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Effect of Engine Dynamics on Optimal Power-Split
Control Strategies in Hybrid Electric Vehicles

Anand Ganesan∗,1,3 Sébastien Gros2 Nikolce Murgovski3 Chih Feng Lee1 Martin Sivertsson1

Abstract—This paper presents a model predictive control
(MPC) based supervisory power-split control strategy, which op-
timises fuel and energy consumption in Hybrid Electric Vehicles
(HEVs) by incorporating powertrain actuator dynamic models.
In HEVs, while distributing the driver demand to the powertrain
actuators, a standard approach is to approximate the actuator
energy conversion dynamics with steady-state maps, which leads
to sub-optimal control policy and increased fuel & energy
consumption, especially for a driving mission with high transient
demands. To address this shortfall, the control strategy proposed
in this paper explicitly integrates an experimentally validated
dynamic model of gasoline internal combustion engine (ICE) into
an MPC based power-split controller. The proposed strategy is
validated in a parallel HEV platform, where the sensitivity of the
HEV energy consumption w.r.t. its actuator dynamics and the
transients in its load demands, is also established. The results
enable an understanding of the energy saving potential in HEVs
that supports the inclusion of actuator dynamic models in optimal
power-split controllers and it also establishes that the proposed
control strategy realises higher energy and fuel savings in HEVs.

Index Terms—Engine Dynamics, Powertrain Actuator Dynam-
ics, Fuel consumption, Optimal Energy Management, Dynamic
Optimisation, MPC, parallel Hybrid, HEV, Optimal Strategies,
power-split, torque-split.

I. INTRODUCTION

In the field of powertrain control, supervisory control strate-
gies for hybrid electric vehicles (HEVs) have been a very
active research field [1]–[7], as the electrification of mobility
platforms is growing exponentially [8]. A typical HEV is
an over-actuated system i.e., its powertrain consists of an
internal combustion engine (ICE) and one (or) more electrical
machines (EM), as its actuators [9]. A key control challenge
in a HEV is to allocate its total propulsive/braking demand to
its actuators such that either the total fuel consumption or the
energy consumption is optimised for a driving mission [2],
[3], [9]. To address this problem, several control strategies
have been proposed so far, such as 1) deterministic or rule-
based strategies [10], [11] and fuzzy-logic based control strate-
gies [12]–[14], which rely on empirical relationships and/or
pattern recognition, 2) Equivalent consumption minimisation
strategies (ECMS), which rely on minimising a Hamiltonian
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Göteborg, Sweden. Email: nikolce.murgovski@chalmers.se.

function at each time step to find a local optima [3]–[5],
[9], [15]–[17] and 3) Dynamic programming based strategies,
which find the global optima but are computationally intensive,
since they perform brute-force search of the entire state-space
of feasible solutions [9], [11], [18].

Among these strategies, a standard approach to model the
energy conversion dynamics of the powertrain actuators is to
approximate them as steady state efficiency maps for control
allocation [1]–[7], [9], [16], [17]. Under high transient load
demands (a typical use case in HEV’s), this method creates
mismatch between plant output and controller prediction as
it ignores 1) the actuator dynamics and 2) the potential cost
for transition between two operating points, hence resulting
in a sub-optimal control policy leading to increased fuel and
energy consumption [19]–[21]. Fewer studies have shown the
possibility of fuel and energy savings by using additional static
correction/penalty parameters (derived from the dynamic plant
models, like start-up transient consumption, airflow and fuel-
torque conversion models, of a diesel engine in [19] and from
the ICE and clutch dynamic models of a gasoline engine in
[21]) in the control objective of torque-split controllers to
minimise transient consumption. This is an approximate way
of incorporating the effects of powertrain dynamics in HEV
torque split strategies.

In this paper we further the above understanding by
1) proposing a detailed dynamic model of gasoline ICE that
accounts for both slower dynamics governed by air mass
flow dynamics, fuel flow dynamics, kinetic energy in engine’s
crankshaft and flywheel [22], [23] and relatively faster dy-
namics led by combustion efficiency control and emission
control, 2) explicitly incorporating powertrain actuator dy-
namic models (ICE in this study) as ’states’ within the power-
split controller formulated using MPC, which enables the
controller to predict the trajectory of dynamics accurately and
3) analysing the sensitivity of the energy saving potential in
a HEV w.r.t. the actuator (ICE) dynamic model parameter
variations and the driving mission’s transient load demand
variations.

II. CONTROL-ORIENTED MODELLING OF PARALLEL HEV
POWERTRAIN DYNAMICS

In this section, control-oriented dynamic models of different
components/systems in a parallel HEV powertrain configu-
ration considered for this study (see Fig. 1), are described.
The considered powertrain includes an internal combustion
engine (ICE), an integrated starter generator (ISG), a 8-speed



Fig. 1. Parallel HEV powertrain configuration.

auto-transmission unit, a battery, a differential along with
other driveline components, wheels, and respective low-level
controllers of all these components, see Fig. 1.

A. Vehicle Dynamics

Using point mass representation, the longitudinal vehicle
dynamics can be modelled as [4], [9]:

ṡ(t) = v(t), (1a)

v̇(t)me(·) = F (t) + Fbrk(t)−
cav

2(t)

2
−mg (sinα(s) + cr cosα(s)) ,

(1b)

where ca = cdAfρair, cd is the aerodynamic drag coefficient,
Af is the vehicle frontal surface area, ρair is the air density, s
is the travelled distance, m is the vehicle mass, α is the road
slope, cr is the rolling resistance coefficient, F is the traction
force from the ICE and the ISG, Fbrk is the force dissipated
within the friction brakes, v is the linear velocity of the vehicle
and me is the equivalent mass computed as [5], [24]:

me(·) = m+
Jwh1 + xclt(t)(Jice + Jisg)(Rγ(γ)Rdg)

2

r2wh1

, (2)

where xclt is the transmission clutch engagement status, Rγ

is the ratio of chosen gear γ, Rdg is the fixed ratio of the
differential gear, rwhl is the wheel radius, Jwhl is the rotational
inertia of all the powertrain components (except ICE and ISG)
reflected at the wheels, Jice and Jisg are the inertia of the ICE
and the ISG, respectively. If the trajectories of v(t), α(t) are
known a priori, then using (1) and assuming that the brake
controller always ensures Fbrk(t) = 0 when F (t) ≥ 0 and
Fbrk(t) ∈ R−, the power demand trajectory at the wheels can
be pre-calculated for ∀t as:

Pdem(t) =

{
F (t)v(t), F (t) ≥ 0,

(F (t) + Fbrk(t)) v(t), F (t) < 0.
(3)

B. Transmission and Drivetrain Components

Assuming the clutch lock-up i.e. xclt(t) = 1, ∀t, auto-
transmission (controlled by transmission control module,

TCM) and drivetrain components (differential, axle shafts and
joints) can be modelled as [5]:

Pisg(t) + Pice(t) =

{
Pdem(t)/ηγ(γ), Pdem(t) ≥ 0

Pdem(t)ηγ(γ), Pdem(t) < 0
(4)

γ(t) ∈ {0, 1, 2, .., γmax}, (5)

where ηγ(γ) is the net efficiency of the chosen gear γ and
differential gear, Pisg is the ISG power and Pice is the power
delivered by the ICE. The TCM uses a map-based gear
shifting algorithm to decide the suitable gear γ(t) based on
the velocity, v(t) & power demand, Pdem(t).

C. Internal Combustion Engine (ICE) Dynamics

A supercharged gasoline internal combustion engine with
an integrated Engine Control Module (ECM) is considered in
this work. ECM ensures that the ICE delivers the requested
power provided that the request is within bounds, as in:

Pice,min(ωice) ≤ Pice,req(t) ≤ Pice,max(ωice). (6)

ICE angular velocity, ωice is given by eqs. (7) and (8), where
ωice,min refers to the idling speed of the engine [5]:

ωice(t) =

{
ωice,min, γ(t) = 0,

v(t)Rγ(γ)Rdg/rwhl, γ(t) ≥ 1,
(7)

ωice(t) ∈ [ωice,min, ωice,max]. (8)

D. Integrated Starter Generator (ISG) and Battery Model

The ISG is represented by a Quasi-static model, as in [5]:

Pisg,el(t) = Pisg(t) + Pisg,ls (ωisg(t), Pisg(t)) , (9)
ωisg = ωice, (10)

Pisg(t) ∈ [Pisg,min(ωisg), Pisg,max(ωisg)], (11)

where Pisg,ls is the static map of the ISG powerloss, ωisg and
Pisg are the angular speed and the mechanical power of the
ISG, respectively. The battery dynamics is represented using
a simplified model, as in:

ẋb(t) = −Pech(·)/Eb,max, (12)
xb(t) ∈ [ 0 ≤ xb,min , xb,max ≤ 1 ], (13)

where xb is the state of energy (SOE), Eb,max is the energy
capacity, and Pech is the rate of consumption of stored electro-
chemical energy which can be computed as:

Pech(t) = Pisg,el(ωisg(t), Pisg(t)) + Paux(t)

+Rb(xb(t))P
2
ech(·)/U2

ocv(xb(t)),
(14)

where Paux is the auxiliary power, Rbat and Uocv are the
lumped internal resistance and the open circuit voltage of the
battery, respectively. The algebraic solution for (14) is [17]:

Pech(t) =
U2
ocv(xb)

2Rb(xb)

− Uocv(xb)

√
U2
ocv(xb)− 4Rb(xb)Pisg,el(t)

2Rb(xb)
.

(15)



III. MODELLING GASOLINE ICE DYNAMICS

Modelling the dynamics of the ICE accurately is quite
challenging due to the highly complex nonlinear interac-
tions of its sub-systems. But, the input-output dynamics of
the system considered here i.e., an ICE with an integrated
ECM (with torque compensation mechanisms to deliver the
requested performance), becomes simpler and predictable due
to its closed-loop nature [19], [22]. Hence, in this section
we propose dynamic models for such an actuator-controller
closed-loop system that can effectively map both its transient
and steady-state behaviours w.r.t. fuel consumption and torque
production, which are two key parameters affecting both the
control strategy and the total energy consumption in a HEV.

A. Dynamic Torque Model

Among the major factors that affect the gasoline ICE torque
dynamics, the control of the air-mass flow dynamics in the
intake and exhaust manifolds, the fuel flow dynamics in intake,
and the kinetic energy in the engine’s crankshaft and flywheel
typically exhibit slower response when compared to the faster
torque response provided by the combustion efficiency (ηi)
control achieved using the ignition retard/advance [19], [20],
[22]. A simplified first-order transient torque model that cap-
tures the dynamics of the slow response factors in a diesel
engine was proposed in [19] as:

τice(Ṫice,req) Ṫice(t) + Tice(t) = Tice,req(t), (16)

where, Tice,req and Tice are the request and the output torques,
respectively, the ICE time constant (τice) is piece-wise affine
on the rate of change of the request Ṫice,req as in [19]:

τice =

{
τ1, Ṫice,req ≥ 0,

τ2, Ṫice,req < 0.
(17)

Since, all the slow response factors have similar effects in a
gasoline engine and the fact that the control of ηi (used to
achieve different performance criterion including suppression
of drivetrain torque oscillations, knock protection and smooth
acceleration) is an additional degree-of-freedom in a gasoline
engine control [22], [23], the model in (16) can be modified
to estimate the dynamic torque of the gasoline ICE as follows:

τice(Ṫice,req) Ṫice(t) + Tice(t) = ηi(t)
Pice,req(t)

ωice(t)
, (18)

Tice(t) ∈ [Tice,min(ωice), Tice,max(ωice)]. (19)

B. Dynamic Fuel Consumption Model

The rate of energy consumption of the ICE, from gaso-
line fuel under steady state operation, can be represented
as Pf,ss(ωice,ss, Tice,ss) in watts, where ωice,ss and Tice,ss are
the steady-state angular speed and torque, respectively. The
dynamic energy consumption rate Pf(t) can then be estimated
using Pf,ss, the dynamic torque from (18), stoichiometric ratio
λf , and the ignition efficiency ηi, as in:

Pf(t) =
Pf,ss (ωice(t), Tice(t)/ηi(t))

λf(t)
,

λf(t) ∈ [λf,min, λf,max].

(20)

Fig. 2. Validation results of the proposed dynamic models for prediction of
torque and fuel consumption of the ICE. The models exhibit a mean absolute
percentage error (MAPE) of 2.5% and 3.8%, respectively within the operating
speed range of interest (1000rpm ≤ ωice ≤ 4000rpm). Blue dash-dotted line
indicates the measurements and the red solid line shows the prediction.

C. Experimental Validation of Dynamic Models

The dynamic models proposed in III-A and III-B were
validated experimentally for both steady-state and transient
operating points, i.e. ωice and Tice. Figure 2, shows the com-
parison between the dynamic model prediction and the mea-
surements for both torque developed and fuel consumption,
respectively. Our results show that the dynamic torque model
prediction has a mean absolute percentage error (MAPE) of
2.5% between 1000rpm - 4000rpm and 10% above 6000rpm.
Similarly, the fuel consumption estimate (converted to g/s
for representation) of the dynamic model has an MAPE of
3.8% between 1000rpm - 4000rpm and 13.3% above 6000rpm.
These results show that the prediction accuracy of the proposed
dynamic models are suitable for the considered HEV power-
split supervisory control. The inclusion of ηi in (20), is to
consider the additional fuel consumed by the torque compen-
sation mechanisms specified earlier in section III-A.

IV. OPTIMAL POWER-SPLIT STRATEGY USING MPC
FORMULATION

In this section, a supervisory optimal power-split control
strategy for a parallel HEV is proposed, in which the dynamic
models of the powertrain actuator (ICE) are explicitly included
as dynamic ’state’ constraints in the optimal controller. The
proposed strategy is implemented using MPC to validate it
and to study the sensitivity of the total energy consumption
w.r.t. variations in τice (18), in the HEV platform.



A. Supervisory Power-Split Strategy

We consider a problem where an oracle (higher-level con-
troller) predicts the trajectories of vehicle speed v(t), road
slope α(t), battery co-state λb(xb(t)) and the integer decisions
like clutch on-off xcl(t) and gear γ(t) for a given mission.
Then, ωice(t) and ωisg(t) are known from eqs. (7) and (10) and
the power demand Pdem(t) w.r.t. the engine speed ωice(t) for
∀t can be calculated from eqs. (1) to (4). Now, the objective
of the power-split controller is to find a control input u(t),
that allocates the demand to the powertrain actuators while
minimising the overall energy consumption of the HEV over
a specific horizon, t ∈ [t0, tf ]. Hence, the cost function can be
stated as [3], [16], [17]:

J(·) =
∫ tf

t0

(Pf(x(t), u(t), d(t)) + λb(xb(t))Pech(x(t), u(t), d(t))) dt,

(21)
where the first and second terms refer to the fuel consump-
tion and the battery energy, respectively, x(t) refers to the
state dynamics of the ICE torque, u(t) and d(t) are control
input and disturbances, respectively, λb(xb(t)) is the SOE-
dependent battery co-state (equivalence factor) that relates
the battery energy cost to the fuel consumption, which the
oracle optimises in real-time and shares the λ∗

b trajectory
to the power-split controller (refer [3], [17], [20] to know
about the co-state optimisation in HEVs). Further, the variation
of the internal battery parameters, Uocv(t) and Rb(t), are
negligible for small deviations of the SOE in a parallel HEV
and hence it is reasonable to neglect the SOE dependence in
(15) [3]. So, Uocv(t), Rb(t) and λb(t) (assuming SOE bounds
are not active) would remain approximately constant for an
MPC update but follows the oracle’s mission trajectory across
the updates. Under these assumptions, it is possible to pre-
compute the braking force F ∗

brk(t) for ∀t by saturating the
requested power to the ISG bound Pisg,min(ωisg(t)), thereby
simplifying the mechanical power balance (4) to:

Pisg(t) = Pdem(t)− Pice(t). (22)

B. MPC Formulation

MPC is used to implement the proposed strategy since it is
an effective optimal control tool that optimises a cost function
subject to constraints over a prediction horizon [1]–[4], [19],
[21]. The proposed strategy can be represented as follows:

min
u

∫ τ+th

τ

J (x(t|τ), u(t|τ), d(t|τ)) dt (23a)

s.t. ẋ(t|τ) = (u(t|τ)− x(t|τ))/τice, (23b)
umin(d(t|τ)) ≤ u(t|τ) ≤ umax(d(t|τ)), (23c)
xmin(d(t|τ)) ≤ x(t|τ) ≤ xmax(d(t|τ)), (23d)
x(τ |τ) = x0(τ), (23e)

where the state (dynamics), the control input, disturbances
and the cost are:

x(t|τ) = Tice(t|τ), u(t|τ) = Pice,req(t|τ), (24a)

d(t|τ) =
[
ωice(t|τ) ωisg(t|τ) xb(τ) λb(τ)

λf(t|τ) ηi(t|τ) Pdem(t|τ) Paux(t|τ)
]T

,
(24b)

J(·) = Pf(ηi, λf , ωice, Tice)

− λbPech(xb, ωisg, Pdem − Pice, Paux)

Eb,max
.

(24c)

The problem is solved for t ∈ [τ, τ + th] and τ ∈ [t0, tf − th].

V. SIMULATION AND RESULTS

A dynamic simulation of the considered power-split prob-
lem (23) was carried out using the plant models of the
considered HEV platform, described in II and III.

A. Simulation Strategy

To validate the proposed control strategy, a hybrid approach
(refer [25, p. 12] for pictorial representation) was adopted, i.e.
a backward simulator is first used to determine the optimal
power split using the predicted information (refer section IV-A
for details on predicted trajectories). These optimal controls
are then applied to the forward simulator plant models and
the corresponding state trajectories of the powertrain and
vehicle dynamic plants are determined. The forward simulator
also uses a feedback mechanism to recover the vehicle speed
deviations, due to actuator dynamics mismatch (between the
controller and the plant models) and powertrain saturation,
and allocates the corresponding additional tractive demand to
the actuator set-point. Also, to enable effective analysis of the
results, the scenarios and assumptions listed below were used.

• In addition to the simulation of the MPC strategy pro-
posed in (23), referred as dynamic MPC (dy-MPC), a
baseline MPC strategy without ICE dynamics, referred
to as static-MPC (st-MPC), was also formulated by
removing state constraint (23b) from (23) and simulated
for comparison.

• Both dy-MPC and st-MPC were discretized with a sam-
pling interval of ts = 0.025 s and a 20 s time interval was
chosen as prediction horizon.

B. Performance Evaluation of the Proposed Strategy

The proposed strategy is evaluated using the WLTC Class-
3b cycle, shown in Fig. 3(a), to check the performance under
the combined effect of different driving scenarios like Urban,
Semi-Urban, Motorway, and Extra High-Speed (i.e., different
scenarios are suitably weighted in a single cycle), and the
results are shown in Fig. 3(b) and Fig. 4.

1) Actuator Torque Trajectories - Controller Prediction Vs
Plant Output : From Fig. 3(b) it could be observed that i) the
optimal ICE torque (also referred as ‘predicted ICE torque’
in this paper) trajectories, i.e., the trajectory of optimal torque
allocated to the ICE by both the power-split controllers (top
figure in Fig. 3(b)), deviate from each other (for e.g., at time



(a) WLTC Class-3b driving cycle used for simulation.

(b) Effect of dynamics (@τice = 1 s) on the optimal ICE torque, optimal
control input and ICE plant output trajectories. Dy-MPC delivers an optimal
control policy whereas st-MPC struggles due to actuator dynamics mismatch.

Fig. 3. Simulation results of proposed optimal power-split control strategy.

instances 912 s, 914 s, 915 s, 917 s, and 924 s) whenever the
gradient of dy-MPC’s torque trajectory is saturated or limited
by the ICE model dynamics and control input saturation,
respectively, i.e., due to the inclusion of the state dynamics
as an additional constraint in dy-MPC, it’s feasible region be-
comes smaller relative to the feasible region of st-MPC, ii) the
optimal control input trajectory of both controllers (centre
figure in Fig. 3(b)) show considerable difference between them
due to the fact that the dy-MPC optimises its control input to
compensate for the ICE dynamics (conversely, input saturation

Fig. 4. Predicted and actual trajectories of cumulative fuel (top figure) and
battery (bottom figure) energy consumption of both controllers, @τice = 1 s.
The proposed strategy, dy-MPC, was able to achieve a total energy saving of
4.25% w.r.t. st-MPC.

limits the gradient of optimal torque) whereas the st-MPC
ignores the dynamics and hence the st-MPC’s optimal control
input and torque trajectories are exactly the same, iii) the
bottom figure in Fig. 3(b) shows the output trajectory (also
referred as ‘measured’ or ‘actual’ trajectory in this paper), i.e.,
the trajectory realised by the ICE plant model when excited
with the control inputs from both the controllers, from which
it could be observed that the plant output follows the predicted
optimal torque trajectory in case of dy-MPC perfectly whereas
it lags in case of the st-MPC (w.r.t. its prediction) due to the
model dynamics mismatch, as expected.

Since the ISG dynamics (relatively smaller w.r.t. the ICE
dynamics) were ignored by both the controllers, the predicted
and the plant output torque trajectories were exactly same for
each controller, i.e., no difference between the st-MPC (or dy-
MPC) prediction and the plant output when excited with the
control from the st-MPC (or dy-MPC), but the trajectories of
both the controllers deviate from each other corresponding to
the deviation of their optimal ICE torque trajectories. These
deviations affect the energy consumption trajectories and are
explained in V-B2.

2) Effect of Actuator Dynamics on Energy Consumption:
Figure 4 shows the comparison of the prediction versus
measured cost trajectories for both the controllers at τice = 1 s.
i) From the fuel cost trajectories (top figure) shown in Fig. 4,
it could be noted that in case of st-MPC, the deviation of
the measured fuel cost w.r.t. the predicted trajectory increases
with time due to the accumulation of errors introduced by
the absence of an ICE dynamic model in st-MPC, whereas in
case of dy-MPC, both the measured and the predicted fuel cost



trajectories match exactly, since they share the same dynamic
ICE model. Due to this, the st-MPC consumes 4.5% (deviation
of measured costs) more fuel energy w.r.t. the dy-MPC inspite
of a deviation of just 0.22% among their predicted costs. The
reason for the difference between the deviations in fuel costs is
that the lower-level controller compensates the fuel supplied to
the ICE corresponding to the vehicle speed error feedback (as
explained in V-A), introduced by the ICE dynamics mismatch
in case of the st-MPC whereas there’s no such effect in the
dy-MPC since its speed error is zero. ii) the battery SOE
trajectory (bottom figure) of both the controllers shown in
Fig. 4, closely match each other since they use the same static
model of ISG. But due to the ICE dynamics mismatch, the st-
MPC charges the battery to 0.08% higher SOE (deviation of
measured costs) w.r.t. the dy-MPC (unlike the increase in st-
MPC’s fuel consumption) whereas the predicted deviation was
just an increase of 0.03% of battery SOE. Again, the increase
in battery SOE measured, w.r.t. prediction, is because the lower
level controller uses the ISG to recover some part of the excess
energy supplied by ICE (remaining energy is lost in friction
brakes) due to dynamics mismatch, in case of the st-MPC.
iii) Hence, the controller with the proposed optimal power-
split strategy, dy-MPC, was able to achieve a total energy
saving of 4.25% w.r.t. st-MPC in the WLTC Class-3b drive
cycle, as an increase of 0.08% of battery SOE corresponds to
a 0.25% change in cumulative fuel energy consumption.

C. Performance of Proposed Strategy w.r.t. Driving Missions

To evaluate the performance of the dy-MPC (with τice =
1 s) under different driving scenarios like different levels
of maximum speed, maximum acceleration, and aggressive
driving behaviours, Common Artemis Driving Cycles (CADC)
and US06 - Supplemental Federal Test Procedure (US06-
SFTP) are used in addition to the WLTC Class-3b cycle. The
different vehicle demands of these driving missions and the
corresponding energy savings (%) achieved by the dy-MPC
w.r.t. st-MPC, are listed in Table I.

From the results, it is clear that i) the combined effect of
higher speeds, acceleration and no. of acceleration instances
(i.e., the regions where the powertrain experiences the effect
of ICE dynamics) in the CADC-Rural road cycle enables the
dy-MPC to achieves a maximum energy savings of 10.95%,
ii) the energy savings achieved in US06 cycle is lesser than the
CADC-Rural Road due to its lower instances of acceleration
(inspite of boosting a higher max. speed and amax require-
ments) whereas in comparison to the WLTC cycle, the energy
savings in US06 are more (inspite of lower instances of accel-
eration) due to the higher acceleration demand, iii) Among
the CADC cycles (since their amax is the same) the dy-MPC
achieves a lower energy saving of 6.74% in Motorway cycle
due to lower no. of acceleration region whereas it achieves a
medium and the highest energy savings in the Urban (7.27%)
and the Rural road (10.95%) cycles, respectively, due to the
difference in their maximum (and average) speed demand,
iv) the least energy savings is achieved in WLTC cycle due
to the least amax and a lower acceleration instances. Another

TABLE I
PERFORMANCE OF THE PROPOSED STRATEGY W.R.T. DRIVE CYCLES

Drive Cycle
Max.
Speed
[kmph]

Max. Acc.
(a max)
[m/sˆ2]

No. of
Acc.’s

Total
Distance

[km]

Energy
Savings

[%]
WLTC
(Class 3b) 131.30 1.58 31 23.27 4.25

CADC
(Urban) 57.32 2.44 48 4.87 7.27

CADC
(Rural Road) 111.09 2.44 48 17.28 10.96

CADC
(Motorway) 150.37 2.44 43 29.55 6.74

US06-SFTP 128.91 3.8 20 12.89 8.94

important aspect of the drive cycles that played a major part
in the achieved results, apart from the transient factors shown
in the Table I, is the percentage duration of these transient
factors being active (non-zero) in relation to the total duration
of the drive cycle. These results show that the energy saving
(%) potential of the dy-MPC depends majorly on the factors
like maximum (and average) speed, maximum acceleration,
the available number of acceleration instances, and the active
(non-zero) duration of these transient factors in the complete
drive cycle. i.e., the maximum energy saving potential of the
proposed strategy depends on the severity of the transient load
demand in the driving mission.

D. Sensitivity of Energy Savings w.r.t. Actuator Dynamics

In the considered HEV powertrain, different potential ICE
configurations (specifically tuned for high power/weight ratio,
performance vs fuel efficiency, and component cost reduction)
could be realised by configuring systems like supercharg-
ing and turbocharging accordingly [9], [22], [23]. But these
mechanisms affect the ICE dynamics differently; like the
turbocharger, which is mostly tuned to operate in medium
and high speed regions of the ICE, induces lag in torque
delivery whereas a supercharger, usually operates in the low
and medium speed regions, improves the ICE torque response
[22], [23]. Hence, when the operating speed of the ICE crosses
between the active and inactive regions of these mechanisms,
and during load changes, it experiences rapid fluctuations due
to torque ripples resulting in a ‘Jerk’ of the crankshaft [26].
To overcome this problem, the rate of change of the torque
delivered is controlled, called Anti-Jerk control, by the lower-
level controller of the ICE such that the engine acceleration
is smoother but this results in additional losses and hence,
consumes additional fuel. So, this functionality is calibrated to
achieve a desired ICE dynamic behaviour against its consump-
tion, based on the specification of the ICE configuration and
its performance requirements. Hence, to evaluate the energy
saving potential of the proposed power-split strategy within
the allowable tuning values of the ICE dynamic behaviour
in the considered HEV powertrain, a sensitivity analysis is
performed by varying the dynamic torque model parameter,
τice, of both the simulation plant and the dy-MPC controller



Fig. 5. Percentage variation in the total energy consumption (arithmetic sum
of variations of the cumulative fuel and battery energy consumption) of the
st-MPC w.r.t dy-MPC under different levels of ICE dynamic response tuning.
The result shows that the dy-MPC can maximise energy savings when the
actuator dynamics are increasing sluggish in nature, for the considered HEV
powertrain configuration.

models simultaneously, to values of 0.1 s, 0.5 s, 1 s, 2 s, 3 s, and
5 s, to represent each tuning scenario.

i) The Fig. 5 shows the total energy savings (blue bar graph)
achieved by the proposed strategy in WLTC Class-3b drive
cycle, from which it could observed that the deviation of total
cost (energy consumption) measurement of the st-MPC w.r.t
the dy-MPC (∆ of measured costs), exhibits a polynomial
increase as the value of τice becomes larger, which shows
that the st-MPC struggles severely with a non-optimal control
policy whereas the dy-MPC realises a polynomial increase in
energy savings, as the τice increases. ii) From ∆ of predicted
costs in the red coloured bar graph in Fig. 5, i.e., the deviation
of the total energy consumption predicted by the st-MPC w.r.t.
the prediction of dy-MPC, it could be noted that the st-MPC
had predicted a lower energy consumption understandably,
as it hadn’t considered the additional limitation of dynamics
and hence, had chosen a more efficient but an unrealizable
power-split trajectory. iii) These results show that the dy-MPC
becomes a better choice for the considered HEV powertrain
(assuming that the computational system is able to accommo-
date an additional load of < 35% within each control interval),
when the torque response of the chosen ICE configuration
is sluggish whereas the st-MPC could be a better option for
τice < 0.1 s, as the energy savings achieved by the dy-MPC
for τice < 0.1 s are meagre for the additional computational
load it demands.

In other words, it can be stated that the anti-Jerk con-
trol functionality, in a HEV powertrain equipped with the
dy-MPC for optimal power-split, could be tuned such that
the ICE dynamic response is as sluggish as allowed by its
performance criteria (under the assumption that the battery
SOE stays within its limits during the driving mission), to
achieve maximum energy savings as well as a smoother ICE
acceleration, the two conflicting performance parameters in
ICE control otherwise.

VI. CONCLUSION

In this paper, the control-oriented models of a gasoline ICE
torque dynamics and its fuel consumption dynamics has been
proposed and experimentally validated. Then, an MPC based
supervisory control strategy, which incorporates the proposed
dynamic models explicitly in the power-split controller for
minimising the fuel and energy consumption in HEVs has been
proposed. The performance of the proposed strategy has been
validated in a parallel HEV platform against a base power-
split controller (without ICE dynamic models) for comparison.
Our results show that the proposed optimal power-split control
strategy, which incorporates ICE dynamic models, is able to
realise higher fuel and equivalent energy savings w.r.t the base
controller in a drive cycle where the transient load demands
are present. Also, the evaluation of the proposed strategy under
different driving scenarios shows that the control strategy
realises maximum energy savings depending on the severity
of the transient load demands in a driving mission. Further
analysis of the actuator’s dynamic model parameter variation
shows that the proposed control strategy achieves considerable
energy savings when the powertrain actuator dynamics (or)
responses are slower. These results portray the significance
of considering the actuator dynamics explicitly in the optimal
power-split controllers for HEVs, especially when the actua-
tors have (or) are dynamically controlled to have a sluggish
response and the driving mission has considerable transient
load demands.
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