure of occupied
orbitals (from HOMO down to HOMO-10) was plotted for
comparison (Figure S2). Indeed, it is found that after ring-
fusion of the molecular structure, the HOMOs of BDTT-
DPPFu series have slightly higher ODI values and are therefore
less delocalized than those of BDTT-DPP series based on the
same number of repeating units, while the LUMOs of the ring-
fused BDTT-DPPFu series are more delocalized than their
unfused counterparts.
Intermolecular dipole interactions between conjugated

molecules can drive neighboring molecules to form aggregates,
particularly when the chromophore possesses a large dipole
moment.49 To evaluate the molecular dipole moments of the
studied structures, single point calculations using a Karlsruhe
split-valence basis set def2-SVPD46,50 with polarization and
diffuse functions were performed based on the B3LYP-
D3(BJ)/def2-SVP optimized geometry. Calculated data
(Figure 3) show that ring-fusion of PBDTT-DPP results in a
small increase in the dipole moments over the whole
molecules, which is expected to favor charge transport through
enhanced intermolecular interactions.
Usually, the electrostatic interaction plays a crucial role

among the molecular interactions between the system under
study and external environment. The isosurface map of
electrostatic potential (ESP) on the van der Waals (vdW)
surface is investigated since it is very closely related to
intermolecular electrostatic interactions, to gain information of
molecular properties and intermolecular interactions.51 The

Figure 4. ESP isosurface map (isovalue: 0.001 a.u.). The small orange and cyan spheres correspond to the most positive and negative points,
respectively, which are labeled in kcal mol−1. The numbers in parentheses indicate that the spheres are located in the backside of the view.
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ESP maxima and minima on the vdW surface are also
calculated (Figure 4). It can be seen that the fused system has a
greater electronegativity difference over the unfused system, for
example, the ESP on the vdW surface ranges from −34.75 to
21.63 kcal mol−1 for PBDTT-DPP (BDTT-DPP_X2) and
from −40.13 to 22.46 kcal mol−1 for PBDTT-DPPFu (BDTT-
DPPFu_X2). In these structures, oxygen has a higher
electronegativity than sulfur and other elements, and therefore,
oxygen atoms would consequently have a higher electron
density around them than other atoms. The ESP analysis
results show that the oxygen atoms of the amide group on the
acceptor units have the most negative surface potential, while
C−H adjacent to S of thiophene rings have the most positive
surface potential. Additionally, it can be seen that the bridges
introduced by ring-fusion of the acceptor units in this study
also have significant positive surface potential. Meanwhile, due
to the change in the backbone configuration after ring-fusion,
the thiophene side groups become facing the amide oxygen
negative surface potential regions, different from the unfused
system. Consequently, the fused system has a greater
electronegativity difference over the unfused system and can
form a stronger electrostatic interaction to other molecules,
enhancing their intermolecular interaction with other mole-
cules. The ESP analysis results agree well with the DFT
calculations on the more localization of HOMOs on the
acceptor units for the fused systems.
Another type of molecular interaction known as van der

Waals interaction can sometimes play important roles under
some circumstances, for example, when interacting molecules
are nonpolar or weakly polar. The trade-off between the
exchange-repulsion interaction showing a repulsive effect and
the dispersion interaction showing an attractive effect will
result in different intermolecular interaction behavior. The
isosurface map of the vdW potential evaluated by the Lennard-
Jones 12−6 potential shows that the regions (blue isosurface)
where the dispersion attraction effect surpasses the exchange-

repulsion effect are favorable physical adsorption zones for
intermolecular packing (Figure 5).48,52 Similarly, in all cases,
these regions are mainly facing to the plane of the conjugated
backbones, beneficial to π−π stacking, and the most favorable
adsorption sites are close to the donor units of the conjugated
backbones. Ring-fusion of the acceptor units does not seem to
cause much difference in the vdW interaction strength. From
the above discussion of molecular dipole moments, electro-
static interactions, and van der Waals interactions, it is
expected that ring-fusion will enhance the intermolecular
interaction, molecular packing, and as a result the electronic
properties of these conjugated systems.
To assess the excited-state vertical excitation energies and

oscillator strengths of the systems, we further performed time-
dependent DFT calculations with range-separated hybrid
functionals at the CAM-B3LYP-D3(BJ)/def2-SVP level45,46,53

based on the geometry optimized at the B3LYP-D3(BJ)/def2-
SVP level. The major contributions of molecular orbitals to the
electronic transitions are also summarized in Table S2. TD-
DFT calculation reveals that the lowest excitations from the
ground state (S0) to the first excited state (S1) correspond to
π−π* transitions and are all dominated by the HOMO →
LUMO transitions. The excited-state vertical transition
energies show similar trends to the HOMO−LUMO gaps
among the studied structures. It can be found that the
oscillator strengths of the fused systems are relatively lower
than those of the unfused PBDTT-DPP especially in the case
of the S0 → S1 transitions. According to Kasha’s rule, the first
excited state of a singlet system is usually the critical state to
emit fluorescence and hence plays an important role in
molecular photophysics. From the molecular orbital contribu-
tion to the transitions, it can be seen that most of the
transitions of the system studied cannot be simply expressed as
a transition between a specific pair of molecular orbitals but a
consequence of combined contributions from several pairs of
molecular orbitals.

Figure 5. Isosurface map of van der Waals potentials (isovalue: 1.0). Green and blue isosurfaces correspond to positive and negative distributions,
respectively. The small magenta spheres correspond to the most negative points, which are labeled in kcal mol−1. The numbers in parentheses
indicate that the spheres are located in the backside of the view.
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Hence, electron−hole analysis48,54 was carried out by the
Multiwfn program to gain insight into their underlying
characteristics such as how charge transfer takes place along
the backbones. There are several quantities to be calculated
and discussed. The H index is an overall measure of the
average spatial extension degree of hole and electron
distribution based on their root-mean-square deviations
(RMSDs). The D index is the total magnitude of charge-
transfer (CT) length as measured by the distance between the
centers of mass of electrons and holes. The t index represents
the difference between the D index and the average spatial
extension degree of hole and electron distribution in the CT
direction, characterizing the separation degree of holes and
electrons in the CT direction, with negative values implying
that the holes and electrons are not substantially separated due
to CT. The Sr index is a measure to characterize the
overlapping extent of holes and electrons by integration of
the geometric mean of their charge densities over all space.
Generally, the higher H index value in the hole−electron
analysis, the better distribution along the entire backbone on
average. As can be seen from Table S3 and Figure S3
(Supporting Information), for these conjugated systems,
electrons and holes of different excited states are on average
distributed and delocalized over the entire backbones, as
indicated by relatively high H index values (for average overall
distribution of electrons and holes) as well as low hole
delocalization index (HDI) and electron delocalization index
(EDI) values. The electrons and holes are very close to each
other and highly overlapped, with the D index (center of mass
distance of electron and hole) generally less than one bond
length and the Sr index (extent of electron−hole overlap)
ranging from over 50 up to 87%, and therefore, most of the
transitions can be deemed as local excitation of highly localized
π−π* nature. In all cases, the negative values of all the t index
also confirm that the holes and electrons are not significantly
separated relative to their good distribution though, in accord
with the D index. The Coulomb attractive energies (EC)
between holes and electrons of all excited states studied are
basically lower than 4.86 eV, implying that the holes and
electrons can be either well separated or distributed. It is worth
mentioning that the S0 → S1 transitions have the highest
transition dipole moments and oscillator strengths compared
to other transitions of the same systems. A higher overlap of
well-distributed holes and electrons of the excited states may
favor a higher oscillator strength of the corresponding
transition, for example, as a consequence of a combination of
a higher Sr index and a lower D index along with a higher
extended conjugation path length.
OFET Performance. In order to characterize the charge

transport properties of these copolymers, top-gate bottom-
contact OFETs were fabricated. Poly(methyl methacrylate)
(PMMA) with a thickness of ∼600 nm was used as a dielectric
layer. A detailed description of the fabrication process is given
in the Supporting Information. Interestingly, all tested devices

that include PMMA as the dielectric layer based on PBDTT-
DPP and PBDTT-DPPFu exhibit ambipolar characteristics
under an ambient atmosphere. All the mobility values were
calculated in the saturation region (VD = ±100 V), as shown in
Table 2. For PBDTT-DPP, a hole mobility of (1.2 ± 0.60) ×
10−4 cm2 V−1 s−1 and an electron mobility of (4.1 ± 0.26) ×
10−3 cm2 V−1 s−1 were obtained (Figure 6a). Remarkably, the

hole mobility of PBDTT-DPPFu is about one order of
magnitude higher ((1.8 ± 0.10) × 10−3 cm2 V−1 s−1) as
compared to PBDTT-DPP, whereas the electron mobility
undergoes a 2-fold increase ((1.0 ± 0.15) × 10−2 cm2 V−1 s−1)
(Figure 6c). Such an enhancement can be attributed to the
strong molecular interactions of PBDTT-DPPFu, leading to
better π−π stacking and thus a higher charge carrier mobility.
High-k fluorinated polymers such as poly(trifluoroethylene)

(PTrFE, Solvay S.A.) were also used as the dielectric layer in
the OFETs. In fact, it has been shown that high-k fluorinated
dielectrics enhance hole transport in polymeric OFETs, which
then gives us the possibility to improve the mobility
values.28,55−57 Interestingly, hole mobility values as high as
(6.0 ± 0.12) × 10−4 and (2.5 ± 0.65) × 10−3 cm2 V−1 s−1 are
detected for PBDTT-DPP and PBDTT-DPPFu, respectively
(Table 2 and Figure 7). Noteworthily, these hole mobility
values are higher than those attained using PMMA as a

Table 2. OFET Mobilities for PBDTT-DPP and PBDTT-DPPFu Using Different Dielectric Layers and Summarized GIWAXS
Data

PMMA PTrFE spacing d010 (Å) coherence length Lc (Å)

polymers μh
a (cm2 V−1 s−1) μe

a (cm2 V−1 s−1) μh
a (cm2 V−1 s−1) π−π stacking OOP IP

PBDTT-DPP (1.2 ± 0.60) × 10−4 (4.1 ± 0.26) × 10−3 (6.0 ± 0.12) × 10−4 4.19 12.2 11.4
PBDTT-DPPFu (1.8 ± 0.10) × 10−3 (1.0 ± 0.15) × 10−2 (2.5 ± 0.65) × 10−3 4.19 16.2 17.2

aThe FET mobilities were calculated in the saturation regime (VD = ±100 V).

Figure 6. Transfer curves of OFETs using PMMA as a dielectric layer
based on polymer films of (a, b) PBDTT-DPP and (c, d) PBDTT-
DPPFu.
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dielectric layer. However, no electron mobility can be detected
due to the suppression of electron transport, which is induced
by the high-k fluorinated dielectrics. Thus, the devices show
unipolar transport behavior (Figure 7). Nevertheless, the effect
of ring-fusion can still be clearly seen in the PTrFE devices. It
should be noted that the molecular weight of PBDTT-DPPFu
(Mn = 17 kDa) is much lower than that of PBDTT-DPP (Mn =
108 kDa). Generally, a relatively higher molecular weight gives
higher mobility values for the same polymer structure due to
less defects and extended polymer chains.11,12 However, our
results indicate that ring-fusion-induced molecular packing
improves the field-effect mobility and thus the device
performance, to a relatively greater extent than any effects
related to polymeric molecular weight.
To gain insight into the correlation between molecular

packing and the device performance, we investigated the
polymer film microstructure by grazing incidence wide-angle
X-ray scattering (GIWAXS). Figure 8a,b shows the GIWAXS

two-dimensional patterns of PBDTT-DPP and PBDTT-
DPPFu with corresponding profiles reported in Figure 8c.
Both PBDTT-DPP and PBDTT-DPPFu show obvious (100)
peaks in the in-plane (IP) direction and (010) peaks in the
out-of-plane (OOP) direction as revealed in Figure 8a,b,
respectively, which indicates a face-on orientation preference.
π−π stacking resembles the (010) peaks at q ≈ 1.5 Å−1 and is

critical to charge transport. The corresponding calculated
coherence length values are 12.2 and 16.2 Å for PBDTT-DPP
and PBDTT-DPPFu in the out-of-plane direction and 11.4 and
17.2 Å in the in-plane direction, respectively. This indicates a
relatively stronger interaction between the neighboring
molecules of PBDTT-DPPFu as compared to PBDTT-DPP.
Considering the much lower molecular weight of PBDTT-
DPPFu (Mn = 17 kDa for PBDTT-DPPFu and Mn = 108 kDa
for PBDTT-DPP), we can attribute the enhanced mobility in
PBDTT-DPPFu to its better molecular stacking.

■ CONCLUSIONS
In conclusion, we have successfully synthesized and charac-
terized ring-fused DPP-based copolymers. It is found that ring-
fusion of the DPP copolymer increases the intermolecular
interactions of the DPP copolymer, which is confirmed by
UV−vis spectroscopy, DFT calculation, ESP and vdW
analyses, as well as XRD data. As a consequence, the ring-
fused DPP copolymer shows improved charge carrier mobility
even with much lower molecular weight. Higher performance
can be expected when the molecular weight of the polymer is
further increased. The results from our comparative study
provide a robust way to increase the interchain interaction by
ring-fusion methods. Our results highlighted the ring-fused
DPP unit as a promising building block for construction of
high-performance polymers for organic electronics.
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F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting
polymer for printed transistors. Nature 2009, 457, 679−686.
(26) Ha, J. S.; Kim, K. H.; Choi, D. H. 2,5-Bis(2-octyldodecyl)-
pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor-acceptor alter-
nating copolymer bearing 5,5′’-di(thiophen-2-yl)-2,2′’-biselenophene
exhibiting 1.5 cm2.V(−-1).s(−-1) hole mobility in thin-film
transistors. J. Am. Chem. Soc. 2011, 133, 10364−10367.
(27) Guo, X.; Puniredd, S. R.; Baumgarten, M.; Pisula, W.; Müllen,
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