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a b s t r a c t 

As-produced Cr-coated Optimized ZIRLO 

TM cladding material fabricated with the cold-spray (CS) deposi- 

tion process is studied. Cross-sectional electron microscopy, nano-hardness profiling, transmission elec- 

tron microscopy, transmission Kikuchi diffraction, and atom probe tomography (APT) were performed 

to investigate the nature of the CS Cr-coating/Optimized ZIRLO 

TM interface, the microstructure of the 

coating, and the effects of the deposition on the Zr-substrate microstructure. The former surface of 

the Zr-substrate was found to have a highly deformed nano-crystalline microstructure, the formation of 

which was attributed to dynamic recrystallization occurring during coating deposition. This microstruc- 

tural change, evaluated with electron backscattered diffraction and nano-hardness profiling, appeared to 

be confined to a depth of a few microns. Through APT analysis, a 10–20 nm thick intermixed bonding 

region was observed at the interface between coating and substrate. The chemical composition of this 

region suggests that this layer originated from a highly localized shearing and heating of a thin volume 

of the outermost former surface of the substrate. The study of the intermixed bonding region’s crystalline 

structure was performed with high resolution transmission electron microscopy and revealed a distorted 

hexagonal close-packed structure. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In 2011, the Fukushima Daiichi accident drew the attention of 

he nuclear community to the need for accident tolerant fuels 

ATFs). Since then, a renewed effort in research for light water re- 

ctors (LWRs) is reshaping this technology. The primary focus is 

o further improve safety measures under design basis accident 

DBA) and beyond design basis accident (BDBA) conditions [ 1 , 2 ]. 

his wave of materials renewal has also created the opportunity to 

olve or attenuate some of the issues associated with traditional 

uclear materials. The work currently being done globally on ATFs 

s divided between the development of new fuel designs and new 

ladding designs. In the case of ATF claddings, the main goal is to 

odify or substitute zirconium alloys to reduce high temperature 

team oxidation. Hence, reducing the formation of hydrogen and 

eat under accident conditions, while possibly also improving re- 

istance to debris fretting, oxidation and corrosion during normal 

peration [3] . Amongst various proposed ATF cladding concepts, 
∗ Corresponding author. 

E-mail address: fazi@chalmers.se (A. Fazi). 

a

t  

a

ttps://doi.org/10.1016/j.jnucmat.2021.152892 

022-3115/© 2021 The Authors. Published by Elsevier B.V. This is an open access article u
he concept of coated zirconium claddings has emerged as a near 

erm solution, while monolithic FeCrAl alloys and SiC/SiC ceramic 

omposites appear to be the choice for the long term [3] . The ap-

lication of a coating on zirconium claddings is particularly appeal- 

ng as it allows to drastically improve high temperature steam ox- 

dation resistance of this component without extensive changes to 

he design [4] . Metallic chromium coating has been profusely stud- 

ed and appears to reduce hydrogen pick-up and oxidation rates 

n pressurized water reactors (PWRs), to enhance the resistance 

o debris fretting and the mechanical properties of the cladding, 

herefore making it optimal both during operation and under acci- 

ent conditions [5–7] . Mainly two deposition methods of this coat- 

ng are being developed: physical vapour deposition (PVD) coatings 

 8 , 9 ] and cold-spray (CS) deposited coatings [ 10 , 11 ]. 

The CS technology is a well-established method for coating de- 

osition and deemed to be a good option for the application of 

orrosion resistant coating on ATF claddings [10] . It involves the 

xpansion of a pre-heated gas to accelerate micro-sized particles of 

 feedstock powder through a nozzle. The powder is accelerated up 

o velocities generally ranging between 30 0 and 120 0 m/s [ 12 , 13 ],

nd high strain-rate plastic deformation occurs upon the collision 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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f the particles with the substrate. If the particle velocity is above 

 critical value, the impact will result in the formation of a strong 

ond between the particle and the substrate [ 14 , 15 ]. The obtained

oating/substrate interface is characterised by a strong mechani- 

al interlocking due to the rough topography of the surface and by 

etallurgical bonding between the periphery of each particle and 

he substrate or the adjacent particles [16–18] . If compared with 

hemical vapour deposition (CVD) and PVD, the high deposition 

ates and the compatibility of CS with deposition at atmospheric 

ressure are important advantages of this method and allow for its 

asy application at industrial scale [19] . Unlike in laser deposition 

r thermal spray deposition, CS deposition does not presume total 

r partial melting of the feedstock particles. Hence, CS coatings are 

ess affected by oxidation of the feedstock, formation of oxide in- 

lusions, formation of intermetallic compounds or melting/mixing 

f the substrate surface [20–22] . Nevertheless, the high degree of 

lastic deformation that characterizes CS technology produces the 

ondition for chemical reactions to occur locally, and can induce 

hase transformation. These phenomena play an important role 

or particle adhesion [23–26] . Additionally, when exposed to high 

emperature, the abovementioned reactions might occur even after 

he deposition process is complete and this might induce a change 

n the properties of the component. CS coatings can have resid- 

al stresses (caused by the large amount of plastic deformation) 

nd fine grain size in the proximity of the coating/substrate inter- 

ace or between particles, making the material potentially prone to 

tress relaxation, recrystallization or grain growth if it is subjected 

o elevated temperatures [ 7 , 27 , 28 ]. 

CS chromium coatings on zirconium alloy claddings have shown 

xcellent adhesion, greatly improved oxidation resistance and de- 

reased hydriding, both in normal operation and in simulated ac- 

ident environment [ 7 , 10 , 29 ]. For exposures at 1130 °C or above,

he growth of a Cr-Zr intermetallic phase at the coating/substrate 

nterface was reported together with the formation of precipitates 

n the Zr substrate a few tens of microns below the interface with 

he coating [7] . These phenomena, in addition to stress relaxation, 

rain coarsening and recrystallization are typical consequences of 

eat treatments of CS coatings and are expected to occur even at 

ower temperatures [ 27 , 28 , 30 ]. Since CS Cr-coatings are designed to

ork as ATF in LWRs, the behaviour of such materials in operation 

nd under DBA and BDBA conditions needs to be understood and 

odelled thoroughly. In order to effectively predict the microstruc- 

ural evolution of the system and evaluate the ways in which the 

oating performance is influenced, in-depth characterization of the 

s-fabricated CS Cr-coated cladding is indispensable. 

In this work, the microstructure of as-deposited CS Cr-coated 

ptimized ZIRLO 

TM (OPZ) cladding is examined. The atom probe 

omography (APT) technique is used for the first time to investi- 

ate the chemistry of the CS Cr-coating/Optimized ZIRLO 

TM inter- 

ace and the nature of the metallurgical bond between the coat- 

ng and the Zr-alloy at the nano-scale. The results obtained from 

PT are compared and validated with high-resolution transmission 

lectron microscopy (HRTEM). Scanning electron microscopy (SEM) 

nd TEM are used to study the microstructure in the proximity of 

he interface at the micrometre scale, while, electron backscatter 

iffraction (EBSD) and transmission Kikuchi diffraction (TKD) are 

mployed to map grain size and grain orientation of the same re- 

ions. Finally, nano-hardness measurements are utilised to evaluate 

he depth of the substrate region affected by the coating deposition 

rocess. 

. Experimental methods 

Pristine CS Cr-coating on OPZ cladding, diameter 10 mm, was 

rovided by Westinghouse Electric Company. The coating was ob- 

ained by depositing pure Cr feedstock powder sieved to less than 
2 
4 μm in size onto the OPZ (0.8–1.2 wt.% Nb, 0.6–0.79 wt.% Sn, 

.09–0.13 wt.% Fe, 0.09–0.16 wt.% O, balance Zr) cladding, and the 

chieved particle velocity was 1200 m/s ( + /- 50 m/s). A 100 μm 

hick Cr layer was initially deposited, which was subsequently ma- 

hined down to 50 μm thickness. From the original tube, rings 

 mm in height were cut with a low-speed diamond saw. The ma- 

erial used for APT and TEM lift-out, was embedded in conduc- 

ive Bakelite, ground, then polished with SiC-paper and diamond 

article suspensions. Samples analysed with SEM, EBSD and nano- 

ardness measurements were prepared with the use of a broad 

on beam (BIB) Leica TIC3X. Cross-sectional SEM images were col- 

ected with a JEOL 7800F Prime microscope. Nano-hardness testing 

as performed with an Alemnis in-situ nanoindenter in a Zeiss 

ltra 55 FEG SEM instrument. A cube corner tip was used for 

ood visibility of the indenter tip in the SEM. The indentation ex- 

eriments were performed in the displacement-controlled mode 

o that the depth of penetration was close to 100 nm. On the 

ame area, EBSD mapping performed on a TESCAN GAIA3 equipped 

ith Oxford-NordlysNano detector was used to compare the nano- 

ardness results with the grain microstructure. Lift-outs for TEM 

nd APT analysis were performed using a dual-beam focused ion 

eam/scanning electron microscopy (FIB/SEM) in a FEI Versa 3D 

orkstation implementing well-known procedures for sample ex- 

raction and preparation [ 31 , 32 ]. TEM imaging was carried out on 

 FEI Tecnai T20 LaB 6 instrument and TKD mapping was conducted 

o correlate contrast and details in the TEM images with the grain 

oundaries present in the analysed samples. A LEAP 30 0 0X HR 

mago Scientific Instruments was used to collect the APT data. All 

amples were run in laser mode with 200 kHz laser pulse fre- 

uency, at 50–70 K specimen temperature, 0.3 nJ laser pulse en- 

rgy and 0.20% evaporation rate. CAMECA IVAS 3.6.14 software was 

sed for data reconstruction and data evaluation. HRTEM imaging 

as performed on a FEI Titan 80–300, operated at 300 kV. 

. Results 

.1. Overall structure of the coating/alloy system 

In Fig. 1 a an SEM image of a cross-section obtained with BIB is 

hown. The coating thickness is measured to be around 50 μm; the 

orphological roughness of the CS-Cr/OPZ interface is relatively 

igh and bulges of chromium wrapped by the substrate can be 

ound protruding into the zirconium. In Fig. 1 b a close-up on the 

nterface is presented. Here, it is possible to have a first glimpse 

t the highly deformed microstructure of the deposited Cr coat- 

ng, but such information cannot be obtained for the OPZ substrate 

n this image. Additionally, it is possible to notice a small poros- 

ty on the Cr-side (see Fig. 1 a), which presents sharp corners that 

an cause stress-concentration. The Cr/OPZ interface shows clear 

igns of plastic flow, the zirconium accommodates the Cr-particles 

y filling the gaps between them. In Fig. 1 c, a cross-section milled 

own with FIB is shown. On this sample, the outer surface of the 

ladding was ground and polished to reduce the thickness of the 

oating and allow the region of interest to be imaged clearly using 

he FIB/SEM. Here, the microstructure of the zirconium substrate is 

evealed more clearly, so that grains can be recognised by the dif- 

erent shades of grey produced by channelling contrast. The grain 

tructure appears more or less uniform across the imaged area but 

t becomes much finer in the proximity of the chromium. This finer 

egion seems to extend for approximately 1–2 μm into the sub- 

trate. As shown in Fig. 1 c, many second phase particles (SPPs) can 

e found in the substrate. These SPPs are normally expected in OPZ 

33] and are visible as dark spots in the image. The different sput- 

er yield values for Cr and Zr under the ion beam are responsible 

or the curtain effect visible in the lower half of Fig. 1 c [34] . 
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Fig. 1. As-deposited cold sprayed Cr-coated OPZ cladding. Low (a) and high (b) magnification SEM images of cross-section obtained with BIB. (c) SEM image of FIB prepared 

cross-section. 
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.2. Microstructure and deformation of the coating/alloy interfacial 

egion 

.2.1. Nano-hardness measurement 

The results of the nano-hardness measurements are presented 

n Fig. 2 a-b. The hardness is displayed as relative hardness, with 

he substrate hardness set to unity. On average, the chromium 

oating is harder than the zirconium substrate, with values fluc- 

uating between 1.7 and 3.5 times the substrate hardness. On the 

ther hand, the OPZ hardness reaches 3 times the bulk value in the 

mmediate proximity of the interface, then the hardness decreases 

harply in the first micrometre down to 1.5 relative hardness and 

oes down to the bulk value for distances of 10 μm and beyond. 

.2.2. Electron back scattered diffraction mapping 

The results from EBSD analysis are presented in Fig. 3 . Fig. 3 a

hows an overview of the mapped area, while Fig. 3 b displays a 

and contrast map of the same region. The CS-Cr/OPZ interface 

s delineated by a dark band where almost no point could be in- 

exed. The few Kikuchi patterns collected and indexed in this band 

ere identified as hexagonal Zr, in contrast to the body centred 

ubic structure identified for the Cr coating. This allows to allocate 

he CS-Cr/OPZ interface at the top edge of this black region. The 

icrostructure of both OPZ and Cr appears heavily deformed. The 

r presents alternating regions of finer and coarser grain structure 

hat can be associated with inter-particle boundaries and inner- 

article regions of the Cr powder particles utilized for the CS depo- 

ition. During coating deposition, most of the plastic deformation 

ccurs at the boundary between different powder particles, while 

he inner-particle regions suffer little plastic deformation. In the 

PZ, moving away from the interface, the grain size seems to in- 

rease. In approximately the first 10 μm of OPZ only fine grains 
3 
re found (up to 1 μm grain size). Then, some 3–5 μm sized grains 

tart to appear, still surrounded by micron-sized grains. Starting at 

his distance the microstructure can be considered unaffected by 

he deposition process, as it resembles quite well the microstruc- 

ure of an uncoated OPZ cladding shown in Figs. 3 d-e. Two differ- 

nt families of fine grains can be identified in the OPZ substrate. 

he nano-grains close to the interface, probably formed during the 

oating deposition, are far below one micron in size. Instead, the 

ne grains that can be found surrounding the bigger grains in the 

ulk are characteristic of a partially recrystallized microstructure 

35] and have an average size around 1 μm. Overall, the mapped 

icrostructure fits well with the nano-hardness measurements. 

he alternation of fine and coarse regions in the Cr layer, and small 

nd large grains in the Zr can explain the significant fluctuations in 

ardness in each area. Fig. 3 c shows the pole figures of the basal

nd prismatic directions (i.e. { 0 0 01 } and { 10 ̄1 0 } , respectively) for 

he mapped hexagonal Zr. The OPZ presents a certain degree of 

exturing, which is usually desired for Zr claddings, hence not sur- 

rising [36] . In the analysed sample the prismatic pole points along 

he axial direction of the cladding tube, while the basal pole seems 

o be mostly aligned towards the radial direction with a small off- 

et to both sides. The texture seems to be mostly unaffected by the 

oating deposition. 

.2.3. Bright field transmission electron microscopy and transmission 

ikuchi diffraction 

Bright-field TEM (BF-TEM) images of a lamella lifted-out per- 

endicularly to the CS-Cr/OPZ interface are presented in Fig. 4 . 

ig. 4 a shows for the most part the Cr side, the interface and a

mall portion of the OPZ substrate. The Cr grains appear highly 

eformed with sub-micron average grain size. The grain structure 

s layered, where plastic deformation and residual stresses can be 
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Fig. 2. Nanoindentation measurements on cross-section at the interface between coating and substrate (a), Nano-hardness measurements including two additional measure- 

ments in the bulk of the substrate (b). 

Fig. 3. EBSD mapping of cold spray Cr-coated OPZ-cladding: a) Electron image of the mapped area, b) EBSD band contrast map, c) Pole figures for { 0 0 01 } and { 10 ̄1 0 } plane 

families in the OPZ substrate. EBSD mapping of uncoated OPZ-cladding: d) Electron image and e) EBSD band contrast map. 

4 
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Fig. 4. BF-TEM images of CS Cr-coating/Optimized ZIRLO TM interface: Cr-side (a) and Zr-side (b). 

Fig. 5. STEM image (a) and TKD band contrast map (b) of CS Cr-coating/Optimized ZIRLO TM interface. 
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oticed in most of the grains. The Zr-side is displayed in Fig. 4 b,

here it is possible to see the nanocrystalline region at higher 

agnification, of which the SEM images offer a larger field-of- 

iew upon (see Fig. 1 ). To confirm the interpretation of the con- 

rast in the BF-TEM images, STEM imaging and TKD analysis of the 

ame sample were conducted. The resulting STEM image and band- 

ontrast map are contained in Fig. 5 a and Fig. 5 b, respectively. The

KD band contrast map defines quite clearly the grain structure 

f the Cr-side, in which the Cr grains appear deformed and elon- 

ated. Additionally, the size of the grains progressively increases 

oving away from the interface. In what appears to be the bulk 

f the deposited particles the grains are much larger than at the 

nterface with the OPZ. On the Zr-side the indexing was substan- 

ially lower and less information is provided for the substrate. In 

ny case, a few grains are visible and they seem to follow a sim- 

lar trend: smaller grains close to the interface with the coating 

nd grains gradually larger further away from the interface. In this 

ample, the layer of highly deformed, nanocrystalline Zr-substrate 

ppears to be at least 2 μm thick. Due to the turbulent nature of 

a

5 
he deposition process, it is reasonable to think that this nanocrys- 

alline layer might be thicker or thinner depending on where on 

he CS-Cr/OPZ interface it is measured. 

.3. Interface chemistry 

Atom probe analyses were performed with the objective of 

tudying the chemical nature of the interface region between the 

r coating and the OPZ substrate and an example of a 3D re- 

onstruction from such an area of interest is shown in Fig. 6 . 

n Fig. 6 a the collected Cr atoms (pink) are presented. It can be 

oted that three different regions are present: high, medium and 

ow concentration of Cr atoms representing, respectively, a portion 

f the Cr-coating, a layer with mixed composition and the sub- 

trate with few or no Cr atoms in it. The same can be noticed 

n Fig. 6 b regarding the Zr atoms (in blue). The interface between 

he Cr coating and the OPZ substrate, represented in these two 

mages, is characterized by the presence of a volume where Cr 

nd Zr are mixed together producing an intermixed bonding re- 
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Fig. 6. 3D reconstruction of APT data from the CS Cr-coating/Optimized ZIRLO TM interface and the area around. In (a) the distribution of Cr atoms (pink, 30% of ions are 

shown) is displayed, in (b) the distribution of Zr atoms (Blue, 30% of ions are shown) can be seen. An image of a 15 nm slice containing the intermixed bonding region 

(rotated 90 °) is presented, here the Cr atoms are in pink and the light-blue particles (isosurfaces at 4 at.% C) represent high concentration of C. 
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ion (IBR) between the two elements. In this reconstruction the 

ntermixed layer (parallel to the y-direction) appears to be around 

0 nm thick, but multiple APT measurements of the interface have 

emonstrated that the thickness of this region can vary from a few 

anometres up to a few tens of nanometres. The portion of the re- 

onstruction containing the IBR is extracted and rotated to better 

isualise features in it (see Fig. 6 c). The Cr atoms (pink) present in

he layer are unevenly distributed, volumes of high and low den- 

ity of Cr atoms become visible in this perspective. Beside the Cr- 

ich regions, areas of high oxygen concentration and some small 

arbides are also found. Fig. 6 c shows isoconcentration surfaces 

isosurfaces) produced at concentration of 4 at.% carbon (plotted 

n light-blue). From these isosurfaces it is possible to see the dis- 

ribution and sizes of such carbides. 

To go beyond visual evaluation of the reconstruction, a concen- 

ration profile through the reaction layer is presented in Fig. 7 a and 

 b (plots obtained as 1D concentration profiles along the axis of a 

ylindric region of interest (ROI) with 50 nm diameter, 2 nm step 

ize). In Fig. 7 a, concentration profiles of Cr, Zr and O are shown. It

s important to notice that the slopes of concentration in the prox- 
6 
mity of the Cr-rich and the Zr-rich sides differ quite substantially, 

he Cr/IBR interface appears to be sharper than the Zr/IBR inter- 

ace. Oxygen can be found almost exclusively in the IBR, where it 

eaches concentrations of around 7 at.%, it is not detected in the 

oating and slightly less than 1 at.% of O is found in the substrate. 

he behaviour of the main alloying elements of OPZ plus C is re- 

orted in Fig. 7 b. Fe, Sn and Nb can all be found both in the IBR

nd in the substrate but not inside the Cr coating itself. Niobium 

eems to have been depleted from the IBR, while Fe and Sn can 

e found in slightly higher amounts in the mixed region than in 

he OPZ substrate. The higher concentration of Fe in the IBR could 

e explained by the dissolution of SPPs, while Sn could have dif- 

used to the IBR during its formation. Carbon, originating probably 

rom impurities on the former surface of the coating, is measured 

nly inside the IBR where its concentration peaks at around 0.8 

t.%. The proximity histogram (proxigram) [37] shown in Fig. 7 c is 

alculated in 1D for the elements with respect to the carbide iso- 

urfaces displayed in Fig. 6 c. From this graph it is possible to de- 

ermine the nature and composition of these carbides. Most of the 

arbon found in the IBR is concentrated in these carbides, which 
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Fig. 7. (a). and (b) Concentration profiles across the intermixed bonding region found at the CS Cr-coating/Optimized ZIRLO TM interface. (c) Proxigram for carbides found 

embedded in the intermixed bonding region. 
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re mostly zirconium carbides with some substantial contents of 

r and O. 

In the OPZ substrate, segregation and accumulation of elements 

long interfaces were frequently found. Fig. 8 contains three differ- 

nt reconstructions obtained, respectively, at the interface, at 100–

00 nm and at 1–2 μm from the interface. For each dataset, the 

istribution of Cr, Fe and Nb is displayed separately. The first thing 

o notice is that Cr in the OPZ substrate can be found only very 

lose to the interface and a few hundred nanometres away from 

t. There is no Cr detected at 1–2 μm from the coating. Moreover, 

ost of the Cr found in the OPZ is segregated at interfaces that can 

e identified as sub-grain boundaries, grain boundaries or phase 

oundaries. Fe appears often to be coupled with Cr along the same 

nterfaces but it can be found also 1–2 μm away from the interface. 

b can be found in SPPs, at grain boundaries and dissolved in the 

atrix: adjacent to the interface, Nb it is segregated along with Cr 

nd Fe; further away it is almost totally concentrated in β-Nb SPP; 

nd at 2 μm from the coating Nb is evenly distributed in the OPZ 

atrix. 

Detailed concentration profiles for the aforementioned segrega- 

ions are plotted in Fig. 9 . In the case of the sample adjacent to

he interface the trend for Cr, Fe and Nb across the more promi- 

ent accumulation of alloying elements is shown in Fig. 9 a. From 

his graph it is clear that Cr, Fe and Nb are accumulating quite sub- 

tantially. The width of the enriched region is about 20 nm which 

xcludes the hypothesis of it being a grain boundary. The Fe con- 

ent in the selected volume reaches 8 at.%, Nb rises above 4 at.% 

nd Cr peaks at around 2 at.%. The presence of Cr can be explained

y diffusion from the coating into the substrate during deposition. 

f

7 
he high amount of Fe and Nb in such a wide region suggests the 

issolution of an SPP due to localized heat and shear. In the re- 

onstruction of the sample at 10 0–20 0 nm from the interface, two 

nriched areas can be found (see Fig. 9 b and Fig. 9 c). In this case

he segregation is lower and the width of it is around 5 nm, which 

onsidering possible local magnification effects makes it likely to 

e grain boundaries. Cr can be found at both grain boundaries with 

aximum values respectively of 0.70 and 1.25 at.% (Cr Gibbs in- 

erfacial excess ( �Cr ) [38] of 0.69 atoms 
n m 

2 and 0.75 atoms 
n m 

2 ). These are 

maller concentrations if compared with the previous case: being 

urther away from the interface it is reasonable to assume that less 

r has managed to diffuse there. Additionally, the grain boundary 

lotted in Fig. 9 c has also a small amount of Fe segregated to- 

ether with the Cr, and the Fe top concentration is 0.30 at.% ( �Fe of

.19 atoms 
n m 

2 ). In contrast, when measuring the composition profiles 

or grain boundaries at 1–2 μm distance from the interface, no Cr 

ould be found, as shown in Fig. 9 d. At this distance though, it is

ossible to find Fe segregating at the grain boundary, as normally 

xpected in OPZ alloys, [ 39 , 40 ]. In Fig. 9 d Fe enrichment amounts

o 0.40 at% corresponding to �Fe of 0.58 atoms 
n m 

2 . 

.4. Crystal structure of the interfacial region 

HRTEM was used to image the interfacial region and study the 

rystalline structure of the IBR complementary to the APT results. 

n Fig. 10 , HRTEM images of the interface are presented. Here, it 

s possible to notice the presence of lattice fringes over the entire 

mage. The diffraction patterns obtained through fast Fourier trans- 

orms (FFTs) from the Cr and Zr regions correspond to an HCP- 
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Fig. 8. 3D reconstruction of the elemental distribution of Cr, Fe and Nb in atom probe samples extracted respectively from the area around the CS Cr-coating/Optimized 

ZIRLO TM interface, 10 0–20 0 nm away from the interface, and 1–2 μm into the OPZ substrate. 

Z

t

s

t

t

b

b

t

t

f

Z

o

3

i

s

t

c

4

4

4

w  

f

t

d

p

g

r  

l

f

i

a

p

m

m

t

c

a

r

e

s

c

d

t

u

t

t

t  

i

v

s

4

t

r and a BCC 

–Cr crystalline structure, respectively, confirming that 

he image was taken at the interface between the coating and the 

ubstrate. The presence of lattice fringes and the associated diffrac- 

ion pattern obtained from the interfacial region allow to affirm 

hat the IBR is crystalline and not amorphous, as it has sometimes 

een reported for other CS coating/substrate systems [ 41 , 42 ]. This 

onding region is indexed as an HCP-Zr structure with some dis- 

ortion, most likely due to a significant supersaturation of Cr in 

he Zr lattice. It is relevant to highlight that in the IBR the lattice 

ringes are well defined only over small areas, while for the Cr and 

r regions the same orientation is maintained over large portions 

f the image. Across Fig. 10 a-b the IBR varies in thickness between 

 nm and 16 nm, in accordance with the APT results where a sim- 

lar degree of variation in thickness was observed between recon- 

tructions. As the thickness varies, the morphology might change 

oo and there could also be regions where the bonding layer is not 

rystalline or has a different crystalline structure. 

. Discussion 

.1. CS Cr-coating/Optimized ZIRLO 

TM interface 

.1.1. Mechanical interlocking 

From the microscopy results, the interface appears to conform 

ith a typical CS coating/substrate interface [ 14–16 , 43 , 44 ]. The ef-

ects of the difference in hardness and yield strength between the 

wo materials can be seen in the way that the zirconium substrate 

eforms to a much higher degree. This type of deformation is ex- 

ected to produce dynamic recrystallization that leaves a small 
8 
rain size and a high concentration of dislocations in both mate- 

ials [ 14 , 27 , 45 ]. In fact, SEM, EBSD, TKD and BF-TEM analysis out-

ined such a microstructure: nanocrystalline regions and highly de- 

ormed grains at the microscale; morphologically rough CS-Cr/OPZ 

nterface with bulges of Cr metal wrapped by the OPZ substrate 

t a larger scale. The formation of a thin layer of intermixed com- 

osition was observed. This indicates that locally the temperature 

ust have been quite high, since the formation of a Cr-Zr inter- 

etallic compound was reported to form only in material exposed 

o high temperatures [7] . The formation of a brittle intermetallic 

ompound at the interface between coating and substrate is usu- 

lly considered extremely harming to the coating adhesion. It can 

esult in delamination or spallation of the coating associated with 

xposure of the substrate and loss of corrosion protection. In the 

tudied case, though, the geometry of the interface produces a me- 

hanical interlocking that can prevent any macroscopic stress to 

irectly load the presumably brittle interface. As a result, the in- 

erface is exposed to a mixture of compressive and tensile stresses 

nable to cause actual spallation. The effectiveness of this struc- 

ure is confirmed by the wide range of corrosion and mechanical 

ests performed on CS Cr-coated OPZ claddings with no delamina- 

ion of the coating reported [ 7 , 10 , 29 ]. The mentioned mechanical

nterlocking is therefore to be considered a strong advantage pro- 

ided by the CS deposition method that guarantees strong adhe- 

ion between the coating and the substrate. 

.1.2. Metallurgical bonding: the intermixed bonding region 

The APT results highlighted the presence of an IBR at the in- 

erface between coating and substrate. This IBR was found to be 
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Fig. 9. Concentration profiles for Fe, Nb and Cr at different locations: (a) Concentration profile across dissolved SPP adjacent to the CS Cr-coating/Optimized ZIRLO TM in- 

terface; (b) and (c) concentration profiles across Cr-enriched and Fe/Cr-enriched grain boundaries few hundreds of nanometres away from the interface, (d) concentration 

profiles through Fe-enriched grain boundaries 1–2 μm into the OPZ bulk. 

Fig. 10. HRTEM of two regions of the CS Cr-coating/Optimized ZIRLO TM interface: Cr-side at the top, Zr-substrate at the bottom of the images, intermixed bonding region 

(highlighted with a red dashed line) cuts across the centre of the image left to right. 
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resent in all analyses with the same general features; hence, 

t can be considered a characteristic of the studied system. This 

ixed region has a thickness that varies between a few nanome- 

res up to a few tens of nanometres; and a composition of about 

0–70 at.% Zr, 30–40 at.% Cr, with up to 8–10 at.% O and 0.80 at.%

 (see Figs. 6-7 ). Fe, Sn and Nb (all alloying elements used in OPZ
9 
46] ) can be found in this layer as well. Overall, the composition 

f the region suggests that this layer has been produce by a highly 

ocalised shearing and heating of a small volume of the OPZ sub- 

trate and the Cr-particles. This process, referred to as adiabatic 

hear instability mechanism for particle/substrate bonding, is of- 

en deemed responsible for the formation of the strong metallur- 
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ical bonding typical for cold spray deposition [ 17 , 47–49 ], and it

ould be the cause behind the formation of the measured IBR. In 

articular, the localized heat spike could have promoted significant 

ulk diffusion of Cr into the Zr-substrate, explaining the high con- 

ent of Cr measured in the IBR. The oxygen content (8–10 at.%) is 

ore difficult to explain. The dissolution of the native oxide scale 

nto the IBR seems unlikely due to the extremely short duration 

f a particle collision, and it is too low to be attributed to the di-

ect presence of ZrO 2 . This amount of oxygen seems to be closer 

o the typical composition of the Zr metal laying underneath the 

rO 2 scale, this region is called oxygen diffusion zone (or Zr(O)), 

t forms during Zr oxidation [50] and it is normally found ahead 

f the oxide front. The amount of O in it can vary from 1 at.%

O content in Zr-alloys) up to around 30 at.% where saturation is 

eached [ 51 , 52 ]. The studied material was as-fabricated, the oxide 

ormed on Zr in air at room temperature is usually extremely thin, 

n the order of 5–20 nm [53] , followed by a thin oxygen diffu-

ion zone. The IBR composition seems to line up with that of an 

xygen diffusion zone, but this would require an explanation for 

he disappearance of the native oxide scale. The oxide scale evo- 

ution during cold spray deposition is well documented in litera- 

ure for other coating/substrate systems [54–56] and could explain 

hy the native oxide is not found at the coating/substrate inter- 

ace and why 8–10 at.% O is found in the IBR. During deposition, 

art of the native oxide is lost due to the high velocity impact, 

he remaining part is still present at the coating/substrate inter- 

ace but it has been cracked into small segments and pulled apart 

o accommodate the plastic deformation of the metal. The result 

s small segments of oxide that are sparse and far between. This 

rocess uncovers the Zr substrate underneath exposing the oxygen 

iffusion zone which ends up forming the IBR. The carbon could be 

xplained as residue of grease or some other contaminant present 

n the cladding surface before the deposition of the coating. Zirco- 

ium has lower hardness than chromium, when impacted by a Cr- 

article, Zr is subjected to a higher degree of plastic deformation. 

his can be clearly appreciated from the SEM images in Fig. 1 and 

rom the EBSD maps in Fig. 3 . The heat locally produced during 

diabatic shear is strictly correlated to the amount of plastic flow 

 25 , 57 ], thus it is reasonable to expect more heat generated in the

ubstrate with Zr being the most affected by the adiabatic shear 

nstability phenomenon. Another proof of the heat spike behind 

he formation of the IBR is the presence of carbon, found mostly 

n the form of zirconium carbides. As shown by Fig. 7 c, outside 

he carbides, the concentration of carbon in the IBR is essentially 

ero. All the carbon seems to be contained in these zirconium car- 

ide particles that cannot form at room temperature. The expo- 

ure to elevated temperatures, even if only for a short time, could 

xplain how these nanometre-sized Zr-carbides have formed. The 

 concentration inside the measured carbides approaches 30 at.%, 

ut the thermodynamically allowed composition range for ZrC is 

3–49.6 at.% [58] ; additionally, Zr concentration peaks in the prox- 

mity of the carbide/IBR interface as if Zr was diffusing out of the 

arbides in an attempt by the system to reach equilibrium before 

eing frozen in a metastable state. The IBR had a distorted HCP-Zr 

rystalline structure, as obtained from the HRTEM data ( Fig. 10 ), 

hich would sustain the hypothesis of the adiabatic shear insta- 

ility affecting almost exclusively Zr. As can be seen in Fig. 6 c, the

BR is characterised by the presence of regions of higher and lower 

oncentration of Cr. This inhomogeneity of the layer could both be 

nterpreted as incomplete mixing or as an attempt by the system 

o separate into more thermodynamically stable phases. Since the 

arbides had time to form depleting almost all carbon from the 

BR matrix, there must have been enough time for some diffusion 

o occur also for Cr and Zr. This suggests that the fluctuations in 

he Cr content should be interpreted as the initial stage of a phase 

eparation, but because Zr and Cr diffuse much slower than car- 
10 
on they would have required more time to reach equilibrium. The 

hickness of the IBR was found to vary depending on where on the 

S-Cr/OPZ interface it was measured. This is caused by the chaotic 

ature of the CS deposition method on the microscopic scale: most 

f the energy of the impact is transmitted to the substrate in prox- 

mity of the forefront of the incoming particle, while other regions 

xperience less intense shear stresses [ 43 , 45 ]. As a consequence, 

he IBR formed at the initial point of contact with the particle will 

ave been exposed to different conditions from the IBR formed at 

he periphery of the impact. It is relevant to underline that due to 

he rapid cooling, the phases that form the IBR are not in thermo- 

ynamic equilibrium [59] . Looking at a Cr-Zr phase diagram [60] it 

s easy to see that the overall composition measured for the layer 

Zr 60–70 at.% and Cr 30–40 at.%) falls into a field where α-Zr and 

rCr2 co-exist. If kinetically allowed by a sufficiently high tempera- 

ure, the IBR is expected to evolve forming both phases. Moreover, 

he presence of the IBR at the interface might facilitate the forma- 

ion of new phases by reducing substantially the energy needed 

or nucleation. CS Cr-coatings on OPZ cladding were reported to 

orm the ZrCr2 intermetallic compound when exposed to temper- 

tures above 1130 °C (for 10 min) [7] and the same phenomenon 

as reported on Zr-Cr diffusion couples for a temperature as low 

s 750 °C when exposed for longer times [30] . In these studies, the 

ormation of the intermetallic compound did not result in spalla- 

ion of the coating but it is still important to keep in consideration 

hat the presence of this IBR could have an effect on phase nu- 

leation and growth, particularly at elevated temperature or under 

rradiation. 

.2. Effects on the substrate microstructure 

.2.1. Heat affected zone and the chemistry of grain boundaries 

Small amounts of Cr were measured in the OPZ substrate, and 

his finding was restricted to the substrate region immediately 

lose to the coating interface. Chromium is not amongst the alloy- 

ng elements used in OPZ [46] , which implies that the measured Cr 

ust have diffused from the coating into the Zr. Besides, the range 

f this diffusion is limited, and no Cr was found in the APT recon- 

truction of a sample lifted-out at 1–2 μm distance from the CS- 

r/OPZ interface, as can be seen in Fig. 8 . It is possible to assume

hat the same heat spike that allowed the formation of the IBR 

ould have produced the conditions for grain boundary diffusion 

f Cr to occur. Diffusivity along grain boundaries is usually 2–5 or- 

er of magnitude higher than bulk-diffusivity [61–63] , and consid- 

ring the high density of grain boundaries found in the nanocrys- 

alline layer, it is possible to imagine Cr atoms penetrating into 

he Zr-substrate along the network of grain boundaries to distances 

f few hundreds of nanometres. Interestingly, no Zr was found in 

he Cr coating. The reported diffusion coefficient of Cr into Zr is 

any orders of magnitude higher than the diffusion coefficient of 

r into Cr or Zr self-diffusion [ 30 , 64–67 ]. It is therefore reason-

ble to find Cr diffusing into the OPZ substrate without any mea- 

urable amount of Zr diffusing into the coating. This can be inter- 

reted as a thin heat affected zone (HAZ) located in the substrate 

mmediately adjacent to the IBR. The thickness of the HAZ seems 

o be less than 1–2 μm, probably not making it detrimental for the 

verall cladding performance. Another marker that can be used to 

stimate the extent of the HAZ is the distribution of SPPs in the 

ubstrate. As it is displayed in Fig. 1 b, SPPs can be found evenly

istributed over the cross-section. The only hint to the presence of 

 HAZ is a thin layer depleted of SPPs. This layer close to the in-

erface appears to be thinner than 0.5 μm in this image. Moving 

o the APT data in Fig. 8 , what looks like a dissolved SPP can be

ound at 50 nm distance from the interface, while at 10 0–20 0 nm 

rom the interface an unaltered β-Nb SPP is detected. In conclu- 

ion, the HAZ seems to extend for a few hundreds of nanometres 
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rom the interface, SPPs are dissolved in the first 100 nm and Cr 

enetrates along grain boundaries into the Zr-substrate for at least 

0 0–20 0 nm. 

.2.2. Nano-crystalline layer 

A highly deformed nanocrystalline layer can be identified al- 

eady from the SEM images. Here, it is possible to see the high 

egree of deformation that characterizes both materials, in partic- 

lar the OPZ. Further confirmation of the presence of this layer is 

btained from the EBSD, BF-TEM and TKD data presented in Figs. 3 , 

 and 5 , respectively. In the EBSD map in particular, this layer ap-

ears as a 1–4 μm thick dark band in the OPZ substrate just be-

ow the CS-Cr/OPZ interface. The same region is analysed in fur- 

her detail at higher magnification in the TKD map where some 

f the nano-sized grains start to become more defined and visible. 

he volume of material in question has undergone a high degree of 

lastic deformation. The plastic flow has induced the generation of 

 large amount of dislocations, which beyond a certain concentra- 

ion start to organize and align forming sub-grain boundaries and 

onsequently new grain boundaries. This process of in-situ grain 

efinement via dynamic recrystallization is a direct consequence 

f the CS deposition method and it is well documented for many 

oating/substrate systems obtained through the use of this tech- 

ique [ 45 , 68 ]. It is difficult to obtain clear Kikuchi bands from this

ayer, which is highly deformed and nano-sized. This explains the 

ow band contrast and the dark colour that identifies this region in 

KD and EBSD maps. Nevertheless, it is possible to see that the size 

f the grains that form the layer starts far below 1 μm (probably 

own to 100 nm in size) close to the CS-Cr/OPZ interface and grad- 

ally becomes larger while moving into the bulk of the substrate. 

eyond the edge of the dark band, the grains begin to grow in 

ize larger than 1 μm, but the effects of the coating deposition on 

he substrate microstructure extend up to 10–15 μm from the CS- 

r/OPZ interface. Only at this distance the alternating of large and 

ne grains that characterizes the microstructure of a partially re- 

rystallized OPZ cladding starts to come back (see Figs. 3 b and 3 e).

ince the cladding wall is around 900 μm thick, this effect does 

ot influence the overall mechanical properties of the cladding. Be- 

ides, diffusion is enhanced in nanocrystalline materials due to the 

igh density of lattice defects and grain boundaries. As a conse- 

uence, the presence of the reported nanocrystalline layer could 

otentially modify the local behaviour of the OPZ alloy, particu- 

arly in respect of diffusive processes such as corrosion [69] . Addi- 

ionally, nanocrystalline materials can be prone to recrystallization 

t relatively low temperatures [70] . This suggests that it could be 

ossible for this nanocrystalline layer to undergo recrystallization 

ven at reactor operating temperatures. 

. Conclusions 

The microstructure of an as-fabricated CS Cr-coating deposited 

n an OPZ alloy cladding is studied with particular focus on the in- 

erfacial region between the coating and the substrate. The coating 

ppeared to be highly plastically deformed and mechanical inter- 

ocking could be observed between the coating and the substrate, 

s expected for a component produced with CS technology. A 10–

0 nm thick, crystalline, IBR was discovered at the CS-Cr/OPZ inter- 

ace. This layer is thought to have formed during the CS deposition 

rocess as a consequence of localized shearing and heating of the 

utermost surface of the cladding resulting in the bulk diffusion of 

r from the adjacent Cr-coating into the Zr-substrate, as suggested 

y its chemical composition. A secondary effect caused by this lo- 

alized temperature spike is the presence of a HAZ that extends a 

ew hundred nanometres into the substrate. The HAZ is outlined 

y the presence of Cr into the substrate at grain boundaries. At a 

arger scale, the intense shear stresses and plastic deformation at 
11 
hich the periphery of sprayed particles and the substrate surface 

re exposed during deposition have produced a nano-crystalline 

ayer. The nano-crystalline layer is characterized by grains ranging 

n size from below 100 nm (adjacent to the interface) up to almost 

 μm (at 10 μm distance from the interface) before the reestab- 

ishment of the unaffected microstructure of the bulk. Overall, the 

etallurgical bonding and the mechanical interlocking guarantee a 

ery good adhesion of the coating while the nano-crystalline vol- 

me is reckoned too thin to have any significant effect on the me- 

hanical properties of the cladding. However, it is relevant to take 

he following effects into consideration; i) the presence of the ob- 

erved IBR can greatly reduce the energy barrier for the nucleation 

f new phases at the CS-Cr/OPZ interface, ii) the increased density 

f grain boundaries in the nano-crystalline region could facilitate 

nwanted diffusion processes, iii) the nano-crystalline layer could 

ndergo recrystallization at relatively low temperatures. 
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