
TinyEVM: Off-Chain Smart Contracts on Low-Power IoT Devices

Downloaded from: https://research.chalmers.se, 2025-06-18 03:51 UTC

Citation for the original published paper (version of record):
Profentzas, C., Almgren, M., Landsiedel, O. (2020). TinyEVM: Off-Chain Smart Contracts on
Low-Power IoT Devices. Proceedings - International Conference on Distributed Computing Systems,
2020-November: 507-518. http://dx.doi.org/10.1109/ICDCS47774.2020.00025

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



TinyEVM: Off-Chain Smart Contracts on Low-Power IoT Devices

Christos Profentzas∗, Magnus Almgren∗, Olaf Landsiedel†∗
∗Chalmers University of Technology, Gothenburg, Sweden

†Kiel University, Kiel, Germany
chrpro@chalmers.se, magnus.almgren@chalmers.se, ol@informatik.uni-kiel.de

Abstract—1With the rise of the Internet of Things (IoT),
billions of devices ranging from simple sensors to smart-phones
will participate in billions of micropayments. However, current
centralized solutions are unable to handle a massive number
of micropayments from untrusted devices.

Blockchains are promising technologies suitable for solv-
ing some of these challenges. Particularly, permissionless
blockchains such as Ethereum and Bitcoin have drawn the
attention of the research community. However, the increasingly
large-scale deployments of blockchain reveal some of their scal-
ability limitations. Prominent proposals to scale the payment
system include off-chain protocols such as payment channels.
However, the leading proposals assume powerful nodes with
an always-on connection and frequent synchronization. These
assumptions require in practice significant communication,
memory, and computation capacity, whereas IoT devices face
substantial constraints in these areas. Existing approaches also
do not capture the logic and process of IoT, where applications
need to process locally collected sensor data to allow for full
use of IoT micro-payments.

In this paper, we present TinyEVM, a novel system to
generate and execute off-chain smart contracts based on sensor
data. TinyEVM’s goal is to enable IoT devices to perform
micro-payments and, at the same time, address the device
constraints. We investigate the trade-offs of executing smart
contracts on low-power IoT devices using TinyEVM. We
test our system with 7,000 publicly verified smart contracts,
where TinyEVM achieves to deploy 93% of them without any
modification. Finally, we evaluate the execution of off-chain
smart contracts in terms of run-time performance, energy,
and memory requirements on IoT devices. Notably, we find
that low-power devices can deploy a smart contract in 215 ms
on average, and they can complete an off-chain payment in
584 ms on average.

Keywords-Internet of Things, Blockchain, Smart Contracts,
Payment Channels, Off-chain, Ethereum

I. INTRODUCTION

As the Internet of Things (IoT) becomes deeply inte-
grated into our daily lives, new opportunities emerge. For
example, cities nowadays embed sensors into parking lots
to measure occupation. This capability, in turn, allows for
new application scenarios, such as smart parking. Once a car
approaches an empty parking lot, the lot can automatically

1 2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promo-
tional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in
other works.

inform the car about the hourly parking fees (based on
location, time, or other locally set parameters), and engage
in their payment when the car drives away. This scenario
belongs to a much more generic application setting where
the plethora of IoT devices are frequently interacting in
two phases. First, they agree on the conditions related
to an activity (e.g., the parking fees). Second, at a later
time, they are executing/ensuring these conditions have been
fulfilled (e.g., payment of the fees). A key challenge here is
that the two IoT devices ordinarily do not trust each other,
as they are, for example, owned or operated by different
entities.

A potential solution to this challenge, worth exploring, are
blockchains and their corresponding smart contracts [1], [2].
In principle, via a smart contract stored in a blockchain, a
vehicle, and a parking sensor could agree on hourly parking
fees, and at a later point in time, enforce the payment (e.g.,
through micropayments). However, blockchain technologies
and smart contracts of today assume powerful nodes that can
communicate and synchronize frequently. Ethereum [3], for
example, uses a virtual machine to execute smart contracts,
where clients need to connect to the blockchain both to
upload their transactions and to query for updates.

Contrary, the nodes in IoT networks face constraints in
energy, memory, and computation capabilities, making the
requirements of current state-of-the-art blockchain technolo-
gies an ill fit for the IoT ecosystem. For example, today’s
resource-constrained devices have some tens of kilobyte
memory, which is quickly exceeded by code and state
information of smart contracts. High bandwidth, always-on
connectivity with 4G or 5G, is infeasible in terms of energy
consumption and hardware costs for many applications that
shall operate for years on battery power. Moreover, cellular
network coverage is far from ubiquitously available. Energy-
efficient LPWAN technologies such as LoRa and SigFox, in
turn, do not provide the required bandwidth for direct on-line
transactions between a smart device and the cloud.

Furthermore, to allow IoT devices to play a central role
in future micro-services (e.g., smart parking), they must
be able to provide a local context (e.g., sensor data) for
the conditions related to the activity about to take place.
However, most smart contracts are not well designed to
handle input from the outside world. While Oracles [4], [5],
as a third-party information source, can supply verified data



from Internet-connected sources, there is no direct way for
a smart contract to trigger a sensor reading and actuator
setting on the IoT sensor-node. Overall, we recognize a gap
between high-level blockchain architectures and the need for
additional services and the capabilities of IoT devices.

To overcome these challenges, we design TinyEVM, a
novel architecture to execute off-chain smart contracts on
low-power IoT devices. We begin by revealing the design
challenges of an application scenario for payment channels
using off-chain smart contracts and introducing three novel
approaches. Firstly, we design the on- and off-chain smart
contracts considering the trade-offs between the device con-
straints and the off-chain protocol. We remove the need
for active synchronization of payment channels by using a
logical clock. Secondly, we customize the Ethereum Virtual
Machine (EVM) to run on resource-constrained IoT devices
with just a few kilobytes of memory. Thirdly, we extend
the EVM by introducing specific IoT opcodes to allow
smart contracts to directly interact with the sensors and
actuators of the local IoT device. Our goal is to enable smart
contracts written for EVMs to benefit from the large pool of
existing contracts and established toolchains for the design,
implementation, and verification of smart contracts.

To summarize, our contributions are as follows:

• We design and implement TinyEVM, an open-source2

system to enable and scale (micro)payments on low-
power IoT devices.

• We devise a virtual machine to execute off-chain smart
contracts on resource-constrained devices.

• We introduce the concept of specific IoT-opcodes to
unify the logic of interacting with sensors and actuators
inside a smart contract.

• We quantify the performance of TinyEVM in terms of
computation, delay, memory, and energy consumption.
Notably, we find that low-power devices (TI-CC2538)
can deploy a smart contract in 215 ms on average. The
node can complete an off-chain payment in 584 ms on
average.

• We finally provide a discussion of implementation
challenges and trade-offs regarding off-chain protocols
for resource-constrained devices.

Outline. We organize this paper with the following struc-
ture. In Section II, we provide the necessary background
for TinyEVM. In Section III, we provide an overview of
our application scenario and the design requirements. In
Section IV, we provide the system design of TinyEVM. In
Section V, we provide a security analysis of our design.
We present the evaluation results in Section VI. Finally, we
provide the related work in Section VII and the conclusion
in Sections VIII.

2https://github.com/chrpro/TinyEVM

II. BACKGROUND

In this section, we provide the essential background to
understand the concepts of Blockchains, Smart Contracts,
the Ethereum Virtual Machine, Payment Channels (PC), and
the Plasma framework.

A. Overview of Blockchains

A blockchain is a distributed ledger replicated by multiple
nodes and kept consistent via a consensus protocol. In
cryptocurrencies like Bitcoin and Ethereum, the protocol is
called mining. With mining, each node can create a new
state by solving a probabilistic mathematical puzzle.

As blockchains became popular, their scalability and per-
formance limitations became apparent [6], [7]. The research
community responded with several proposals to scale the
blockchains like sharding [8], [9], consensus algorithm vari-
ations [10], and trusted execution [5]. In this paper we focus
on three prominent proposals: (a) side-chains [11], (b) pay-
ment channels [12], [13], and (c) payment networks [14],
which we further described below.

B. Smart Contracts and the Ethereum Virtual Machine

Smart contracts are executable programs stored as byte-
code in the blockchain. They highly extend the use of
a blockchain as they can programmable change its state.
For example, with the so-called Ethereum Virtual Ma-
chine (EVM), each node participating in the consensus of
the blockchain executes the smart contracts on its local EVM
and validate the correctness of the created new state.

The EVM is a Quasi-Turing complete machine [3] to
execute state-transitions in the blockchain. The EVM is a
256-bit stack-based machine executing bytecode statements.
Each statement consists of an opcode, with 71 active (dis-
crete) opcodes at the time of writing. The machine avoids
an infinite execution of the bytecode by charging a fee
for each execution statement, the so-called gas. This fee
inhibits micro-payments to be affordable, which is why
payment channels have been suggested (see below). If a
smart contract runs out of gas in the middle of execution, it
is aborted.

The current design of EVM treats smart contacts as
sequential programs with no support for concurrency. More-
over, EVM does not allow smart contracts to have access to
data outside of the network, limiting their usefulness. For a
smart contract to include sensor data, current solutions use
services such as Oracles [4]. Oracles act as a third-party
information source, and supply verified data from Internet
sources. TinyEVM proposes a novel approach to include IoT
opcodes inside the EVM, where the smart contract can have
access to the sensors and actuators of the device.

C. Payment Channels

The fee(s) for each payment in the blockchain often makes
repeated micropayments unaffordable. Prominent proposals

2



to overcome this limitation are off-chain protocols like
payment channels (PC) [12], [13].

With PC, two parties can swiftly exchange small payments
and postpone updating the blockchain (avoiding the fees)
until they reach a final state. The parties pre-agree and sign a
smart contract, which locks a specific amount of money for a
specified period. Later, any participant can unlock the funds
by providing a final state signed by both participants within
the pre-agreed period. As such, the payment channel is a
combination of three distinct concepts: 1) multi-signature
addresses, 2) time-locks, and 3) hash-locks.

Multi-signature addresses require n-of-n signatures to
unlock its funds. The typical case is a 2-of-2 signature ad-
dress that requires the approval of both parties to unlock the
fund. A time-lock restricts the validity of the multi-signature
to a limited time. A hash-lock requires the revealing of the
pre-image of a secret hash value to consider a payment as
valid. The payment channel requires at least two on-chain
messages to the public blockchain. One message to open the
channel and lock the desired amount, including the hash-
locks and time-locks. Depending on the design, the channel
allows the owner to send messages to update the status or
extend the lock-period. With an open channel, two parties
perform off-chain payments by exchanging signatures. When
they reach the time to close the channel, they reveal the
secret-hash.

There are two main extensions of payment channels. First,
payment networks [12], [14] reuse existing user channels to
route payments off-chain. Second, state channels [15]–[17]
provide a general use of channels to store state changes for
any application. TinyEVM builds on the design concepts of
payment channels and adapts them to the specific require-
ments of IoT applications.

D. Side-Chains
Another proposal to scale blockchains is the idea of side-

chains [11], [18]. A typical side-chain system includes three
main components: 1) an on-chain smart contract, 2) side-
chain(s), and 3) an exit function.

The on-chain smart contract is published in the main-
chain, and it acts as a bridge between several side-chains.
The smart contract locks the funds in the main-chain that
the side-chains can circulate as off-chain tokens. The nodes
participating in the side-chain are responsible for maintain-
ing the side-chain. Each side-chain has a mechanism for
validating blocks and a fraud-proof mechanism. The fraud-
proof(s) is used by the users to report malicious users trying
to exit on the main-chain. The exit function allows off-chain
nodes to claim the tokens from the side-chain(s). Finally, any
node can challenge an exit request on the main-chain using
a fraud-proof.

III. TINYEVM OVERVIEW

This section describes the motivation behind TinyEVM.
First, we introduce a simple application scenario and the

Icons by flaticon (CC 3.0 BY)

IoT to IoT (802.15.4, BLE, TSCH…) IoT to Backend

Ethereum

1

2
3

Figure 1: The parking application scenario: 1) The vehicle
and the parking lot communicate via a short-range protocol.
2) They open an off-chain payments channel with an initial
deposit and perform offline payments. 3) A node can at
anytime submit a final state to the blockchain, in our case
Ethereum.

parties involved therein. Second, we present the system
requirements and challenges for low-power devices. Third,
we motivate our threat model based on the application
scenario.

A. Application Scenario: Smart Parking

Nowadays, smart parking lots equipped with sensors can
detect occupation, and they can interact with a vehicle
occupying a spot, for example, via low-power wireless tech-
nologies. We envision a marketplace where a car owner and a
parking company negotiate the terms of parking and perform
micropayments. For this, the car owner and the parking
company publish a template smart-contract to a blockchain,
which includes the necessary payment information.

When a vehicle approaches the parking lot, and the
devices come within range, the lot can initiate the smart
contract and create an off-chain payment channel with the
vehicle via low-power wireless technologies, see Figure 1.
The channel includes the common initial deposit of funds
by the vehicle. During the parking, they may do multiple
transactions and interactions, such as hourly payments or
updates on the payment rates based on the time of day. At
the end of the parking, they close the off-chain channel and
sign the final state, which the parking lot can publish to the
blockchain to claim the payment.

B. System Requirements

From the above scenario, we derive the following require-
ments for the application:

Sensor utilization: The parking lot would like to charge
the vehicle owner based on the location of the parking spot,
time of day, and possibly other locally relevant conditions,
such as the parking availability. Thus, prices can vary and
have to be agreed on, for example, via a smart contract.

Low latency: Both parties expect the whole process of
negotiating and charging for the parking to be automated and

3



take place in the order of seconds. For this reason, we fa-
vor short-range wireless communication for our application
scenario.

Low energy consumption: The parking service expects
to depend on cheap devices with long battery life-time. The
vehicle-owner expects a cheap device easily installed into a
regular car.

C. System Challenges

Beyond the challenge of designing a off-chain protocol,
we face other system challenges. To ensure compatibility
with off-the-shelf smart contracts and to be able to benefit
from the wide variety of tools for smart contract writing,
testing, and verification designed by the Ethereum commu-
nity, one key design goal of TinyEVM is to natively support
the Ethereum Virtual Machine (EVM) bytecode. However,
EVM is a 256-bit word-size virtual machine. This word-
size leads to two key challenges: (1) resource inefficiency
and (2) the complexity of executing 256-bit operations on a
32-bit machine.

First, from a resource perspective, the EVM does not
utilize the memory efficiently. All operations are based on
256-bit variables and addresses. As a result, every VM op-
code, even a simple addition, operates on 256-bit variables.
The main reason for this EVM specification was to ease
cryptographic operations like the Keecak256, which works
on 256-bit digests. However, the vast majority of variables
in a smart contract rarely reach values that require 256-bit
storage. Similarly, as our evaluation shows, smart contracts
do not reach a size in code or data that they would need
256-bit address space. The result is an inefficient memory
use that could prohibit their execution of smart contracts on
IoT devices.

The second challenge is the run-time overhead of the
virtual machine. The embedded hardware does not directly
support 256-bit operations. Instead, we have to emulate 256-
bit operations using a 32-bit micro-controller by implement-
ing custom libraries and, as a result, executing a single EVM
opcode requires in the order of hundreds of MCU cycles.
This inefficiency may further limit the potential of Ethereum
smart contracts on resource-constrained IoT devices.

D. Threat Model

In our scenario, we assume mutually-distrusting, rational
parties using a payment channel to exchange payments. The
threat model includes two potential threats and focuses on
the inability of nodes to revoke previous states of the pay-
ment channel. Notably, the node that receives the payment
faces the threat of the inability to report a misbehaving peer
before the contest period expires. On the other hand, the
node sending the payment faces the threat of the inability
to unlock her money from the channel.

The receiver expects a non-repudiation property of the
system. After several payments, none of the parties will be

Parking Sensor Smart Car Ethereum

Register 
Template

O
n-

Ch
ai

n
Sm

ar
t

Co
nt

ra
ct

Off-Chain 
Execution 

O
ff-

Ch
ai

n 
Sm

ar
t C

on
tr

ac
t

O
n-

Ch
ai

n 
Co

m
m

it(
s)

Public 
Address 
0x00

Smart Contract
Local Copy

New Payment 
Channel

On-Chain Commit(s)

Offline Payment(s)

Side-Chain(s)

1
2

3

Side-Chain(s)

Challenge Period

Sensor 
Data

Sign Final State

Close Channel

Side-Chain

Icons by flaticon (CC 3.0 BY)

Figure 2: The system includes three phases: 1) Publishing
the on-chain template smart contract. 2) Creating an off-
chain payment channel and signing (multiple) payments.
3) On-chain commit of a final state, which activates the
challenge period, and nodes can dispute with their local side-
chains.

able to deny the participation of the exchange. The parking
sensor will be able to claim the money from the blockchain
at any time for the time the car has stayed there. On the other
hand, the sender expects a finite property of the payment
channel, which means the channel eventually will close, and
the sender can reclaim any remaining money when it leaves.

IV. TINYEVM SYSTEM DESIGN

TinyEVM makes four design contributions: First, it sep-
arates the transactions of IoT applications into three high-
level phases: 1) The on-chain smart contract, 2) the off-
chain smart contract, and 3) the on-chain commit(s). Second,
TinyEVM customizes the Ethereum Virtual Machine (EVM)
to address the resource constraints of IoT devices while
staying compatible with the native EVM language. Third,
we introduce a template design for smart contracts and the
separation of on- and off-chain functionality. Fourth, we
extend smart contracts and the EVM with IoT opcodes to
interact with onboard IoT sensors and actuators. The new
opcodes allow IoT devices to include sensor data and sensor
actuation as a part of smart contract development.

4



Component EVM TinyEVM

Stack memory 256-bit 256-bit
Random access memory 8-bit 8-bit
Storage space 256-bit 8-bit

Operation opcodes 27 27
Smart contract opcodes 25 21
Memory opcodes 13 13
Blockchain opcodes 6 -
IoT opcodes - 1

Table I: Comparison of the original EVM and the TinyEVM
specifications. The word size of the stack and random access
memory remains the same. TinyEVM removes the opcodes
related to (on-)blockchain operation, it uses 8-bit side-chain
storage space, and it introduces new IoT-specific opcodes.

A. On- and Off-Chain Transactions: Three Phases

The deployment and execution of smart contracts include
three high-level phases, visible in Figure 2.

1) On-chain smart contract. A node publishes a smart-
contract as a template in the blockchain, which includes the
constructor for off-chain payment channels. The node makes
a deposit to be charged for parking services, which works as
an insurance in case of a dispute. This operation is similar
to the on-chain contract used in side-chains. The on-chain
smart contract serves as a bridge between the blockchain
and our off-chain payment channels.

2) Off-chain smart contract. The nodes use the template
to deploy a new off-chain payment channel using a unique
monotonic counter (logical clock) as an identifier. The off-
chain payment channels are locally generated smart contracts
that allow the use of sensor data. Nodes may use the
sensor readings, actuator interactions, or data received from
other IoT devices as a part of the smart contract. The
sensor data can range from weather conditions or device
location, combined with the knowledge about the occupation
of nearby parking spots – derived, for example, from the
LIDAR data of a modern car – which can be used to evaluate
and negotiate the parking fees. The nodes continue with
the signing and exchanging of off-line payments until they
close the payment channel. The nodes can open and close
an arbitrary number of payment channels, but limited to the
money deposited and locked in the on-chain smart contract.

3) On-chain commit. At any time, a node can exit from
an off-chain channel by publishing a final channel state or a
(side-chain) log of its local execution. Our commit function
checks the logical clock of the channel and the validity of
the signatures. In the case of a correct state, the new state
is appended to the tree of the on-chain smart contract. The
other node can challenge the state using the local log(s)
of the off-chain payments. Finally, there is an exit function
that a node can activate, which stops further updates from
off-chain channels. The activation of the exit function starts
the expiration period, and then it will dissolve the on-chain

smart contract and return any unspent money. During that
time, the other node can dispute the latest state and claim the
insurance money, as common for established side-chains.

B. Customized Ethereum Virtual Machine

We enable smart contracts on IoT devices by customizing
the Ethereum Virtual Machine (EVM) to meet the constraints
of IoT devices, especially in terms of device memory. In
Table I, we list the specifications of the original EVM
compared with our customized one. There are three types
of memory that a smart contract can use: 1) stack memory,
2) random-access memory, and 3) storage memory. We
achieve to meet the memory requirements without the loss
of functionality and compatibility of the IoT device.

The original EVM defines a 256-bit word machine, which
is not directly supported on a 16-bit or 32-bit micro-
controller. However, we keep the same word-size for com-
patibility reasons, and emulate a 256-bit word-size in our
implementation. This implementation allows us to use the
original Ethereum bytecode with no modifications. However,
the storage space is irrelevant for off-chain executions. These
operations are needed only for the main-chain. For the off-
chain computations, we utilize an 8-bit storage space to store
only the side-chain created by the IoT nodes.

We list the machine opcodes into five categories. First,
the operation opcodes define the necessary computations,
like addition and multiplication. The original EVM supports
27 operations, and TinyEVM supports all of them. Second,
the smart contract opcodes are related to smart contract exe-
cution like method calls, and returns. TinyEVM supports the
necessary operations except for the GAS operations. There is
no charging for the off-chain computations as all operations
are executed locally. Third, the memory opcodes are related
to operations on memory like store and load, and TinyEVM
supports all of them. Fourth, the blockchain opcodes are
used to get information from the blocks of the blockchain.
TinyEVM does not support any block-related opcode since
there is no access to the blockchain during local execution.
Finally, TinyEVM introduces a novel opcode for IoT sensor
data. This extension allows us to include sensor data inside
the smart contract.

We observed that the original EVM includes unused op-
code(s) that are not currently in use. Thus, we utilized one of
the unused opcodes to introduce the IoT sensor functionality.
In detail, we use the 0x0c undefined opcode to represent
the action of sensing or actuating on the device. Details,
such as which sensor to use and additional parameters are
given as options to the opcode. This allows us to include
arbitrary types of sensor data, and the TinyEVM hides the
implementation details from the user.

C. On-Chain Smart Contract

For our purposes, we assume that the entity providing a
service (e.g., the parking service) has published the parking

5



1 contract Template {
2 address[] PaymentChannels;
3 uint Balance;
4 address payable public Receiver;
5 uint Logical-Clock = 0;
6 MerkleSumTree Side-Chain-Root;
7
8 function CreatePaymentChannel (uint64 Money)

public {
9 newPaymentChannel = new PaymentChannel(

receiver, Money);
10 PaymentChannels.push(newPaymentChannel);
11 Logical-Clock += 1;
12 }
13 function OnChainCommit{...} //user specific
14 function Challenge{...} //user specific
15 }

Listing 1 : Factory Template in Solidity

1 contract PaymentChannel {
2 address payable public Sender;
3 address payable public Receiver;
4 uint public sensor_data;
5
6 constructor(address payable _recipient) public

payable {
7 sender = msg.sender;
8 recipient = _recipient;
9 assembly{

10 0x0c //IoT sensor opcode
11 sstore(0x0c) // Store sensor data
12 }
13 }
14 function close(uint amount, bytes memory

signature) public payable {
15 require(msg.sender == recipient);
16 require(isValidSignature(amount, signature));
17 recipient.transfer(amount);
18 selfdestruct(sender);
19 }
20}

Listing 2 : Payment Channel in Solidity

conditions as a smart contract template on the blockchain.
The template includes all rules that the two parties need
to create and use an off-chain payment channel. Upon
accepting the conditions, the user (e.g., the owner of the
car) locks the desired amount to be used for the services.
Alternatively, if both parties have to negotiate some details,
an additional negotiation phase is possible to construct the
template [19].

The template is a factory-smart-contract [20], which can
create and deploy child contracts dynamically, see Listing 1.
The child contracts in our scenario are the payment channels,
see Listing 2.

D. Off-Chain Smart Contract

The second phase in Figure 2 starts when both entities
come within range of their low-power wireless technologies,

e.g., a smart-car and smart-parking lot come within range.
The nodes exchange their sensor data and transactions via
a short-range protocol like TSCH [21] or BLE [22]. Please
note that the design of TinyEVM is agnostic to the specific
technology used. Both entities execute the bytecode of the
template to generate an off-chain payment channel. The
payment channel includes an ID and the sequence number,
which uniquely identifies each transaction on the channel.
The sequence number acts as a logical clock, which is
different from the real-time bound of the original concept
of payment channels. By using sequence numbers, we can
determine the causal order of the payments. With the casual
order, the channels can capture the order in which the
payments happens, but not the actual time that they occur.
The use of logical clocks loosens the requirements for
communication and synchronization.

Each device maintains a sequence number that uniquely
identifies each of its transactions by simply incrementing a
counter for each new transaction. The sequence number is
later used for verification and ensures that no device skips
reporting any transactions. With the off-chain payment chan-
nel, the two nodes can perform several off-chain payments
by exchanging signed transactions (using their low-power
wireless radios). The signed off-chain payments are stand-
alone artifacts that can claim money from the main-chain.
The signed payment includes information on the payment
channel ID and its unique counter, which makes it trivial to
verify the logical order. A node can report either the payment
or the final state of the channel, which aggregates all other
previous payments. Each execution of the payment channel
extends the local (side-chain) log of the node, which links
each state with the previous. The local (side-chain) log uses
the root published on the main-chain smart contract, which
allows verification of the logical order of the executions and
ensures that no transactions are omitted. The nodes use the
off-chain payment channel repetitively to perform several
payments until they close it. The total amount of payments
is limited by the funds locked in the main-chain.

E. On-Chain Commit & Challenge Period

At any time, a node can submit a signed final state of
a closed off-chain payment channel. The sequence number
of the channel allows the nodes to retrieve the money
asynchronously. The node can submit a state that happened
after the latest submit without providing the details of
the actual time that it happened. Every time the on-chain
contract receives a request, it verifies the signed states and
updates its sequence number to the highest that received.

The on-chain smart contract uses a Merkle-Sum-Tree [11],
which has the sum of the payments and the hash value. The
sum value is used as a validation condition along with the
hash value. This condition makes it possible for auditing the
sum of the payments. Each payment adds to the overall sum,
and if it exceeds the allowed range, the payment is invalid,

6



and the other node can claim the insurance money. In our
system, we further extend the validation condition with the
sequence numbers. Reporting a state with a higher sequence
number accumulates the changes of the previous states.

Finally, the sensor node can activate the exit function by
submitting a signed final state. This action restricts further
submission and starts the challenge period. The other node
can submit a transaction with a higher sequence number
value to claim the insurance money. As each transaction is
signed, it is not disputable.

V. SECURITY ANALYSIS

Similar to other off-chain systems [11], [23], TinyEVM
does not entirely prevent double-spending fraud but instead
makes it unprofitable. We design our system based on three
security properties. 1) We can detect any fraud using the
sequence numbers and the signatures of the participants.
2) We introduce proper punishment and incentives for the
participants to report any misbehavior. 3) We have a time-
limit in which a party can claim the money deposited in the
on-chain contract.

Detection: Each time a node performs a transaction or
closes a channel, it increases the sequence number, and it
eventually will report the local state to the blockchain. The
on-chain smart contract always stores the most recent state,
i.e., the one with the highest sequence number. As a result,
the sequence number prevents a node from misbehaving by
reporting old states. Reporting a signed transaction or state
with a higher sequence number denotes a valid next state.

A node could exchange a transaction with another node,
and it may skip to report or even try to delete the transaction.
If the other node behaves correctly, it will upload all the
transactions, and the on-chain smart contract detects the mis-
behaving node. Thus, a transaction will only go unnoticed
if both involved parties are misbehaving. We argue that it is
very uncommon for two parties to conspire in this way, as
they commonly do not share the same goal.

Non-repudiation: One party could claim the money from
the blockchain at any time by providing a signed state. On
the other hand, the other party can close the channel to
refund any unspent money at any time. The system is based
on incentives that penalize misbehavior. The first party has
the incentive not to overspend the locked funds; otherwise,
the insurance money will be lost. The second party has
the incentive to report the last payment before the template
expires.

Time-limit: The template has an exit function that allows
the sensor owner to start the process to renounce any unspent
money. This time-limit is in order of days similar to the
popular framework (e.g., Plasma, which has a seven-day
bound) [11].

VI. PERFORMANCE EVALUATION

In this section, we present the evaluation of TinyEVM
on low-power IoT devices. The evaluation responds to the

following questions. (a) Is TinyEVM technically feasible on
low-power IoT devices? (b) What is the performance of
executing a smart contract on a low-power device? (c) What
is the overhead in terms of computation, memory, and energy
consumption of the off-chain functionality, including both
wireless communication and local processing.

Outline. First, we list the implementation details and
target platforms. Second, we present the evaluation of the
customized Ethereum Virtual Machine (EVM) on low-power
devices. This part of the evaluation represents a macro-
benchmark of the system regarding the ability to deploy
smart contracts on low-power devices. Third, we present the
evaluation of the off-chain functionality in terms of run-
time performance, energy, and memory requirements for
both communication and local computation. The off-chain
evaluation represents a micro-benchmark of the system,
and it provides details on executing the off-chain payment-
channel application.

A. Experimental Setup

Implementation. We implement the Ethereum Virtual
Machine (EVM) in C as a module for the Contiki-NG OS.
For wireless communication, we use the TSCH protocol
stack provided by Contiki-NG. We support smart contract
deployment up to 8 KB of bytecode. We implement EVM
as a 256-bit word size machine with 3 KB of stack, 8
KB of random access memory, and 1 KB for off-chain
storage. A comparison between the original specifications
and TinyEVM is presented in Table I.

Hardware Setup. Building on cryptographic primitives,
our implementation targets sensor nodes with cryptographic
hardware support. We use Openmote B that is based on the
TI-CC2538 SoC [24]. The SoC runs a 32-bit ARM Cortex-
M3 CPU at 32 MHz, 32 KB of RAM, and 512 KB of
ROM. Moreover, the SoC features a cryptographic engine
at 250 MHz and an 802.15.4 radio transceiver. Please note
that TinyEVM is not bound to this particular platform, and
it can be deployed on any platform supported by Contiki-
NG, as long as it has a cryptographic co-processor, sufficient
resources, and a 802.15.4 radio interface.

B. Ethereum Virtual Machine on IoT Devices

We evaluate the resource efficiency of TinyEVM and
its ability to deploy off-the-shelf smart contracts. For this,
we collect roughly 7,000 publicly available smart contracts
to test our platform. The smart contracts are verified by
Etherscan.io, a widely used blockchain explorer.

1) Memory Requirements: The deployment of a smart
contract starts with the initialization of the smart contract
using its constructor function. This function initializes all
the variables, and it will take the initial steps to make the
smart contract executable. Finally, it will return the actual
bytecode that will be installed on the device.

7



0 10000 20000
Smart Contract Size (Byte)

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200
De

ns
ity

Memory Use
Smart Contract Size
Device Capacity

(a) The distribution of the memory requirements
for 7,000 smart contracts. We are able to deploy
93% (5,953) of the smart contracts on the low-
power device. The memory capacity is set to 8
KB. For the remaining 7% we would need more
memory on the device.

0 5000 10000 15000 20000 25000
Smart Contract Size (Byte)

0

5000

10000

15000

20000

25000

M
em

or
y 

Us
ag

e 
(B

yt
e)

Unsuccessfully Deployed
Successfully Deployed
Device Capacity

(b) Device memory usage in relation to the smart
contract size. There is a positive correlation be-
tween the smart contract size the device mem-
ory requirements. The memory required for the
deployment is never longer than the size of the
contract.

0 10 20 30 40
Maximum Stack Pointer

0.00

0.05

0.10

0.15

0.20

De
ns

ity

Stack Pointer

(c) The use of the stack memory of the successful
deployed smart contracts. The figure shows the
maximum value reached by the stack pointer.

Figure 3: The graphs presenting the memory usage of the smart contract deployment. This includes the density distribution
regarding the memory and stack usage of the virtual machine.

0 2000 4000 6000 8000 10000
Smart Contract Size (Byte)

0

2000

4000

6000

8000

De
pl

oy
m

en
t T

im
e 

(m
s)

Figure 4: The time of deploying a smart contract in relation
to its bytecode size. The average time is 215 ms, but we can
notice there are some outliers.

In Figure 3a, we see the distribution of the smart contract
size and the memory usage in TinyEVM after the deploy-
ment. We observe that the average size of a smart contract
is 4 KB (see also Table II). The maximum size is 25 KB
and the minimum size is 28 Bytes. The sizes of the smart
contracts are within the capacity of the device that facilitates
32 KB of RAM. The deployment limit is set to 8 KB (red-
dotted line); If we want to deploy larger smart contracts, we
need to allocate less memory for the system configuration
(see Table III, e.g., stack size). Such allocation will lead to
execution failures, e.g., stack overflows, and we argue that
8 KB represents a favourable memory allocation point.

In our experiment, we successfully deploy 93% (5,953) of
the public smart contracts on the low-power device without
any modification. All other contracts fail due to resource
limitations. In Figure 3b, we observe the memory usage
needed to deploy the smart contracts. We notice the positive
correlation between memory use and the size of the smart
contract. However, the final deployment never requires more
memory than the actual size of the smart contract. This
behavior allows the device to deploy some outliers with
bytecode size higher than 8 KB, but with a final deployment
requirement of less than 8 KB.

We continue our analysis with the virtual machine’s stack
usage during the experiments. In Figure 3c, we present the
distribution of the maximum Stack Pointer (SP) during ex-
ecution. We can observe the majority of the smart contracts
use a maximum of ten elements. In Table II, we observe
that the maximum SP is 41 elements, with an average
of 8 elements. As a reminder, the Ethereum specifies a
maximum SP of 1024 elements. From our experiment, we
see a tendency of developers to write small, concise smart
contracts, which rarely need more stack during execution.
However, the execution of deployed smart-contract functions
can vary depending on the parameters. The evaluation of
these functions is hard to define in practice as their parame-
ters are not known before the actual execution. However, our
evaluation gives some insights regarding the design choices
for the virtual machine. Overall, we conclude that in terms of
random access memory, stack memory, and storage memory
of TinyEVM, we support the majority of the 7,000 publicly
available smart contracts.

8



2) Deployment Execution Time: In Figure 4, we present
the deployment time (in ms) compared to the size of the
bytecode. As a first observation, there is no correlation
between the size of the bytecode and the deployment time.
However, we only perform the deployment of the smart
contract in our evaluation with the default parameters.

We see in Table II that the average execution time is
215 ms, with a standard deviation of 277. It is worth to notice
that we observe some outliers that need more time to deploy
the smart contract, which highly depends on the nature of
the opcodes they use. The maximum time we observe is
9.2 seconds, showing that smart contracts can be deployed
within seconds, even on resource-constrained IoT devices.

C. Off-chain Payment Channels

Next, we give insights into the memory, CPU perfor-
mance, and energy consumption of the execution of off-
chain payment channels on low-power devices. We run our
experiments over 200 times, and we report the standard
deviation when it is not negligible (as σ). For the energy
consumption of Contiki-NG, we rely on the internal Energest
module [25] that has a 30-microsecond resolution timer.

1) Memory Requirements.: We present the memory foot-
print of the payment channel in Table III and divide it into
three main parts: (a) The Contiki-NG is the operating system
including the necessary network stack and libraries, (b)
the smart contract template to generate payment channels,
and (c) the TinyEVM is our customized Ethereum Virtual
Machine (EVM).

Contiki-NG itself consumes 33% of the available RAM.
This module is necessary for the general functionality of
the device and also provides the wireless protocol stack.
The EVM has a significant impact and consumes 42% of
the RAM. The smart contract template, which we imple-
mented for this evaluation scenario, is deployed as bytecode
and consumes only 5% of the RAM. Finally, the whole
program consumes only 11% of the ROM. The deployed
smart contract fully supports our smart parking application
scenario, and the results underline that we have resources
for significantly more complex application scenarios.

2) Cryptographic modules: Next, we evaluate the per-
formance of the cryptographic functions. The keccak256
hash function is based on software implementation, as the
cryptographic hardware of our platform does not support it.
All the other cryptographic operations are performed by the
cryptographic hardware running at 250 MHz. In Table V, we
present the performance of each separate task. The average
time to complete all cryptographic functions of a complete
transaction round is 356 ms. The most time-consuming
operation is the ECDSA signature, which takes 350 ms. We
argue that this overhead, while significant, is feasible for a
large number of applications. For example, in the car parking
application scenario, it means a user will need less than a
second to sign and exchange a valid transaction.

3) Energy consumption: We present the energy consump-
tion of off-chain transactions on resource-constrained IoT
devices. Focusing on the energy consumption of the off-
chain payment channel, we report our results after the
TSCH node discovery. Node discovery happens quickly [21],
and the energy consumption is insignificant. Moreover, this
discovery is specific to the TSCH protocol and would have
a different footprint on other communication technologies
such as BLE. In Figure 5, we depict the flow of the electric
current (in mA) for a full-round of the off-chain process. The
process involves three discrete pieces: wireless communica-
tion, the virtual machine execution, and the cryptographic
engine.

As a first step, in the parking scenario, the nodes exchange
their data. Our evaluation includes reading sensor data,
in this case from the temperature sensor, to evaluate the
overhead of IoT sensor and actuator operations. The smart
car starts by sending its sensor data at 0.25 s, followed by the
receiving of parking sensor data visible in Figure 5. Second,
the car at 0.45 s executes the smart contract to create the
off-chain payment channel. This execution takes on average
0.20 s with a σ of 0.1.

Third, the car signs a payment for the parking sensor,
where the signature takes 0.35 s on average. In practice,
such payment would be conducted at an application-specific
rate, commonly in the order of minutes. For brevity, we
include only one payment here. At the end of the parking,
the car executes the off-chain payment channel to register
the payment on the side-chain. This process takes on average
0.08 s with a σ of 0.01. Finally, the car exchanges signatures
with the parking sensor.

In Table IV, we report the total energy consumption (in
mJ) of the off-chain process. We notice that the major energy
consumption (65%) comes from the cryptographic engine
with 19.1 mJ. The wireless communication using the TSCH
protocol contributes to 3,7 mJ (13%). Finally, the execution
of the virtual machine contributes to a CPU consumption
of 4,1 mJ (14%). In total, the off-chain process consumes
29,6 mJ. We observe that the cryptographic engine is the
main energy consumer, while both the virtual machine and
wireless communication consume considerably less.

By default, the OpenMote platform is powered by two
standard AA alkaline battery of 2500 mAh. Thus, we can
expect 10,000 Joules of energy from the cells, which allows
us to perform roughly 333,000 payments. If we assume
one payment on average every 10 minutes, this would lead
to a battery life-time of more than six years. While this
is merely an estimate and other factors such as energy
consumption during deep sleep and battery leakage need
to be considered, we argue that this order of magnitude
of payments is practical for a wide range of application
scenarios, including our parking example.

9



Measurement Contract Size Stack Pointer Stack (Bytes) Memory (Bytes) Deployment Time (ms)

Max 10,058 41 3,056 8,056 9,159
Min 28 3 768 96 5

Mean 4,023 8 2,048 3,676 215
Std 2899 3 827 2,801 277

Table II: An overview of memory and deployment time of the 5,953 successfully deployed smart contract.

RAM ROM
Component Bytes Percent Bytes Percent

Contiki-NG OS 10,394 33% 40,527 10%
TinyEVM 13,286 42% 1,937 1%
Smart Contract Template 2,035 5% - -

Total footprint 25,715 80% 53,239 11%
Available memory 6,285 20% 458,761 89%

Table III: Memory Footprint of the TinyEVM (max sizes)
on CC2538, which facilitates 32KB of RAM and 512 KB
of ROM.

State Time [ms] Current [mA] Energy [mJ]

Cryptographic Engine 350 26 19.1
TX 32 24 1.6
RX 52 20 2.1
CPU @ 32 MHz 150 13 4.1
CPU @ LPM2 982 1.3 2.7
Total 1,566 - 29.6

Table IV: Derived energy consumption of running the con-
tract signing protocol on the CC2538 SoC given a supply
voltage of 2.1 V. Note we configure Contiki-NG to use the
low-power mode 2 (LPM2) [24], when not active.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time (s)

0

5

10

15

20

25

Cu
rre

nt
 (m

A)

Crypto-Engine
TX
RX
CPU

Figure 5: The electric current (in mA) drawn by a complete
round of the off-chain payments channel. There are three
discrete pieces involved: the wireless communication, the
virtual machine execution, and the cryptographic engine.

VII. RELATED WORK

We list the related work in five parts: (1) blockchains
and IoT, (2) scaling of blockchains using off-chain protocols
including payment channels and networks, (3) payment

Operation type Mode Time

ECDSA - Signature HW 350 ms
SHA256 - Hash function HW 1 ms
Keccak256 - Hash function SW 5 ms
Total time 356 ms

Table V: Performance of cryptographic operations. Kec-
cak256 is implement on software, the other operations are
using the CC2538 cryptographic engine running at 250
MHz.

hubs, (4) side-chains and oracles, and (5) virtual machines
in the context of IoT and wireless sensor networks.

Blockchain and IoT. Previous proposals highlight the
benefits of using a blockchain for IoT applications. IoT-
LogBlock [2] demonstrates the feasibility of creating and
validating transactions using low-power devices for cloud-
based blockchains like Hyperledger. However, IoTLogBlock
is not applicable to public blockchains such as Ethereum
and Bitcoin. AGasP [1] analyses the benefits of using smart
contracts for IoT applications. This architecture assumes
powerful nodes able to interact and synchronize with the
main blockchain. TinyEVM proposes the off-chain execution
of smart contracts and involves sensor data as part of the
execution.

Payment Channels & Networks. Researchers have pro-
posed several improvements and extensions to Payment
Channels (PC). A major extension to PC is the payment
networks, where users can reuse existing PCs to form a
routing network. On the commercial side, the Lighting
Network [26] was one of the first implementations of such
networks for Bitcoin. The equivalent network for Ethereum
is Raiden [27].

There are three main challenges to make PCs usable in
practice. One challenge is to open a PC in both directions.
Duplex micropayments [28] are an extension to allow the
user to have this type of PC. Second, a user cannot reallocate
the locked money in the channel. Revive [12] allows a user
to rebalance the payment channels and to reallocate money
to a channel without the cost of closing and reopening it.
Third, there are privacy concerns regarding the ability of
track payments. Bold [13] tackles privacy issues and ensures
that multiple payments are unlinkable with the assumption
that the participants use anonymized capital. Other proposals
solve the privacy issues with different trade-offs, for example
SilentWhispers [29], and SpeedyMurmurs [30]. However,

10



the above approaches assume active communication and syn-
chronization among nodes, which is not a valid assumption
in the context of IoT, especially resource-constrained IoT.

Payment Hubs. The idea of a payment hub is to use the
nodes that have multiple open channels (hub) to circulate the
payments. The other nodes need to connect to a hub node.
There are three challenges for the payment hubs.

First, there are concerns about the anonymity of the
payments. Tumblebit [17] makes the payments unlinkable by
using an untrusted intermediary. Second, there is the involve-
ment of the intermediary for each payment. This interme-
diary leads to performance issues. Perun [31] proposes the
virtual payment hub to avoid this problem. Third, payment
hubs can lead to collateral fragmentation. NOCUST [32]
proposes the separation of the functionality of the payment
hub to two components. First, an off-chain operator server
handles every transfer. Second, an on-chain smart contract
verifies the payments. Finally, Ye et al. [14] propose a system
(Boros) to shorten the payment path for the hub network.
In the context of IoT, a payment hub allows us to scale the
payment system, but several trade-offs need to be evaluated.
This is one focus of our future research.

Side-Chains. This proposal [23] includes an on-chain
smart contract acting as a bridge between several lighter
and faster side-chains. The nodes can exchange the off-chain
tokens that have a correspondence in the main blockchain.

The Plasma [11] framework is the proposal of the
Ethereum team to scale the blockchain network. However,
the current side-chains do not take into consideration the
challenges of low-power IoT devices. Our system is built on
top of these ideas, and we further extend the functionality
of off-chain smart contracts to have access to sensors and
actuators of the IoT device.

Oracles. An oracle provides a solution to the design
inability of Ethereum to include data from the physical world
(e.g., sensor data). TownCrier [5] provides a bridge between
HTTPS-enabled data websites and the Ethereum blockchain.
Moudoud et al. [4] show a test case of an IoT supply chain
scenario using a network of oracles and smart contracts.
Our system differs from these proposals since TinyEVM
proposes a novel approach where the smart contract can have
access directly to the sensors and actuators of the IoT device.

Virtual Machine for IoT. Several virtual-machines [33]–
[35] have been proposed for IoT devices before to provide
support for high-level languages such as Java. However,
most of them define word-size from 8-bit to 32-bit indexes,
which are natively supported. In TinyEVM, we design a
256-bit machine tailored for off-chain smart contracts, which
brings new challenges. A limitation of the Ethereum Virtual
Machine (EVM) is its limited support for concurrency,
which TinyEVM inherits. One suggested solution for con-
current execution is to use speculatively parallel executions
of smart contracts [36], however, these solutions are not
designed for resource-constrained devices.

VIII. CONCLUSION

In this paper, we present TinyEVM, a novel system to
perform off-chain payments using low-power IoT devices.
TinyEVM allows deploying smart contracts from powerful
nodes on a resource-constrained device. We also extend the
functionality of the smart contracts to have access to sensor
reading and actuation of the device as part of the high-level
code, allowing the integration of could-services with IoT-
nodes.

TinyEVM achieves a sweet spot between the scalability
requirements of the blockchain and the off-chain computa-
tion. The design of TinyEVM focuses on the energy and
memory requirements of low-power devices. Our evaluation
shows the technical feasibility of executing off-chain smart
contracts on IoT devices. We deploy 5,953 smart contracts
with an average of 4 KB size with the average deployment
time of 215 ms. Finally, we evaluate the execution of off-
chain smart contracts in terms of run-time performance,
energy, and memory requirements on IoT devices. Notably,
we find that low-power devices can deploy a smart contract
in 215 ms on average. The IoT node can complete an off-
chain payment in 584 ms on average.

As future work, we will investigate the feasibility of
payment networks and payment routing algorithms on low-
power IoT devices. Also, we will improve some of the
privacy concerns of off-chain payments.

IX. ACKNOWLEDGMENTS

This work was supported by the Swedish Research Coun-
cil (VR) through the project “AgreeOnIT”, the Swedish Civil
Contingencies Agency (MSB) through the projects “RICS”
and “RIOT”, and the Vinnova-funded project “KIDSAM”.

REFERENCES

[1] Y. Hanada, L. Hsiao, and P. Levis, “Smart Contracts for
Machine-to-Machine Communication: Possibilities and Lim-
itations,” IEEE Conference on Internet of Things and Intelli-
gence System (IOTAIS), 2018.

[2] C. Profentzas, M. Almgren, and O. Landsiedel, “IoTLog-
Block: Recording Off-line Transactions of Low-Power IoT
Devices Using a Blockchain,” in IEEE Conference on Local
Computer Networks (LCN), 2019.

[3] G. Wood, “Ethereum: A Secure Decentralised Generalised
Transaction Ledger EIP-150,” Ethereum Yellow Papers, 2017.

[4] H. Moudoud, S. Cherkaoui, and L. Khoukhi, “An IoT
Blockchain Architecture Using Oracles and Smart Contracts:
the Use-Case of a Food Supply Chain,” in IEEE Sympo-
sium on Personal, Indoor and Mobile Radio Communications
(PIMRC), 2019.

[5] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi,
“Town Crier: An Authenticated Data Feed for Smart Con-
tracts,” in ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), 2016.

[6] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritz-
dorf, and S. Capkun, “On the security and performance of
proof of work blockchains,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2016.

11



[7] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “BLOCKBENCH: A Framework for Analyzing Private
Blockchains,” in ACM Conference on Management of Data
(SIGMOD), 2017.

[8] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta,
and B. Ford, “OmniLedger: A Secure, Scale-Out, Decentral-
ized Ledger via Sharding,” IEEE Symposium on Security and
Privacy (SP), 2018.

[9] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain:
Scaling blockchain via full sharding,” in ACM SIGSAC Con-
ference on Computer and Communications Security (CCS),
2018.

[10] L. M. Bach, B. Mihaljevic, and M. Zagar, “Comparative
analysis of blockchain consensus algorithms,” in International
Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2018.

[11] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart
contracts,” Plasma.io, 2017.

[12] R. Khalil and A. Gervais, “Revive: Rebalancing Off-
Blockchain Payment Networks,” in ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2017.

[13] M. Green and I. Miers, “Bolt: Anonymous Payment Channels
for Decentralized Currencies,” in ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2017.

[14] Y. Ye, J. Zhang, W. Wu, X. Luo, and J. Cao, “Boros: Secure
Cross-Channel Transfers via Channel Hub,” arXiv, 2019.

[15] S. Dziembowski, S. Faust, and K. Hostáková, “General State
Channel Networks,” in ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2018.

[16] A. Miller, I. Bentov, R. Kumaresan, C. Cordi, and P. McCorry,
“Sprites and state channels: Payment networks that go faster
than lightning,” arXiv, 2017.

[17] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and
S. Goldberg, “Tumblebit: An untrusted bitcoin-compatible
anonymous payment hub,” in Network and Distributed System
Security Symposium (NDSS), 2017.

[18] F. Gai, C. Grajales, J. Niu, M. M. Jalalzai, and C. Feng,
“Cumulus: A BFT-based Sidechain Protocol for Off-chain
Scaling,” arXiv, 2019.

[19] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart Contract
Templates: essential requirements and design options,” arXiv,
2016.

[20] P. Zhang, J. White, D. C. Schmidt, and G. Lenz, “Applying
Software Patterns to Address Interoperability in Blockchain-
based Healthcare Apps,” arXiv, 2017.

[21] S. Duquennoy, A. Elsts, B. A. Nahas, and G. Oikonomo,
“TSCH and 6tisch for Contiki: Challenges, Design and Eval-
uation,” in IEEE Conference on Distributed Computing in
Sensor Systems (DCOSS), 2017.

[22] B. A. Nahas, S. Duquennoy, and O. Landsiedel, “Concurrent
Transmissions for Multi-Hop Bluetooth 5,” in IEEE Confer-
ence on Embedded Wireless Systems and Networks (EWSN),
2019.

[23] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and
A. Gervais, “SoK: Off The Chain Transactions,” IACR Cryp-
tology ePrint Archive, 2019.

[24] Texas Instruments, “CC2538 system on chip for 2.4-
GHz IEEE 802.15.4,” www.ti.com.cn/cn/lit/ug/swru319c/
swru319c.pdf, 2013.

[25] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-

Based on-Line Energy Estimation for Sensor Nodes,” in
Proceedings of the 4th Workshop on Embedded Networked
Sensors (EmNets). ACM, 2007.

[26] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable
off-chain instant payments,” https://lightning.network/, 2016.

[27] R. Network, “What is the raiden network?” https://raiden
.network/, 2018.

[28] C. Decker and R. Wattenhofer, “A fast and scalable payment
network with bitcoin duplex micropayment channels,” in
Symposium on Self-Stabilizing Systems. Springer, 2015.

[29] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei,
“SilentWhispers: Enforcing Security and Privacy in Decen-
tralized Credit Networks,” Network and Distributed System
Security Symposium (NDSS), 2017.

[30] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg,
“Settling payments fast and private: Efficient decentralized
routing for path-based transactions,” Network and Distributed
System Security Symposium (NDSS), 2017.

[31] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski,
“PERUN: Virtual Payment Channels over Cryptographic Cur-
rencies,” IACR Cryptology ePrint Archive, 2017.

[32] R. Khalil and A. Gervais, “NOCUST-A Non-Custodial
2nd-Layer Financial Intermediary,” IACR Cryptology ePrint
Archive, 2018.

[33] N. Reijers and C.-S. Shih, “CapeVM: A Safe and Fast Virtual
Machine for Resource-Constrained Internet-of-Things De-
vices,” in ACM Conference on Embedded Networked Sensor
Systems (SenSyS), 2018.

[34] P. Levis and D. Culler, “Mate: A Tiny Virtual Machine
for Sensor Networks,” in ACM Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS X), 2002.

[35] R. Müller, G. Alonso, and D. Kossmann, “A Virtual Machine
for Sensor Networks,” in ACM SIGOPS/EuroSys European
Conference on Computer Systems, 2007.

[36] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen,
“Adding Concurrency to Smart Contracts,” in ACM Sympo-
sium on Principles of Distributed Computing (PODC), 2017.

12


