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ARTICLE OPEN

Cell polarisation in a bulk-surface model can be driven by both
classic and non-classic Turing instability
Johannes Borgqvist1, Adam Malik1, Carl Lundholm1, Anders Logg 1, Philip Gerlee1 and Marija Cvijovic 1✉

The GTPase Cdc42 is the master regulator of eukaryotic cell polarisation. During this process, the active form of Cdc42 is
accumulated at a particular site on the cell membrane called the pole. It is believed that the accumulation of the active Cdc42
resulting in a pole is driven by a combination of activation–inactivation reactions and diffusion. It has been proposed using
mathematical modelling that this is the result of diffusion-driven instability, originally proposed by Alan Turing. In this study, we
developed, analysed and validated a 3D bulk-surface model of the dynamics of Cdc42. We show that the model can undergo both
classic and non-classic Turing instability by deriving necessary conditions for which this occurs and conclude that the non-classic
case can be viewed as a limit case of the classic case of diffusion-driven instability. Using three-dimensional Spatio-temporal
simulation we predicted pole size and time to polarisation, suggesting that cell polarisation is mainly driven by the reaction
strength parameter and that the size of the pole is determined by the relative diffusion.

npj Systems Biology and Applications            (2021) 7:13 ; https://doi.org/10.1038/s41540-021-00173-x

INTRODUCTION
Cell division control protein 42 homologue, Cdc42 is an enzyme of
the class GTPases that regulates various signalling pathways
involved in cell division and cell morphology1,2. It is one of the
most conserved GTPases where the Cdc42 in yeast is 80%
identical to that in human cells3. In the late G1-phase during the
cell cycle, a sequence of events causes the accumulation of
Cdc424, which is the master regulator of cell division, at a specific
location on the cell membrane. This location is called the pole
which is the site where the new cell grows out and the latter
process is called budding in the case of the yeast Saccharomyces
cerevisiae. Moreover, in the cytosol Cdc42 is bound to GDP which
corresponds to its inactive state while it is bound to GTP in the
membrane corresponding to its active form. The conversion
between these two states is catalysed by the two classes of
enzymes called GEFs and GAPs. It is believed that it is the
combination of these reactions of activation and inactivation
along with diffusion that results in the accumulation of active
Cdc42.
Experimentally, the challenge with studying the activation of

Cdc42 is that the concentration profile is not uniform in the cell.
Thus, accounting for spatial inhomogeneities is crucial when data
of the pathway is collected, however, measuring two different
diffusion rates simultaneously is difficult. Firstly, measuring the
slow diffusion rate of active Cdc42 on the cell membrane is not
trivial. Secondly, in addition to accounting for the spatial
distribution of Cdc42, the activation and inactivation reaction
rates should be measured as well. Usually, such rates are
estimated from data of spatial averages of the concentration
profiles over time which is perhaps not feasible to do in the case
of the mentioned polarisation system as inhomogeneous dis-
tributions of proteins are crucial for the function of the system. On
account of these experimental limitations, computational models
have been developed to aid in understanding the activity
of Cdc42.
Numerous mathematical models of the dynamics of Cdc42 have

been developed5–18. Many of these models can be reduced to a

classic activator–inhibitor system focusing on the spatial and
temporal dynamics of active and inactive Cdc425,8,10,12,15–17. An
important consideration in such models is whether the accumula-
tion of active Cdc42 in a single location is the result of a Turing-
type mechanism or not. Early models of polarisation have a single
spatial dimension describing either the chemical concentration
along a diameter of the cell or the cell perimeter while considering
the cytosol as spatially uniform. Later, however, a model on the
single-cell scale was developed where Turing patterns formed on
the cell membrane in the presence of non-linear reactions
involving another species diffusing in the cytosol19. It was
demonstrated that with this new type of bulk-surface model, a
distinct type of pattern formation mechanism was possible. In
classic Turing-type systems, equal diffusion rates of the reacting
species can never produce patterns, however, this is no longer a
necessary restriction in the bulk-surface model. It has been argued
that the necessary difference in transport can be achieved by
choosing the various reaction rates to be unequal and this is
referred to as non-classic Turing patterns20,21. Sufficient conditions
for the emergence of both classic and non-classic Turing patterns
in the context of bulk-surface models have been derived and
demonstrated20,21. Additionally, a previous one-dimensional
model of cell polarisation14 has been extended to the bulk-
surface context22. This model is a two-species system of active and
inactive GTPases, and does not distinguish between the inactive
form in the cytosol and the inactive form in the membrane. An
effort has been made to extend classical 1D models into 2D8 as
well as including a number of more complicated phenomena such
as a diffusion barrier on the membrane, and the presence of
organelles in the cytosol.
Although bulk-surface models of polarisation is not a novel

concept, most previous work has been focused on the occurrence
of pattern formation and the qualitative behaviour of the models.
However, little has been done in order to investigate the
parameter space and the regions that give rise to classic or non-
classic Turing patterns. In this work, we constructed a
reaction–diffusion model of Cdc42 activation with the aim to
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propose an underlying mechanism of cell polarisation. We use
mathematical analysis to investigate the two cases of classic and
non-classic diffusion-driven instability. Moreover, we conducted
an analysis of the parameter space and investigated how it
influences polarisation. With these results in hand, we derived a
necessary condition for diffusion-driven instability and showed
using numerical simulations that the model can form patterns
through both classic and non-classic Turing instability. Finally, we
validated the proposed mechanisms using three-dimensional
Spatio-temporal simulations of the developed model. This resulted
in precise conditions allowing for the formation of a single pole.
Also, this enabled us to determine how the involved parameters
influence the time to polarisation, size of the pole as well as the
local concentration of active Cdc42 at the pole.

RESULTS
The reaction–diffusion model of Cdc42 activation
To derive the reaction mechanism for the polarisation process
mediated by Cdc42, we describe the cell as the interior of a three-
dimensional ball Ω with radius R where its surface Γ corresponds
to the cell membrane (Fig. 1b):

Ω :¼ x 2 R3 : jjxjj2 <R
� �

Γ :¼ x 2 R3 : jjxjj2 ¼ R
� � (1)

where ∣∣x∣∣2 is the Euclidian distance measure. As the cytosol Ω is
comparatively large compared to the membrane it could be
considered as a bulk which is subsequently linked to the two-
dimensional membrane Γ. We refer to models which account for
this geometric description (1) as bulk-surfacemodels. In this way, it
is possible to expand the classic Turing framework23 to account for
reaction-diffusion models with two geometric domains which are
both the most natural and more realistic than one-dimensional
simplifications in the context of Cdc42.
Using this notation, we derive a bulk surface Activator–Inhibitor

(AI) system of cell polarisation mediated by Cdc42 whose
dynamics is governed by five reactions: Influx of inactive Cdc42
from the cytosol, dissociation of inactive Cdc42 from the membrane,
activation of inactive Cdc42, inactivation of active Cdc42 and
activation of Cdc42 through a positive feedback loop (Fig. 1 and
Supplementary Text 1.1):

Influx rate ¼ k1 � G � kmax � ðAþ IÞð Þ;
Dissociation rate ¼ k�1 � I;
Activation rate ¼ k2 � I;
Inactivation rate ¼ k�2 � A;
Feedback activation rate ¼ k3 � A2 � I;

(2)

where it is assumed that the rate parameters are non-negative, i.e.
k1; k�1; kmax; k2; k�2; k3 > 0. To this end, we introduce three
functions

G : Ω ´ ½0; T � ! R
A : Γ ´ ½0; T � ! R
I : Γ ´ ½0; T � ! R

describing the concentrations of the GTP-, GDP- and GDI-bound
forms, respectively. Both G and I are referred to as the inactive
form of Cdc42, whereas A corresponds to the active form. The
functions A and I are restricted to the membrane Γ while the
function G is restricted to the cytosol Ω. The concentration in the
cytosol have units in mol/m3, and the concentrations on the
membrane have units in mol/m2.

Combining all these terms allows us to formulate a
reaction–diffusion model for cell polarisation mediated by Cdc42:

∂G
∂t ¼ DGΔG; x 2 Ω; t 2 Rþ

�DG ð∇GÞTn
h i

¼ k1G kmax � ðAþ IÞð Þ � k�1I; x 2 Γ; t 2 Rþ

¼ QðA; I;GÞ;
∂A
∂t ¼ k2I � k�2Aþ k3A2I þ DAΔΓA

¼ FðA; IÞ þ DAΔΓA

∂I
∂t ¼ �FðA; IÞ þ QðA; I;GÞ þ DIΔΓI

¼ GðA; IÞ þ DIΔΓI

9>>>>>>=
>>>>>>;
; x 2 Γ; t 2 Rþ:

(3)

Here, the diffusion is determined by the Laplace operator Δ ¼Pn
i¼1ð∂2=∂x2i Þ where ΔΓ determines the diffusion restricted to the

membrane.
The dynamics in the cytosol is entirely described by the

diffusion of the GDI-bound form G. The flux of the inactive GDI-
bound form of Cdc42 G from the cytosol to the membrane
resulting in the influx of the membrane-bound inactive GDP-
bound form of Cdc42 I is determined by the function Q. The
function Q(A, I, G) is implemented as a non-homogeneous
Neumann boundary condition for the GDI-bound state G and it
is also part of the reaction term for the membrane-bound GDP-
bound state I. Moreover, the total mass of the system is conserved,
independent of the choice of the functions F and Q, which can be
seen by considering the temporal change of the total mass of the
system, and using the partial differential equations it follows that

d
dt

R
ΩGðx; tÞ dxþ

R
ΓAðs; tÞ þ Iðs; tÞ ds� �

¼ R
ΩDGΔG dxþ R

ΓDAΔΓAþ QðA; I;GÞ þ DIΔΓI ds

¼ R
ΓDGð∇GÞTnþ DAΔΓAþ QðA; I;GÞ þ DIΔΓI ds

¼ R
ΓDAΔΓAþ DIΔΓI ds

¼ 0

which implies that the total amount of protein is constant.
Furthermore, the model is non-dimensionalised using non-

dimensional parameters similar to the ones in the classical
Schnackenberg model24 (Supplementary Text 1.2), resulting in
the following model structure:

∂V
∂t ¼ DΔV ; x 2 Ω; t 2 Rþ

�D ð∇VÞTn
h i

¼ γ c1V cmax � ðuþ vÞð Þ � c�1vf g; x 2 Γ; t 2 Rþ

¼ γqðu; v; VÞ;
∂u
∂τ ¼ γ c2v � uþ u2vð Þ þ ΔΓu

¼ γf ðu; vÞ þ ΔΓu
∂v
∂τ ¼ γ �f ðu; vÞ þ qðu; v; VÞð Þ þ dΔΓv

9>=
>;; x 2 Γ; t 2 Rþ:

(4)

Note here that in the dimensionless model, the domain Ω
corresponds to the unit ball and the boundary Γ corresponds to
the unit sphere.
As a result of the non-dimensionalisation procedure, the

number of parameters has been reduced from ten to eight,
where the resulting dimensionless parameters are also more
meaningful compared to the original ones. For example, the
parameter γ determines the relative strength of the reaction part
of the model compared to the diffusion part which implies that
this parameter determines which of these forces that dominate
the dynamics of the system. Moreover, all of the dynamics
corresponding to the activation, inactivation and the positive
feedback loop is captured in the dimensionless parameter c2
which, in the case with dimensions, are described by the two
parameters k2 and k−2. The dimensionless states, variables and
parameters are summarised in Table 1.
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As the cytosolic GDI-bound state of Cdc42 diffuses much faster
than the membrane bound states25, it is possible to reduce the
number of equations in (4). More precisely, the assumption that
D→∞ implies that the concentration of the cytosolic GDI-bound
state is homogeneous and in this case the mass conservation
property is described by the non-local functional V[u+ v] below

V ½uþ v� ¼ V0 � 1
jΩj

Z
Γ

ðuþ vÞ ds (5)

and the RD-system in (4) gets reduced to the following two-state
system

∂u
∂τ ¼ Δuþ γf ðu; vÞ

∂v
∂τ ¼ dΔv þ γð�f ðu; vÞ þ qðu; v; V ½uþ v�ÞÞ

)
; x 2 Γ; t 2 Rþ:

(6)

The constant V0 is the total average concentration of all three
forms of Cdc42, and V0∣Ω∣ is the total amount of Cdc42 in the cell.
The full system in (4) is solved numerically while the reduced

system in (6) is analysed to determine if Turing patterns can be
formed.
The model presented here builds on the framework proposed

by Ratz and Roger21,26, where the function f describing the
dynamics of the activation, inactivation and feedback loop of
Cdc42 assumes Michaelis–Menten kinetics and is given by:

f ðu; vÞ ¼ a1 þ ða3 � a1Þ u
a2 þ u

� �
v � a4

u
a5 þ u

: (7)

In (7), the dimensionless parameters a1, a2, a3, a4 and a5 corre-
spond to kinetic parameters, where the kinetics is modelled by the
law of mass action kinetics and a Michaelis–Menten term for
modelling the enzymatically catalysed reactions, and it is worth
mentioning that this reaction term is similar to the one described
in10. In the context of the Cdc42 model, the Michaelis–Menten
assumption implies that the substrates would be the various
states of Cdc42 while the enzymes would be the GEF’s and GAP’s.
However, as Cdc42 itself is an enzyme it is more reasonable to
assume that its intracellular concentration is in the same order of

Fig. 1 The model of Cdc42-activation. (a) The mechanism described as an expanded activator–inhibitor system. The GTPase Cdc42 is shuffled
between its active state A (green) corresponding to the GTP-bound form and its inactive state I (orange) corresponding to the GDP-bound
form. Also, the GDI-bound form G (blue) is restricted to the cytosol and is transported to the membrane which corresponds to the influx of
inactive form I. The reaction mechanism is determined by three classes of reactions: (1) Flux of inactive Cdc42 over the membrane, (2)
Activation and inactivation reactions restricted to the membrane determined by GEFs and GAPs respectively and (3) The positive feedback
loop mediated by PAKs and Scaffolds also restricted to the membrane. (b) Geometric domain. By letting the membrane thickness shrink to zero,
the geometric description is simplified to one domain Ω corresponding to the cytosol and one boundary Γ corresponding to the membrane.
(c) Biological details of Cdc42 activation. Cdc42 has an inhibited GDI-bound form (blue), an inactive GDP-bound form (orange) and an active
GTP-bound form (green). The shuffling between these forms is determined by the three regulators namely GDI, GEFs and GAPs. The active
form of Cdc42, unlike the inactive, can bind to various effector molecules such as PAKs and Scaffolds which can further bind to GEFs which
enhances the activation reaction through a positive feedback loop. This sub panel is re-drawn based on schematic representations in9,25.
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magnitude as that of the GAP’s and the GEF’s. Therefore, in
contrast to21,26, we describe the dynamics of Cdc42 governed by
the activation, inactivation and the feedback loop with the simpler
structure

f ðu; vÞ ¼ c2v � uþ u2v:

Here, the parameter c2 describing the relative activation rate of
Cdc42 is well-motivated by the literature (Fig. 1). In contrast to the
previous framework involving a larger number of parameters also
resulting from a non-dimensionalisation although a different
one21,26, the simplicity of our reaction term ensures that our
approach can qualitatively model cell polarisation as each
parameter has a concrete meaning. For example, a large value
of the parameter c2 relative to the value of c−1 implies a high
activity of the activation–inactivation module monitored by GEF’s,
GAP’s and the positive feedback loop relative to the dissociation
from the membrane implying the attachment of GDIs to the
inactive form of Cdc42.

The bulk-surface model can form patterns through both
classic and non-classic Turing patterns
Given the derived model, we can answer three fundamental
questions. Does a unique solution to the RD system in (6)
determined by the initial conditions exist? If so, are the solutions
physically realistic, meaning that they give rise to non-negative
and bounded concentrations of u and v? If this is the case, can the
model undergo diffusion-driven instability and thereby form
patterns? To answer these questions, we define the homogeneous
system of the reduced model in (6) as follows

du
dτ ¼ γf ðu; vÞ

dv
dτ ¼ γðf ðu; vÞ � q0ðu; vÞÞ

(8)

where the states u; v are the spatial averages of u and v
respectively. Here, the function q0ðu; vÞ ¼ c1aðcmax � ðuþ
vÞÞðm� ðuþ vÞÞ � c�1v where m= V0/a is obtained as a conse-
quence of the spatial averaging as the functional V in (5) is
replaced by V ¼ V0 � ðjΓj=jΩjÞðuþ vÞ ¼ V0 � aðuþ vÞ where a=
3 is the ratio between the area of the unit sphere divided by the

volume of the unit ball. Moreover, as we are interested in non-
negative states, we require that uþ vð Þ � V0=a ¼ m in (8) which
implies 0 � V ¼ V0 � aðuþ vÞ where the expression for the
cytosolic component V stems from the mass conservation
functional. In addition, the total amount of membrane-bound
proteins is also constrained by cmax, i.e. uþ vð Þ � cmax. Therefore,
physically reasonable states corresponding to u; v; V � 0 lie in the
region A in the (u, v)-state space defined as follows

A :¼ u

v

� �
� 0

0

� �
: uþ v � min cmax;mf g

� 	
where m ¼ V0

a
:

(9)

Existence of a unique solution. The existence of solutions to RD
models is not guaranteed for all continuous reaction functions f
and q. To this end, we prove the existence of a unique solution
(Thm 1) to the reduced model in (6) if we choose the initial
conditions from the previously defined region A in (9) (Supple-
mentary Text 1.3).

Theorem 1. (Existence of a unique solution on the unit sphere
in global time). Consider the RD model in (6) with initial
conditions u(x, 0)= u0(x) and v(x, 0)= v0(x) chosen such that
ðu0ðxÞ; v0ðxÞÞ 2 A 8x 2 Γ where the region A is defined in (9) and
where the spatial derivatives (in a weak sense) of the initial
conditions are bounded in the L2ðΓÞ norm, i.e. jj∇Γu0jjL2ðΓÞ <1
and jj∇Γv0jjL2ðΓÞ <1. Then, there exists a unique solution to (6)
global in time.

Physical validity of the model. We have already established one
physical property, namely mass conservation, which governs the
system. However, this property follows from the structure of the
model implying that any choice of the reaction terms f and q
results in a model with this property. Also, the fact that the mass
of the states u, v and V is conserved does not prevent non-physical
behaviour of the solutions such as negative concentrations of the
involved proteins, e.g. u(x, τ) ≤ 0 for some coordinate x∈ Γ at some
time τ. To this end, we prove (Thm 2) that the region A in (9) is a

Table 1. Dimensionless components of the model. The columns from left to right: the components (i.e. the states, variables and parameters), their
definitions and a description of their meaning.

Component Definition Description

The states

u u ¼ A �
ffiffiffiffiffiffi
k3
k�2

q
The dimensionless active form of Cdc42 (membrane-bound)

v v ¼ I �
ffiffiffiffiffiffi
k3
k�2

q
The dimensionless inactive form of Cdc42 (membrane-bound)

V V ¼ G
R �

ffiffiffiffiffiffi
k3
k�2

q
The dimensionless GDI-bound Cdc42 (cytosolic)

The variables

τ τ ¼ DAt
R2

The dimensionless time (S14)

x∈ΩR x 1
R x The dimensionless spatial variable (S14)

The parameters

γ γ ¼ R2k�2
DA

The parameter has three interpretations [(ref. 24), page 78]:(1.) γ is proportional to the area of the domain Ω in (1). (2.) γ
is the relative strength of the two reaction terms determined by f(u, v) and q(u, v) in (4). (3.) An increase in γ
corresponds to an equivalent decrease in the diffusion coefficient d.

c1 c1 ¼ k1
k�2

ffiffiffiffiffiffi
k�2
k3

q
The relative influx of inactive Cdc42 from the cytosol

cmax cmax ¼ kmax

ffiffiffiffiffiffi
k3
k�2

q
The maximum amount of membrane-bound Cdc42, i.e. ðuþ vÞ � cmax

c−1 c�1 ¼ k�1
k�2

The relative dissociation of inactive Cdc42 from the membrane

c2 c2 ¼ k2
k�2

The relative activation rate of Cdc42

d d ¼ DI
DA

The relative diffusion rate of inactive Cdc42 (diffusion in the membrane Γ)
D D ¼ DG

DA
The relative diffusion rate of GDI-bound Cdc42 (diffusion in the cytosol Ω)

V0 V0 ¼ G0 �
ffiffiffiffiffiffi
k3
k�2

q
The initial amount of dimensionless GDI-bound Cdc42

J. Borgqvist et al.
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trapping region meaning that if the initial conditions are chosen
within this region then we will always have non-negative solutions
at all times to the homogeneous system (8), but not to the full PDE
problem (6) (Supplementary Text 1.4). Interestingly enough, from
this follows another theoretical result (Corollary 1) which states
that the domain Γ can deviate from the unit sphere and we will
still have a unique solution to the RD model in (6) global time
(Supplementary Text 1.4.1). The latter result implies that with our
model, i.e. choice of f in combination with q, the shape of the
membrane can deviate from the sphere and the model will still
have a solution that is uniquely determined by its initial
conditions.

Theorem 2. (Existence of a trapping region). The region A � R2

in (9) is a trapping region meaning that the trajectories of the
solutions to the homogeneous system in (8) can never leave the
region for initial conditions ðuð0Þ; vð0ÞÞ ¼ ðu0; v0Þ 2 A.

Corollary 1. (Existence of a unique solution on any open
bounded regular subset ofRn in global time). Consider the RD
model in (6) where the domain Γ � Rn for any n 2Nþ is changed
to an open, bounded and regular domain with Neumann (i.e. zero-
flux) boundary conditions. If the initial conditions u(x, 0)= u0(x)
and v(x, 0)= v0(x) are chosen such that ðu0ðxÞ; v0ðxÞÞ 2 A 8x 2 Γ
where the region A is defined in (9), then this problem has a
unique solution global in time.

Diffusion-driven instability. The underlying idea behind pattern
formation caused by diffusion-driven instability pattern formation
was originally formulated by Turing23, and it entails a switch in
stability in the sense of linear stability analysis. The phenomena
depend on the reaction terms, e.g. f and q, having the capacity to
allow for the existence of a stable steady state (u*, v*) to the
homogeneous-ODE system obtained by neglecting diffusion.
When diffusion is introduced, classic diffusion-driven instability
occurs when a stable node in the homogeneous system is
switched to an unstable node in the inhomogeneous system. In
the non-classic diffusion-driven instability21,26 this takes place
when a steady-state (u*, v*) transitions from a stable node in the
homogeneous system to a saddle point in the inhomogeneous
system. The exact formulation of the mathematical conditions for
these two cases is presented in the Supplementary Text 1.5. It is
important to emphasise that both cases rely on the existence of a
steady state with the capacity of switching stability, and it is thus
crucial to find rate parameters ensuring this fundamental
requirement. To this end, we have mathematically proven that
the model has steady states, and we have derived a necessary
condition ensuring the stability of a specific steady state (Thm 3)
(Supplementary Text 1.6).

Theorem 3. (Existence and characterisation of steady states).
The system in (8) with non-negative rate parameters
c1; c�1; c2 and cmax has either 0, 2, 4 or 6 positive steady-states
within the first rant of the (u, v)-state space. In fact, the non-
negativity of the parameters is a sufficient condition for ensuring
the existence of at least one steady-state ðu�; v�Þ 2 A in the
trapping region in (9). Lastly, a steady-state ðu�; v�Þ 2 A allowing
for diffusion-driven instability satisfies the following necessary
condition:ffiffiffiffiffi
c2
p

< min cmax;mf g and u� 2 ffiffiffiffiffi
c2
p

;min cmax;mf gð Þ: (10)

The necessary condition in (10) implies that the activation-
inactivation parameter c2 is constrained by the maximum
concentration of membrane-bound species, cmax, and the average
total concentration of cytosolic Cdc42, V0. Furthermore, provided
that we restrict ourselves to non-negative rate parameters, there is
always one steady-state (possibly more) in the trapping region in
(9). Combining this restriction with the bound in (10) in Thm 3, this
yields a characterisation of a steady-state (u*, v*) which could
potentially give rise to patterns and that is that it always lies in the
interval u� 2 ð ffiffiffiffiffi

c2
p

;min cmax; V0=af gÞ. These bounds indicate that
using the rate parameter c2, corresponding to the activation-
inactivation reactions, it is possible to formulate a lower bound on
the steady-state. Combining the maximum concentration of
membrane-bound species cmax with the total average concentra-
tion V0 of the cytosolic state the upper bound can be formulated.
Note that these conditions merely ensure the existence of steady-
states, and to ensure the emergence of patterns the exact steady-
state satisfying the mathematical conditions in the stability
analysis must be found.

Numerical mappings of the parameter space indicate that the
non-classic case of diffusion-driven instability is a limiting
class of the classic case
Next, we investigate the steady-states by numerical exploration of
the parameter space to determine whether they satisfy the classic
or non-classic Turing conditions derived by Roger and Ratz21,26. To
this end, we investigated a large set of kinetic parameters by
mapping out the (c−1, c2) and (c1, c2) cross sections of the
parameter space. For each point in these cross sections, two
kinetic parameters are varied while the remaining parameters
are kept fixed. We observed that for a large relative diffusion, d,
the set of parameters enabling pattern formation is larger in the
classic than the non-classic case (Fig. 2). It is worth emphasising
that the region where the Turing conditions are met for d= 5, is a
subset of the region for any larger d and in the figures, we have
chosen to plot the regions in layers, with the lowest d shown on

Fig. 2 The parameter space for classic and non-classic diffusion-driven instability. The parameter space is divided into five regions
indicated by the colour bar: Classic Turing instability with d= 30 (yellow), Classic Turing instability with d= 10 (light green), Classic Turing
instability with d= 5 (green blue), Non-classic Turing instability (light blue) and No Symmetry Breaking (dark blue). (a) the (c−1, c2)—plane with a
fixed value of c1= 0.05. (b) the (c1, c2)—plane with a fixed value of c−1= 0.05. The overall parameters in both cases are V0= 6.0 and cmax ¼ 3:0
(note that the non-classic case is independent of d).
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top. Also, the non-classic region is special in the sense that the
classical Turing conditions can never be met when d= 1. This
implies that the set of parameters that allow for symmetry
breaking increases with the relative diffusion, d, in both cases of
varying (c−1, c2) and (c1, c2) (Fig. 2). Conversely, when the relative
diffusion decreases the region of the parameter space allowing for
diffusion-driven instability decreases as well, and in fact, the non-
classic case can be viewed as the classic case in the limit d→ 1.
Note here, that the non-classic case is independent of the relative
diffusion d and in the case where d= 1 the system can only form
patterns through non-classic diffusion-driven instability. However,
as soon as d > 1 symmetry breaking can occur through both
mechanisms and when the relative diffusion is large the classic
region of the parameter space in larger than the non-classic
counterpart.
Further, we observe that the relative activation rate c2 must be

larger than the relative dissociation rate c−1 in order to allow
classic diffusion-driven instability (Fig. 2a). For all tested values of
the relative diffusion, the relative activation rate c2 is approxi-
mately five to ten times larger than c−1. Additionally, within a
range of relative activation rates c2 the phenomena of diffusion-
driven instability is independent of the relative influx rate c1
(Fig. 2b). This conclusion holds true for larger values of the relative
cytosolic flux than c1= 10 although the parameter space is only
illustrated up to this value. Note that a general result from both
parameter planes is that classic Turing instability occurs for higher
relative activation rates c2 compared to the non-classic case.
Provided these theoretical results, we next modelled cell

polarisation using numerical simulations. We are interested in a
specific pattern namely the formation of a single pole correspond-
ing to a single circular spot of active Cdc42 on the cell membrane.

Cell polarisation can be modelled through both classic and
non-classic Turing patterns
Cell polarisation can be modelled by both cases of diffusion driven
instability (Fig. 3). Although the time evolution of the concentra-
tion profiles is slightly different, the final patterns are qualitatively
very similar for the two cases. The classic case (Fig. 3a) forms a
circular pole directly while the non-classic case (Fig. 3b) initially
forms an elongated pattern which gradually transitions into a
pole. Given that the model can simulate cell polarisation, we
further investigate the impact of the kinetic rate constants c1, c−1

and c2, the relative diffusion d and the reaction strength γ on cell
polarisation. To this end, we define three quantitative measures of

polarisation: the size of the pole, the time to polarisation as well as
the maximum and minimum concentration of active Cdc42 in
order to quantify the effect of altering the various parameters. In
the interest of comparing the previously mentioned measures
between different cases of diffusion-driven instability as well as for
different sets of parameters, we have implemented a "pole
recognition” algorithm (Supplementary Text 2.3) which terminates
the simulation when a pole has been formed.

The effect of the relative influx, the disassociation and
activation rates of Cdc42 on cell polarisation
The final patterns for different kinetic parameters are qualitatively
similar but quantitatively different (Supplementary Fig. 4). Both
the classic (Supplementary Fig. 4a) and the non-classic (Supple-
mentary Fig. 4b) case form a single pole for different parameters
within the (c−1, c2)-space (Fig. 2a). However, from a quantitative
perspective the time it takes to form a pole, τfinal, differs for
different sets of kinetic parameters. For instance, in the classic
case, it varies from τfinal ≈ 6.5 to τfinal ≈ 19.1 (Supplementary Fig.
4a), while in the non-classic case it varies from τfinal ≈ 2.88 to
τfinal ≈ 9.0 (Supplementary Fig. 4b). Similarly, the maximum
concentration of active Cdc42 umax is different for different kinetic
parameters. In the classic case, it varies from umax ¼ 1:54 to
umax ¼ 3:65 (Supplementary Fig. 4a) while in the non-classic case
it varies from umax ¼ 3:86 to umax ¼ 4:02 (Supplementary Fig. 4b).
Similar conclusions can be drawn in the case of different
parameters in the (c1, c2)-plane (Supplementary Fig. 5).

The effect of increasing the relative diffusion on cell
polarisation
A single pole is formed in both the classic and non-classic case
(Fig. 4) for all investigated cases of increasing relative diffusion d.
An increase of the relative diffusion causes a decrease of the size
of the pole, a decrease of the time to polarisation and an increase
of the maximum (local) concentration of active Cdc42 in the pole
(Fig. 5 and Supplementary Fig. 6). We did not observe any
significant difference, neither qualitatively (Fig. 4) nor quantita-
tively (Fig. 5), between the two cases of diffusion-driven instability.

The effect of increasing the relative reaction strength on cell
polarisation
The number of poles increases with an increasing relative reaction
strength γ in both the classic and non-classic case (Fig. 6). The

Fig. 3 The time evolution of a pattern. The time evolution of the concentration profiles for two sets of parameters corresponding to classic
and non-classic, respectively. (a) Classic: The parameters are (c−1, c2)= (0.02, 0.45) where the time points, from left to right, are τ= 0, τ ≈ 2.75,
τ ≈ 3.08, τ ≈ 3.48 and τ ≈ 4.45. The maximal and minimal concentration defining the bounds on the colour bar is given by ðumin; umaxÞ ¼
ð0:38; 3:77Þ in the classic case. (b) Non-classic: The parameters are (c−1, c2)= (0.01, 0.20) where the time points, from left to right, are τ= 0, τ ≈
1.43, τ ≈ 1.78, τ ≈ 2.47 and τ ≈ 4.59. The maximal and minimal concentration defining the bounds on the colour bar is given by ðumin; umaxÞ ¼
ð0:15; 4:26Þ in the non-classic case. In both cases, the overall parameters are: c1= 0.05, V0= 6.0, cmax ¼ 3:0, a= 3, d= 10 and γ= 25.
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number of poles has been calculated for a large range of the
parameter γ (Fig. 7d) ranging from one single pole up to five poles.
We believe that the random noise in the initial conditions is the
reason for the fluctuations around the transitions between the
number of poles. In addition, the relative reaction strength γ has
no effect on the relative pole size (Fig. 7a) which varies around
25%. Again, these variations are almost certainly due to the
random fluctuations in the initial data. Also, we observe that there
is no clear relationship between γ and other quantitative measures
such as the area of the pole relative to the surface area of the
membrane (Fig. 7a), or the maximum and minimum concentration
of active Cdc42 u (Fig. 7c). Similarly, this holds true for the classic
case with respect to the time to polarisation (Fig. 7b) while this
property seems to increase slightly with the relative reaction
strength γ in the non-classic case. Thus, the two cases yield
different predictions when it comes to the time to polarisation.

DISCUSSION
Cell polarisation is one of the most well-studied symmetry
breaking events in biology using both experimental and
theoretical approaches. Yet, it still remains largely unknown how

complex, intertwined, and highly dynamic protein interactions
control cell polarity. In this study, we constructed, analysed and
verified a bulk-surface model of Cdc42-mediated cell polarisation.
The analysis of the model resulted in a mathematical theorem
showing the existence of multiple steady-states. In addition, a
necessary condition for diffusion-driven instability was derived.
Using a thorough numerical investigation of the parameter space,
we have shown that the model can form patterns by means of
both classic and non-classic Turing instability. Also, the simulations
highlighted the connection between these two mechanisms
where the non-classic case can be viewed as the classic case for
equal diffusion rates of the membrane-bound species. Lastly, we
validated the theoretical results by showing that both these
mechanisms can sustain pattern formation. Using simulations, we
propose that cell polarisation is mainly driven by a low value of
the reaction strength parameter γ, that the size of the pole is
determined by the relative diffusion d and that the effect of
changing the kinetic parameters is quantitative rather than
qualitative.
Within our bulk-surface formulation of the model, the membrane-

bound reaction terms and the non-dimensionalisation are novel. The
choice of the geometrical description that includes both the

Fig. 4 Final patterns for increasing relative diffusion with a relative scale. The final patterns for increasing relative diffusion d are displayed
in two cases, namely classic and non-classic diffusion-driven instability. In both cases, the final time when the pattern is formed τfinal and the
maximum and minimum concentrations of active Cdc42 umax and umin are calculated as functions of the kinetic rate parameters. (a) Classic: The
overall parameters are (c1, c−1, c2)= (0.05, 0.04, 0.45) with specific parameters (from left to right): no pattern is formed for ðd; τfinal;
umax; uminÞ ¼ ð5; 15; 20:89; 1:34; 1:11Þ, ðd; τfinal; umax; uminÞ ¼ ð10; 4:44; 3:65; 0:40Þ, ðd; τfinal; umax; uminÞ ¼ ð15; 3:65; 4:85; 0:30Þ, ðd; τfinal; umax; uminÞ ¼
ð30; 2:65; 7:42; 0:20Þ and ðd; τfinal; umax; uminÞ ¼ ð50; 2:17; 9:83; 0:15Þ. (b) Non-classic: The overall parameters are (c1, c−1, c2)= (0.05, 0.03,
0.15) with specific parameters (from left to right): ðd; τfinal; umax; uminÞ ¼ ð5; 4:0; 2:77; 0:17Þ, ðd; τfinal; umax; uminÞ ¼ ð10; 4:38; 4:18; 0:11Þ,
ðd; τfinal; umax; uminÞ ¼ ð15; 2:87; 5:29; 0:09Þ, ðd; τfinal; umax; uminÞ ¼ ð30; 1:95; 7:77; 0:06Þ and ðd; τfinal; umax; uminÞ ¼ ð50; 1:96; 10:166; 0:04Þ. In both
cases, the overall parameters are: V0= 6.0, cmax ¼ 3:0, a= 3 and γ= 25.

Fig. 5 Quantitative measures as functions of an increasing relative diffusion d. The figure illustrates how the relative diffusion d influences
(a) the size of the pole, (b) the time to polarisation and (c) the maximal and minimal values of u on the cell membrane. Due to the randomness
in the initial conditions, the simulations have been run multiple times. Each data point on the curves corresponds to 20 realisations where the
95% (upper dashed line), 50% (full line) and 5% (lower dashed line) quantiles are plotted for each case, i.e. Classic and Non-classic Turing
instability.
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membrane and the cytosol in combination with adding the cytosolic
GDI-bound form of Cdc42 to the model21,26 increases the level of
realism. Previous models of the "wave-pinning” type11,12,14,22 have
only focused on the two membrane-bound species and assumed
mass conservation in the membrane, with one exception (ref. 22)
that includes a cytosolic state but no extra reactions associated with
it. We argue that from a biological perspective this is not entirely

plausible as there is a fast-moving cytosolic state of Cdc42 that
contributes to the transfer and dissociation reactions at the
membrane. Furthermore, the introduced minimal reaction term f
governing the activation–inactivation reactions is biologically
motivated, where each term has a concrete meaning in terms of
reaction rates. The non-dimensionalisation procedure implemented
in the course of this work resulted in the derivation of biologically

Fig. 6 Final patterns for increasing relative reaction strength. The final patterns for increasing relative reaction strength γ are displayed in
two cases, namely classic and non-classic diffusion-driven instability. In both cases, the maximum and minimum concentrations of active
Cdc42 umax and umin are calculated as functions of the kinetic rate parameters. (a) Classic: The overall parameters are (c1, c−1, c2)=
(0.05, 0.04, 0.45) with specific parameters (from left to right): ðγ; τfinal; umax; uminÞ ¼ ð10; 10:81; 3:02; 0:49Þ, ðγ; τfinal; umax; uminÞ ¼ ð20; 5:06;
3:62; 0:40Þ, ðγ; τfinal; umax; uminÞ ¼ ð40; 5:86; 3:75; 0:44Þ, ðγ; τfinal; umax; uminÞ ¼ ð80; 4:63; 3:80; 0:40Þ and ðγ; τfinal; umax; uminÞ ¼ ð160; 8:92;
3:74; 0:40Þ. (b) Non-classic: The overall parameters are (c1, c−1, c2)= (0.05, 0.03, 0.15) with specific parameters (from left to right):
ðγ; τfinal; umax; uminÞ ¼ ð10; 4:66; 3:96; 0:15Þ, ðγ; τfinal; umax; uminÞ ¼ ð20; 2:77; 4:21; 0:11Þ, ðγ; τfinal; umax; uminÞ ¼ ð40; 4:41; 4:00; 0:11Þ, ðγ; τfinal; umax;
uminÞ ¼ ð80; 11:28; 4:15; 0:12Þ and ðγ; τfinal; umax; uminÞ ¼ ð160; 44; 4:48; 0:11Þ. In both cases, the overall parameters are: V0 = 6.0, cmax ¼ 3:0,
a= 3 and d= 10.

Fig. 7 Quantitative measures as functions of increasing γ. The figure illustrates how the relative reaction strength γ influences (a) the size of
the pole, (b) the time to polarisation, (c) the maximal and minimal values of u on the cell membrane, as well as (d) the number of poles. Due to
the randomness in the initial conditions, the simulations have been run multiple times. Each data point on the curves corresponds to 20
realisations where the 95% (upper dashed line), 50% (full line) and 5% (lower dashed line) quantiles are plotted for each case, i.e. Classic and
Non-classic Turing instability.

J. Borgqvist et al.

8

npj Systems Biology and Applications (2021)    13 Published in partnership with the Systems Biology Institute



meaningful parameters such as γ corresponding to relative reaction
strength and the activation parameter c2 corresponding to the
membrane-bound reactions governing activation and inactivation.
Our exhaustive analysis of the parameter space shows that the

relative activation rate c2 is higher than the relative dissociation
rate from the membrane c−1 in the classic compared to the non-
classic case where these two rates are more similar (Fig. 2).
Biologically, the relative size between these parameters can be
viewed as a kinetic "tug-of-war” between the two stable states of
Cdc42, namely the cytosolic GDI-bound form and the membrane-
bound GTP-bound form (Fig. 1c). Also, the investigation of the
parameter space reveals that for certain activation rates c2, any
value of the cytosolic flux to the membrane c1 allows for diffusion-
driven instability in both cases (Fig. 2b). This suggests that a
pattern will form independent of the cytosolic flux of GDI-bound
Cdc42 to the membrane. Furthermore, a general conclusion drawn
by studying the Turing parameter space is that in both the classic
and non-classic case the activation rate c2 is larger in the former
compared to the latter. In addition, our results suggest that the
non-classic diffusion-driven instability is a special case of the
classic one in the limit when d→ 1 (Fig. 2).
Perhaps the most interesting result of this work is that cell

polarisation can be modelled by both classic and the non-classic
Turing patterns. This was demonstrated using numerical simula-
tions, where we first showed that patterns can be formed through
both mechanisms (Fig. 3). However, the time scales and dynamics
of the two cases differ indicating that the mechanisms are
different. The sensitivity of the final pattern in the two cases
(Supplementary Fig. 4) with respect to variations in the kinetic
parameters showed that the effect is quantitative rather than
qualitative. More precisely, a mere change of parameters in the
(c−1, c2)-plane does not alter the qualitative behaviour as a single
pole is formed, however quantitative measures such as the time it
takes to form the pole τfinal or the maximum concentration of
active Cdc42 umax are different for different kinetic parameters. In
a similar investigation of the parameter space27, the existence of
Turing patterns was investigated for 2-species and 3-species
systems with a Hill function governing the interaction between
the species. It was concluded that a large number of interaction
topologies are capable of producing Turing patterns, but that they
were not robust to parameter changes. Our results show that our
model could be considered robust, since the parameter regions
for which it produces Turing patterns is large. Nevertheless, the
comparison between the two cases is not straightforward since
the notion of robustness greatly depends on the parameter
ranges in which the stability in investigated. This is also affected
by, for example, the implementation of non-dimensionalisation
which was not done in27.
In addition, we showed that the size of the pole, the time to

polarisation and the maximum concentration umax are influenced
by the relative diffusion d (Fig. 4). This presents an opportunity for
new experimental studies and for connecting the simulations of
the bulk-surface models to data as a measure, however crude, of
the size of the pole (for example as a percentage of the entire
surface of the cell) that can be used to estimate the relative
diffusion. This methodology for estimating the relative diffusion is
consequential as it is currently not possible to differentiate
between the three states of Cdc42 by using fluorescent markers
and it is thereby not possible to estimate the relative diffusion d of
the two membrane-bound species. Lastly, we showed that the key
parameter determining the number of poles is the strength of the
reaction term γ (Fig. 6). More precisely, one pole is formed for
values of γ < 40 while numerous poles are formed for larger
values, suggesting that the two classical parameters in reaction-
diffusion models, γ and d, are consequential in the context of cell
polarisation. These parameters govern the number of allowed
wavenumbers24, where the smaller value of the parameters γ the
fewer wave numbers contribute to the pattern formation and vice

versa. This is in agreement with our simulations showing that the
number of poles increases with γ (Fig. 7). In our model, this
parameter is proportional to the surface of the cell (Table 1). Thus,
as the size of the cell increases so does the number of poles which
is in agreement with previous studies28. This indicates that cell
polarisation, i.e. the formation of a single spot corresponding to a
pole, can be achieved for both mechanisms as the formation of
this particular pattern is dependent of the relative strengths of the
reaction part γ and the diffusion part d. Thus, it is not qualitatively
possible to rule out either the classic or the non-classic cases
based on the patterns formed as both mechanisms can form a
pole for low values of γ. However, it might be possible to
quantitatively distinguish between the cases by studying the
concentration profiles over time and comparing the time it takes
for the patterns to be formed. Nevertheless, this poses experi-
mental challenges as it is hard to connect high qualitative three-
dimensional data based on microscopy with numerous images
over time.
Understanding the underlying mechanisms of cell polarisation

can shed light on many fundamental processes governing cell
division and cell differentiation both during normal development
and in the context of disease. Building, analysing and simulating
Spatio-temporal models like the one proposed in this work can
provide insight into mechanistic details as well as guide further
experimental design. In the context of the budding event, both
spatial and temporal aspects of bud emergence need to be
considered. Here, we elucidate the complex interplay between the
relative diffusion, the size of the pole, the time to polarisation and
the concentration of active Cdc42 in the pole suggesting that
perhaps cells have evolved multiple ways of maintaining these
evolutionarily conserved phenomena.

METHODS
The representation of the parameter space (Fig. 2) has been generated
using Matlab29. For the simulations, a combination of an adaptive solver
based Finite Differences (FD) in time and the Finite Element Method (FEM) in
space was implemented (Supplementary Text 2.2). As the numerical
implementation solves a system of PDEs, a spatial discretisation is required
in terms of a mesh over the domain Ω (Fig. 1a). For this purpose, the mesh
was generated using the three-dimensional finite element mesh generator
Gmsh30. For computational speed, we have implemented a non-uniform
mesh with higher node-density close to the membrane and lower node-
density in the cytosol as the former region requires more computational
accuracy during the cell polarisation simulations than the latter. For the FD-
and FEM-implementations, the computing platform FEniCS31,32 has been
used. The visualisations (Fig. 3, Supplementary Figs. 4 and 6) have been
constructed using the software ParaView33,34. For all the simulations, we
have used a cytosolic diffusion coefficient of D= 10,000 and the spatially
inhomogeneous initial conditions are perturbed around the steady states
of the three states corresponding to the triplet (u*, v*, V*). More specifically,
the steady state of interest is found numerically using a Newton solver
which finds a solution to the equations f(u*, v*)= q0(u

*, v*)= 0 where the
functions f and q0 are presented in (8). The solution of interest is a pair
(u*, v*) which satisfies the bound in (10) presented in Thm 3. Also, since the
Newton solver is local in the sense that it finds a solution from a given start
guess (u0, v0), this start guess is picked within the bound u0 2ffiffiffiffiffi

c2
p

;min cmax;mf g� �
based on Thm 3 where v0  ððu0Þ=ðc2 þ u20ÞÞ. Finally,

the steady state of the cytosolic component is calculated by the equation
V*= V0− a(u*+ v*) where the parameter V0 is set to V0= 6 and the
parameter a= ∣Γ∣/∣Ω∣= (4π)/(4π/3)= 3 which is the quotient of the surface
and the volume of the domain being the unit ball. To quantify polarisation
properties, an empirical pole-recognition algorithm has been developed
and implemented (Supplementary Text 2.3).
The simulations have been conducted on two computational clusters.

The first is a Dell PowerEdge R730 with an Intel Xeon E5-2683 CPU and an
NVIDIA Tesla K80 GPU. The second computational cluster is based on an
Intel Xeon Platinum 8180 CPU. The total simulation time of all simulations
presented in the paper was approximately one week.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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