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Probability of instant rail break induced by wheel–rail impact 
loading using field test data
Jens CO Nielsen, Thomas JS Abrahamsson and Anders Ekberg

Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg Sweden

ABSTRACT
The probability of an instant rail break, initiated at a single pre- 
existing rail foot crack due to a severe wheel impact loading, is 
predicted using statistical methods and a time-domain model for 
the simulation of dynamic vehicle–track interaction. A linear elastic 
fracture mechanics approach is employed to calculate the stress 
intensity at the crack in a continuously welded rail subjected to 
combined bending and temperature loading. Based on long-term 
field measurements in a wayside wheel load detector, a three- 
parameter probability distribution of the dynamic wheel load is 
determined. For a faster numerical assessment of the probability 
of failure, a thin plate spline regression is implemented to develop 
a meta-model of the performance function quantifying the stress 
intensity at the crack. The methodology is demonstrated by inves-
tigating the influence of initial crack length, fracture toughness and 
rail temperature difference on the risk for an instant rail break.
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1. Introduction

Wheel–rail impact loads generated by discrete wheel tread irregularities may cause severe 
damage of track and vehicle components leading to high maintenance costs and traffic 
disruptions. Common examples of such irregularities are wheel tread material fall-out 
due to surface damage caused by rolling contact fatigue clusters or by the wheel sliding on 
the rail (wheel flats) [1–3]. Monitoring of vertical dynamic wheel–rail contact forces in 
a wheel impact load detector provide operators with information on the current status of 
their wheels. To prevent unacceptable deterioration levels and safety-related failures, 
alarm limits are prescribed. The UIC recommended alarm limit in peak load, proclaim-
ing an immediate stop of the train for wheel removal, is 350 kN with an alert level at 300 
kN [4]. Cost-efficient and reliable railway operations require a minimum of traffic 
disruptions. To this end, alarm limits should provide a balance between preventing 
operational failures and minimizing the number of stopped trains. An understanding 
of the influence of wheel tread irregularities on the risk for track damage (including 
instant rail breaks) is the scientific basis for such optimized alarm limits.

According to a recent assessment of freight train derailments in the EU, USA and 
Russia [5], rail failures was ranked as one of the top eight causes. These derailments are 
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usually a consequence of the fracture of the rail due to high dynamic wheel loads and can 
be associated with internal defects that have reduced the strength of the rail section. 
Examples of contributing factors include high bending stresses in the rail, inadequate rail 
support conditions and high thermal tensile stresses.

For a given discrete wheel tread irregularity, the magnitude of the generated impact 
load is influenced by the three-dimensional shape of the defect and several other para-
meters such as train speed, axle load, and the dynamics of the coupled vehicle–track 
system. The parameters particularly influencing the vertical dynamics of the system are 
the vehicle unsprung mass and track stiffness, in particular the rail pad stiffness and 
ballast/subgrade stiffness at the impact position. For a given combination of tread defect 
and operational parameters, a maximum in impact load can be expected if the lateral 
position of the maximum depth of the defect is coinciding with the lateral centre of the 
wheel–rail contact, and the impact occurs where the track stiffness is maximum, e.g. 
above a sleeper on a ballasted plain line. The generated wheel‒rail impact load may cause 
an instant rail break if it occurs near a pre-existing crack in the rail. This could lead to 
a train derailment, especially if the same tread damage generates multiple, adjacent rail 
breaks due to subsequent impacts. Wheel tread irregularities also lead to increased levels 
of rolling noise, impact noise and ground-borne vibration [6].

The accuracy and computational effort of various reliability assessment methods have 
been compared by Rahrovani et al. [7]. In their evaluation of the risk for sleeper cracking, 
where rail pad stiffness and ballast/subgrade stiffness were considered as stochastic 
variables, response surface models (meta-models) were used to approximate the perfor-
mance function of the sleeper bending stress. These were generated based on different 
combinations of polynomial functions and sampling methods for the applied design of 
experiments [8]. The subset simulation algorithm proposed by Au and Beck [9] was used 
in the probabilistic failure analysis to determine sleeper support conditions that increase 
the risk of sleeper failure. Another review of techniques to reduce the computational 
effort required in design optimization is presented in [10], where meta-models based on 
polynomials, splines, kriging, neural networks, etc., are discussed.

In [11], crack growth rates and the probability of rail breaks due to wheel–rail 
impact were studied. It was shown that rail temperature relative to the stress-free 
temperature has a major influence on the risk for rail breaks in a continuously welded 
rail. Further, for a given crack position along the rail, it was concluded that the 
influence of a prescribed distribution of severe impact loads on the fatigue crack 
growth is minor since the stochastic spread in distance between the impact position 
and the crack will lead to that only a few of the impacts will have a significant influence 
on the loading of the crack. Combinations of initial crack lengths and impact load 
magnitudes that may cause rail breaks were predicted in [12]. Various scenarios in 
terms of operational conditions and rail temperatures were studied, and an alarm limit 
for impact load was proposed. To reduce the number of disturbances of operating 
traffic to a minimum, it was concluded that a seasonal (temperature-dependent) 
variation in allowable wheel load limit is justified. In [13], a fracture mechanics 
approach was applied to study the effects of impact loads, seasonal variation in thermal 
stresses as well as residual stresses from manufacturing, on fatigue crack growth in rails 
using a finite element (FE) model. However, the influence of the stochastic spread in 
impact positions was neglected.
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In this paper, a methodology for the prediction of the probability of the rare event of 
an instant rail break initiated at a given pre-existing rail foot crack due to wheel–rail 
impact loading will be presented. Two stochastic variables with given probability dis-
tributions are considered: the magnitude of the dynamic wheel–rail contact load induced 
at the impact position, and the longitudinal position of the impact relative to the position 
of the existing crack. To provide a realistic traffic scenario, a probability distribution of 
dynamic loads is derived based on long-term measurements in a wheel impact load 
detector, while the longitudinal impact position has a uniform distribution over 
a distance corresponding to the wheel circumference. It is assumed that linear elastic 
fracture mechanics is valid, and that normal stresses due to rail bending and tempera-
ture-induced thermal loads is the dominating mode of loading [11,12]. The methodology 
is demonstrated for a case with a single, pre-existing rail foot crack. Such cracks typically 
initiate at corrosion pits or due to poor handling of the rail during track construction. 
The influences of initial crack length, rail temperature difference and fracture toughness 
are considered in a subsequent parameter study.

2. Wheel impact load detector data

Malmbanan is a single-track railway line in the northern part of Sweden. Traffic is 
dominated by iron ore freight trains with nominal axle loads 30 tonnes (speed 60 km/ 
h) and other freight trains with axle loads up to 25 tonnes (speeds up to 120 km/h). This 
traffic load in combination with severe weather conditions (cold winters and relatively 
warm summers) put tremendous strains on the infrastructure and rolling stock.

Several wheel impact load detectors are installed on Malmbanan. In this paper, data 
from the detector at Sunderbyn, see Figure 1, has been analysed. The detection zone, 
covering a distance exceeding the wheel circumference, includes vertical force sensors 
mounted on the rail seats of eight consecutive sleepers [14]. At the time of the measure-
ments, the Sunderbyn detector recorded mixed traffic conditions, including up to four 
loaded iron ore trains per day, freight traffic with a large variation in train speeds and axle 
loads, as well as passenger traffic with speeds up to 140 km/h. For each passing wheel, the 
detector measures the mean load Fmean and the peak load Fpeak. From these data, the 
dynamic load Fdyn = Fpeak – Fmean is determined. Other data, such as the time of the 
measurement, traffic operator and train speed, are also recorded.

In Sweden, the winter 2017/2018 was particularly severe with low temperatures and 
high levels of snow precipitation. Overall, this resulted in a high number of alarms 
leading to a total of 1600 hours of train delays due to required rail inspections according 
to regulations.

For the different categories of traffic on Malmbanan, detector data measured over the 
time period from 1 October 2017–1 April 2018 (six months) have been collected and 
evaluated. As it was concluded that the maximum peak loads were generated by the 
‘freight’ traffic category (i.e. including several different types of freight vehicles in empty 
and loaded conditions but excluding the fleet of iron ore trains), the effect of this 
particular type of traffic will be further analysed in this paper. More specifically, freight 
traffic with axle load 20 tonnes and train speed 100 km/h will be taken as a reference load 
scenario representing common conditions with a high number of severe impact loads 
measured in the Sunderbyn detector, cf. Figure 2.
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For the ‘freight’ category trains, the numbers of occurrences of peak load and dynamic 
load magnitudes versus different levels of axle load are shown in Figure 2(a,b). The range 
of each axle load bin is 2.5 tonnes, while the range of each dynamic load bin is 5 kN. Note 
that each figure shows a top view of the histogram and that each number of occurrences is 
plotted in logarithmic scale to increase the resolution. The influence of the range of train 
speeds on peak load is shown in Figure 2(c). Here, the range of each train speed bin is 
10 km/h. A substantial scatter in the data with large variations in axle load and train 
speed and several cases of extreme impact loads are observed. Based on all studied 
‘freight’ category measurements on the rail referred to as the ‘right rail’ in the detector 
database, the alarm limit 350 kN was exceeded five times during the six winter months 
with a maximum peak load of 455 kN (measured for axle load 20 tonnes and train speed 
90 km/h, cf. Figure 2). The maximum dynamic load was 360 kN, while 1 permille of the 
passing wheels generated dynamic loads exceeding 154 kN.

For all ’freight’ category wheels with axle load in the bins ≥20 tonnes (and all train 
speeds) that were measured during the month of March in 2018 (a month with 
a particularly high number of extreme impact loads), a histogram of the dynamic loads 
is shown in Figure 2(d). A zoom of the same histogram for the most extreme dynamic 
loads is illustrated in Figure 2(e). For this month, 1 permille of the passing wheels 
generated dynamic loads exceeding 170 kN. Different continuous probability distribu-
tions for a positive random variable θ have been applied to fit the histogram. In general, it 
was found that the three-parameter Burr type XII distribution provided a better fit than 
the alternative two-parameter lognormal and Gamma distributions that were tried. The 
corresponding cumulative distributions are presented in Figure 2(f). Note that the 
cumulative data and the fitted cumulative Burr distribution are almost overlapping. 
The cumulative distribution function of the Burr type XII distribution is written as, see 
[15,16], 

F θjα; c; kð ÞÞ ¼ 1 �
1

1þ θ
α

� �c� �k ; θ > 0; α> 0; c> 0; k> 0 (1) 

Figure 1. Wheel impact load detector [14] at Sunderbyn. Photo by Matthias Asplund, Swedish 
Transport Administration.
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where c and k are shape parameters and α is the scale parameter. For an assessment of the 
matched tail distribution of extreme dynamic loads, note that the fitted Burr type XII 
distribution shown in Figure 2(e) predicts that 5 permille of the dynamic loads exceed 170 

Figure 2. Data from right rail in the wheel impact load detector at Sunderbyn: ’freight’ traffic with 126 
770 measured wheels from 1 October 2017–1 April 2018. Numbers of occurrences (in logarithmic 
scale; for example, 4 corresponds to 104 wheels) of (a) peak load vs. axle load, (b) dynamic load vs. axle 
load, (c) peak load vs. train speed. (d) Histogram and probability distributions evaluated for 9 390 
wheels (March 2018 – right rail) with axle load in bins ≥ 20 tonnes, (e) zoom of previous figure 
illustrating the most extreme measured loads, (f) corresponding cumulative distributions.
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kN. Thus, the load distribution that will be applied in the following demonstration of 
calculation of probability of failure (see below) will be conservative in the sense that the 
probability of extreme dynamic loads is higher in the simulation than in this particular data 
set (March 2018 – right rail). On the other hand, the fitted lognormal and Gamma 
distributions predict that 170 kN is exceeded by only 0.03 permille and 0.00004 permille 
of the dynamic loads, respectively.

For comparison, the iron ore traffic (not shown here) is dominated by loaded 
trains with nominal axle load 30 tonnes at nominal speed 60 km/h and unloaded 
trains with axle load 5 tonnes at nominal speed 70 km/h. The maximum measured 
peak load was 314 kN. Most of the wheels on the iron ore trains induced low 
dynamic loads (about 90% of the wheel passages generated a dynamic load lower 
than 20 kN). Despite the high axle loads, and consequently high mean loads, no 
wheel triggered the alarm limit, indicating that the wheels on the iron ore fleet are 
generally in good condition.

3. Linear elastic fracture mechanics

A linear elastic fracture mechanics (LEFM) approach is employed to determine the stress 
intensity at a pre-existing rail foot crack subjected to combined bending and temperature 
loading [11,12]. The considered case is illustrated in Figure 3. It is assumed that the crack 
is loaded by uni-axial tensile stresses due to rail bending and temperature-induced 
thermal loads. A single crack is considered meaning that the influence of any nearby 
cracks is ignored. Note that the influence of residual stresses from manufacturing is 
neglected. For the current study of fracture setting out from a propagating fatigue crack, 
this simplification is deemed acceptable since the crack propagation under dynamic 
loading has to a large extent reduced (and redistributed) pre-existing residual stresses, 
cf [3,11].

Presuming Euler–Bernoulli beam theory to be valid, a time-variant rail bending 
moment My corresponds to a time-variant normal stress in the rail foot as 

σb tð Þ ¼ My tð Þ � hf=Iy (2) 

with the sign convention that a positive bending moment generates a tensile stress in the 
rail foot. Further, Iy is the cross-sectional moment of inertia and hf is the distance defined 
in Figure 3. Thermal loading (assuming a continuously welded rail) is accounted for as an 
additional (uniform) normal stress 

σT ¼ EαΔT (3) 

where E = 210 [GPa] is the Young’s modulus and α = 11.5 ·10−6 [°C−1] is the thermal 
expansion coefficient. The rail temperature difference ΔT= T0 – T, where T0 is the stress- 
free temperature and T is the current rail temperature. Thus, ΔT > 0 corresponds to 
a tensile stress.

From the evaluated stresses, the mode I stress intensity factor at the pre-existing rail 
foot crack is derived as 

KI af ; bf ; tð Þ ¼ f af ; bfð Þ � σ tð Þ
ffiffiffiffiffiffiffi
πaf
p

(4) 
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Here af is the initial crack length as defined in Figure 3 and σ(t) is the time-variant 
normal stress taken as the sum of σb tð Þ according to Equation (2) for bending and σT 
according to Equation (3) for the thermal loading. Thus, σ tð Þ ¼ σb tð Þ þ σT. Further 
f af ; bfð Þ is a geometry factor that for a rail foot crack can be approximated from the 
standard case of an edge crack in a plate subjected to uni-axial tension, [17], as

f af ; bfð Þ ¼

ffiffiffiffiffi
2bf
πaf

q

cos πaf
2bf

� � � 0:752þ 2:02
af

bf

� �

þ 0:37 1 � sin
πaf

2bf

� �� �3
( )

(5) 

For the purpose of the current study, this geometry factor is considered as a sufficient 
approximation for both bending and pure tension. To account for varying load magni-
tudes and interaction between bending and temperature loading, the assumption of 
LEFM (together with the fact that both the bending and temperature difference impose 
mode I loading) allows for scaling and summing of stress intensity factors [11].

The fracture criterion under LEFM conditions can be expressed as 

maxt KI tð Þf g � KIc (6) 

Here KIc is the fracture toughness of the rail material. For the current case of combined 
bending and thermal loading, the fracture criterion is formulated as 

maxt KIb tð Þ þ KITf g � KIc (7) 

In this paper, for each wheel passage, the time-variant contribution to the stress intensity 
will be evaluated based on a simulation of dynamic vehicle–track interaction, see Section 
4. Since the bulk rail temperature will remain constant during a wheel passage, the 
maximum stress intensity is obtained when the generated rail bending moment induced 
by the wheel passage is maximum.

When the fracture criterion (7) is fulfilled, the crack will be subjected to static fracture. 
In general, this need not result in complete fracture if there exists a stress gradient. 
However, for the current case a rail break will often occur since the bending stress 

Figure 3. Studied geometry of rail foot crack. For a nominal 60E1 rail profile, Iy = 30.55∙10− 6 m4 and hf 

= 0.081 m.
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gradient is rather shallow and the thermal stress often substantial. Note however that 
a single rail break usually does not cause a derailment [18]. It is, however, a safety issue, 
may result in secondary damage, and will cause traffic disruptions especially when the 
signalling system indicates rail break.

4. Dynamic vehicle–track interaction

A discrete wheel tread defect is a local deviation from the nominal wheel radius along 
a short section of the wheel circumference. This deviation introduces a radial irregularity 
that may generate an impact load in the wheel–rail contact. In this paper, the term impact 
refers to a situation with a transient vertical wheel–rail contact loading resulting in 
a maximum of the contact force that is high relative to the mean (quasi-static) wheel 
load but not necessarily leading to a momentary loss of contact, cf [6]. With each wheel 
revolution, the loading is a repeated event exciting vibration in a wide frequency range 
with most of the energy concentrated up to about 1 kHz. For the numerical prediction of 
high-magnitude loading and situations potentially leading to loss of contact, a non-linear 
wheel–rail contact model is required, implying that the simulation of dynamic vehicle– 
track interaction is carried out in the time domain.

In this paper, the vertical dynamic wheel–rail contact force and rail bending moment 
are solved using a time-domain model [19]. A sketch of the applied model is shown in 
Figure 4. Symmetric vehicle and track properties with reference to the centre of the track, 
and a symmetric excitation due to the same shape of a wheel tread irregularity on both 
wheels in the wheelset, are assumed. This means that only the wheels on one side of the 
wheelsets and one of the rails need to be included in the model.

For simulations of wheel–rail impact, it is generally sufficient that the vehicle model 
only includes one wheelset (the unsprung mass) since the primary suspension isolates the 
vehicle from the wheelset in the frequency range of interest. However, for an accurate 
prediction of the magnitude of the rail bending moment, the loading from several 
adjacent wheelsets needs to be accounted for. For the input data used in the present 
track model, it was found that the additional influence of adding more wheelsets in the 
model than the two in one bogie was negligible. A finite element model is required to 
capture the high-frequency dynamics and eigenmodes of the wheelset. However, in this 
paper, a simplified wheelset model is used, see Figure 4 and [20,21], which contains two 
degrees of freedom (dofs). The large mass Mw = 712.5 kg corresponds to the unsprung 
mass of half of a SJ57H freight wheelset. The values of the non-physical parameters, the 
small mass mw (3 kg), the spring stiffness kw (1650 kN/mm) and the damper cw (5.4 kNs/ 
m), have been tuned to better match the receptance at the wheel–rail contact with the 
corresponding receptance calculated using a detailed FE model of the wheelset, see [22]. 
Most resonances and antiresonances of the wheelset cannot be captured with the 
simplified model, but the average trend of the wheelset receptance above the tuned 
resonance is similar between the simplified and the detailed models. It has been verified 
(not shown here) that the selected simple wheelset model leads to similar rail bending 
moments as a more advanced and more computationally demanding Craig–Bampton 
model (accounting for several wheelset modes). As an example, it was found that for the 
present application with flat depth 2 mm, the Craig–Bampton model resulted in 8% 
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lower impact load and 3% higher maximum rail bending moment than the simple 
wheelset model, while the simulation time increased by about a factor of 4.

The track model includes one discretely supported 60E1 rail modelled by Rayleigh– 
Timoshenko beam theory accounting for shear deformation and rotatory inertia. The 
vertical and rotational stiffnesses and damping of each rail pad are modelled as two sets of 
spring and damper coupled in parallel (Kelvin model), while each half sleeper is modelled 
as a discrete rigid mass. The combined stiffness and damping of the ballast and subgrade 
below each sleeper are represented by another Kelvin model. Input data to the track 
model, see the Appendix, is taken from [21] where the simulation model was validated 
versus field measurements of wheel–rail contact force using an instrumented wheelset. 
To reduce the time for simulation of dynamic vehicle–track interaction, the track model 
is taken as linear and a complex-valued modal approach with a truncated mode set is 
applied. In order to obtain a discrete spectrum of eigenvalues, a finite length of the track 
is required. This means that wave reflections from the track model boundaries will occur 
and structure-borne vibrational energy cannot be transmitted away from the structure. In 
the present study, it was found that a track model containing 70 sleeper bays and clamped 
ends at both rail boundaries is sufficient for prediction accuracy if the impact loads and 
rail bending moment are evaluated at the centre of the track model. In a previous study 
[23], for a known combination of static and dynamic wheel loads measured in a wheel 
impact load detector (not the same detector as in Sunderbyn) and using a similar 
simulation model but with other calibrated levels of track stiffness, good agreement 
between calculated and measured rail bending moments was observed.

As discussed above, discrete wheel tread irregularities can, for example, be caused by 
rolling contact fatigue or be a consequence of wheel sliding without rolling (wheel flats). 

Figure 4. Model for simulation of dynamic vehicle–track interaction accounting for the influence of 
a tread irregularity with length l and depth d on the leading wheel.
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The magnitude of the impact load is influenced by the three-dimensional shape of the 
irregularity. In this paper, it is assumed that all impact loads are generated by an 
irregularity that can be described by a simple mathematical expression in one dimension. 
A new wheel flat with sharp edges can be described as a chord of the wheel circumference, 
where the length l0 and depth d are approximately related by 

l0 �
ffiffiffiffiffiffiffiffiffiffiffi
8Rwd

p
(8) 

Here, Rw = 0.45 m is the wheel radius and it is assumed that d� Rw. However, the 
corners (edges) of a new wheel flat are soon rounded due to wear and plastic deformation 
caused by repeated wheel–rail impacts. According to [24], the radial wheel profile 
deviation xrf for a flat with rounded edges and length l can be approximated as 

xrf ¼
d
2

1þ cos
2πz

l

� �

; �
l
2
� z �

l
2

(9) 

where z is an arc coordinate along the flat. Here it is assumed that the depths of the new 
and rounded flats are the same but l > l0, cf [25]. Wheel flats introduce a vertical relative 
displacement input to the wheel–rail contact. For a new flat, the wheel pivots around the 
two corners, and the wheel trajectory differs from the shape of the flat due to the 
curvature of the wheel. Assuming the rounded edges of the flat can be described by 
a quadratic function with smooth transitions, and the lateral contact position on the 
wheel remains constant at where the tread irregularity has its maximum, the wheel centre 
vertical trajectory xw can be written as, [20], 

xw �
4d 2z þ lð Þ=2lf g

2
;

4d l � 2zð Þ=2lf g
2
;

�
� l=2 � z � 0
0 � z � l=2 (10) 

This formula can be used for both new and rounded wheel flats [20], and it represents the 
prescribed relative wheel–rail vertical displacement excitation used as input in the 
simulation of dynamic vehicle–track interaction [6].

The influence of wheel–rail contact model on calculated impact loads due to new and 
rounded wheel flats was investigated in [26]. A three-dimensional non-Hertzian contact 
model based on Kalker’s variational method [27], a two-dimensional non-Hertzian 
contact model consisting of a Winkler bed of independent springs [28], and a single non- 
linear Hertzian contact spring (point contact model) [29] were compared. The relative 
displacement excitation used as input to the Hertzian model was the pre-calculated wheel 
centre trajectory in Eq. (10). For rounded flats, both the two-dimensional model and the 
Hertzian spring model were found to generate results in good agreement with the three- 
dimensional model. Thus, in this paper, the contact model used in the simulation is 
a single Hertzian spring (point contact model) [26]. The force–displacement character-
istic of this spring is expressed as 

Fw=r ¼ CHhδi3=2 (11) 

where δ is the approach distance of two distant points on wheel and rail, while the factor 
CH is a function of material parameters and the principal relative radii of curvature. The 
Macaulay brackets are defined as h�i ¼ 0:5ð� þ �j j). Thus, Fw/r = 0 if δ < 0 (loss of 
contact).
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In a parameter study, the simulation model described in this section has been applied 
to calculate the influence of wheel flat depth d on the dynamic wheel–rail impact load 
Fdyn, see Figure 5. As discussed in Section 2, train speed and axle load were set to 100 km/ 
h and 20 tonnes, respectively, as this can be regarded as a representative setting with 
reference to the conditions at the Sunderbyn detector. For each depth d, Eqs. (8) and (10) 
with l= 1.50·l0 were used to formulate the excitation input. For each depth d, the 
simulation was repeated for eight impact positions, indicated by the circles in Figure 5, 
equidistantly distributed over one sleeper bay. It is observed that the influence of impact 
position within a sleeper bay on the evaluated impact load is significant and increases 
with increasing flat depth, cf [26]. An example of calculated wheel–rail contact force and 
rail bending moment at the centre of a sleeper bay is shown in Figure 6. Note that 
a wheel–rail impact at the centre of a sleeper bay is a worst-case scenario in terms of the 
maximum rail bending moment and the position of the pre-existing crack.

Using a regression analysis for all the calculated dynamic loads in Figure 5, a meta- 
model based on a polynomial of order N= 9 has been derived as 

Fdyn ¼
XN

n¼1
αndn (12) 

The meta-model, with the constants αn calibrated for 0 ≤ d ≤ 7 mm given in the 
Appendix, is shown as the solid line in Figure 5. For the given combination of train 
speed, axle load and input data to the vehicle and track models used in this paper, this 
meta-model is implemented as a mapping between the dynamic load measured in the 
Sunderbyn detector and the flat depth used in the simulation model. By solving for d in 
Eq. (12) for each given Fdyn, the probabilistic distribution of dynamic loads measured in 
the detector is transformed to a corresponding stochastic distribution of wheel tread 
irregularities specified by d (and l via Eq. (8)). In this way, a similar representative 
distribution of dynamic loads is achieved for the simulation model as was measured in 
the detector, irrespective of the type of discrete tread defect that generated the measured 
impact.

The same distribution of wheel tread irregularities could be applied in combination 
with another set of input data for the vehicle and track models. For example, it can be 
expected that sleeper support conditions (ballast/subgrade stiffness, presence of hanging 
sleepers, etc.) vary along the track, having a substantial influence on the magnitudes of 
rail bending moments and the risk of rail breaks. Since different vehicle and track 
properties influence the dynamics of the vehicle–track system, the same distribution of 
wheel tread irregularities would result in another distribution of dynamic loads than the 
one measured in the Sunderbyn detector. Such studies could also be employed to, for 
example, investigate the relative influence of a different axle load, train speed or track 
stiffness. Note that since the input data to the track model applied in this paper has not 
been calibrated versus the absolute conditions at the Sunderbyn detector, all such studies 
would be in relative terms. For example, what is the increased risk for a rail break if the 
sleeper support stiffness is halved compared to the support stiffness used in the track 
model for the Sunderbyn detector.

As pointed out above, the true three-dimensional shapes of wheel tread irregularities 
passing over the detector at Sunderbyn can be expected to be more complex than the 
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geometry represented by Eq. (9). However, as long as the measurements in the detector 
can be regarded as accurate, using the meta-model in Eq. (12) in combination with the 
measured distribution of dynamic loads and applying a stochastic spread in impact 
positions will lead to a representative stochastic representation of the dynamic loading 
that is affecting the pre-existing crack.

5. Probability of rail break

In this paper, the probability of the rare event of an instant rail break corresponds to the 
probability of an occurring load case leading to that the maximum stress intensity at the 
pre-existing rail foot crack exceeds the fracture toughness. Based on Eq. (7), the perfor-
mance function g is defined as 

g θ1; θ2; . . . ; θMð Þ ¼ KIc � KIT � maxt KIbf g (13) 

where θi, i = 1, 2, . . . M, are stochastic variables with prescribed probability distribution 
functions φ θið Þ. Here, two (M= 2) stochastic variables influencing the maximum stress 
intensity will be considered. These are the impact position θ1 relative to the position of 
the crack and the magnitude θ2 of the dynamic load.

If g < 0 for a given setting of the stochastic variables, the rail is considered as being 
failed (instant rail break). Considering the stochastic distributions of variables θi, the 

Figure 5. Calculated influence of wheel flat depth on wheel–rail dynamic load. Rounded flat with 
l ¼ 1:50l0. Hertzian contact model with pre-calculated wheel centre trajectory as input. For each flat 
depth, 8 simulations were carried out to cover the range of impact positions relative to the discrete 
supports. Solid line is a meta-model based on a 9th-order polynomial. Axle load 20 tonnes, train speed 
100 km/h and vehicle/track input data according to Section 4 and the Appendix.

12 J. C. O. NIELSEN ET AL.



probability of failure Pf is determined as the probability of g < 0. The hyper-surface 
defined by g = 0 is the limit state.

Assuming there is only one significant tread irregularity around the wheel circum-
ference, the position θ1 has a uniform probability distribution φU θ1ð Þ along with 
a distance corresponding to the wheel circumference. Here, the interval of θ1 is taken 
as – πRw < θ1 < πRw, where θ1 = 0 corresponds to the case where the centre of the wheel 
tread irregularity is aligned with the position of the pre-existing crack. Thus, all impact 
positions along with a distance corresponding to the wheel circumference are equally 
probable. For a quasi-static excitation of a track without hanging sleepers, the max-
imum bending moment along the rail is generated at the centre of a sleeper bay. The 
origin of θ1 and the position of the initial crack is assumed to be at this position, and 
the rail bending moment is calculated at θ1 = 0 independent of impact position. For 
a rail foot crack in a uniformly supported track without hanging sleepers, this corre-
sponds to a worst-case scenario in terms of crack position. The magnitude θ2 of the 
dynamic load is determined by the Burr type XII distribution φB θ2ð Þpresented in 
Section 2, which is transformed to a corresponding depth of the prescribed wheel 
tread irregularity using Eq. (12). Note that ΦB(θ2=1) has been set to 360 kN as this was 
the maximum dynamic load measured in the detector. For each combination of 
stochastic variables, the cumulative distributions ΦU θ1ð Þ and ΦB θ2ð Þ

(0 � Φi � 1; i ¼ U;B) are applied to sample the input data used in the simulations of 
dynamic vehicle–track interaction and calculations of rail bending moment.

Standard Monte Carlo (MC) simulation is a robust approach for the calculation of 
probability of failure. However, the computational cost can be very high if a small 
probability, corresponding to the tail distribution of the response quantity, needs to be 
determined. In this paper, the subset simulation (SS) algorithm presented in [9] will be 
used to calculate the probability of a rail break. It is an advanced Monte Carlo method 
that employs a multi-level Markov chain Monte Carlo (MCMC) sampling technique to 

(a) (b)

Figure 6. Calculated time histories of wheel–rail contact force and rail bending moment at sleeper bay 
midspan. Axle load 20 tonnes, train speed 100 km/h, wheel flat with l = 90 mm and d = 1 mm making 
impact at sleeper bay midspan. Vehicle/track input data according to Section 4 and the Appendix.
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adaptively generate samples from the (rare event) fail region(s) in the stochastic para-
meter space. The strategy of SS is to break down the rare event problem into a sequence of 
more frequent-nested events and determine the failure probability as a product of 
conditional probabilities, each of them being estimated by a MCMC simulation. In 
Section 7, the accuracy of the SS-algorithm will be assessed by comparison with MC 
simulations. Based on a convergence study (not shown here), each standard MC simula-
tion will be based on 3∙106 samples of the performance function. For each simulation 
with the SS-algorithm, six levels will be used, each level with 1∙104 samples and prob-
ability 0.1, cf [9]. For both methods, the probability of failure will be taken as the mean 
value of 20 simulations.

It is evident that a prediction of the probability of an instant rail break could involve 
further stochastic variables besides the variations in dynamic load and impact position. 
For example, the thermal loading of the rail varies around the year. Fracture toughness 
KIc and the position and initial length of any pre-existing rail crack are other parameters 
with a stochastic spread. According to EN13674-1:2011 [30], the minimum single value 
for KIc in the R350LHT rails used on Malmbanan is 26 MPa
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(nominal value 40 
MPa
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), while the acceptable crack length in the heat-treated rails is 3 mm. In this 
paper, these parameters will be taken as deterministic, but their influences will be 
investigated in a parameter study in Section 7. Note that the influence of the spread in 
train speeds has already been considered by fitting the probability distribution of 
dynamic loads to the field data presented in Figure 2.

6. Meta-model of performance function

The computational cost for predicting the probability of a rare event instant rail break 
due to a wheel–rail impact load can be reduced by using a meta-model ĝ θ1; θ2ð Þ of the 
performance function. In this paper, the meta-model is generated by application of a thin 
plate spline [31], see the function tpaps.m in Matlab [32]. It is a type of meshfree 
approximation method using radial basis functions that allows for scattered data [33]. 
The thin plate spline is a type of poly-harmonic spline in two dimensions.

Based on the cumulative distributions ΦU θ1ð Þ and ΦB θ2ð Þ, the meta-model is gener-
ated by a grid sampling approach. An iterative process is applied, where the studied 
samples are concentrated to the fail region (i.e. where g < 0) and around the limit state to 
reduce the error in the domain of the meta-model that is significant for the evaluation of 
the probability of failure. Before the iterative process is started, an initial screening of the 
performance function over the stochastic space is performed using a 9 × 9 grid of 
equidistant samples between 0 and 1 for each variable. If > 0 for all of these 81 samples, 
simulations are repeated using a smaller grid with new samples near ΦU θ1ð Þ = 0.5, 
ΦB θ2ð Þ= 1 as this can be expected to be the region where g has its minimum. Note that 
the worst load case is generally when the wheel impact occurs exactly above the crack. 
Since it is the far end of the irregularity that makes impact with the rail, this means that 
the position of the circumferential centre of the wheel tread irregularity is at a position 
shortly ahead of the crack, typically in the range 0.45 < ΦU(θ1) < 0.5.

In each iteration, the minimum and maximum values of each variable Φi leading to g 
< 0 are determined to specify the boundaries of a new grid for which the performance 
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function is evaluated. In the subsequent iteration, the distance between evaluated samples 
of Φi is halved compared to the previous grid. In this way, the domain where g< 0 is 
evaluated in increasing detail. Using the SS-algorithm, the normalized error e in calcu-
lated probability between two subsequent iterations is calculated. If e > elim, a new 
iteration is performed (in this paper, elim = 0.10). The root mean square error of ĝ is 
also monitored to ensure that ĝ has a good fit with all samples of g. Note that the accuracy 
of the meta-model in the safe region, i.e. where g > 0, is of lesser importance.

The iterative process to reduce the error e is illustrated in Figure 7, where each sample 
where g has been evaluated is marked with an ×. An example of a meta-model of the 
performance function is presented in Figure 8. It is observed that the meta-model is positive 
and flat in most of the stochastic space. This is because the present Burr distribution leads to 
low dynamic loads, not significantly affecting the dynamic variation in stress intensity, up 
to about ΦB θ2ð Þ = 0.95. For higher values of ΦB θ2ð Þ, in the region around ΦU θ1ð Þ = 0.47, 
there is a local minimum in the meta-model where ĝ < 0 because this corresponds to the 
most extreme dynamic load making impact directly above the pre-existing crack. The other 
two local minima in the meta-model at ΦU θ1ð Þ = 0.06 and ΦU θ1ð Þ = 0.25 (ΦB θ2ð Þ = 1.0) are 
because the most extreme depths of the wheel irregularity generate a transient response 
where the wheel is bouncing on the rail and thus creating several local load maxima in 
contact force. If such a local maximum coincides with the crack position, the rail bending 
moment has a local maximum. The spurious (false) overshoots of the generated meta- 
model observed in the region before the performance function drops below zero has no 
significant influence on the predicted probability of failure.

For the application in this paper, it has been observed that the thin plate spline is 
unable to generate a good fit if the number of samples exceeds about 600. This typically 
corresponds to 5 or 6 iterations with the present grid sampling approach. For cases with 
a single fail region, this has been found to be sufficient leading to low errors e. However, 
cases with a combination of a long crack and low fracture toughness may lead to two (or 
more) isolated fail regions. In these cases, the number of iterations necessary to generate 
an accurate meta-model may result in that the number of samples exceeds 600 with the 
consequence that the root mean square error of ĝ becomes high. The reason for the 
poorer fit could be a close to singular interpolation matrix when determining the 
coefficients of the thin plate spline, see [33]. This means that the assessment of cases 
with high-evaluated probabilities of rail break (where multiple domains of the perfor-
mance function are below the limit state) are less accurate. The higher calculated values 
of risk presented in Section 7 should therefore be considered as indicative. It can be 
argued that such situations should be avoided by proper monitoring of crack lengths and 
selecting a high-quality rail grade with small variations in fracture toughness.

Note that a meta-model is an approximate model that generally cannot capture the 
exact features of the system. Several alternative types of meta-models are available [10]. It 
was found (not shown here) that a two-variable polynomial model of high order and 
including cross-terms was not as accurate as the thin plate spline used in this paper. 
However, according to Figure 7, the thin plate spline seems to be unable to perfectly 
mimic the position of the limit state. This is observed by noting that in each iteration, 
according to the applied sampling approach, new samples are added to as closely as 
possible circumvent the region where g < 0. However, in Figure 7(d), the limit state 

INTERNATIONAL JOURNAL OF RAIL TRANSPORTATION 15



evaluated by ĝ = 0 after iteration 5 remains at approximately the same position as after 
iteration 4 even if the illustrated positions of the new samples of are indicating that the 
true limit state given by g = 0 should be towards lower values of ΦB (i.e. ĝ = 0 is outside 
the region where the new samples have been added). Since this results in a larger fail 
region modelled by the meta-model, the predicted probability of rail break can be 
expected to be conservative. In future work, other types of meta-models could be 
evaluated to aim for higher accuracy around the limit state.

7. Numerical examples

To demonstrate the methodology presented in this paper, the probability of a rail break 
Pf is predicted for different combinations of initial crack length, fracture toughness and 
rail temperature difference. Note that the calculated probability is evaluated for the 
given statistical distribution of dynamic loads that was generated by the ‘freight’ 
category of trains on Malmbanan in March 2018, cf. Figure 2(d-Figure 2(f). This was 
a particularly severe month in terms of the number and magnitudes of extreme loads. 
To limit the maximum applied load in line with the maximum load measured during 
the winter 2017/2018, it is assumed that ΦB 1ð Þ= 360 kN. As discussed in Section 2, the 
applied loading of the crack is conservative in the sense that the tail of the fitted Burr 
type XII distribution leads to a higher number of extreme dynamic loads compared to 
what was measured in the detector. Further, it is assumed that the pre-existing rail foot 
crack is positioned in the centre of a sleeper bay. The combination of a high number of 
extreme dynamic loads and the assumed position for the crack forms a worst-case 
scenario.

On the other hand, the calculated probability is also based on the assumed input data 
for the given vehicle–track model. In this study, the track model is assumed to have 
uniform sleeper support conditions with a relatively high stiffness as this should be 
required for a well-maintained wheel impact load detector. A situation with worse 
support conditions in terms of lower ballast/subgrade stiffness or even the presence of 
occasional hanging sleepers would increase the maximum rail bending moment and 
increase the risk of a rail break. Further, the vehicle model represents a ‘freight’ bogie 
with axle load 20 tonnes and train speed 100 km/h as this was concluded to be 
a representative scenario for the detector at Sunderbyn, see Section 2. By using Eq. 
(12), which has been derived for this particular scenario of axle load, train speed and 
vehicle/track input data, the distribution of dynamic loads measured in the detector is 
transformed to a corresponding distribution of wheel tread irregularities (wheel flats 
described by length l and depth d).

The calculated stress intensity at the crack also considers the influence of thermal load 
because of a rail temperature difference ΔT. For each combination of initial crack length, 
fracture toughness and rail temperature difference, Pf is calculated by the subset simula-
tion algorithm with the settings listed in Section 5 and using a meta-model ĝ of the 
performance function as described in Section 6. Considering the stochastic distributions 
of variables θi, each value of Pf presented in Figures 8–10 is corresponding to the 
probability of ĝ< 0. It is the mean value calculated from 20 simulations of the loading. 
For the given vehicle–track model and the applied stochastic distributions of impact 
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position and magnitude of dynamic load, the results should be interpreted in the sense 
that on the average one wheel of 1/Pf wheel passages generate a stress intensity at the pre- 
existing rail foot crack that could induce a rail break.

Based on the conditions and scenario described above and for a rail with uniform 
fracture toughness KIc = 40 MPa, the influences of initial crack length af and rail 
temperature difference ΔT on Pf are illustrated in Figure 9. For example, for the extreme 
case of af = 10 mm and ΔT= 40°C, Pf = 4.2∙10−4. This corresponds to that one wheel in 
only 2400 wheel passages would generate a stress intensity at the pre-existing rail foot 
crack that could induce a rail break. For ΔT= 40°C, the risk has been calculated using 
both the SS-algorithm and standard MC simulation. Good agreement is observed 
between the two methods. However, with the settings listed in Section 5, the SS- 
algorithm is in the order of 40 times faster than the MC simulation. As expected, Pf 

increases with increasing length of the pre-existing crack. In this case, no risk of rail break 
was predicted for af < 4.75 mm. A kink in the curve is observed between crack lengths 9 
and 10 mm. This is because the local minimum at ΦU θ1ð Þ = 0.25, ΦB θ2ð Þ = 1.0, cf. Figure 
8, has dropped below the limit state introducing a second fail region. The agreement 
between the SS and MC simulations is acceptable also when there are two isolated fail 

(a) (b)

(c) (d)

Figure 7. Demonstration of iterative process to improve meta-model and reduce error e of calculated 
probability of rail break Pf. The limit state bg = 0 is marked with a red line, while samples where g has been 
evaluated are marked with ×. (a) Iteration 1: Pf = 1.7e-3, (b) iteration 3: Pf = 4.5e-4, e= 0.98, (c) iteration 4: 
Pf = 2.7e-4, e= 0.65, (d) iteration 5: Pf = 1.7e-4, e= 0.57. After seven iterations: Pf = 2.1e-4, e= 0.07. Initial rail 
foot crack length af = 10 mm, KIc = 40 MPa
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, ΔT= 30°C.

INTERNATIONAL JOURNAL OF RAIL TRANSPORTATION 17



regions. Further, a significant influence of ΔT on Pf is observed. For example, for ΔT ≤ 
20°C, Pf = 0 if af ≤ 6.75 mm.

For af = 5 mm, the influences of ΔT and KIc on Pf are illustrated in Figure 10. For 
example, for KIc = 40 MPa
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and ΔT ≤ 35°C, Pf = 0. However, as expected, with 
decreasing KIc there is a significantly increasing risk of rail break. Finally, for ΔT= 40°C, 
the influences of KIc and af on Pf are studied in Figure 11. For af = 3 mm, there is no risk 
for rail break unless KIc < 32 MPa
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.

8. Concluding remarks

A methodology for predicting the probability of an instant rail break initiated at a pre- 
existing rail foot crack by a prescribed distribution of dynamic wheel loads (including 
cases with extreme wheel–rail impacts) has been presented. For a faster numerical 
assessment of the probability of failure, a thin plate spline regression was implemented 
to develop a meta-model of the performance function quantifying the stress intensity at 
the crack. The methodology was demonstrated by assuming a pre-existing rail foot crack 
in the centre of a sleeper bay and investigating the influences of initial crack length, 
fracture toughness and rail temperature difference on the risk for a rail break.

It was concluded that the thin plate spline was able to provide a good approximation of 
the performance function in the fail region. However, in future work, alternative meta- 
modelling techniques could be explored to aim for a refinement of the model around the 
limit state to further improve the accuracy of the predicted probability of failure. In 
addition, the alternative meta-model could account for more stochastic variables than the 

Figure 8. Example of meta-model bg of performance function. Initial rail foot crack length af = 10 mm, 
KIc = 40 MPa
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, ΔT= 30°C.
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two (impact load and impact position) studied in this paper, such as sleeper support 
stiffness, fracture toughness, initial crack length, and crack position within the sleeper 
bay. The probabilities of failure predicted by the subset simulation algorithm were found 
to be in good agreement with the corresponding predictions by standard Monte Carlo 
simulation at a significantly lower computational cost (factor in the order of 40).

For a given setting of vehicle and track input data, a procedure was introduced to map 
the probabilistic distribution of dynamic loads measured in the detector to 
a corresponding stochastic distribution of wheel tread irregularities used in the simula-
tion model. In this way, a similar variation in dynamic loads was achieved for the 
simulation model as was measured in the detector. In a subsequent analysis, the same 
representative distribution of wheel tread irregularities could be applied with other input 
data for the vehicle and track models to study the relative influence of, for example, 
a different axle load, train speed or variations in track stiffness. The distribution of 
resulting dynamic loads and rail bending moments will be different compared to the 
baseline case as influenced by the change in input data. Although the calculated influence 
of input data is then only provided in relative terms since the absolute conditions in the 
detector are unknown, this can be an option to investigate other scenarios such as 
situations with a lower ballast/subgrade stiffness or the presence of hanging (unsup-
ported) sleepers since this can be expected to increase the risk for rail breaks.

Note that extending this work to predict the probability of a rail break induced at 
a pre-existing crack in the rail head is possible presuming the head crack has deviated 
into transverse growth and is propagated by rail bending, see [12]. In that case, the load 
scenario leading to the maximum stress intensity at the crack is when one of the two 
wheels in a bogie is generating an impact on the rail at the same time as the crack is 
centred between these two wheels inducing an uplift of the rail.
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Appendix

The input data to the track model in Section 4 have been adopted from [21]. The discretely 
supported UIC60 rail is modelled by undamped Rayleigh–Timoshenko beam finite elements with 
bending stiffness EI = 6.4 MNm2, shear stiffness kGA = 250 MN, mass per unit beam 
length m= 60 kg/m and rotational inertia per unit beam length mr2 = 0.24 kgm. The (half) sleepers 
are treated as rigid with mass Ms = 150 kg. Each rail pad is modelled by a Kelvin model with discrete 
spring stiffness kp = 120 kN/mm and viscous damping cp = 25 kNs/m. The side length Lp of the pad is 
0.15 m leading to rotational stiffness and damping kpLp

2/12 and cpLp
2/12, respectively. The support 

below each sleeper is also modelled by a Kelvin model with discrete spring stiffness kb = 100 kN/mm 

22 J. C. O. NIELSEN ET AL.

https://www.schenckprocess.com/products/wheel-diagnosis-wheelscan
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and viscous damping cb = 82 kNs/m. The length of the track model is 70 sleeper bays with sleeper 
spacingL= 0.60 m and clamped boundaries at the two rail ends.

The coefficients in Eq (12), with flat depth d given in [mm], are: α1 = 4.84∙102, α2 = −7.28∙102, α3 
= 5.72∙102, α4 = −2.43∙102, α5 = 5.98∙101, α6 = −8.57, α7 = 6.74∙10−1, α8 = −2.38∙10−2, α9 = 1.44∙10−4. 
Note that the spline is only valid for 0 ≤ d≤ 7 mm as it has only been calibrated for flat depths in 
this interval.
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