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We propose a versatile, free-space cavity optomechanics platform built from two photonic crystal membranes,
one of which is freely suspended, and designed to form a microcavity less than one wavelength long. This
cavity features a series of photonic bound states in the continuum that, in principle, trap light forever and can
be favorably used together with evanescent coupling for realizing various types of optomechanical couplings,
such as linear or quadratic coupling of either dispersive or dissipative type, by tuning the photonic crystal
patterning and cavity length. Crucially, this platform allows for a quantum cooperativity exceeding unity in the
ultrastrong single-photon coupling regime, surpassing the performance of conventional Fabry-Pérot–based cavity
optomechanical devices in the nonresolved sideband regime. This platform allows for exploring new regimes of
the optomechanical interaction, in particular in the framework of pulsed and single-photon optomechanics.
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I. INTRODUCTION

Cavity optomechanical devices [1] provide quantum con-
trol over their constituent mechanical and optical degrees
of freedom for use in precision measurements, quantum
networks, and fundamental tests. To this end, optomechan-
ical devices require sufficiently strongly coupled optical
and mechanical resonators, along with the minimization of
unavoidable decoherence, so they can access the strong-
cooperativity regime. Experiments have accessed this regime
by boosting the optomechanical interaction with a laser
drive, resulting in the demonstration of ground-state cool-
ing [2–5], optical [6,7] or mechanical squeezing [8–10], or
(opto)mechanical entanglement [11–13]. These experiments
have exploited a linear coupling to the mechanical resonator,
while nonlinear coupling enables complementary ways to
measure and manipulate mechanical motion in the quantum
regime [14–19].

Cavity optomechanical platforms can be classified based
on whether in-plane or out-of-plane light propagation is used.
While in-plane geometries boast the largest coupling rates
due to colocalization of photonic and phononic modes [2,20–
22], they are inherently limited by material loss and structural
disorder. The advantage of out-of-plane geometries, such as
Fabry-Pérot (FP) cavities in end-mirror [23–25], membrane-
in-the-middle (MiM) [14], or levitated [5] configurations, is
that a substantial proportion of light propagation is in vacuum.
This leads to lower optical decay rates (one can simply make
the photon path length in the cavity longer) but this comes
at the price of smaller single-photon coupling rates. In part,
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the original motivation for the MiM setup was to spatially
separate the mechanical and optical functionality, but the re-
sulting weak coupling has naturally led to attempts to increase
it. In particular, the concept of multielement optomechanics
[26] has been proposed, but its realization is involved [27–30].
Furthermore, as light is trapped in ever smaller volumes, the
necessity of the outer cavity becomes questionable [31].

The need in optomechanics for high reflectivity, high me-
chanical quality factor, and low mass mechanical resonators
necessitates a move away from bulky components such as
Bragg mirrors, towards ultrathin mirrors. Suspended photonic
crystal (PhC) slabs that support guided-mode resonances [32]
have been demonstrated to possess over 99.9% reflectance
[33] without compromising on the mechanical properties
[29,34,35]. In reflection and transmission spectra, the guided
mode manifests as an asymmetrical Fano line shape [32].
Placing two PhC slabs close together has long been considered
for sensing applications [36–38], and experimental studies
have explored placing a single PhC slab in a cavity [33,39–
42], as well as two PhC slabs in a MiM configuration [29]
and as a cavity in their own right [43]. It has only recently be-
come apparent that the internal dynamics of the guided-mode
resonance can lead to new optomechanical effects [44,45].

In this work, we propose a platform for cavity optome-
chanics, constructed from two suspended PhC slabs in an
end-mirror configuration, that relies on photonic bound states
in the continuum (BICs). BICs are a general wave phe-
nomenon, where a completely spatially localized mode can
exist above the light line [46,47]. The double PhC slab cavity
(DPhoC), depicted in Fig. 1(a), possesses a large optome-
chanical coupling due to its near-wavelength length and a
moderately low decay rate thanks to the near-perfect trapping
of light via the BIC. In contrast to conventional end-mirror
systems, this simple system can access purely linear disper-
sive optomechanical coupling via the BIC mechanism, or
purely quadratic coupling via evanescent coupling between
the slabs. The enhanced flexibility of this platform is due to
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FIG. 1. (a) Illustration of the double-photonic crystal slab cavity
(DPhoC) and the bound state in the continuum (BIC) mechanism.
(b) Reflectance map of lattice period and air-hole radius for a
100-nm-thick GaAs slab designed to operate at a wavelength λ0 =
1550 nm. The red markers indicate the three parameter sets used in
this work. (c) Reflectance spectrum of a PhC slab (blue line) with
� = 0.6λ0 and a = 0.1525λ0, and an exemplary Fano fit (red dashed
line).

a complicated interplay of near- and far-field optical coupling
between the two slabs. We argue that near-wavelength and
subwavelength localization of optical modes is a promising
strategy for out-of-plane systems and that the DPhoC, with
experimentally realistic parameters, can simultaneously pos-
sess the required optical and mechanical properties to access
the strong quantum cooperativity regime on the single-photon
level, without the encumbrance of an outer FP cavity.

II. OPTOMECHANICAL COUPLINGS

For a FP cavity with a movable end mirror, the cavity-mode
energy h̄ωc depends parametrically on the resonator’s out-of-
plane displacement x and can be expanded around the equi-
librium point q, leading to the linear g0 = −∂ωc/∂x|x=q x0 =
Gx0, and quadratic g2 = − 1

2∂2ωc/∂x2|x=q x2
0 = G2x2

0, single-
photon coupling rates, where x0 is the zero-point motion.
We have introduced for convenience the optical frequency
shift per displacement G and its counterpart for the second
derivative G2. Both g0 and g2 are complex numbers as ωc is
the eigenvalue of an open-cavity problem; the imaginary part
gives the decay of the cavity mode κ . Thus, the real part of the
coupling describes dispersive coupling and the imaginary part
describes dissipative coupling.

III. DOUBLE-PHOTONIC CRYSTAL SLAB CAVITY

Inspired by our recent experimental work [35], the model
system is built from 100-nm-thick, GaAs PhC slabs patterned
with a square lattice of circular holes, and designed to operate
at a wavelength around λ0 = 1.55 μm, where GaAs has a high
refractive index of 3.374 [48]. We stress at this point that the

FIG. 2. (a) Transmittance map against frequency and separation
for two PhC slabs with a period of 0.6λ0 and radius of 0.1525λ0,
with the cavity eigenmodes overlaid in blue. (b) Transmittance map
for two homogeneous slabs with an effective refractive index given
by the lattice parameters of (a) (see Appendix B for details). (c) Elec-
tric field plots for separations corresponding to peak transmittance
taken along the slice f = 0.95 f0 for the DPhoC, as indicated by the
magenta dotted line in (a).

physics discussed in this work is not material dependent (see
also Appendix F 3) and we expect the same phenomena in,
e.g., SiN-based systems [27–29,33,34,49]. To find suitable lat-
tice parameters to achieve a Fano resonance for a single slab,
a reflectance map over the air-hole radius and lattice period
is calculated and shown in Fig. 1(b). See Appendix A for
details on the numerical calculations. The lattice parameters
used in this section are indicated by the red diamond marker
on Fig. 1(b): a period of 0.6λ0 and radius of 0.1525λ0. The re-
flectance spectrum, depicted in Fig. 1(c), shows a pronounced
peak near λ0, which corresponds to the Fano resonance. The
physics behind this is well captured by coupled-mode theory
[32,50] and an exemplary Fano fit is plotted in Fig. 1(c), which
allows for the extraction of the mode frequency ωF , external
decay rate (radiative loss) κe, and internal decay rate κi (e.g.,
due to materials loss). More details on the model are given in
Appendix B.

We now consider two such PhC slabs, separated by a dis-
tance q. The transmittance spectrum is mapped for a range of
separations, which is shown in Fig. 2(a). To emphasize that the
coupled PhC slabs do not simply lead to a higher reflectivity,
but rather new phenomena, we show in Fig. 2(b) the trans-
mittance map of the corresponding double-homogeneous slab
system with an effective refractive index [32]. On top of both
transmittance maps, the electromagnetic eigenfrequencies are
shown in blue, which are sorted by their even (crosses) or odd
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(circles) symmetry in the z direction. The imaginary part of
the eigenfrequency measures the radiative loss of the mode
and its value is indicated by the marker size. At this stage, no
material loss is included.

The two structured slabs can couple via two possible
routes. One is photon tunneling, i.e., a direct evanescent
coupling of the slab’s near field. The second is an indirect
coupling through free-space photon propagation. To aid our
discussion, we identify three regions based on the slab separa-
tion and the consequent dominant form of interaction between
the slabs: near field [q � λ0/(2neff ) ∼ 270 nm], interme-
diate field [λ0/(2neff ) � q � 2λ0/neff ], and far field (q �
2λ0/neff ∼ 1000 nm), separated by white lines in Fig. 2(a).
In the far field, the transmittance maps shown in Figs. 2(a)
and 2(b) exhibit diagonal bands of high transmittance, which
is typical FP behavior. The cavity-mode energies of a perfect
FP cavity are indicated by the dashed cyan lines. For a given
frequency, the transmittance reaches unity for certain sepa-
rations where a half-integer number of wavelengths can fit
into the cavity [see Fig. 2(c)]. In contrast to the homogeneous
slabs, which closely follow the cyan lines, the structured slabs
show a much more intricate structure on top of this back-
ground. Most pertinent to our discussion is the narrowing of
the transmittance bands close to the Fano resonance (indicated
by the green dotted line). Further inspection shows that the
linewidth of the transmittance spectra approaches zero close
to separations corresponding to FP resonances. This behavior
is captured by the marker size of the eigenmodes becom-
ing vanishingly small. This is fundamentally different from
a conventional FP cavity where the decay rate is inversely
proportional to the cavity length; instead, it is indicative of the
evolution of the cavity eigenmode into a BIC. Now, the decay
rate is given by the nonideality of the PhC slabs, meaning
that the ratio g0/κ is dependent on the cavity length. This
changes the design philosophy of optomechanic devices based
on structured slabs; it is astute to build small cavities to maxi-
mize the optomechanical coupling without any increase in the
decay rate.

BICs are peculiar resonances that do not decay over time
as there are no available radiation channels due to destructive
interference; in principle, they have an infinite quality (Q)
factor [47]. They have been explored in PhC slabs [51–53]
and double-PhC slab structures [54]. In practice, the optical
Q factor is limited by structural disorder and material loss;
nevertheless, Q factors up to 4.9 × 105 have recently been
demonstrated [55]. The BICs we observe here are examples of
“resonance-trapped” BICs, where the gap acts as the tunable
parameter [47], which are attractive as they are quite robust to
imperfections: one need only change the tuning parameter to
compensate for geometrical perturbations. An infinite number
of BICs exist for the DPhoC for increasing q, but occur at
ever smaller gradients, indicating a weaker optomechanical
coupling. The long lifetime of the photon in the guided-
mode resonance allows a moderately low decay rate even
for wavelength-sized cavities. This observation is extremely
relevant for microcavities for optomechanics; we can boost
g0 by reducing the cavity length down to ∼λ0/2, but with
κ not limited by the cavity length but rather by the internal
loss of the individual slab resonances. A detailed comparison
between conventional FP-type optomechanical microcavities

and the DPhoC is presented in Appendix E. Despite the huge
amount of current interest in BICs [47], there has been limited
study of their utility for optomechanics [56,57].

The lowest-order BIC is located in the intermediate-field
region, where both coupling via photon tunneling, associated
with gradient forces, and propagation, associated with radi-
ation pressure, are relevant. This is illustrated in the electric
field plot for q = 0.5387λ0 in Fig. 2(c) by the deviation
from the standard standing-wave mode profile. The series
of field profiles show the evolution from near- to far-field
dominated interaction between the two slabs as the gap is
increased. In the intermediate-field region, we see the same
linewidth narrowing due to a BIC in Fig. 2(a), but now the
high-transmittance band is highly warped and bends away
from the FP line. In contrast to higher-order BICs, the lowest-
order BIC is shifted in energy from the individual slabs’ Fano
resonance (green dotted line) due to the near-field coupling.
We also observe the very typical mode splitting of an odd
and even mode around the Fano energy. Furthermore, for the
lower-energy even mode, there is a crossover from a repulsive
to attractive force, i.e., g changes sign. This means that at
a certain separation the derivative with respect to displace-
ment vanishes, allowing the DPhoC to access purely quadratic
optomechanical coupling: g0 = 0, g2 �= 0. This is in stark
contrast to the regular end-mirror configuration, which can
only support repulsive forces. The quadratic coupling relies on
gradient forces, which depend on the overlap between the near
fields of both slabs, and so exhibits an exponential dependence
on separation [36,58]: ζ ∝ exp (−q/δ), where δ quantifies the
out-of-the-plane decay length of the guided mode. The use
of evanescent coupling in optomechanics is nothing new; it
has been commonly used to couple light in waveguides to
optical microresonators [59,60], as well as microresonators
to one another [61], but has rarely been utilized for out-of-
plane optomechanics [40,43]. As such, the DPhoC represents
a bridge between the two worlds of in-plane and out-of-plane
cavity optomechanics: exhibiting both attractive and repulsive
optomechanical forces as well as substantial in- and out-of-
plane propagation of light. Finally, we note that the near-field
zone supports only lossy cavity modes and does not seem
suitable for applications in optomechanics; this is discussed
further in Appendix D.

All of the physics displayed in the transmittance map in
Fig. 2(a) can be captured extremely well by coupled-mode
theory [32,36,50], which is detailed in Appendix C. We fit
the expressions obtained from coupled-mode theory to the
results of numerical simulations to find the value of ζ and find
excellent agreement. More importantly, the theory provides an
explanation for the family of BICs we observe. By ignoring
the direct reflection and transmission of light through the
slab, and considering only the interaction via the excited Fano
resonances, we find that the BICs are a predominately far-field
phenomena found close to the FP resonances where the cavity
decay rate completely vanishes in the absence of internal loss.

IV. ESTIMATED OPTOMECHANICAL
COUPLING STRENGTHS

Since, in principle, a BIC has no radiative loss, its de-
cay rate is given by unavoidable intrinsic loss. To gauge the
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FIG. 3. (a) Transmittance map against frequency and slab separation for a DPhoC with a lattice period of 0.7λ0 and air-hole radius of
0.27λ0. (b) Quality factor of the cavity eigenmodes close to the BIC. (c) Dispersive and dissipative parts of the normalized optical frequency
shift per displacement: G̃/2π = dfc/ f0

dq/λ0
. The BIC is indicated by the dotted pink line.

achievable optomechanics performance of the DPhoC, we
must estimate the internal loss channels of the PhC slab. In
the following, we explore the DPhoC’s performance for a
set of realistic, albeit challenging, experimental parameters.
In Appendix F 1 we also explore a more readily attainable
parameter set. We consider intrinsic loss governed by material
absorption and use experimental studies of GaAs microdisks
[62] to obtain Im[n] = 4.4 × 10−6 (see Appendix F 1 for de-
tails). This allows us to estimate the lower bound on the
achievable cavity decay rate, assuming that disorder-related
loss and finite-size effects of both the beam and the sample
can be ignored. We discuss these effects in detail in Appendix
F 2, where it is shown that the DPhoC can maintain high Q
factors over a broad range of wave vectors away from the
high-symmetry 
 point, making it surprisingly immune from
finite-waist and -area effects. Furthermore, in Appendix G we
explore practical issues related to geometry and symmetry
sensitivity and how they might be tackled in experiments. Fi-
nally, we note that ultrashort Fano cavities have been shown to
suffer less from finite-waist effects [44], illustrating a further
advantage of working with compact cavities using BICs.

A. Dispersive linear coupling

To highlight the large single-photon cooperativity achiev-
able with the DPhoC, we now change the lattice parameters
to boost the dispersive linear coupling at the BIC location: a
period of 0.7λ0, radius of 0.27λ0, and thickness of 100 nm,
indicated by the red circle in Fig. 1(b). This system is very
practical, with a double-slab structure very close to these pa-
rameters already demonstrated [35]. The transmittance map,
shown in Fig. 3(a), exhibits a BIC located in the intermediate
zone at q = 0.44λ0 (pink dotted line), shown explicitly by a
sharp peak in the Q factor in Fig. 3(b). The Q factor has a max-
imum around Q = Re[ fc]/(2κ ) = 6.8 × 105, which is limited
by material absorption, and is similar in magnitude with the
highest Q factors for a BIC reported to date [55]. In Fig. 3(c)
we plot a normalized G and find G/2π = −46 GHz/nm and
κ/2π = Im[ fc] = 140 MHz at the BIC. Because our system
is so compact, we can achieve coupling strengths of the order
of tens of hundreds of GHz/nm. This is orders of magni-
tude larger than conventional out-of-plane systems [14,29]
and comparable to values seen for in-plane geometries [2,20–

22]. The DPhoC has the advantage that no outer cavity is
necessary, as opposed to the MiM geometry [14] or multiele-
ment optomechanics approach [26], considerably simplifying
fabrication and operation.

The DPhoC has the potential to access the regime of
single-photon optomechanics [63,64] by obtaining a large
single-photon quantum cooperativity. Using realistic param-
eters of suspended PhC slabs [34,35] with a mechanical
frequency of �m/2π = 150 kHz and associated effective
mass meff = 1 ng yields a single-photon optomechanical cou-
pling strength of g0/2π = Gx0/2π ∼ 3.4 × 105 Hz and a
considerable g0/κ ratio of ∼0.0025 (x0 = √

h̄/2meff�m).
These estimated values place our system in the nonresolved
sideband regime and firmly in the ultrastrong single-photon
coupling regime with g0/�m ∼ 2.3, complementing previous
works [21,65]. Further, assuming a realistically achievable
mechanical Q factor of Qm ∼ 108 [34,66] yields a single-
photon cooperativity [1,67] of C = 4g2

0Qm/(κ�m) ∼ 2.2 ×
106, which is similar to Ref. [65] and three orders of mag-
nitude larger than in Refs. [21,22]. When operating the device
at moderate cryogenic temperatures (T = 4 K), we predict
a remarkable single-photon quantum cooperativity of Cq =
C/nbath ∼ 4.0 (nbath = kBT/h̄�m). A value exceeding unity
has not been achieved in any cavity optomechanics system
before. Thus, the DPhoC offers a promising alternative to
proposals in the microwave domain [68,69] or to cavity op-
tomechanics with atoms [70,71]. In these estimations we have
assumed uniform mechanical motion, but in reality a me-
chanical mode will have a spatial profile; this is discussed in
Appendix G 3 where additional calculations estimating meff

for a realistic device are presented.

B. Dissipative linear coupling

At the BIC separation, the optomechanical coupling is
purely dispersive as the cavity decay rate is at a minimum:
Im[g0] ∝ ∂qκ = 0. Isolating purely dissipative coupling is
also interesting for certain quantum protocols [72–74]. To this
end, we look at the region around q = 0.29λ0 where Re[G] ∼
0, indicated by the green line in Fig. 3(a). Here, the DPhoC
exhibits a large dissipative coupling: Im[G] = 12 GHz/nm.
As we are far from the BIC condition, a large decay rate
is found. However, dissipative coupling can be utilized for
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FIG. 4. (a) Dispersive and dissipative parts of G̃/2π for a DPhoC
with a lattice period 0.5575λ0 and air-hole radius of 0.092λ0; this
corresponds to the red square in Fig. 1(b). (b) Real and imaginary
parts of G̃2/2π = 1

2
d2 fc/ f0
dq2/λ2

0
. The black dotted line gives the location

of the BIC at q = 0.43λ0.

optomechanical cooling without the need for the “good cav-
ity” limit [72].

C. Quadratic coupling

Through tuning of the lattice parameters, it is also possible
to place the lowest-order BIC at a point of pure quadratic
coupling by shifting it to where Re[G] vanishes [see Fig. 4(a)].
The second derivative G2 is shown in Fig. 4(b), illustrating
that the quadratic coupling is finite where the linear coupling
vanishes. We find a coupling of Re[G2]/π = 87 MHz/nm2

(and a dissipative coupling of Im[G2]/π = 6.7 MHz/nm2) for
a κ/2π = 210 MHz. This compares well with the values of
4.5 → 30 MHz/nm2 reported by Sankey et al. [15], but the
DPhoC has the advantage of being many orders of magni-
tude more compact, and relies on a different mechanism of
evanescent coupling rather than radiation pressure. It remains
an open question whether the DPhoC system can be optimized
to reach the values of G2 ∼ 1 THz/nm2 reported for state-of-
the-art planar PhC cavities [19].

V. CONCLUSIONS

Combining light propagation in both free-space and
guided-mode forms, the DPhoC system merges the strengths
offered by in-plane and out-of-plane optomechanical sys-
tems. We have estimated linear optomechanical coupling
rates orders of magnitude larger than conventional end-
mirror and MiM platforms, at moderately low optical decay
rates, potentially leading to a single-photon quantum coop-
erativity exceeding unity. The DPhoC constitutes a versatile
optomechanics platform able to access different regimes of
optomechanical coupling that can be used to explore vari-
ous quantum protocols in the nonresolved sideband regime
[4,22,75–77], in particular in the framework of pulsed
optomechanics [18,78,79] or frequency-dependent mirrors
[44,45]. For instance, the strong frequency dependence of the
DPhoC’s mirrors can be exploited in optomechanical cooling,
as recently suggested in Ref. [45]. The geometries described
here represent a proof of concept and we expect optimized
structures to yield even better performance. We envision many
potential pathways from this work, including squeezing of
the guided-mode resonance in space using a defect cavity on

the PhC slabs to boost photon-phonon colocalization [80],
or utilizing phononic BICs [56] alongside their photonic
counterparts.
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APPENDIX A: NUMERICAL METHODS

The numerical calculations are a combination of simula-
tions based on the finite-element frequency domain method
(using COMSOL MULTIPHYSICS) and rigorous coupled-wave
analysis (RCWA) (using the S4 code [81]). Where possible,
results were obtained using both methods and excellent agree-
ment to within a few percent was found.

APPENDIX B: FANO RESONANCE

The interference between the direct transmission of light
and the guided mode of a structured slab leads to unity re-
flection near the guided-mode resonance ωF , with a width κe.
Due to the large Q factor of the underlying guided modes,
Fano resonances are well described by coupled-mode theory
(CMT) applied to a single resonator with two ports [32,50].
Both ωF and κe can be found by calculating the reflection
or transmission spectrum using numerical techniques to solve
Maxwell’s equations and fitting the following expressions:

r(ω) = rd (ω − ωF ) + tdκe

(ω − ωF ) + iκe
, (B1)

it (ω) = −irdκe + itd (ω − ωF )

(ω − ωF ) + iκe
, (B2)

which are derived under the assumption that the system pos-
sesses time-reversal symmetry, conservation of energy, and
even symmetry with respect to the mirror plane. rd and td are
given by the reflectivity and transmission of a homogeneous
slab with an effective refractive index [32]. For a structured
slab with air holes of radius a and period �, the effective
index is given by neff = (1 − η)n + η where η = πa2/�2. An
example of the fit is shown by the red dashed line in Fig. 1(c).
The radiative decay is quantified by κe and linked to the width
of the Fano line shape (given by the shaded blue region in
the plot). It describes the in and out coupling of the guided
mode to external radiative channels. The inverse of κe gives
the typical travel time of a photon within the slab. Smaller
air holes lead to a reduced κe due to decreased scattering
of the in-plane light, but this comes at the price of a larger
impact from internal loss [82], denoted by κi, which includes
the impacts of various loss channels such as material loss and
lattice imperfections.
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FIG. 5. Slice of the transmittance for f = 0.99 f0 calculated with
RCWA (blue line) for a DPhoC with 100-nm-thick slabs, � = 0.7λ0

and a = 0.27λ0. A fit of the coupled-mode theory (CMT) (red dashed
line) is shown, along with an inset illustrating the CMT.

APPENDIX C: BOUND STATE
IN THE CONTINUUM THEORY

The DPhoC is modeled as two resonators within CMT,
A1 and A2, which obey the following two coupled first-order
differential equations [36]:

∂t A1(t ) = (−iωF − κe)A1(t )

+
√

−κe(rd + itd )(a1 + b2eikq ) + iζA2(t ),

∂t A2(t ) = (−iωF − κe)A2(t )

+
√

−κe(rd + itd )a2eikq + iζA1(t ), (C1)

where evanescent coupling is described by the real parameter
ζ = Ce−q/δ and coupling via photon propagation is described
by the complex term eikq. a1, b1, a2, b2, and a3 are the in-
coming and outgoing field amplitudes on either side of the
slabs, and are defined in the inset of Fig. 5. The transmission
it = a3/a1 can be found by Fourier transforming, and the
remaining parameter ζ is found by fitting the spectrum for
fixed frequency and variable q. An example of this fitting
procedure is shown in Fig. 5 by the red dashed line. The fit is
excellent, showing that this simple model captures both near-
and far-field coupling between the slabs.

To illustrate why BICs occur for the DPhoC, we will make
some drastic simplifications to the CMT that reveal the essen-
tial mechanisms more clearly. The physics we are interested
in depends on the interaction of the resonances in each slab
and not the direct process which is controlled by rd and td ,
therefore, we set rd = 0 and itd = 1. This “flat-background”
approximation is most valid for PhC slabs with large air holes
and, hence, a lower effective refractive index. The coupling of
the two resonator modes leads to hybridization into even and
odd “supermodes” [83]:

Aeven/odd(t ) = A1(t ) ± A2(t )√
2

, (C2)

which have the following energies and decay rates:

ωeven/odd = ωF ∓ [ζ (q) − κe sin(k0q)], (C3)

γeven/odd = κe + κi ± κe cos(k0q), (C4)

where we have made the approximation that the right-hand
side can be evaluated at the Fano energy ωF = ck0. The mode
frequency shows a splitting between the even (which is at a

FIG. 6. Quality factor of the cavity modes around a BIC for two
PhC slabs of 100-nm thickness, period of 0.5575λ0 and a = 0.092λ0.
Shown also with a Lorentzian fit Qfit (q) = C2/[(q − q0 )2], where
C = 1.9809λ2

0 and q0 = 0.43λ0.

lower energy) and the odd mode about the Fano energy, with
contributions from both the near-field and far-field coupling,
as is observed in Fig. 2(a). These equations also reveal the
presence of BICs: for no internal loss, coupling to output
channels vanishes for cos(k0q) = ∓1, which is just the usual
FP resonance condition and reveals an infinite number of
such BICs. Equation (C3) explains why the lowest-order BIC
is shifted in energy away from the individual slabs’ Fano
resonance [green dotted line in Fig. 2(a)] by the near-field
interaction, while the higher-order BICs at larger gaps occur
almost exactly at this energy.

Further evidence that we are indeed observing BICs comes
from the quadratic dependence of 1/Q on q − q0, where q0

is the slab separation corresponding to a BIC [84]. This is
confirmed by fitting Q(q − q0) and is shown in Fig. 6.

APPENDIX D: NEAR-FIELD REGION

Here, we discuss the near-field region shown in Figs. 2(a)
and 2(b), where photon propagation between the slabs is neg-
ligible and evanescent coupling dominates. For the structured
slabs, this region is indicated by the eigenmodes deviating
from the bands of high transmittance. The eigenmodes be-
come very lossy (Q ∼ 10) and so are not shown in Fig. 2(a) for
clarity. These modes could be useful for cavity optomechanics
if we borrow the MiM philosophy and the DPhoC was placed
within a larger cavity to recycle the leaked light.

We also observe an interesting high-transmittance branch
for the homogeneous slabs in Fig. 2(b). It derives from a
family of leaky modes which do not correspond to FP modes.
This is illustrated nicely in Fig. 7, where the electric field
profile of the lowest-order FP mode and the near-field zone
mode are compared; the field of the former is concentrated
within the cavity between the slabs, and the field of the latter
is concentrated much more within the slabs. As the slabs are
not structured and the incoming light is normally incident, it
cannot be a consequence of near-field coupling and instead we
speculate that it is similar in nature to zero-frequency modes
seen for single slabs [85,86].

Note that we do not include Casimir forces, which are
derived from vacuum quantum fluctuations and are not present
in our classical calculations.
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FIG. 7. (a) The lowest-order Fabry-Pérot electric field profile
and (b) the high-transmittance near-field mode. Calculated using the
transfer-matrix method for incident light from the left-hand side at a
wavelength of 1550 nm.

APPENDIX E: COMPARISON OF THE DPhoC
TO A FABRY-PÉROT–TYPE

OPTOMECHANICAL MICROCAVITY

For the end-mirror configuration of length q, the linear
dispersive coupling rate is given by Re[g0] = ωcx0/q, where
x0 = √

h̄/2meff�m is the zero-point motion and ωc is the
cavity frequency. For the MiM geometry, the maximum linear
coupling rate is 2|r| times larger than the corresponding end-
mirror geometry of the same total cavity length, where |r| is
the reflectivity of the inner membrane. In principle, g0 can be
increased as we decrease the length down to q = λ/2 (below
which no FP resonance is supported). The decay rate of an
end-mirror cavity is given by κc = πc

2qF , where F is the cavity
finesse. This means that Re[g0]/κc is independent of length.
This is in contrast to the DPhoC where the decay rate is given
by the nonideality of the PhC slabs and means that the ratio
Re[g0]/κ is dependent on length.

Let us estimate the optomechanical parameter regime
achievable with a FP-type optomechanical microcavity, which
in turn allows us to compare to the performance of the DPhoC.
To this end, we combine parameters from independent re-
alizations of state-of-the-art optical microcavities [87] and
distributed Bragg reflector (DBR) based high-reflectivity me-
chanical resonators [88–90] in order to obtain an estimate on
the potential of a FP-based optomechanical microcavity. We
consider an optical microcavity of length q = 17 μm with a
finesse of F = 5 × 105 at telecom wavelengths, which has
been recently realized in chip-based silicon microcavity arrays
[87]. Note that a slightly smaller finesse of 1.8 × 105 has been
achieved in a 5-cm-long FP-based optomechanical system
[90]. Both of these cavities employed multilayer coatings,
i.e., DBRs, to achieve such an exceptionally large finesse.
Hence, the mechanical resonator has to be realized via a
suspended DBR [89] or a DBR on a mechanical resonator

[88,90] to obtain such high-finesse values. These systems have
typical mechanical parameters of �m/2π ∼ 500 kHz, meff ∼
40 ng and a mechanical quality factor Qm ∼ 106 at T ∼ 4 K
[88–90]. Note that the DBR limits the performance of the
mechanical resonator, in particular, resulting in a lower me-
chanical quality factor and larger effective mass compared to
state-of-the-art DBR-free mechanical resonators, which rou-
tinely achieve values of meff ∼ 1 ng, Qm > 108. All together,
this leads to the set of parameters displayed in Table I and,
hence, to much less advantageous optomechanical values than
the DPhoC we propose in this work, with the exception of a
slightly improved κ/�m ratio.

Also shown in Table I are the parameters for the minimal
cavity length of q = λ0/2 of such a hypothetical FP cavity.
Despite this microcavity having a larger G than the DPhoC
we consider, such a system suffers from the ratio g0/κ being
independent of cavity length, and a worse performance of
the mechanical resonator compared to PhC-based mechanical
resonators. In particular, the single-photon quantum coopera-
tivity of both conventional FP cavities considered in Table I
are orders of magnitude smaller than one.

APPENDIX F: ESTIMATION OF LOSS CHANNELS

1. Material absorption loss

To estimate the ultimate upper bounds on the BIC’s Q
factor, we need an estimate of the intrinsic material loss. We
extracted material-based absorption for GaAs using Ref. [62],
where a loss rate of κi

2π
∼ 0.5 GHz was measured for GaAs

microdisks at 1600 nm. This yields an absorption coefficient
α = κi/vg ∼ 0.3 cm−1 with the group velocity vg estimated as
∼108 m/s. For the 100-nm-thick membranes we consider in
this work, we get a material absorption of about 3 ppm; this is
an overestimation of the loss as some of the electric field of
the mode will be concentrated in the air holes rather than the
GaAs. The imaginary component of the refractive index can
then be found from Im[n] = αλ0

4π
[91]. For our operation wave-

length of λ0 = 1550 nm, this gives Im[n] ∼ 4.4 × 10−6. This
value, along with a mechanical quality factor of Qm = 108,
will be denoted as parameter set I and displayed in Table II.
This set was used in the main text and represents challenging,
but achievable, parameters that are state of the art in both
mechanics and photonics. Using this value of Im[n] for a
single PhC slab gives a max reflectance of R = 0.99998 near
the Fano resonance.

For set II, we estimate the corresponding effective Im[n]
for a maximum reflectance of 0.999, which was achieved in
a single Si3N4 PhC slab in Ref. [33]. This yields Im[n] =
2 × 10−4. This is not entirely appropriate as the devices in
the aforementioned reference were limited by scattering rather
than material absorption, but it gives an indication of the ef-

TABLE I. Optomechanical parameters for optical microcavities of length 17 μm and λ0/2. Common parameters between both sets are a
finesse of 500 000, meff = 40 ng, �m/2π = 500 kHz, and Qm = 106 at T = 4 K.

L κ/2π (MHz) G/2π (GHz/nm) g0/2π (kHz) g0/κ g0/�m κ/�m C Cq

17 μm 8.8 11.4 7.3 8.3 × 10−4 1.5 × 10−2 18 49 2.9 × 10−4

775 nm 193 250 161 8.3 × 10−4 0.32 390 1100 6.4 × 10−3
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TABLE II. Optomechanical parameters for linear dispersive coupling for the DPhoC. For both parameter sets �m/2π = 150 kHz, G/2π =
−46 GHz/nm, and m = 1 ng.

Set Qm Im[n] R κ/2π ( MHz) g0/κ C Cq

I 108 4.4 × 10−6 0.99998 140 0.0025 2.2 × 106 4.0
II 107 2 × 10−4 0.999 6200 5.5 × 10−5 5000 0.009

fects of nonunity reflectance and the resulting optical Q factor
of ∼104 is in line with values found for typical BIC systems
[92]. The parameters for set II are also shown in Table II.

2. Transverse effects

In our estimation of g0, we have ignored loss from
transverse effects such as wavefront curvature, non-perfectly-
parallel mirrors, and finite-area structures. These unavoidable
limitations are a consequence of incident light coupling into
modes located over a finite region of k space, leading to
additional loss channels. Relevant to our discussions is that
ultrashort cavities built from Fano mirrors have been shown
to suffer less from finite-waist effects [44]. There is also
the possibility of designing Fano mirrors with focusing abili-
ties [93,94]. Furthermore, resonance-trapped BICs have been
shown to display a large Q factor over a wide range in k space
[53], and recently the merging of multiple BICs has been used
to suppress out-of-plane scattering losses [55].

To demonstrate that the DPhoC is surprisingly immune
from finite-size effects, we have calculated the Q factor for
wave vectors away from the high-symmetry 
 point of the
first Brillouin zone for a square lattice (see Fig. 8). To save
simulation time, we explore slices in k space in the direction
from 
 to the other high-symmetry points X and M. A detailed
calculation would integrate over a specified area of k space
(a thorough discussion of including finite-beam-waist size
effects in reflection and transmission spectra can be found in
the Supplemental Material of Ref. [35]). We observe that the
mode at λ0 is doubly degenerate at the 
 point and splits in

FIG. 8. (a) Energy splitting and (b) quality factor of the DPhoC
eigenmodes around the 
 point. DPhoC parameters are lattice period
of 0.7λ0, air-hole radius of 0.27λ0, and slab separation of 0.439λ0.

energy, which can be seen in Fig. 8(a). Importantly, the Q
factor remains well above 105 in a large region of k space;
this is shown in Fig. 8(b). In realistic devices, there is a
compromise between the lateral size of the device, which
will affect mechanical properties, and the beam-waist size to
achieve maximum slab reflectivities. A Gaussian beam can
be represented as a sum of angled plane-wave components
weighted by a Gaussian distribution with a standard deviation
given by the beam divergence θ0 = λ/(πw0), where w0 is the
beam-waist size. In Fig. 8(b), we represent with colored lines
the beam divergence for beam waists of 10, 20 and 50 μm,
which are typical values used in experiments [29,34,95].

A finite structure, of characteristic length L, will support
BICs with a finite k-space mode profile of ∼π/L. While a
detailed exploration of this is beyond the scope of this work,
using Fig. 8(b) allows us to estimate that we need a device
with an area much larger than ∼20 × 20 μm2 to achieve an
optical Q factor well above 105 (this is estimated by taking a
k span of δk�

π
= 0.05, which corresponds to Q factors above

2 × 105). This is a smaller area than the PhC slabs reported in
our recent experimental work of ∼50 × 50 μm2 [35]. There
exist methods to counter finite-size effects such as using BICs
with ultraflat dispersion [96], which could be implemented in
future work.

3. Estimate for SiN-based system

The physics discussed in this work is not material de-
pendent and can be expected to be applicable for SiN-based
systems [27–29,33,34,49], which are more commonly used in
optomechanics. Here, we provide an estimate of the optome-
chanical parameters obtainable with such systems. The optical
Q factor of the BIC can be approximated using [91]

1

QBIC
= 1

Qabs
∼ 2 Im[n]

Re[n]
, (F1)

which we have confirmed to be an accurate estimate for GaAs
PhC slabs. Im[n] as small as 2 × 10−6 has been measured for
membranes of close to 100-nm thickness at a wavelength of
1064 nm [97]. As Re[n] = 2.021, this gives QBIC ∼ 5 × 105.
Assuming similar optomechanical coupling rates and mechan-
ical properties, then the ultimate achievable optomechanical
parameters of a SiN-based DPhoC should be similar to set I in
Table II.

APPENDIX G: EXPERIMENTAL REALIZATION

1. Gap sensitivity

Gap sensitivity is an important aspect to consider for exper-
imental demonstration of the DPhoC. To explore this we take
the exemplary DPhoC presented in Fig. 3 (lattice period of
0.7λ0 and air-hole radius of 0.27λ0) and find the range of gaps
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FIG. 9. (a) The Q factor of the DPhoC of period 0.7λ0 and radius
R0 = 0.27λ0 for varying gap size, the operation region corresponding
to Q factors over 105 is indicated by the orange area and the double-
headed arrow. (b) The Q factor for a DPhoC of period 0.7λ0 and gap
qBIC − 10 nm ≈ 670 nm for varying radius. The blue dashed line
indicates the radius corresponding to the original BIC at qBIC.

that give a near-BIC mode Q factor over 105 [see Fig. 9(a)].
We find an operating range of approximately 7 nm, which is
achievable with typical MBE-grown material as, for example,
discussed in Ref. [35].

We propose that one could fabricate slabs of different PhC
pattern parameters for the same gap, as the BIC exists for
a continuous range of PhC pattern parameters. To this end,
we have performed some further simulations to explore this:
we have taken a DPhoC system, again based on Fig. 3, and
fixed the gap to 670 nm, this is 10 nm smaller than the gap
corresponding to the BIC (qBIC = 0.439λ0 ≈ 680 nm). We
now vary the air-hole radius in each slab and plot the Q factor
of the near-BIC modes [see Fig. 9(b)]. The BIC is simply
shifted to a larger radius and we can conclude that by building
devices with different radii one could realize the BIC in case
the gap is not the one intended.

Furthermore, in situ tuning may be possible via the piezo-
electric effect when using piezoelectric materials for realizing
the DPhoC. For instance, an AlGaAs spacer in-between the
two GaAs slabs could be used to control the gap via an
applied voltage. The piezoelectric coefficient of GaAs is
−2.7 × 10−12 m/V and (−2.7 − 1.13x) × 10−12 m/V for
AlxGa1−xAs [98], this would allow for sub-nm level tuning for
the gap. It may even allow for the tuning of the PhC air-hole
radius as well.

2. Symmetry sensitivity

It is also interesting to explore how precisely the two PhC
slabs must be geometrically matched. As the lattice constant
will be practically identical in each slab for the fabrication ap-
proach we employed in our recent experimental work [35], we
have performed additional eigenmode calculations exploring
asymmetry by changing the air-hole radius of one of the slabs,
while keeping all other parameters constant. In Fig. 10(a) a
plot of the optical Q factor of the near-BIC mode is shown as
a function of the difference in radius �R = R1 − R0, which is
given in units of the experimental uncertainty in radius (δR =
1.8 nm) from Ref. [35]. We find that high-quality factors well
over 105 remain up to one standard deviation.

To explore if geometric mismatch can be compensated
by adjustment of other geometrical parameters, we have per-

FIG. 10. (a) Q factor of a near-BIC mode as the radius in one of
the PhC slabs in a DPhoC is varied for fixed parameters: � = 0.7λ0,
q = 0.439λ0 and unmodified radius R0 = 0.27λ0. The difference in
radius �R is given in units of the experimental uncertainty δR = 1.8
nm. (b) Q factor of the near-BIC mode as the gap is varied for a
DPhoC of � = 0.7λ0 and radii of R0 and R0 + 3δR.

formed an eigenmode calculation for asymmetric slabs (one
slab with a radius at the original BIC condition of R0 =
0.27λ0, and the other slab with a radius R1 = R0 + 3δR) and
varied the gap. From Fig. 10(b) we can see that the asymmetry
only shifts the BIC slightly and that tuning of the gap can only
offer minimal improvement, we cannot reach the same high Q
factors that can be achieved for the symmetric configuration.
To confirm that this effect is due to incomplete interference
from asymmetry, we have repeated the calculation with no
material loss, shown by the black crosses in Fig. 10(b). We
can conclude that one can no longer hit the true BIC con-
dition in the asymmetrical system. An explanation for why
mirror symmetry in the z direction is required for a BIC is
given in Ref. [51] for a single slab and should also apply
for our double-slab system. We suspect that one can boost
the DPhoC’s resistance to asymmetry by choosing single-slab
modes that have a larger span in R space; this perhaps could
be achieved by overlapping multiple guided-mode resonances,
similar to what is done to achieve wide-band reflectors [99].

3. Effective mass estimation

We have assumed that the slab moves uniformly but in
reality the slab’s mechanical modes will have a spatial dis-
tribution. This can be taken into account by estimating the
effective mass of the slab for a particular mechanical mode.
We have performed additional finite element calculations to
estimate the effective mass of a tethered trampoline struc-
ture with a diameter of 40 μm. The suspended device has 8
tethers of length 15 μm, assuming an underetch of 5 μm at
the support. We find a fundamental mode eigenfrequency of
228.75 kHz (see Fig. 11). The modal mass is 1.16 ng and the
effective mass is 8.8 ng assuming a Gaussian beam of waist
10 μm incident on the center of the device. The effective mass
is calculated by integrating the overlap of the Gaussian beam
with the mechanical mode [100]. To take into account the air
holes of the structure, we multiply by a correction factor based
on the ratio of the photonic crystal’s air-hole area and the area
of the membrane with no holes.

Using these values for the effective mass and mechanical
frequency (along with parameters from set I in Table II) to
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FIG. 11. Spatial profile of the fundamental mechanical mode for
a tethered trampoline structure.

estimate the optomechanical parameters for the DPhoC gives
a single-photon quantum cooperativity of ∼0.3 and falls just
short of the ultrastrong single-photon coupling regime with
g0/�m ∼ 0.4. It is likely that with further engineering of the
system a value above unity in both cases will be possible. We
again emphasize that at no point have any structures been op-
timized. The effective mass can be reduced to approximately
1 ng by making the device smaller or adding more tethers
(which reduces the out-of-plane displacements), but in both
cases this will increase the mechanical frequency. Another
approach is to decrease the waist of the Gaussian beam, but
here one would have to reach a compromise between reducing
the effective mass and increased transverse optical losses.
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