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Abstract: Nonlinear finite element (FE) analysis of reinforced concrete (RC) structures is characterized
by numerous modeling options and input parameters. To accurately model the nonlinear RC behavior
involving concrete cracking in tension and crushing in compression, practitioners make different
choices regarding the critical modeling issues, e.g., defining the concrete constitutive relations,
assigning the bond between the concrete and the steel reinforcement, and solving problems related
to convergence difficulties and mesh sensitivities. Thus, it is imperative to review the common
modeling choices critically and develop a robust modeling strategy with consistency, reliability,
and comparability. This paper proposes a modeling strategy and practical recommendations for
the nonlinear FE analysis of RC structures based on parametric studies of critical modeling choices.
The proposed modeling strategy aims at providing reliable predictions of flexural responses of
RC members with a focus on concrete cracking behavior and crushing failure, which serve as
the foundation for more complex modeling cases, e.g., RC beams bonded with fiber reinforced
polymer (FRP) laminates. Additionally, herein, the implementation procedure for the proposed
modeling strategy is comprehensively described with a focus on the critical modeling issues for
RC structures. The proposed strategy is demonstrated through FE analyses of RC beams tested in
four-point bending—one RC beam as reference and one beam externally bonded with a carbon-FRP
(CFRP) laminate in its soffit. The simulated results agree well with experimental measurements
regarding load-deformation relationship, cracking, flexural failure due to concrete crushing, and
CFRP debonding initiated by intermediate cracks. The modeling strategy and recommendations
presented herein are applicable to the nonlinear FE analysis of RC structures in general.

Keywords: reinforced concrete; finite element analysis; crack band; strain localization; post-peak
softening; viscoplastic regularization; convergence; mesh sensitivity; bond–slip; flexural behavior

1. Introduction

Finite element (FE) analysis is effective for investigating the nonlinear behavior of
reinforced concrete (RC) structures and performing parametric studies at lower costs than
experimental tests. The nonlinear FE analysis of RC members has been extensively reported,
and good agreement is often achieved between numerical and experimental results [1–3].
However, the comparison and application of the existing FE models are difficult owing to
the differences in the adopted modeling strategies, which involve a considerable number of
options, e.g., regarding the concrete constitutive models, critical parameters, bond between
the concrete and the steel reinforcement, and numerical analysis procedures. Nonlinear FE
analyses for blind predictions of the ultimate capacity and cracking of simple RC structural
members have been associated with large uncertainty [4,5].
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The major challenges in the nonlinear FE analysis of RC structures include the follow-
ing: (1) defining the concrete tensile and compressive behaviors with the proper considera-
tion of the strain localization in fracture zones [6], (2) efficiently assigning proper bond–slip
behavior between the concrete and the steel reinforcement [2], (3) solving convergence
difficulties commonly observed in the modeling of concrete with high nonlinearity [7,8],
and (4) the misinterpretation of the processing logic of the FE software in the derivation
and definition of input data. These challenges, which are described in detail below, render
nonlinear FE analyses of RC complex and time-consuming; thus, such nonlinear analyses
are rarely performed by practicing engineers.

Concrete cracking in tension: The cracking of tensile concrete is usually modeled by
either discrete or smeared crack approach in practical FE analyses. In the discrete crack
approach, physical cracks are modeled as displacement discontinuities in a concrete con-
tinuum. Although it allows the precise prediction of localized deformation at cracks,
the discrete crack approach requires pre-defining tensile fracture zones when the finite
element is generated. However, the position of the cracks is not known beforehand for
most structural analyses. To overcome this limitation, automated re-meshing techniques
are required to adapt the configuration of finite elements in accordance with the propa-
gating cracks [9,10]. Although recent research has been devoted to developing discrete
crack models allowing arbitrary crack initiation and propagation (e.g., the extended FE
method [11]), the sophisticated modeling methods are not suitable for practical application
by engineering practitioners. The ease of application motivates the wide use of the smeared
crack approach in practical FE analyses. In the smeared crack approach, a crack width is
transformed into an equivalent cracking strain smearing over a certain length (referred to
as the “smeared length” in this paper). The numerical results correspond to reality only if
the widths of the simulated fracture process zones (i.e., the cracking regions) are equal to
the assumed smeared length [6,12,13]. To assure the reliability of the numerical results, the
smeared length should be properly determined and incorporated into the definition of the
constitutive law of concrete in tension.

Concrete crushing in compression: The constitutive model for concrete in uniaxial com-
pression is usually provided as a stress–strain relationship in design codes, e.g., Model
Codes [14,15] and ACI 318 [16]. However, such as a compressive strain, i.e., the “mean
strain” obtained by smearing the measured deformation over the length of the standard
test specimen, cannot describe the local strain-softening behavior in the critical fracture
damaged zone of concrete. Studies since the 1980s [17–19] have investigated the effects of
the strain localization on deriving the concrete compressive constitutive models. The chal-
lenge faced when considering the strain localization in FE analyses is that the actual size of
simulated fracture zones is not known in advance, but it must be determined and used to
modify the constitutive model of concrete as input data for the FE analyses. Zandi Han-
jari et al. [20] modified the post-peak branch of the stress–strain relationship proposed by
Thorenfeldt et al. [21], assuming that concrete crushing occurred in one row of concrete
elements in the FE analyses of RC members. To properly define the concrete compressive
behavior and reliably predict the capacity of RC members governed by concrete crushing,
it is necessary to (1) clarify the principle of modifying the concrete compressive constitutive
model with consideration of the strain localization and (2) develop a practical approach for
determining the size of the fracture zones.

Bond–slip behavior between concrete and steel reinforcement: In the nonlinear FE analyses
of RC structures, the definition of the bond–slip behavior between the concrete and the
steel reinforcement is critical for the accurate prediction of the structural responses, crack
patterns, and crack widths [2,3]. However, there is a lack of guidelines and different
methods are used in the literature to assign the steel-concrete interaction, requiring different
input data and workarounds to overcome implementation difficulties, which are often
not described in detail [22,23]. Therefore, it is important for the research community to
evaluate the existing approaches [2,24,25] for assigning the bond–slip behavior and to
develop new approaches involving simple application procedures.
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Convergence difficulties: The softening behavior and stiffness degradation of cracking or
crushing concrete cause severe convergence difficulties in the static analysis of concrete [8,
26]. Instead of solving the problem in static analyses, researchers implemented dynamic
analysis procedures adopting implicit [7] or explicit [1] integration methods. However, such
a dynamic approach requires additional effort to carefully select, e.g., the time integration
algorithm, loading scheme, loading time, damping ratio, and time increment size, to
achieve a good balance between minimizing the inertial forces (for a better approximation
of the static problem) and reducing the computational time (by using a shorter time to
model the static event in an accelerated manner). Therefore, it remains important to
develop a simple solution strategy to perform the static analysis procedure with a high
convergence rate.

Misinterpretation: Misinterpretation refers to the users’ misunderstanding of the pro-
cessing logic of FE software packages. Misinterpretation may cause the incorrect definition
of input data, which may lead to errors in numerical results or aborted analyses [27].
For instance, in nonlinear FE analyses of concrete structures, the definition of the post-peak
softening behavior of concrete constitutive laws or the stiffness degradation of damaged
concrete is not straightforward. Furthermore, such analyses require to assign a lot of input
data and to make a great number of modeling choices, which are rarely reported in a very
detailed way in the literature. This is explained by the fact that such details do not consti-
tute the focus of the investigation and are usually software specific. Nevertheless, if the
approach for obtaining critical input data is not reported, it can undermine the reliability
and reproducibility of the FE analyses.

In light of these challenges, the objective of this study was to develop a robust and
reliable modeling strategy to capture the tensile cracking and compressive crushing behav-
ior of RC structures associated with low computational costs and ease of implementation,
based on the well-established constitutive relations from fib Model Codes [14,15]. The strat-
egy was implemented to simulate the flexural behavior of an RC beam as reference and
another identical RC beam strengthened with an externally bonded carbon-reinforced
polymer (CFRP) laminate; both beams were tested in four-point bending until failure.
Modeling of crack opening after the reinforcement yielding stage and ultimate concrete
crushing were carefully studied on the reference beam to ensure a reliable basis for the
modeling of the strengthened beam. The nonlinear FE analyses presented herein were
performed using the concrete damaged plasticity (CDP) model implemented in the com-
mercial software ABAQUS [26], as it is widely used in both academia and industry to
analyze RC structures [28–32]. The focus of this paper was to provide reliable, practical,
and computationally cost-efficient implementation guidelines for nonlinear FE analyses of
concrete structures, which can be used as a basis for more complex cases and support the
application of nonlinear analyses to real-world engineering problems, e.g., for load-bearing
assessment, strengthening assessment, structural health monitoring, and damage identi-
fication of building and civil engineering structures. For instance, the use of externally
bonded FRP laminates for strengthening and rehabilitation of concrete or masonry struc-
tural members [33–35] has emerged as an effective technique and found strong interest
in both research and practice, which supported the consideration of such a case in this
work. The experimental setup is shown in Section 2. In Section 3, the modeling procedures
and recommendations for overcoming the aforementioned challenges are presented in
detail. In Section 4, the proposed modeling strategy is demonstrated, and modeling choices
are validated by parametric studies considering the reference RC beam. In Section 5, the
numerical results of the reference beam are compared with the experimental measurements
regarding load-deformation relationship, cracking, flexural failure due to concrete crushing,
and CFRP debonding initiated by intermediate cracks.

2. Experimental Test

The RC members modeled in the present FE study included two slender RC beams
subjected to four-point bending in the laboratory, see Figure 1a. The RC beams were cast
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at a workshop using C35/45 concrete. One beam served as reference; the other one, with
identical dimensions, was strengthened with an externally bonded CFRP laminate on
the tensile side of the beam. The cross-sectional dimensions of the beams are shown in
Figure 1b, including main steel rebars, shear reinforcement, and externally bonded CFRP
plate (for the strengthened beam only). A two-component epoxy adhesive (StoPox SK41,
StoCretec GmbH, Kriftel, Germany) was applied to bond the CFRP plate; whose layer
design thickness was 1 mm. Mechanical properties of the above-mentioned materials used
for the FE analyses are listed in Table 1: the elastic modulus Ec, compressive strength fc,
and tensile strength fct of concrete C35/45 at the age of 287 days were estimated according
to Eurocode 2 [36]; the Poisson’s ratio of concrete νc was defined according to Model Code
2010 [15]; the elastic modulus Es, yield strength fsy, ultimate strength fsu, and ultimate
strain εsu of steel reinforcement were measured by laboratory tests on bars with a diameter
of 16 mm (Φ16) according to ASTM A615 [37]; the elastic modulus Ef and ultimate tensile
strain εfu of the CFRP plate were measured according to standard tensile tests as reported
in [38]; the elastic modulus Ea, tensile strength fa, and Poisson’s ratio νa of the epoxy
adhesive were reported in [39].
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Figure 1. (a) Reinforced concrete (RC) beams subjected to four-point bending tests until failure (unit: mm); (b) cross-sectional
dimension of the RC beams (with a carbon-reinforced polymer (CFRP) plate for the strengthened beam only).

Table 1. Material properties of concrete, steel rebars, CFRP plate, and cured epoxy adhesive.

Concrete C35/45 Steel Rebars B500C CFRP Plate Adhesive

Ec 36.9 GPa Es 201 GPa E f 214 GPa Ea 7.1 GPa
fc 51.1 MPa fsy 510 MPa εfu 12.7‰ fa 34 MPa
fct 3.6 MPa fsu 617 MPa – – νa 0.3
νc 0.2 εsu 12.0% – – – –

In the four-point bending tests, the beams were simply supported on two movable
steel supports, giving an effective span of 4.2 m. The steel support at each end consisted
of two identical steel plates (170 × 30 × 200 mm3) and one steel cylinder roller (diameter
of 50 mm and length of 200 mm). External loading was applied via two synchronized
hydraulic jacks using displacement control. The foot of each hydraulic jack rested on a
steel plate (50 × 50 × 200 mm3) to distribute the load to the RC beam. The beams were
loaded to failure. In the reference beam, flexural failure after yielding of the reinforcement
was governed by concrete crushing in the compressive side of the beam; the failure of
the strengthened beam was due to premature debonding of the CFRP plate initiated by
intermediate flexural cracks.

During the test, strain gauges and linear variable differential transducers (LVDTs) were
used to monitor the beam specimens. Two strain gauges were installed at the midspan
cross-section on the tensile steel reinforcement, and three LVDTs were used to obtain
the net deflection at the midspan, as shown in Figure 1. Cracks in the RC beams were
monitored during the test; the crack widths were measured at the height of the tensile
steel reinforcement using a digital handheld microscope (AM4115ZT, Dino-Lite Europe,
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Almere, The Netherlands) at load levels of 15, 30, 45, 55 (reference beam only), and 70 kN
(strengthened beam only).

3. FE Modeling Strategy

The proposed modeling strategy is discussed in detail, in this section, with special
focus on proper modeling of RC considering strain-softening in fracture zones and bond–
slip between steel reinforcement and concrete to ensure the reliable prediction of cracking
and crushing. The strategy is adapted to the modeling of the RC beams introduced in
Section 2. However, common critical issues in the nonlinear FE modeling of RC structures
are addressed in a general manner, which makes these recommendations applicable to
other types of RC beam and frame structures. The nonlinear FE analyses were conducted
using the commercial FE package ABAQUS/CAE, version 6.14 [26].

Considering that the beam geometry and the test configuration were symmetric about
the midspan, only one half of the RC beam was modeled in the current FE analyses to
reduce the computational cost. The vertical load acting on the beam was defined as a
boundary condition in the FE model, inducing a vertical displacement on the top of the
steel plate between the load and the beam. The interaction between the steel plate and the
beam was set as surface-to-surface contact, which defined the interfacial constraints in the
normal direction (i.e., “hard” contact) and friction in the tangential direction. The coefficient
of tangential friction was assumed to be 0.57 according to a previous recommendation [40].
The same contact settings were used at the interfaces between the beam and steel support.
On the bottom side of the movable steel support, boundary conditions were defined at the
middle point to constrain the degree of freedom in the vertical direction but allow trans-
lation in the horizontal direction. The concrete beam, steel plate under the loading point,
and movable steel support were modeled with 2D shell, discretized into structured meshes,
and assigned with element type CPS4 (4-node plane stress quadrilateral elements with
four integration points). Steel reinforcement and CFRP plate, modeled as one-dimensional
(1D) wire, were assigned with truss (T2D2) and beam (B21) elements, respectively. Material
properties of the concrete, steel reinforcement, and CFRP were defined according to the
values in Table 1. Details about the modeling of concrete, the interaction at the concrete and
steel reinforcement interface and the concrete and CFRP plate interface, and the numerical
solution strategy are described below according to the proposed modeling strategy.

3.1. Modeling of Concrete

The concrete material is defined in the CDP model implemented in ABAQUS [26],
including the definition of the concrete plasticity, the tensile behavior, the compressive
behavior, and the damage evolution of the stiffness.

3.1.1. Concrete Plasticity

The concrete plasticity parameters to be defined in the CDP model include (1) dilation
angle ϕ and eccentricity factor ε related to the flow potential given by the Drucker–Prager
hyperbolic function; (2) factors σb0/σc0 and Kc related to the yield surface based on the
function presented by Lubliner et al. [41] with the modifications proposed by Lee and
Fenves [42] to account for the evolution of strength in tension and compression; and (3)
the viscosity parameter µ to introduce viscoplastic regularization. The values of these
parameters defined in the reference FE model are presented in Table 2. Default values of ε,
σb0/σc0, and Kc are assigned according to the design manual of ABAQUS [26]; the values
of ϕ and µ are defined based on the validation discussed in Sections 4.1 and 4.2.

Table 2. Plasticity parameters defined in the concrete damaged plasticity (CDP) model.

Categories Plastic Flow Potential Yield Surface Viscosity Parameter

Parameters ϕ ε σb0/σc0 Kc µ
Values 35◦ 0.1 1.16 2/3 1 × 10−6
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3.1.2. Concrete Tensile Behavior

The tensile behavior of concrete is characterized by a linear elastic stress–strain rela-
tionship before the concrete reaches the tensile strength fct (Figure 2a) and a bilinear stress
σt-crack width w relationship for the post-peak softening behavior according to Model
Code 2010 [15]. The Model Code relationship, as shown in Figure 2b, is determined by
the tensile strength fct and the fracture energy GF. The fracture energy GF describes the
amount of energy required to propagate a tensile crack of unit area; for normal-strength
concrete, GF (in N/m or J/m2) can be estimated using Equation (1) according to Mode
Code 2010 [15]:

GF = 73 f c
0.18, (1)

where fc represents the mean compressive strength of concrete in MPa.

Materials 2021, 14, x FOR PEER REVIEW 6 of 26 
 

 

߳, σb0 σc0⁄ , and Kc are assigned according to the design manual of ABAQUS [26]; the val-
ues of φ and µ are defined based on the validation discussed in Sections 4.1 and 4.2. 

Table 2. Plasticity parameters defined in the concrete damaged plasticity (CDP) model. 

Categories Plastic Flow Potential Yield Surface Viscosity Parameter 
Parameters φ ߳ σb0 σc0⁄  Kc µ 

Values 35° 0.1 1.16 2/3 1 × 10-6 

3.1.2. Concrete Tensile Behavior 
The tensile behavior of concrete is characterized by a linear elastic stress–strain rela-

tionship before the concrete reaches the tensile strength fct  (Figure 2a) and a bilinear 
stress σt-crack width w relationship for the post-peak softening behavior according to 
Model Code 2010 [15]. The Model Code relationship, as shown in Figure 2b, is determined 
by the tensile strength fct and the fracture energy GF. The fracture energy GF describes 
the amount of energy required to propagate a tensile crack of unit area; for normal-
strength concrete, GF (in N/m or J/m2) can be estimated using Equation (1) according to 
Mode Code 2010 [15]: 

GF = 73fc
0.18, (1) 

where fc represents the mean compressive strength of concrete in MPa. 

 
Figure 2. Constitutive models for concrete in tension: (a) linear elastic stress–strain relationship for 
uncracked concrete; (b) bilinear tensile stress–crack width relationship according to Model Code 
2010 [15]; (c) exponential tensile stress–crack width relationship proposed by Hordijk [43]. 

To validate the adopted concrete tensile behavior, the effects of different modeling 
choices on the numerical results were investigated and are discussed in Section 4.3. This 
included (1) a comparison between the bilinear Model Code relation and another com-
monly used post-peak softening model, i.e., the exponential descending σt -w relation 
(Figure 2c) proposed by Hordijk [43], and (2) parametric studies of the assumed tensile 
strength fct and fracture energy GF. The Hordijk σt-w relation is expressed by Equation 
(2): ఙ౪ౙ౪ = ቂ1 + (ܿଵ ௪௪ౙ౨)ଷቃ ݁ିమ ೢೢౙ౨ − ௪௪ౙ౨ (1 + ܿଵଷ)݁ିమ, (2) 

where, c1 = 3.0, c2 = 6.93, wcr = 5.136 GF
fct

. 

Smeared crack method: To simulate the cracks in concrete, the CDP model adopted in 
the present FE study employs the smeared crack method, where the cracking concrete is 
treated as a continuum and a physical crack opening wcr is characterized as an equivalent 
cracking strain εcr smearing over a certain length (the smeared length ls). Thus, the post-

fct

fct /Ec

σt

εt(a)

fct

0.2fct

GF /fct 5GF /fct

σt

w(b)

fct

wcr=5.136GF /fct

σt

w(c)

Figure 2. Constitutive models for concrete in tension: (a) linear elastic stress–strain relationship for uncracked concrete;
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To validate the adopted concrete tensile behavior, the effects of different modeling
choices on the numerical results were investigated and are discussed in Section 4.3. This in-
cluded (1) a comparison between the bilinear Model Code relation and another commonly
used post-peak softening model, i.e., the exponential descending σt-w relation (Figure 2c)
proposed by Hordijk [43], and (2) parametric studies of the assumed tensile strength fct
and fracture energy GF. The Hordijk σt-w relation is expressed by Equation (2):

σt

fct
=

[
1 +

(
c1

w
wcr

)3
]

e−c2
w

wcr − w
wcr

(
1 + c3

1

)
e−c2 , (2)

where, c1 = 3.0, c2 = 6.93, wcr = 5.136 GF
fct

.
Smeared crack method: To simulate the cracks in concrete, the CDP model adopted in the

present FE study employs the smeared crack method, where the cracking concrete is treated
as a continuum and a physical crack opening wcr is characterized as an equivalent cracking
strain εcr smearing over a certain length (the smeared length ls). Thus, the post-peak tensile
behavior defined in the CDP model complies with stress–cracking strain relationship, which
is converted from the selected stress–crack width model given εcr = wcr/ls. The numerical
results correspond to reality only if the width of the simulated fracture process zone lF
is equal to the assumed smeared length ls. As indicated by Equation (3), the inelastic
deformation δ(σ) of cracking concrete at a certain stress level σ is not dependent on the
assumed ls but determined by the selected stress–crack width relation in the present
FE analyses.

δ(σ) = lFεcr(σ) = lF
wcr(σ)

ls
= {lF = ls} = wcr(σ). (3)

Crack band approach: To define the smeared length ls in accordance with the size of
the simulated fracture zone lF, the crack band approach—a simple technique for practical
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engineering computations—is adopted. In this approach, it is assumed that the strain-
softening of cracking concrete is localized into a clear band of elements running across the
concrete mesh and thus forming a “crack band.” Thus, the size of the simulated fracture
zone lF becomes the width of the crack band hb, and hb can be estimated and assigned to
the smeared length ls to adjust the strain-softening behavior of the concrete in the post-peak
regime [6]. The crack band approach, which is widely applicable and utilized in many FE
packages, is based on pioneering studies performed in the 1980s [12,13,44,45]. Theoretically,
the width of crack bands hb is a function of not only the element topology, e.g., the type,
shape, size, and integration scheme, but also the crack band orientation [6]. However,
the width of crack bands hb implemented in common FE packages, e.g., ABAQUS [26], is
simply estimated as the square root of the element area (for two-dimensional elements)
or the cubic root of the element volume (for three-dimensional elements). This simplified
estimation may induce substantial error and mesh sensitivity for elements with large aspect
ratios. It is recommended to use elements having aspect ratios close to 1 (e.g., square or
cubic elements) to reduce the mesh sensitivity [26]. Even for square or cubic elements,
there may be errors if the crack band is not aligned with the mesh line. For instance, for a
two-dimensional mesh of square elements with side length a, it is reasonable to estimate the
band width hb =

√
A = a automatically in ABAQUS only if the crack band is parallel to

the element sides. If the crack band runs along the element diagonal, the appropriate width
of the band is hb =

√
2a =

√
2A instead of hb =

√
A. Accordingly, when using the crack

band approach in FE modeling, it is recommended to define the post-peak tensile behavior
of concrete by the input data of the stress–cracking strain relationship, which allows users
to evaluate and determine the crack band width hb. For a detailed discussion regarding the
estimation of the crack band width with consideration of the element topology and crack
band orientation, readers are referred to [12,46,47].

In the present FE analyses, the crack bands developed in the concrete mesh mainly
ran parallel to the mesh lines, owing to the predominant bending effect on the beam. Thus,
the crack band width hb was determined as the width of square-shaped concrete elements
for deriving the stress–cracking strain input data.

3.1.3. Concrete Compressive Behavior

For the FE analysis of RC beams in bending, the concrete compressive behavior is
widely defined according to a stress–strain relationship obtained from uniaxial compression
tests of standard concrete cylinders. However, the strain in the standard compressive test
is the “mean” strain obtained by smearing the measured displacement over the total length
of the specimen. Considering that the compressive failure of concrete is initiated by a local
shear band formed in one of the fracture zones and the post-peak deformation mainly arises
from such a local zone, the “mean” strain naturally underestimates the strain in the critical
fracture zone. If the post-peak deformation is expressed by the mean strain, the strain-
softening curve tends to depend on the geometry of the specimen [17,18]—the descent
of the post-peak branch is faster for a longer specimen. For instance, the compressive
stress–strain relationship provided in Model Codes [14,48] is reasonably accurate for a
concrete specimen length of approximately 200 mm.

In the present FE study, the relationship based on Model Code 1990 [14] and Model
Code 2010 [15] is selected as the reference constitutive model for concrete in compression.
Model Code 1990 provides the part of the descending branch with strains exceeding the
concrete ultimate/limit strain εc,lim. To highlight the differences among existing constitutive
models for concrete compressive behavior and the impacts of these differences on the
predicted ultimate crushing failure of the concrete beam, two other commonly used models
are also studied for comparison (see Section 4.5): the Thorenfeldt relationship and the Saenz
relationship. As shown in Table 3, the Thorenfeldt relationship is based on previous studies
by Tomaszewicz [49] and Thorenfeldt et al. [21], with the modifications proposed by Collins
and Porasz in CEB Bulletin 193 [50]. The Saenz relationship includes modifications [51]
based on a previous discussion of the compressive stress–strain equation [52].
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Table 3. Three commonly used constitutive models for concrete in compression.

Model Code

0 < εc < εc,lim

σc = fc

[
k εc

εc1
−
(

εc
εc1

)2
]

/
[
1 + (k− 2) εc

εc1

]
εc > εc,lim

σc = fc

[(
1
e ξ − 2

e2

)(
εc
εc1

)2
+
(

4
e − ξ

)
εc
εc1

]−1

where k = Eci/Ec1
e = εc,lim/εc1

ξ = 4 [
e2(k−2) + 2e − k]
[e(k−2) + 1]2

εc,lim = εc,1

[
1
2

(
k
2 + 1

)
+

√
1
4

(
k
2 + 1

)2
− 1

2

]
Thorenfeldt σc =

Ecεc

1+
(

Ecεc1
fc
−2
)(

εc
εc1

)
+
(

εc
εc1

)2 –

Saenz σc = fc
εc
εc1

(
n

n−1+
(

εc
εc1

)nk

) where n = 0.80 + fc
17

k =


1, 0 < εc < εc1

0.67 +
fc

62
, εc > εc1

Note: Eci = Ec represents the initial tangent modulus, Ec1 = fc/εc1 represents the secant modulus from the origin to the peak compressive
stress, εc1 = 1.60( fc/10 MPa)0.25/1000 represents the strain corresponding to the peak compressive stress [48,53], and εc,lim represents the
ultimate compressive strain of the concrete.

To obtain reliable predictions of the ultimate capacity and the crushing failure of
the beam in flexural loading, the post-peak strain localization should be considered in
the definition of the constitutive law. The original constitutive model based on the mean
strain—mainly the post-peak softening branch—must be modified to better describe the
localized strain softening in the critical fracture zone with a reasonable size. The assumed
size should be verified according to the size of the simulated crushing zone.

Modified compressive behavior considering strain localization: The procedure for modifying
the post-peak branch is presented in Figure 3. If the stress–mean strain relationship and
the length L of the tested specimen are known, the increased post-peak deformation δ|cs

c1
can be obtained from the stress–strain relationship using Equation (4):

δ|cs
c1 = L(εcs − εc1), (4)

where, εc1 and εcs represent the strains (mean strains smeared over the whole specimen) cor-
responding to the concrete compressive strength fc and the stress level σcs in the softening
branch, respectively.
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Figure 3. Modification of the post-peak softening branch of the constitutive model for concrete in
compression originally expressed by the mean strain smearing over the whole length of specimen L
to consider the strain localization in the critical fracture zone with the length of Lcr.

Considering the strain localization, instead of using Equation (4), the increased de-
formation after the peak stress δ|cs

c1 is reached can be calculated using Equation (5), taking
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into account the strain-softening in the fracture zone with the length of Lcr and the elastic
unloading due to the reduction in the compressive stress from the peak stress fc to σcs:

δ|cs
c1 = (L− Lcr)

(
εel

cs − εel
c1
)
+ Lcr

[(
εel

cs + ε
in
cs.loc

)
−
(
εel

c1 + ε
in
c1
)]

= L
(
εel

cs − εel
c1
)
+

Lcr
(
εin

cs.loc − ε
in
c1
)
,

(5)

where, εel
cs − εel

c1 represents the change in elastic strain due to the stress reduction from fc
to σcs in the post-peak regime, εin

cs.loc represents the inelastic strain localized in the critical
fracture process zone, and εin

c1 represents the inelastic strain at peak stress.
The transitivity between Equations (4) and (5) implies that,

L(εcs − εc1) = L
(

εel
cs − εel

c1

)
+ Lcr

(
εin

cs.loc − εin
c1

)
, (6)

which can be rewritten as,

εin
cs.loc =

L
Lcr

(
εin

cs − εin
c1

)
+ εin

c1. (7)

The scaling rule for determining the localized inelastic strain εin
cs.loc in the critical

fracture zone is expressed by Equation (7), as shown in Figure 3.
Identifying the size of crushing zone: The modification of the post-peak strain-softening

behavior also requires a proper assumption of the size of the critical fracture zone Lcr,
which should be validated according to the size of the simulated crushing zone in the FE
analysis. Herein, an iterative procedure is proposed for identifying the value of Lcr via a
reasonable approach. As indicated by the flowchart of Figure 4, the assumed value Lcr.input
used to modify the post-peak branch of the compressive behavior as input data should be
verified according to the observed length Lcr.output of the simulated crushing zone in the
numerical result. Lcr.output can be visualized by contour plots highlighting the regions with
compressive strains larger than εc,lim.
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Figure 4. Proposed iterative procedure for identifying the reasonable length Lcr of the critical fracture zone.

As the reference constitutive model adopted in the present FE analysis, the Model Code
relation is reasonably accurate for specimens with a length of approximately 200 mm [14],
providing a fair benchmark to modify the post-peak branch with the specified length
L = 200 mm according to the scaling rule in Figure 3. The reasonable length of the critical
fracture zone is identified as Lcr = 100 mm via the proposed iterative procedure shown in
Figure 4. Details regarding the identification of Lcr are presented in Section 4.5.
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3.1.4. Concrete Damage Evolution

In the adopted CDP model, the concrete damage evolution is characterized by the
degradation of the material stiffness (i.e., the elastic modulus of concrete) in the post-
peak regime of the constitutive law. Figure 5 presents a generic stress–strain relationship
(Equation (8)) for concrete in uniaxial tension or compression:

ε(σ) = εel(σ) + εin(σ) =
σ

Ec0
+ εin(σ), (8)

where εel(σ), εin(σ), and ε(σ) represents the elastic, inelastic, and total strains, respectively,
at a given stress σ; the inelastic strain is εin(σ) = 0 when σ < σy (the inelastic strain εin
is commonly referred to as the cracking strain εcr in the description of concrete in tension).
Ec0 represents the initial elastic modulus of undamaged concrete.
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Figure 5. Damage evolution and degradation of the material stiffness beyond the peak stress
of concrete.

Considering the damage evolution beyond the peak stress, the initial elastic strain
εel(σ) in Figure 5 changes to ε̃el(σ) owing to the degradation of the elastic modulus from
Ec0 to Ecs according to Equation (9).

Ecs = Ec0(1− d), (9)

where, d is the damage factor to be defined for characterizing the damage evolution.
In the present FE analyses, the damage model proposed by Lubliner et al. [41] is

adopted, which assumes that in the post-peak regime, the degraded material stiffness
is proportional to the residual cohesion of the material. Considering that the material
cohesion can be correlated to the stress state, this leads to:

Ecs

Ec0
=

c
cmax

=
σ

f
, (10)

where c and cmax represent the material cohesion in the yield criteria corresponding to the
stress level σ and peak stress f , respectively. For concrete, f represents the concrete tensile
strength fct or compressive strength fc.

Substituting Equation (10) into Equation (9) yields the damage variable, as follows:

d = 1− σ

f
. (11)

Importantly, the defined damage variable must satisfy the condition that the equiva-
lent plastic strain ε̃pl should not decrease as the damage variable increases.
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3.2. Modeling of Steel Reinforcement

The steel reinforcement, including the longitudinal reinforcing bars and the transverse
stirrups, is modeled as a one-dimensional wire, to which the element type truss is assigned.
The material properties of the steel reinforcement are defined according to the results of
standard tensile tests performed in the laboratory. Figure 6 shows the tensile stress–strain
relationship defined for the steel reinforcement in the FE analyses, which is characterized
by the elastic modulus Es = 201 GPa, the yielding stress fsy = 510 MPa, the ultimate
tensile strength fsu = 617 MPa, the ultimate strain εsu = 12.0%, and the rupture strain
εsmax = 15.6%.
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Figure 6. Tensile behavior defined for the steel reinforcement.

3.3. Interaction between Concrete and Steel Reinforcement

The proper modeling of the bond–slip behavior between the concrete and the em-
bedded steel reinforcement is critical for obtaining clear discrete crack bands in the sim-
ulated beam model and reasonable flexural responses after the cracking point. In the
present FE analyses, the bond between the longitudinal reinforcement and the concrete
was assumed to be in good condition, and the bond–slip relationship according to Model
Code 2010 [15] is adopted. The Model Code bond–slip relationship is shown in Figure 7,
where τb.max = 17.9 MPa, τb.f = 0.4τb.max, s1 = 1.0 mm, s2 = 2.0 mm, and s3 = 5.0 mm.
The interaction between the stirrups and the concrete was modeled as embedded, assuming
a perfect bond with no relative slip (a simplification with negligible effects).
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Figure 7. Bond–slip relation between the (longitudinal) steel reinforcement and the concrete in good
bond condition according to Model Code 2010 [15].

To implement the bond–slip behavior in the FE model, the use of connectors to build
the node-to-node bond is proposed as a reference method. Another commonly applied
method using cohesive elements [2,54] is implemented for comparison. These two methods
are referred to as the connector method and the cohesive method, and corresponding
schemes are presented in Figure 8. An intermediary part is created as a copy of the
steel reinforcement wire but with a significantly lower material stiffness (e.g., 0.1% of
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Es). The intermediary part is embedded (i.e., nodes are fully constrained) in the concrete
continuum at the position of the steel reinforcement. The real steel reinforcement wire
is connected to the intermediary part instead of the concrete continuum, using either
connectors or cohesive elements. The chosen bond–slip relationship is finally assigned to
the connectors or cohesive elements. The main benefit of introducing such an additional
intermediary part is that the interaction properties assigned to the connectors or cohesive
elements are not affected by the mesh refinement of the concrete continuum.
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Figure 8. Illustration of the bond between the steel reinforcement and the concrete built using the
connector method or cohesive method.

3.3.1. Node-to-Node Connector Method

In the connector method, the bond–slip interaction is created using connectors (type:
translator) between the nodes of the steel reinforcement and the nodes of the concrete.
This method is adopted in the FE analyses as the reference modeling choice to assign the
bond–slip behavior. To facilitate the assignment of node-to-node connectors, a Python script
is developed to automatically implement multiple wire features between the neighboring
nodes of the reinforcement and concrete. These wires can be efficiently defined using a
suitable type of connector called translator, which allows uniaxial translation only in the
direction of the steel reinforcement between the connected nodes. Considering that the
bond–slip behavior is realized by discrete node-to-node connections, the bond force Vb,
rather than the bond stress τb, should be derived to define the bond at a given relative slip
s between the steel reinforcement and the concrete, as indicated by Equation (12). When
the connector method is used, for obtaining an accurate simulation of the nodal bond
forces and crack widths, the connector spacing (and the length of the steel reinforcement
elements) should not exceed the size of the concrete elements.

Vb = τbCssconn, (12)

where, Cs represents the total circumference of the steel reinforcement, and sconn represents
the distance between two neighboring node-to-node connectors.

3.3.2. Surface-to-Surface Cohesive Method

The cohesive method in ABAQUS can model the interfacial bond behavior in either
cohesive-contact or cohesive-element approach. The cohesive-contact approach defines the
cohesive behavior as part of a contact model with zero interface thickness. For instance,
this approach is used in [24,25] to efficiently define multiple interfacial responses in Mode
I and Mode II. As an alternative, the cohesive-element approach utilizes cohesive elements
to model the bond interface with a finite thickness; thus the interfacial response is charac-
terized by the constitutive behavior assigned to the cohesive elements [2]. The cohesive-
element approach allows to easily track damage evolution in the interface and visualize
the bond failure by removing the damaged cohesive elements. This is critical to capture
the debonding process of the CFRP plate in the current study (see Section 3.4). Therefore,
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the cohesive-element approach is also used here for modeling the steel-concrete interaction
in order to compare it with the proposed node-to-node connector method. The layer of
cohesive elements has a negligible thickness (1 µm in the current FE models) between the
steel reinforcement wire and the concrete continuum. The constitutive response of cohesive
elements was defined to represent the bond stress–relative slip relationship in Figure 7;
damage evolution was introduced to characterize the nonlinear response of softening and
degradation of elasticity.

3.4. Interaction between CFRP Plate and Concrete

In the modeling of the CFRP-strengthened beam, the bond between the CFRP plate and
the concrete was modeled in the cohesive-element approach, as described in Section 3.3.2,
in order to capture the debonding process induced by intermediate cracks. The 1 mm-thick
adhesive layer was modeled with cohesive elements. The constitutive response of the
cohesive elements was defined to represent the bond–slip model proposed by Lu et al. [55],
see Figure 9.
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Figure 9. Bond–slip model assigned between the CFRP plate and concrete.

3.5. Numerical Solution Strategy

The static analysis procedure is used for the reference FE model to solve the nonlinear
response of the RC beam subjected to monotonic loading. To overcome severe conver-
gence difficulties in the static analysis [8,26], the technique of viscoplastic regularization is
implemented and recommended (see Section 4.2). As an alternative to the static method,
numerical analyses can be performed in a dynamic procedure adopting an implicit or
explicit solution method. In Section 4.7, the dynamic analysis approach based on the
implicit Hilber–Hughes–Taylor–α solution method proposed by Chen et al. (2015) [7] is
implemented in comparison with the static analysis solution for validation.

4. Validation of Modeling Choices and Parametric Studies

According to the proposed modeling strategy, the modeling choices adopted in the
reference FE model were validated and analyzed via multiple groups of parametric studies.
Additionally, through the parametric studies, the effects of available modeling alternatives
were investigated, and the impacts of essential parameters were quantified.

4.1. Dilation Angles

The dilation angle—one of the parameters defining the concrete plasticity—should
be positive and in the range of 0◦–56.3◦. Malm (2009) [8] performed a parametric study
of the dilation angle in FE analyses of an RC beam subjected to a four-point bending
test. The results indicated that a dilation angle between 30◦ and 40◦ yielded converging
load–deflection curves having a good agreement with the experimental flexural behavior.
Jankowiak and Lodygowski (2005) [56] performed flexural tests on RC concrete beams in a
laboratory to identify the reasonable value of the dilation angle required in the CDP model.
A dilation angle of ϕ = 38◦ (and ε = 1.0) resulted in the best fit between the simulated
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flow potential surface and the experimental results of concrete beams ( fct = 2.8 MPa and
fc = 50 MPa). Therefore, in the proposed reference FE model, the dilation angle ϕ was set
as 35◦. This value was also used in previous studies of RC beams [2,8,57].

Additionally, a parametric study was performed in the present study to investigate
the effects of the dilation angle on the numerical results. Figure 10 shows the bending
responses for different dilation angles. The FE results indicated that ϕ = 35◦ was a
suitable choice providing fast convergence and a reasonable response comparable to the
experimental result. 35◦ ≤ ϕ ≤ 45◦ appeared to be a reasonable range, as the predicted
load–deflection curves converged to a similar flexural response and closely matched the
experimental response. However, a value lower (ϕ = 25◦) or higher (ϕ = 55◦) than this
range likely caused underestimation of the concrete resistance to crushing failure, leading
to failure (maximum load) at a smaller deflection. According to this parametric study and
the results of previous studies [2,8,57], the dilation angle of ϕ = 35◦ was validated and
recommended for the modeling of similar slender concrete beams subjected to bending.
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Figure 10. Load–midspan deflection relations for different dilation angles ranging from 15◦ to 55◦.

4.2. Viscosity Parameter

As mentioned in Section 3.1.1, the viscosity parameter can be prescribed for viscoplas-
tic regularization in the FE analysis to overcome the severe convergence difficulties in
nonlinear concrete problems using the static analysis procedure [26,58]. The viscoplasticity
introduced by µ permits stresses to be outside of the yield surface, improving the conver-
gence rate for the damaged concrete in the strain-softening regime. The default setting is
µ = 0, indicating that no viscoplastic regularization is introduced.

To appropriately introduce the viscoplastic regularization without compromising
the results, it is important to define an appropriate value of the viscosity parameter µ,
which is theoretically smaller than the characteristic increment in the step of the nonlinear
solution [26]. According to the checking of the automatically divided size of increments in
the loading step, a parametric study of the viscosity parameter was performed (in the range
of 10−3–10−9 with a tenfold decrease) to identify the reasonable value for the reference
FE model. The simulated load–deflection curves and crack patterns are shown in Figure
11, indicating the following: (1) a µ value that is too large (e.g., µ = 10−3 or 10−4) tends
to reduce the accuracy of the numerical results, leading to overestimation of the bending
response of the beam and the inability to obtain clear crack patterns with localized crack
bands; (2) a µ value that is too small (e.g., µ = 10−8 or 10−9), although not affecting
the simulated flexural behavior, can reduce the convergence rate and even abort the
analysis owing to convergence difficulties; and (3) the suitable µ range appears to be 10−5–
10−7. Within such a range, the FE analyses not only effectively overcome the convergence
problems arising from concrete cracking and crushing but also yield converging results
with negligible differences regarding the load–deflection curves and the crack patterns.
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Figure 11. Numerical results: (a) load–midspan deflection relations; (b) crack patterns in the RC
beam given the viscosity parameter µ ranging from 10−3 to 10−9.

According to the parametric study, the value of the viscosity parameter was selected as
10−6 in the reference FE model. The use of the viscoplastic regularization technique to solve
the convergence problems in the static analysis procedure is highly recommended. How-
ever, the viscosity parameter for a specific model should be carefully selected according to
parametric studies.

4.3. Concrete Tensile Behavior

The concrete tensile behavior is mainly characterized by the concrete tensile strength
fct, the fracture energy GF, and the post-peak behavior (i.e., the shape of strain-softening
curve after fct is reached). Considering the uncertainty of the parameters (i.e., fct and GF)
and the differences among the available post-peak constitutive models (see Figure 12), the
modeling choices adopted for the reference FE model were validated through parametric
studies of their impacts on the flexural responses (Figure 13) and cracking patterns.
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Figure 12. Concrete tensile behaviors considering (a) the uncertainty of the fracture energy GF, (b) pre-cracking at a lower
tensile strength fct, and (c) the differences among post-peak softening models, e.g., between Model Code 2010 [15] and
Hordijk [43].
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Figure 13. Numerical results for the load–midspan deflection relations obtained in the parametric studies on the modeling
choices for (a) the fracture energy GF, (b) the tensile strength fct, and (c) the post-peak softening behavior.
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Although the fracture energy GF in the reference model was defined as 148 N/m
according to Equation (1), the parametric study covered the wide range of 100–200 N/m
for the concrete material with a strength of fc = 51.1 MPa, according to fib Bulletin 42 [48].
The concrete tensile strength fct = 3.6 MPa was defined in the reference model, and lower
tensile strengths were assumed in the parametric study to investigate their effects, con-
sidering that cracks were observed before the testing date. In the parametric study of the
post-peak softening behaviors, the commonly used stress–crack opening model proposed
by Hordijk [43] was implemented and compared with the bilinear softening model adopted
in the reference FE model according to Model Code 2010 [15]. The numerical results for the
load–deflection curves (Figure 13) and crack patterns were reviewed. The results indicated
that in general, the modeling choices for the three variables had negligible effects on the
simulated load–deflection curves and cracking patterns, with the following exceptions:
(1) there was a small difference in the first load drop after the cracking point, and (2) the
number of cracks decreased from 8 to 7 when fct was reduced to 2.4 MPa.

4.4. Mesh Sensitivity Analysis

As discussed in Section 3.1.2, the crack band approach was implemented to address
the sensitivity of the numerical results to the concrete element sizes when the smeared crack
method was applied to model cracks in the concrete continuum. Therefore, it was necessary
to perform a mesh sensitivity analysis to verify the size-independence of the simulated
results. As shown in Figure 14, the concrete continuum of each model was discretized
into square elements with sizes (i.e., side lengths) ranging from 10 to 40 mm. Clearly, the
simulated load–deflection curves were not sensitive to the mesh discretization. With regard
to the accuracy and computational efficiency, the element size of 20 mm (20 × 20 in
Figure 14) appeared to be suitable for the reference FE model, as (1) the element size of
10 mm required a longer computational time and (2) mesh sizes of >30 mm (e.g., 40 × 40
in Figure 14) resulted in a smaller number of cracks and led to the underestimation of
the resistance to crushing failure in the concrete compressive zone, as the height of the
compressive zone after the yielding of the steel reinforcement was less than 40 mm.
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4.5. Strain-Softening Behavior of Concrete in Compression

In the modeling of the concrete compressive behavior, it is important to (1) consider
the strain localization in the critical fracture zone and (2) accordingly modify the post-
peak strain-softening behavior of the concrete in compression with the verified size of the
crushing zone Lcr.

As mentioned in Section 3.1.3, the stress–strain models characterized by the mean
strain tend to be size-dependent in the post-peak regime and cannot account for the strain lo-
calization in the fracture zone. For instance, the commonly used stress–strain relationships
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in Table 3 have different post-peak softening branches, as shown in Figure 15a. The dif-
ferences in the softening behaviors significantly affect the simulated flexural responses,
particularly in the ultimate state, as shown in Figure 15b. Thus, properly modifying the
softening behavior is necessary for accurately simulating the flexural failure of beams
governed by concrete crushing.
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Figure 15. (a) Stress–strain models—Model Code [14,15], Thorenfeldt [21], and Saenz [51]—for the concrete compressive
behavior with different post-peak softening branches; (b) load–deflection curves for FE analyses based on the stress–strain
models without modification.

The iterative procedure proposed in Figure 4 was followed to determine the actual
length of the critical crushing zone Lcr for the reference FE model. Figure 16a presents the
Model Code relation, including the original post-peak branch (Lcr.input = 200 mm) and
modified post-peak branches given an Lcr.input of 40–100 mm. Given the iterative assump-
tion of Lcr.input to modify the compressive behavior, the simulated flexural responses are
shown in Figure 16b. The contour plot in Figure 16d shows the field output of strains within
the constant-moment region of the beam model, where the concrete crushing zones are
represented by the black areas with compressive-strain values > εc,lim. The lengths of the
simulated crushing zones Lcr.output (in the compressive direction) were evaluated and com-
pared with the assumed length Lcr.input in each analysis, as shown in Figure 16c. When the
size of the critical crushing zone was assumed to be 100 mm (Lcr.input = 100 mm), the
assumption was verified by the simulated crushing zone (Lcr.output = 100 mm). Therefore,
in the reference FE model, the actual length of the critical fracture zone (i.e., compressive
crushing zone) was selected as Lcr = 100 mm, and this value was used to modify the
post-peak strain-softening behavior of the concrete in compression.

4.6. Bond between Steel Reinforcement and Concrete

The modeling choices to be validated for the bond between the steel reinforcement
and the surrounding concrete include the method of assigning the bond and the bond–slip
relationship.

The proposed connector method for assigning the steel-concrete bond was imple-
mented in the reference model and compared with the cohesive-element method for
validation. The numerical results for the flexural responses and crack patterns are shown in
Figure 17a, indicating that the proposed connector method can provide comparable results
to the cohesive method. No obvious difference was observed in the computational time
between these two bond methods.
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numerical results for the load–deflection relations and crack patterns.

The effects of the bond–slip behaviors (perfect, good, and poor bonds) on the flexural
behavior and crack pattern in the FE analyses were investigated. In a perfect bond, all the
degrees of freedom of the reinforcement nodes were constrained to the nearby concrete
nodes, and there was no relative slip. The good and poor bond behaviors refer to the
two bond–slip relationships provided in Model Code 2010 [15] corresponding to “good”
and “other” bond condition, respectively. As shown in Figure 17b, a comparison of the
flexural responses revealed that a weaker bond (poor bond) caused the earlier occurrence
of flexural failure due to concrete crushing, whereas the perfect bond led to a stronger
response after the cracking point. The significant differences in the crack patterns indicate
that selecting a suitable bond stress–slip relation is critical for the accurate simulation of
cracks, e.g., a poor bond relation led to the underestimation of the number of cracks. Thus,
the Model Code relationship for good condition (good bond) is a better option than the
one for poor bond in order to deliver flexural responses and crack patterns comparable to
the experimental observations.
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4.7. Static and Dynamic Analysis Procedures

The static analysis procedure (aided by the viscoplastic regularization technique) was
defined in the reference FE model. It was compared with an FE model using dynamic
implicit analysis based on the approach proposed by Chen et al. [7] for validation. In the dy-
namic analysis, critical choices and parameters included (1) ramp loading scheme, (2) load
time t0 = 180T1, where T1 = 0.033 s is the period of the fundamental vibration mode of
the beam found from an eigenvalue analysis of the FE model period, (3) viscous damp-
ing ratio ξ = 0.05, and (4) time increment size as T1/100. The corresponding numerical
results are presented in Figure 18, which shows well-matched flexural responses until the
maximum load of 62 kN with a deflection of 67 mm. The two methods predicted the same
number of cracks and similar crack distributions, although there were minor differences in
the positions of the cracks formed in the shear region. Thus, the static analysis procedure
adopted in the reference FE model was validated, as the predicted flexural response and
crack pattern were similar to those obtained via the dynamic approach.
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5. Comparison of FE Predictions with Experimental Results

The FE models of the reference RC beam and the CFRP-strengthened beam followed
the modeling strategy introduced in Section 3 and adopted the reference modeling choices
for RC validated in Section 4. The numerical results of the reference beam were compared
with the experimental measurements to examine the reliability of the predicted flexural
response, crack pattern, crack widths, and ultimate failure due to concrete crushing. The ac-
curate simulation of the reference beam laid the foundation for simulating the critical
failure of CFRP debonding initiated by intermediate flexural cracks. The FE analysis of the
CFRP-strengthened beam was chosen to show the applicability of the proposed modeling
strategy for RC members with additional complexity.

5.1. Reference RC Beam

The flexural responses are expressed as load–deflection behaviors in Figure 19. In gen-
eral, the load–deflection curve obtained from FE analysis matched the experimental mea-
surements; however, there were small differences in the cracking point and the ultimate
failure governed by concrete crushing. The weaker response measured in the cracking stage
of the experimental test was attributed to minor cracks present in the RC beam before the
test because of the concrete shrinkage and unexpected loading during the transportation
from the workshop to the laboratory. In the ultimate state, the FE analysis predicted that
the flexural failure would be initiated at a maximum load of 62.5 kN (midspan deflection
of 68 mm), whereas the loading process in the experimental test stopped (at 65.0 kN) when
concrete crushing was observed at the deflection of 79 mm. Although the FE analysis
slightly underestimated the ultimate capacity of the flexural failure, the degradation of the
flexural response was simulated well without convergence problems.
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Figure 19. Load–deflection curves of the reference RC beam from experimental measurements (EXP)
and FE analysis (FE).

Crack patterns and crack widths: The crack pattern documented at the load of 55 kN (the
last measurement round) is shown in Figure 20c. Although the FE analysis predicted one
less crack in half of the constant-moment region, the simulated crack pattern, in general,
was comparable to the distribution of cracks in the experimental test.
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Figure 20. Comparison of cracks formed in the reference RC beam at the load of 55 kN regarding (a) crack pattern; (b) crack
widths in the constant moment region (EXP: experimental results, FE: numerical results); (c) crack widths compared in
box-and-whisker plots and (d) assembled photos depicting the crack pattern after the flexural test.

The experimental and numerical results of crack widths within the constant moment
region are presented in Figure 20a and compared in box-and-whisker plots in Figure
20b depicting the quartiles, the variability, the median and mean values of the datasets.
The boxplot of the crack widths at the load of 55 kN indicated that the mean and median
values were similar between the experimental and numerical results, although there was
larger variability in the experimentally measured crack widths. After reaching 55 kN, no
new cracks occurred until the end of loading period; Figure 20d depicts the crack pattern
on the beam after the flexural test.

5.2. CFRP-Strengthened RC Beam

Reliable prediction of the fast-growing crack openings after the yield point is crucial,
as it is the foundation of advanced modeling with a focus on the consequential issues
triggered by the opening of cracks. This was demonstrated by the modeling of the CFRP-
strengthened beam; numerical results of the strengthened beam were compared to the
experimental measurements with respect to its flexural response, concrete cracking, and
CFRP debonding.
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Flexural behavior and CFRP debonding: The flexural responses of the CFRP-strengthened
beam are depicted with load–deflection curves in Figure 21a. To be highlighted, the
FE analysis predicted the debonding of CFRP plate induced by intermediate cracks (IC
debonding) at a maximum load of 104 kN (deflection 44 mm), which matched well with the
experimental observation of IC debonding at 105 kN (deflection 45 mm). The development
of IC debonding captured in the numerical simulation is shown in Figure 21b, including
the initiation at the intermediate flexural crack and the evolution visualized by the removal
of fully damaged adhesive (modeled as cohesive elements).
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and (b) intermediate cracks (IC) debonding of CFRP plate simulated in the FE analysis.

Crack patterns and cracks widths: Reliable prediction of the IC debonding is highly
dependent on the accurate simulation of cracks in the RC beam based on proper modeling
options. Crack pattern and crack widths in the FE analysis were checked with the exper-
imental measurements at different load levels. For example, Figure 22a–c demonstrates
the cracks experimentally measured at the load of 70 kN (the last measurement round) in
comparison to the numerical results at the same load. After 70 kN, no new cracks occurred
until the end of loading period; Figure 22d depicts the crack pattern on the beam after the
flexural test.
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As shown in Figure 22c, localized crack bands were formed and distributed in a clear
pattern, which was comparable to the experimental observation. Crack openings in the
constant moment region are shown in Figure 22a–b; the crack widths less than 0.1 mm
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are corresponding to the measurement of two minor cracks on each side of the beam.
Although the crack widths measured in the experiment showed larger variability than the
simulated ones, both the median and the mean value of the experimental measurements
were well captured in the numerical simulation. The reliable simulation of crack openings
laid the foundation for capturing the IC debonding of CFRP in Figure 21.

6. Summary and Conclusions

In this paper, a robust modeling strategy for reliable nonlinear FE analyses of RC
structures was proposed. The modeling choices adopted for the reference FE model were
validated through parametric studies and comparisons with other commonly used options;
the effects of these choices on the numerical results were investigated. The contributions of
this study are summarized as follows:

• Consistent approaches for deriving and defining the stress–strain relationships for
concrete in tension and compression with consideration of the damage evolution and
strain localization in the fracture zones of cracking and crushing concrete, respectively,
were comprehensively described;

• Principles and recommendations for appropriately determining crack band width in
structurally meshed concrete continuum to adjust the tensile stress–strain relationships
were discussed and proved effective in avoiding the mesh sensitivity problem;

• An iterative implementation procedure was proposed to modify the concrete com-
pressive stress–strain relationship in the post-peak regime according to the verified
size of the crushing zone for considering the strain-localization effect;

• A simple and robust method was proposed for assigning the steel-concrete reinforce-
ment interaction in ABAQUS using node-to-node connectors, and its accuracy was
confirmed via a comparison with the commonly used method based on cohesive
elements;

• Viscoplastic regularization using a properly defined viscosity parameter exhibited the
capability to overcome the convergence difficulties encountered in the simulation of
cracking or crushing concrete and thus significantly reduced the computational time;

• The proposed modeling strategy, as exemplified through the FE analyses of a refer-
ence RC beam, provided a reliable simulation of nonlinear responses including the
development of cracks and resistance to concrete crushing. The ability to capture
these effects on this simple case laid the foundation for the accurate modeling of CFRP
debonding induced by intermediate flexural cracks in the strengthened beam, which
provided an example of modeling RC structures with additional complexity.

Most of the recommendations presented in this paper for the nonlinear concrete
model are general and applicable to FE analyses of other quasi-brittle material models with
different FE software. The proposed modeling strategies can be directly used to model RC
beam and frame structures with different dimensions, loading configuration, and boundary
conditions. The current study also paves the way to FE analyses with higher degrees of
complexity.

Author Contributions: Conceptualization, A.M. and J.Y.; methodology, A.M. and J.Y.; software,
A.M. and J.Y.; validation, A.M. and J.Y.; formal analysis, A.M. and J.Y.; investigation, A.M. and J.Y.;
resources, A.M. and J.Y.; data curation, A.M. and J.Y.; writing—original draft preparation, A.M. and
J.Y.; writing—review and editing, A.M. and J.Y.; visualization, A.M. and J.Y.; supervision, A.M. and
J.Y.; project administration, A.M. and J.Y. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was financially supported by the European Union’s 7th Framework program
[grant number 31109806.0009]; the Swedish Transport Administration [grant number BBT-2017-037
and BBT-2018-011]; Sweden’s Innovation Agency [grant number 2017-03312]; the Swedish Wind
Power Technology Centre (SWPTC); and NCC.

Institutional Review Board Statement: Not applicable.



Materials 2021, 14, 506 23 of 24

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are contained within
the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Malm, R.; Holmgren, J. Cracking in deep beams owing to shear loading. Part 2: Non-linear analysis. Mag. Concr. Res. 2008, 6,

381–388. [CrossRef]
2. Chen, G.M.; Teng, J.G.; Chen, J.F. Finite-element modeling of intermediate crack debonding in FRP-plated RC beams. J. Compos.

Constr. 2011, 15, 339–353. [CrossRef]
3. Grassl, P.; Johansson, M.; Leppänen, J. On the numerical modelling of bond for the failure analysis of reinforced concrete.

Eng. Fract. Mech. 2018, 189, 13–26. [CrossRef]
4. Hendriks, M.A.N.; de Boer, A.; Belletti, B. Validation of the Guidelines for Nonlinear Finite Element Analysis of Concrete Structures—Part:

Reinforced Beams; Report RTD:1016-3A:2017; Rijkswaterstaat Centre for Infrastructure, Rijkswaterstaat Centre for Infrastructure:
Brussels, Belgium, 2017.

5. Schlune, H.; Plos, M.; Gylltoft, K. Safety formats for non-linear analysis of concrete structures. Mag. Concr. Res. 2012, 64,
563–574. [CrossRef]

6. Jirásek, M.; Bažant, Z.P. Inelastic Analysis of Structures; Wiley: Hoboken, NJ, USA, 2002; ISBN 0471987166.
7. Chen, G.M.; Teng, J.G.; Chen, J.F.; Xiao, Q.G. Finite element modeling of debonding failures in FRP-strengthened RC beams:

A dynamic approach. Comput. Struct. 2015, 158, 167–183. [CrossRef]
8. Malm, R. Predicting Shear Type Crack Initiation and Growth in Concrete with Non-Linear Finite Element Method; Royal Institute of

Technology: Stockholm, Sweden, 2009.
9. Camacho, G.T.; Ortiz, M. Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 1996, 33,

2899–2938. [CrossRef]
10. May, S.; de Borst, R.; Vignollet, J. Powell-Sabin B-splines for smeared and discrete approaches to fracture in quasi-brittle materials.

Comput. Methods Appl. Mech. Eng. 2016, 307, 193–214. [CrossRef]
11. Wells, G.N.; Sluys, L.J. A new method for modelling cohesive cracks using finite elements. Int. J. Numer. Methods Eng. 2001, 50,

2667–2682. [CrossRef]
12. Bažant, Z.P.; Oh, B.H. Crack band theory for fracture of concrete. Mater. Struct. 1983, 16, 155–177. [CrossRef]
13. Rots, J.G.; Nauta, P.; Kuster, G.M.A.; Blaauwendraad, J. Smeared crack approach and fracture localization in concrete. HERON

1985, 30, 48.
14. CEB-FIP. CEB-FIP Model Code 1990: Design Code; Thomas Telford: Lausanne, Switzerland, 1993.
15. Fib. Fib Model Code for Concrete Structures 2010; International Federation for Structural Concrete: Lausanne, Switzerland, 2013;

ISBN 978-3-433-03061-5.
16. American Concrete Institute. ACI 318-14 Building Code Requirements for Structural Concrete and Commentary (Metric); American

Concrete Institute: Farmington Hills, MI, USA, 2014.
17. Van Mier, J.G.M. Strain-Softening of Concrete under Multiaxial Loading Conditions. Ph.D. Thesis, Eindhoven University of

Technology, Eindhoven, The Netherlands, 20 November 1984.
18. Bažant, Z.P. Identification of strain-softening constitutive relation from uniaxial tests by series coupling model for localization.

Cem. Concr. Res. 1989, 19, 973–977. [CrossRef]
19. Jansen, D.C.; Shah, S.P. Effect of length on compressive strain softening of concrete. J. Eng. Mech. 1997, 123, 25–35. [CrossRef]
20. Zandi Hanjari, K.; Kettil, P.; Lundgren, K. Modelling the structural behaviour of frost-damaged reinforced concrete structures.

Struct. Infrastruct. Eng. 2013, 9, 416–431. [CrossRef]
21. Thorenfeldt, E.; Tomaszewicz, A.; Jensen, J.J. Mechanical properties of high-strength concrete and applications in design. In

Proceedings of the Symposium on Utilization of High-Strength Concrete, Stavanger, Norway, 15–18 June 1987; pp. 149–159.
22. Shu, J.; Fall, D.; Plos, M.; Zandi, K.; Lundgren, K. Development of modelling strategies for two-way RC slabs. Eng. Struct. 2015,

101, 439–449. [CrossRef]
23. Dassault Systèmes. Abaqus 6.14—Abaqus Analysis User’s Guide; Dassault Systèmes: Vélizy-Villacoublay, France, 2014.
24. Carloni, C.; D’Antino, T.; Sneed, L.H.; Pellegrino, C. Three-dimensional numerical modeling of single-lap direct shear tests of

frcm-concrete joints using a cohesive damaged contact approach. J. Compos. Constr. 2018, 22, 04017048. [CrossRef]
25. Ombres, L.; Verre, S. Experimental and numerical investigation on the steel reinforced grout (SRG) composite-to-concrete bond.

J. Compos. Sci. 2020, 4, 182. [CrossRef]
26. Dassault Systèmes. Abaqus 6.14 Theory Manual; Dassault Systèmes: Vélizy-Villacoublay, France, 2014.
27. Malm, R. Guideline for FE Analyses of Concrete Dams; Energiforsk: Stockholm, Sweden, 2016; ISBN 9789176732700.
28. Hanif, M.U.; Ibrahim, Z.; Jameel, M.; Ghaedi, K.; Aslam, M. A new approach to estimate damage in concrete beams using

non-linearity. Constr. Build. Mater. 2016, 124, 1081–1089. [CrossRef]
29. Alfarah, B.; López-Almansa, F.; Oller, S. New methodology for calculating damage variables evolution in plastic damage model

for RC structures. Eng. Struct. 2017, 132, 70–86. [CrossRef]

http://doi.org/10.1680/macr.2008.60.5.381
http://doi.org/10.1061/(ASCE)CC.1943-5614.0000157
http://doi.org/10.1016/j.engfracmech.2017.10.008
http://doi.org/10.1680/macr.11.00046
http://doi.org/10.1016/j.compstruc.2015.05.023
http://doi.org/10.1016/0020-7683(95)00255-3
http://doi.org/10.1016/j.cma.2016.04.023
http://doi.org/10.1002/nme.143
http://doi.org/10.1007/BF02486267
http://doi.org/10.1016/0008-8846(89)90111-7
http://doi.org/10.1061/(ASCE)0733-9399(1997)123:1(25)
http://doi.org/10.1080/15732479.2011.552916
http://doi.org/10.1016/j.engstruct.2015.07.003
http://doi.org/10.1061/(ASCE)CC.1943-5614.0000827
http://doi.org/10.3390/jcs4040182
http://doi.org/10.1016/j.conbuildmat.2016.08.139
http://doi.org/10.1016/j.engstruct.2016.11.022


Materials 2021, 14, 506 24 of 24

30. Kmiecik, P.; Kaminski, M. Modelling of reinforced concrete structures and composite structures with concrete strength degradation
taken into consideration. Arch. Civ. Mech. Eng. 2011, 11, 623–636. [CrossRef]

31. Labizadeh, M.; Hamidi, R. Effect of stress path, size and shape on the optimum parameters of a brittle-ductile concrete model.
Eng. Struct. Technol. 2017, 9, 195–206. [CrossRef]

32. Obaidat, Y.T.; Heyden, S.; Dahlblom, O. The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC
beams with FEM. Compos. Struct. 2010, 92, 1391–1398. [CrossRef]

33. Triantafillou, T.C. Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites. ACI Struct. J. 1998, 95,
107–115. [CrossRef]

34. Hollaway, L.C. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their
important in-service properties. Constr. Build. Mater. 2010, 24, 2419–2445. [CrossRef]

35. Cascardi, A.; Dell’Anna, R.; Micelli, F.; Lionetto, F.; Aiello, M.A.; Maffezzoli, A. Reversible techniques for FRP-confinement of
masonry columns. Constr. Build. Mater. 2019, 225, 415–428. [CrossRef]

36. CEN. EN 1992-1-1:2004. Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings; European
Committee for Standardization: Brussels, Belgium, 2004; p. 191.

37. ASTM. A615/A615M Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement; ASTM International:
West Conshohocken, PA, USA, 2016.

38. Yang, J.; Haghani, R.; Al-Emrani, M. Innovative prestressing method for externally bonded CFRP laminates without mechanical
anchorage. Eng. Struct. 2019, 197. [CrossRef]

39. Heshmati, M.; Haghani, R.; Al-Emrani, M. Durability of bonded FRP-to-steel joints: Effects of moisture, de-icing salt solution,
temperature and FRP type. Compos. Part B Eng. 2017, 119, 153–167. [CrossRef]

40. Rabbat, B.G.; Russell, H.G. Friction coefficient of steel on concrete or grout. J. Struct. Eng. 1985, 111, 505–515. [CrossRef]
41. Lubliner, J.; Oliver, J.; Oller, S.; Oñate, E. A plastic-damage model for concrete. Int. J. Solids Struct. 1989, 25, 299–326. [CrossRef]
42. Lee, J.; Fenves, G.L. Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 1998, 124, 892–900. [CrossRef]
43. Hordijk, D.A. Local Approach to Fatigue of Concrete. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands,

29 October 1991.
44. Pietruszczak, S.; Mróz, Z. Finite element analysis of deformation of strain-softening materials. Int. J. Numer. Methods Eng. 1981,

17, 327–334. [CrossRef]
45. De Borst, R. Non-Linear Analysis of Frictional Materials. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands,

22 April 1986.
46. Rots, J.G. Computational Modeling of Concrete Fracture. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands,

26 September 1988.
47. Oliver, J. A consistent characteristic length for smeared cracking models. Int. J. Numer. Methods Eng. 1989, 28, 461–474. [CrossRef]
48. Fib. Bulletin 42: Constitutive Modelling of High Strength/High Performance Concrete; International Federation for Structural Concrete

(fib): Lausanne, Switzerland, 2008.
49. Tomaszewicz, A. Betongens Arbeidsdiagram (Stress-Strain Relationship for Concrete), Report No. STF65 A84065; Sintef: Trondheim,

Norway, 1984.
50. Collins, M.P.; Porasz, A. Shear design for high strength concrete. In CEB Bulletin D’information no. 193; Comité Euro-International

du Béton: Lausanne, Switzerland, 1989; pp. 77–83.
51. Saenz, L.P. Discussion of equation for the stress-strain curve of concrete-by Desayi, P. and Krishan, S. J. Am. Concr. Inst. 1964, 61,

1229–1235.
52. Desayi, P.; Krishnan, S. Equation for the stress-strain curve of concrete. J. Am. Concr. Inst. 1964, 61, 345–350.
53. Popovics, S. A numerical approach to the complete stress-strain curve of concrete. Cem. Concr. Res. 1973, 3, 583–599. [CrossRef]
54. Yao, L.Z.; Wu, G. Nonlinear 2D finite-element modeling of RC beams strengthened with prestressed NSM CFRP reinforcement.

J. Compos. Constr. 2016, 20, 1–18. [CrossRef]
55. Lu, X.Z.; Teng, J.G.; Ye, L.P.; Jiang, J.J. Bond-slip models for FRP sheets/plates bonded to concrete. Eng. Struct. 2005, 27,

920–937. [CrossRef]
56. Jankowiak, T.; Lodygowski, T. Identification of parameters of concrete damage plasticity constitutive model. Found. Civ.

Environ. Eng. 2005, 6, 53–69.
57. Esmaeeli, E. Development of Hybrid Composite Plate (HCP) for the Strengthening and Repair of RC Structures. Ph.D. Thesis,

University of Minho, Braga, Portugal, 11 December 2015.
58. Lee, J.; Fenves, G.L. A plastic-damage concrete model for earthquake analysis of dams. Earthq. Eng. Struct. Dyn. 1998, 27,

937–956. [CrossRef]

http://doi.org/10.1016/S1644-9665(12)60105-8
http://doi.org/10.3846/2029882x.2017.1414636
http://doi.org/10.1016/j.compstruct.2009.11.008
http://doi.org/10.14359/531
http://doi.org/10.1016/j.conbuildmat.2010.04.062
http://doi.org/10.1016/j.conbuildmat.2019.07.124
http://doi.org/10.1016/j.engstruct.2019.109416
http://doi.org/10.1016/j.compositesb.2017.03.049
http://doi.org/10.1061/(ASCE)0733-9445(1985)111:3(505)
http://doi.org/10.1016/0020-7683(89)90050-4
http://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
http://doi.org/10.1002/nme.1620170303
http://doi.org/10.1002/nme.1620280214
http://doi.org/10.1016/0008-8846(73)90096-3
http://doi.org/10.1061/(ASCE)CC.1943-5614.0000659
http://doi.org/10.1016/j.engstruct.2005.01.014
http://doi.org/10.1002/(SICI)1096-9845(199809)27:9&lt;937::AID-EQE764&gt;3.0.CO;2-5

	Introduction 
	Experimental Test 
	FE Modeling Strategy 
	Modeling of Concrete 
	Concrete Plasticity 
	Concrete Tensile Behavior 
	Concrete Compressive Behavior 
	Concrete Damage Evolution 

	Modeling of Steel Reinforcement 
	Interaction between Concrete and Steel Reinforcement 
	Node-to-Node Connector Method 
	Surface-to-Surface Cohesive Method 

	Interaction between CFRP Plate and Concrete 
	Numerical Solution Strategy 

	Validation of Modeling Choices and Parametric Studies 
	Dilation Angles 
	Viscosity Parameter 
	Concrete Tensile Behavior 
	Mesh Sensitivity Analysis 
	Strain-Softening Behavior of Concrete in Compression 
	Bond between Steel Reinforcement and Concrete 
	Static and Dynamic Analysis Procedures 

	Comparison of FE Predictions with Experimental Results 
	Reference RC Beam 
	CFRP-Strengthened RC Beam 

	Summary and Conclusions 
	References

