
A survey on the design space of end-user-oriented languages for specifying
robotic missions

Downloaded from: https://research.chalmers.se, 2024-03-13 10:58 UTC

Citation for the original published paper (version of record):
Swaib, D., Berger, T., Menghi, C. et al (2021). A survey on the design space of end-user-oriented
languages for specifying robotic missions. Software and Systems Modeling, 20(4): 1123-1158.
http://dx.doi.org/10.1007/s10270-020-00854-x

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Software and Systems Modeling
https://doi.org/10.1007/s10270-020-00854-x

REGULAR PAPER

A survey on the design space of end-user-oriented languages for
specifying robotic missions

Swaib Dragule1,2 · Thorsten Berger1,3 · Claudio Menghi4 · Patrizio Pelliccione1,5

Received: 23 November 2019 / Revised: 2 September 2020 / Accepted: 27 October 2020
© The Author(s) 2021

Abstract
Mobile robots are becoming increasingly important in society. Fulfilling complex missions in different contexts and envi-
ronments, robots are promising instruments to support our everyday live. As such, the task of defining the robot’s mission
is moving from professional developers and roboticists to the end-users. However, with the current state-of-the-art, defining
missions is non-trivial and typically requires dedicated programming skills. Since end-users usually lack such skills, many
commercial robots are nowadays equipped with environments and domain-specific languages tailored for end-users. As such,
the software support for defining missions is becoming an increasingly relevant criterion when buying or choosing robots.
Improving these environments and languages for specifying missions toward simplicity and flexibility is crucial. To this end,
we need to improve our empirical understanding of the current state-of-the-art of such languages and their environments. In
this paper, we contribute in this direction. We present a survey of 30 mission specification environments for mobile robots that
come with a visual and end-user-oriented language. We explore the design space of these languages and their environments,
identify their concepts, and organize them as features in a feature model. We believe that our results are valuable to prac-
titioners and researchers designing the next generation of mission specification languages in the vibrant domain of mobile
robots.

Keywords Specification environments · Language concepts · Visual languages · Robotic missions · Empirical study

Communicated by Iris Reinhartz-Berger.

B Swaib Dragule
dragule@chalmers.se

Thorsten Berger
thorsten.berger@rub.de

Claudio Menghi
claudio.menghi@uni.lu

Patrizio Pelliccione
patrizio.pelliccione@univaq.it

1 Department of Computer Science and Engineering,
Chalmers | University of Gothenburg, Gothenburg, Sweden

2 Department of Computer Science, Makerere University,
Kampala, Uganda

3 Center of Computer Science, Ruhr University Bochum,
Bochum, Germany

4 Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, Luxembourg, Luxembourg

5 DISIM, University of L’Aquila, L’Aquila, Italy

1 Introduction

Over the last decades, robots became increasingly present
in our everyday life. Autonomous service robots replace
humans in repetitive, laborious, or dangerous activities, often
by interacting with humans or other robots. According to
a 2019 press release1 at the International Federation of
Robotics, the sales of robots for professional use, such
as autonomous guided vehicles, inspection, and mainte-
nance robots increased by 32%. Personal service robots are
expected to exceed 22.1 million units in 2019 and 61.1 mil-
lion units in 2022, while the sales for agricultural robots are
projected to grow by 50% each year.

Different techniques have been proposed for engineering
the various aspects of robotic behavior [25–27,32,37,39,92,
108], such as interoperability at the human-robot (or human-
swarm) level [43,53] and at the software-component level in

1 https://ifr.org/ifr-press-releases/news/service-robots-global-sales-
value-reaches-12.9-billion-usd.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00854-x&domain=pdf
https://ifr.org/ifr-press-releases/news/service-robots-global-sales-value-reaches-12.9-billion-usd
https://ifr.org/ifr-press-releases/news/service-robots-global-sales-value-reaches-12.9-billion-usd

S. Dragule et al.

middlewares [78], or multi-robot target detection and track-
ing [92].

Engineering robotics control software is challenging [37].
Specifying the behavior of a robot, typically called the
robot’s mission, is far from trivial. Specifically, a mission is
a description of the high-level behavior a robot must perform
[27,37,39,71]. As such, a mission coordinates the so-called
skills of robots, which represent lower-level behaviors.

Developingmissions requires substantial expertise [3,15].
For instance, logical languages, such as LTL, CTL, or other
intricate, logic-based formalisms to specify missions, are
complex for users with low expertise in formal and logical
languages [65,70,71].

Nowadays, the task of defining missions is moving from
the robotic manufacturer to the end-users, who are far from
being experts in robotics. Robots are also evolving from
single-purpose machines to general, multi-purpose, and con-
figurable devices. As such, the software support provided for
defining missions is becoming a more important feature in
the selection of a robot by end-users. For example, before
buying a robot, in addition to the actuation and sensing abili-
ties of the mobile robot, end-users and developers may want
to understand which types of missions can be delegated to
the robot and which software support is provided for mission
specification.

Over the last two decades, a range of more end-user-
oriented programming environments appeared. They allow
specifying robot missions in a more user-friendly way, alle-
viating the need for intricate programming skills, which
end-users are usually lacking [11,37,71,113]. Researchers
and practitioners have invested substantial effort into achiev-
ing end-user-oriented programming environments for robots
[10,11,18,83,113]. In fact, almost every commercial mobile
robot nowadays comes with a mission-specification envi-
ronment for programming the behavior. Most of these
environments rely on dedicated domain-specific languages
(DSLs) that end-users can utilize to specify missions.

This paper aims to improve our empirical understand-
ing of the current state-of-the-art in mission specification.
Specifically, the focus is on end-user-oriented languages pro-
viding a visual syntax. In our survey, we identify open-source
and commercial environments that allow end-user-oriented
robotic mission specification. While robot programming
environments consider all programmable aspects of the
robot system, we focus on environments in which robot
missions are created, designed, or particularized. We con-
sider a mission specification environment as a collection of
tools that facilitates the definition and stipulation of robot
tasks that form a mission. We study the environments’ and
their languages’ main characteristics and capabilities, which
we model as features in a feature model [50,82]—a com-
mon method to analyze and document a particular domain
[24,30,58,59,109].

We formulated two main research questions:
RQ1: What visual, end-user-oriented mission specifica-

tion environments have been presented formobile robots?We
systematically and extensively identified such environments
from various sources, including the Google search engine
and the research literature.

RQ2: What is the design space in terms of common and
variable characteristics (features) that distinguish the envi-
ronments? Our focus was on understanding the concepts
that these environments and their languages offer, which
end-users utilize to specify the missions of mobile robots.
We conducted a feature-based analysis resulting in a feature
model detailing our results in terms of features organized in
a hierarchy.

With our analysis we identified a total of 30 environments
and designed a feature model with 137 features, reflect-
ing mandatory features (those found in all environments)
and optional ones (those found in only some environments).
These features illustrate the design space covering those envi-
ronments’ capabilities, general language characteristics, and,
most importantly, the language concepts utilized by end-
users.We also present and discuss the representation of these
features in the individual environments and languages. We
show how our survey is useful for end-users, robot manufac-
turers, and language engineers by reporting a set of use-case
scenarios and explaining how the results of this survey can
be used within these scenarios. We believe that our work
is valuable to end-users, practitioners, researchers, and tool
builders in developing the next generation of mission speci-
fication languages and environments, and to support users in
the selection of the most appropriate robot(s) based on their
needs.

2 Background andmotivation

To convey a first understanding of mission specification, we
now introduce some key terminology as well as we provide
a small example of a mission defined in a dedicated DSL of
one of our subject environments, illustrating its advantage
over writing the mission in a general-purpose (off-the-shelf)
programming language.

A mission is a description of the high-level behavior a
robot must perform. Amission represents the logic that coor-
dinates the lower-level functionalities of robots, also known
as tasks or skills.While this coordination logic can bewritten
in any programming language, expressing it in a DSL avoids
writing boilerplate code, focusing on the language concepts
relevant for defining the mission, as well as comprehending
the mission for later maintenance and evolution. Expressing
a mission in a dedicated model also gives rise to specific
analyses, since a dedicated DSL captures more specific

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

Fig. 1 Block-based mission of a robot patrolling a perimeter wall,
expressed in Open Roberta

Fig. 2 Simulation of the line-following Lego EV3 robot

semantics that are not obvious from codewritten in a general-
purpose programming language.

Effectively using a mission-specification DSL requires a
mission specification environment. We consider such envi-
ronments as collections of tools centered around one or more
DSLs that provide dedicated concepts for defining robotic
missions. The tools provide an infrastructure for using the
languages and supporting the execution of their instances
(i.e., the mission), for instance, by compiling them into pro-
grams in general-purpose languages and deploying them to
the robots.

In this work, we consider end-user facing environments,
which target end-users who are technically skilled, but not
experts in robotics or in programming.

For illustration, let us consider a very simple mission for
a line-following Lego EV3 robot, specified in one of our
studied environments, Open Roberta. This mission has been
specified using the Open Roberta environment, as shown in
Fig. 1 with a corresponding textual code in Listing 1. The
code in the block-based syntax coordinates sensor input and
tasks (here, robot movements) in a certain imperative way.
Figure 2 shows the mission executed in Open Roberta’s sim-
ulator. Listing 1 shows the target C code generated from
this mission by Open Roberta. This code, while at the same
level of abstraction as Open Roberta’s mission specification
(Fig. 1), contains intricate boilerplate code hidden by the
latter’s language.

3 Methodology

We now explain our methodology for identifying end-user-
oriented mission specification environments (Sect. 3.1) and
for classifying and analyzing their features (Sect. 3.2).

3.1 Identification of environments (RQ1)

This survey focuses on environments that support end-user
programming of mobile robots, providing domain-specific
languages for specifying robotic missions.
Data SourcesWe used three different data sources: (i) input
provided by the authors based on experience and knowl-
edge in the field, (ii) the Google search engine, and (iii)
forward and backward snowballing upon a set of related sur-
vey papers. We did not use libraries, such as IEEE, Scopus,
and Web of Science, since they only list publications. Yet,
there were emerging tools that do not necessarily have pub-
lications.
Inclusion and Exclusion Criteria During our systematic
environment identification process (explained below), we
applied the following inclusion and exclusion criteria to filter
candidate environments.
Inclusion Criteria.We included a candidate when it fulfilled
all of the following conditions. It must:

– allow the specification of missions for mobile robots;
– offer a domain-specific language with a visual notation
targeting end-users;

– come with documentation about the environment and its
language;

– be available to users in the sense that it is either sold or
can be downloaded freely.

1 #define PROGRAM_NAME "NEPOprog"
2 #defineWHEEL_DIAMETER 5.6
3 #define TRACK_WIDTH 18.0
4 #include <ev3.h>
5 #include <math.h>
6 #include <list>
7 #include "NEPODefs.h"
8 int main () {
9 NEPOInitEV3();
10 NEPOSetAllSensors(NULL, NULL, EV3Color, NULL);
11 while (true) {
12 if (ReadEV3ColorSensor(IN_3) == White) {
13 SteerDriveForDistance(OUT_C, OUT_B, Speed(100), Speed(30), 1);
14 } else {
15 SteerDriveForDistance(OUT_C, OUT_B, Speed(30), Speed(100), 1);
16 }
17 }
18 NEPOFreeEV3();
19 return 0;
20 }

Listing 1 Target C code generated from the mission in Fig. 1

123

S. Dragule et al.

Authors'
Experience

26 Candidate Environments

List of Mobile
Robots

59 Robots 59 Environments

Google
Search 373 Search Results

Snowballing 80 Candidate Environments

Find Alternative
Environments

40 Robots from
27 Environments

3 Environments 30
Environments

Inclusion/Exclusion Criteria

Inclusion
/
Exclusion
Criteria

Programming
Environments

27 E
nvironm

ents

Filter D
uplicates

Fig. 3 Identification of environments

Exclusion Criteria.An environment is excluded if any of the
following conditions holds. It must not:

– be an environment that focuses on programming system
aspects of a robot, such as theRoboticsOperating System
(ROS), instead of specifying missions;

– target non-mobile robots, such as stationary industrial
robots, 3D printers, or Arduino boards;

– be a mission control application with pre-programmed
missions;

– be a remote-control application for mobile robots.

Identification of Candidate Environments We identified
our subject environments from our data sources using the
following steps, as illustrated in Fig. 3.

Authors’ Experience. Based on our experience in robotics
software engineering, we assembled a list of 26 candidate
environments from which 14 were selected after applying
the inclusion and exclusion criteria.

List of Mobile Robots. A list of 59 commercial mobile
robots was created based on past experience of the authors
(e.g., the authors were aware of many educational robots,
such asThymio, Sphero, orNAO) and a simpleGoogle search
for mobile robots. From the robots’ web pages, we identified
the software that was offered for programming the robot mis-
sions. We obtained 59 environment candidates, from which
20 environments were selected after applying the inclusion
and exclusion criteria, eight of the 20 environments were new
and not selected in the previous step.

Google Search.We searched with the search string (“pro-
grammable robots”OR (“robot programming”OR“mission
specification”) environment) “mobile robot”, which yielded
373 results. Note thatGoogle reported 774,000 results, which
collapsed to 373 when scrolling to the last page (a com-
mon phenomenon with Google search). Out of the 373, we

selected 23 environments after applying the inclusion and
exclusion criteria; only 2 environments were new and not
selected in a previous step.

Snowballing. Based on a list of six survey papers we
were aware of based on our experience, we conducted snow-
balling. Specifically, we identified environment candidates
from reading these survey papers, and then from reading all
papers being cited in each (backward snowballing) and all
papers citing it (forward snowballing), while ignoring dupli-
cates. We identified 12 from Biggs et al. [10], 44 from Bravo
et al. [14], 14 from Jost et al. [48], 0 from Luckcuck et al.
[65], 6 from Nordmann et al. [83], and 7 from Hentout et
al. [42], totaling 80 candidates. Out of the 80 candidates, 15
were selected by applying the inclusion and exclusion crite-
ria, with 3 being new and not identified in a previous step.
Table 1 shows environments identified from particular data
sources.

These four steps identified a total of 538 candidate
environments, which led to 27 environments based on the
inclusion and exclusion criteria. Note that, before applying
the latter, we always removed duplicates as well.

FindAlternativeEnvironments.Finally,weused the robots
programmed using the environments identified from the
above data sources to identify alternative environments for
programming them. This was done through a Google search
with the robot name as the search string. This way, we iden-
tified 40 robots from the 27 environments selected above,
which yielded 3 more environments after applying the inclu-
sion and exclusion criteria.

In summary, we identified 30 environments for analysis,
as shown in Table 1 classified by data source.

3.2 Analysis of identified environments (RQ2)

Our analysis goal was to identify the characteristics that
distinguish our subjects in the form of features [8] and to
organize them in a feature model [50,82]. Performing such
a feature-based analysis is a common method for describing
the design space of DSLs [109,110] and other technologies,
such as model transformations [24], language workbenches
[30] or variation control systems [58,59].

The data sources for analyzing the identified environ-
ments are scientific papers about them, their websites,
related documentation (e.g., user manuals or programming
guides), and examples ofmissions expressed in the respective
languages.

Our strategy is as follows. First, in a brainstorming meet-
ing, after an initial screening of the subjects, we identified
key features of the environments—mainly representing the
top-level and intermediate features in the feature model.
Second, we consulted the websites to further identify key
features and organize them in a hierarchy. This first skele-

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

Table 1 Selected environments by data sources after applying inclusion and exclusion criteria

Data source Identified environments (after applying inclusion/ex-
clusion criteria)

Environments from experience: 26 candidates, 14 selected MissionLab, Choregraphe, LEGO Mindstorms
EV3, Sphero, TiViPE, Aseba, Robot Mesh Stu-
dio, Edison software, Makeblock 5, TRIK Studio,
Ardublockly, MiniBloq, PROMISE, and FLYAQ.

List of mobile robots: 59 candidates, 20 selected (8 new) MissionLab, Choregraphe, LEGO Mindstorms EV3,
Sphero, TiViPE, Aseba, Robot Mesh Studio, Edison
software, Makeblock 5, TRIK Studio, Ardublockly,
FLYAQ, PICAXE, Open Roberta, SparkiDuino,
VEX Coding Studio, Metabot, Marty software,
Tello Edu App, and Code Lab.

Google search: 373 candidates, 23 selected (2 new) MissionLab, Choregraphe, LEGO Mindstorms EV3,
Sphero, TiViPE, Aseba, Robot Mesh Studio,
Edison software, Makeblock 5, TRIK Studio,
Ardublockly, MiniBloq, FLYAQ, PICAXE, Open
Roberta, SparkiDuino, VEXCoding Studio, Metabot,
Marty software, Tello Edu App, Code Lab, Block-
lyProp, and Ozoblockly.

Snowballing: 80 candidates, 15 selected (3 new) LEGO Mindstorms EV3, MissionLab, Aseba, VEX
Coding Studio, Choregraphe, MiniBloq, Ozoblockly,
Sphero, TiViPE, Open Roberta, TRIK Studio, Robot
Mesh Studio, Enchanting, EasyC, and RobotC

Further alternative environments: 3 selecteda Turtlebot3-blockly, Makecode, and Scratch EV3

The environments highlighted in bold were discovered first from that data source
aFound by seeking alternative environments for robots supported by the identified environments above

ton provided the basis for iterative refinement of the feature
model by systematically, for each environment: (i) reading
the scientific publications and other technical documenta-
tions about the environment; (ii) when possible, downloading
and installing the environment to specify example missions,
or alternatively forweb-based environments, using the online
tooling; and (iii) reading through the help menu to better
understand how the environments are used in specifying
missions.

Through this process, we iteratively refined the feature
model and maintained notes about the realization of individ-
ual features in each environment. The featureswere discussed
among all authors to reach a consensus.

4 The environments (RQ1)

We now summarize the identified environments. We classify
them by the kinds of syntax they offer: block-, flowchart-,
graph-, text- or map-based syntaxes. Table 2 lists all environ-
ments togetherwith (i) the language syntax(es) supported; (ii)
whether the environment is designed for desktop computers,
mobile devices or is web-based; and (iii) the mobile robot
that is supported, and its manufacturer.

Appendix B provides further details about each environ-
ment, and Appendix C additional online resources.

4.1 Environments with block-based languages

Block-based languages use visual blocks to represent the lan-
guage syntax. Such blocks have various shapes and colors for
the various language constructs. Typically, the block shapes
visualize constraints, e.g., where, in themission specification
the language concept represented by the block can be used.
Block colors often depict a particular kind of functionality,
such as yellow for actions and green for sensor usages, as
seen in the environment Open Roberta [45].

The majority, that is, 23 out of our 30 environments offer
a block-based syntax. Most of these environments are used
for teaching, as shown in Table 2. There is some attempt to
use these languages for industrial use.2

The syntaxes of these block-based languages are typi-
cally implemented using the popular open-source libraries
Blockly [17,88] and Scratch [51]. Specifically, Blockly is
developed by Google for creating visual notations, where
each block represents a programming concept. The library
can be extended to define new blocks, support functions,
and procedures. Blockly allows access to the parse tree and
offers a code-generation framework to generate code in the
target (general-purpose) language [87]. Scratch is similar to

2 https://new.abb.com/news/detail/59950/abb-makes-robot-
programming-more-intuitive-with-wizard-easy-programming-
software.

123

https://new.abb.com/news/detail/59950/abb-makes-robot-programming-more-intuitive-with-wizard-easy-programming-software
https://new.abb.com/news/detail/59950/abb-makes-robot-programming-more-intuitive-with-wizard-easy-programming-software
https://new.abb.com/news/detail/59950/abb-makes-robot-programming-more-intuitive-with-wizard-easy-programming-software

S. Dragule et al.

Ta
bl
e
2

Su
bj
ec
te
nv
ir
on

m
en
ts
an
d
th
ei
r
ch
ar
ac
te
ri
st
ic
s

En
vi
ro
nm

en
t

Sy
nt
ax

Ru
nt
im

e
en

vi
ro
nm

en
t

M
ob

ile
ro
b
ot
s
su
p
p
or
te
d

U
se
rd

om
ai
n

Sp
ar
ki
D
ui
no

1.
8.
7.
1
[4
]

B
lo
ck
-b
as
ed
,t
ex
t-
ba
se
d

D
es
kt
op

Sp
ar
ki

E
du
ca
tio

n

A
rd
ub
lo
ck
ly
2.
4.
22
0
[5
,4
4]

B
lo
ck
-b
as
ed

D
es
kt
op

Sp
ar
ta
n

E
du

ca
tio

n

A
se
ba
3
[6
7,
10
5]

B
lo
ck
-b
as
ed
,t
ex
t-
ba
se
d

D
es
kt
op

T
hy
m
io

II
E
du
ca
tio

n

B
lo
ck
ly
Pr
op

1.
1.
1.
45
5
[8
6]

B
lo
ck
-b
as
ed

D
es
kt
op

A
ct
iv
ity

B
ot
,S

cr
ib
bl
er

3
R
ob

ot
E
du

ca
tio

n

C
ho
re
gr
ap
he

2.
1
[7
7,
90

,9
6]

G
ra
ph
-b
as
ed

D
es
kt
op

N
A
O
,R

om
eo

E
du
ca
tio

n

C
od
e
L
ab

[2
]

B
lo
ck
-b
as
ed
,t
ex
t-
ba
se
d

D
es
kt
op
,m

ob
ile
-a
pp

C
O
Z
M
O

E
du
ca
tio

n

E
as
yC

5
[2
8]

flo
w
ch
ar
t-
ba
se
d

D
es
kt
op

V
E
X
E
D
R
&

V
E
X
IQ

E
du
ca
tio

n

E
di
so
n
so
ft
w
ar
e
[7
,7
5]

B
lo
ck
-b
as
ed
,t
ex
t-
ba
se
d

W
eb

E
di
so
n
ro
bo
t

E
du
ca
tio

n

E
nc
ha
nt
in
g
0.
2.
4.
3
[2
9,
64

]
B
lo
ck
-b
as
ed

D
es
kt
op

L
E
G
O
M
in
ds
to
rm

s
N
X
T

E
du
ca
tio

n

FL
Y
A
Q
[1
2,
25

,3
3]

C
us
to
m

m
ap
-b
as
ed

D
es
kt
op
,w

eb
Pa
rr
ot

A
R
dr
on
e

E
du
ca
tio

n,
re
se
ar
ch

L
E
G
O
M
in
ds
to
rm

s
E
V
3
1.
3.
1
[1
6,
31

]
B
lo
ck
-b
as
ed
,t
ex
t-
ba
se
d

D
es
kt
op
,m

ob
ile
-a
pp

L
E
G
O
M
in
ds
to
rm

s
E
V
3

E
du
ca
tio

n

M
ak
eb
lo
ck

5
[5
7,
68

]
B
lo
ck
-b
as
ed
,t
ex
t-
ba
se
d

D
es
kt
op
,w

eb
C
od
ey

ro
ck
y,
m
bo
t,
A
ir
bl
oc
k

E
du
ca
tio

n

M
ak
ec
od
e
1.
0.
11

[7
6]

B
lo
ck
-b
as
ed

W
eb

L
E
G
O
M
in
ds
to
rm

s
E
V
3

E
du
ca
tio

n

M
ar
ty

so
ft
w
ar
e
3.
0
[9
5]

B
lo
ck
-b
as
ed
,t
ex
t-
ba
se
d

W
eb

M
ar
ty

E
du

ca
tio

n

M
et
ab
ot
[7
4,
87

]
B
lo
ck
-b
as
ed

W
eb

M
et
ab
ot

E
du

ca
tio

n

O
zo
bl
oc
kl
y
[3
4,
85

]
B
lo
ck
-b
as
ed

W
eb

B
it,

E
vo

E
du

ca
tio

n

PI
C
A
X
E
6
[4
7,
89

]
B
lo
ck
-b
as
ed
,fl

ow
ch
ar
t-
ba
se
d,

te
xt
-b
as
ed

D
es
kt
op
,m

ob
ile
-a
pp

PI
C
A
X
E
20
X
2
M
ic
ro
bo
t

E
du
ca
tio

n

R
ob
ot

M
es
h
St
ud
io
2.
0.
0.
6
[7
3]

B
lo
ck
-b
as
ed
,fl

ow
ch
ar
t-
ba
se
d,

te
xt
-b
as
ed

D
es
kt
op
,w

eb
,

V
E
X
IQ

,V
E
X
E
D
R
,V

E
X
V
5

E
du
ca
tio

n

Sc
ra
tc
h
E
V
3
[5
4,
10
1]

B
lo
ck
-b
as
ed

W
eb

L
E
G
O
M
in
ds
to
rm

s
E
V
3,
W
eD

o
2.
0

E
du
ca
tio

n

Sp
he
ro
5.
2.
0
[4
6,
10
3]

B
lo
ck
-b
as
ed
,t
ex
t-
ba
se
d

D
es
kt
op
,w

eb
,m

ob
ile
-a
pp

Sp
he
ro

B
ol
t,
Sp

ar
k+

,S
ph
er
o
M
in
i

E
du
ca
tio

n

Te
llo

E
du

A
pp

1.
1.
2.
23

[4
1,
11
4]

B
lo
ck
-b
as
ed

M
ob
ile
-a
pp

Te
llo

dr
on
e

E
du
ca
tio

n

T
iV
iP
E
2.
1.
3
[6
2,
63

]
G
ra
ph
-b
as
ed

D
es
kt
op

N
A
O

E
du
ca
tio

n,
re
se
ar
ch

T
ur
tle
bo
t3
-b
lo
ck
ly
[5
5,
10
7]

B
lo
ck
-b
as
ed

D
es
kt
op

T
ur
tle

B
ot
3

E
du

ca
tio

n,
re
se
ar
ch

V
E
X
C
od
in
g
St
ud
io
18
.0
8.
20
10
.1
00

[2
0,
97

]
B
lo
ck
-b
as
ed
,t
ex
t-
ba
se
d

D
es
kt
op

V
E
X
IQ

,V
E
X
E
D
R

E
du
ca
tio

n,
re
se
ar
ch

M
in
iB
lo
q
0.
83

[4
9,
81

]
B
lo
ck
-b
as
ed

D
es
kt
op

D
ui
no
B
ot
,S

pa
rk
i

E
du
ca
tio

n

M
is
si
on
L
ab

7.
0
[6
,1
08

]
G
ra
ph
-b
as
ed

D
es
kt
op

A
T
R
V
-j
r,
U
rb
an

ro
bo
t,
A
m
ig
ob
ot
,

Pi
on
ee
r
A
T,

N
om

ad
15
0,
an
d
20
0

E
du

ca
tio

n,
re
se
ar
ch

O
pe
n
R
ob
er
ta
3.
0.
3
[4
5,
48

,5
2]

B
lo
ck
-b
as
ed

D
es
kt
op
,w

eb
M
ic
ro
:b
it,

L
E
G
O

M
in
ds
to
rm

s
E
V
3
an
d
N
X
T,
N
A
O
,W

eD
o,
B
oB

3,
N
ep
o4
A
du
in
o,

B
ot
’n

R
ol
l,
ca
lli
op
e

m
in
i

E
du

ca
tio

n

R
ob

ot
C
4
[9
4,
99

]
B
lo
ck
-b
as
ed
,t
ex
t-
ba
se
d

D
es
kt
op

V
E
X

IQ
,
V
E
X

C
O
R
T
E
X
,
L
E
G
O

M
in
ds
to
rm

s
E
V
3
an
d
N
X
T

E
du

ca
tio

n

T
R
IK

St
ud
io
3.
2.
0
[8
0,
10
6]

G
ra
ph
-b
as
ed
,t
ex
t-
ba
se
d

D
es
kt
op

L
E
G
O
M
in
ds
to
rm

s
E
V
3
an
d
N
X
T

E
du
ca
tio

n

PR
O
M
IS
E
[3
5,
36

]
G
ra
ph
-b
as
ed
,t
ex
t-
ba
se
d

D
es
kt
op

T
IA

G
o,

IT
A
,T

ur
tle
bo
t2

R
es
ea
rc
h

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

Fig. 4 Left: A mission specified in PICAXE’s flowchart-based lan-
guage. Right: generated target code in PICAXE’s BASIC language
(from [89])

Blockly, but developed by the MIT media laboratory [51].
The library can be extended to add custom, end-user-oriented
blocks.

4.2 Environments with flowchart-based languages

A flowchart is a diagram representing a step-by-step process
of executing tasks. Flowchart-based languages make use of
flowcharts to define the behavior and to organize the vari-
ous blocks, which include: start/stop, process block, decision
block, and input/output block. Each of these blocks is con-
nected by a flow line (arrow) indicating the order of executing
a mission. The syntax supports language constructs, such as
if-then-else, loops, and assignments.

Only 3 of our 30 environments offer a flowchart-based
syntax for mission specification, namely EasyC, PICAXE,
and Robot Mesh Studio. As an example, Fig. 4 shows a
flowchart for managing a flashlight that switches on and off
with a time interval of 0.25 time units. The program consists
of the main program and a subroutine (FLASH). After cre-
ating the mission in the flowchart editor, a separate text file
is generated when the mission is compiled.

4.3 Environments with graph-based languages

Environments offering languages with graph-based syntax
represent mission components, such as tasks and mission
primitives, as graph nodes. These nodes are connected in a
directed graph, where the edges indicate control flow.

Only 4 out of our 30 environments exhibit languages com-
ingwith a graph-based syntax, namelyChoregraphe, TiViPE,
MissionLab, and TRIK Studio.

Fig. 5 shows a graph-based mission specified using Mis-
sionLab. MissionLab offers finite state automata (FSA) to
model the behavior of robots, where each node represents a

Fig. 5 Graph-based state transition diagram for a multi-robot scouting
mission in MissionLab (from MacKenzie et al. [66])

high-level behavior. Themission is specified using the graph-
ical configuration editor to create the FSA. The FSA in Fig. 5
describes a scouting mission of multiple robots operating in
different formations. Each state (illustrated by circle arrows)
represents a formation, with transitions (arrows with labels
in the rectangle boxes) representing conditions in which to
advance to a new state. In our example, the robots start in line
formation, then switches to column formation, then wedge
formation, and finally the diamond formation.

4.4 Environments with text-based languages

Most of the textual syntaxes offered by our environments
are abstracted with domain-specific terms and expressions,
either in the robotics domain or the end-user domain. In total,
13 of our 30 environments support mission specification in
textual syntax—in almost all cases when the environment
supports using a genera-purpose language (GPL) in addition
to itsmainDSL formission specification.Notable exceptions
are Aseba and PROMISE, whose DSLs also offer a textual
syntax. In the other environments, the GPLs with the tex-
tual syntax used include, for instance, Python, C/C++, Java,
Javascript, and BASIC. Figure 6 shows a text-based mission
specified for a robot to follow a line using Edison software.

4.5 Environments withmap-based languages

Finally, one environment, FLYAQ, provides a syntax that
does not fit into the types of syntaxes reported above.
FLYAQ provides the DSL Monitoring Mission Language
(MML) to specify missions. By interacting with a map, end-
users indicate points of interest, as well as no-fly-zones. The
environment automatically generates the mission in an inter-
mediate language, which is conceptually close to a flowchart
diagram,with a swim lane for each robot. Finally, themission
is executed on real robots or in a simulated environment.

123

S. Dragule et al.

Fig. 6 A text-based mission for line tracing specified in Python within
the environment Edison software (from its website [75])

NF1

NF2

RT

home

PGT

Fig. 7 A patrolling mission in FLYAQ(from Ruscio et al. [98]), where
a drone follows a street, repeatedly takes photos (at specified distances),
and avoids no-fly zones. NF1 and NF2 are no-fly zones, RT is road task
to follow a street while PGT is photo grid task indicating where photos
can be taken

Figure 7 shows an example mission specified in MML,
where a drone patrols a street tomonitor a public event, while
taking photos at specified distances, avoiding no-fly zones.

5 The environments’ features (RQ2)

Wenowpresent the design space of our subject environments,
focusing on their DSLs for specifying robotic missions,
as well as on the environments’ capabilities to use these
languages. We identified 137 features that distinguish our
environments and that we organized in a feature model.
In the following, Sect. 5.1 presents the high-level features
extracted from our subject environments, Sect. 5.2 presents
the language-specific features we identified, and Sect. 5.3
presents the features related to the constructs of the consid-
ered languages.

The detailed mapping between each environment and its
supported features (a.k.a., feature matrix) is contained in
Appendix A, in Table 5 (high-level environment features and
language characteristics) and in Table 6 (language concepts
offered by the DSLs).

5.1 Specification environments

Figure 8 shows the top-level features characterizing our
subject environments: Language, MultiLanguageSupport,
Editor, Simulator,Debugging, SpecificationTime,Mission-
Deployment. The support of these features by each environ-
ment is detailed in Table 5 (upper half) in Appendix A.
MultiLanguageSupport As a defining characteristic, all
our subjects are built around a DSL for mission speci-
fication. While we will discuss the languages and their
concepts shortly (Sects. 5.2 and 5.3), we observe that all
these languages are domain-specific, tailored to the robotics
domain. As many as eight environments offer more than
one language—either another mission-specification DSL
or an off-the-shelf programming language (e.g., Python,
C, Javascript) that can be used within the environment.
This excludes any library APIs for client applications, as
sometimes offered by SDKs associated with the respective
environment (e.g., Choregraphe offers APIs for eight dif-
ferent programming languages). When multiple languages
were available, the environments typically offered a separate
editor for each; there were no facilities for language compo-
sition. A notable environment here is PICAXE, which offers
a block-based language, a flowchart-based language, and a
language in the style of the programming language BASIC
with a textual syntax—all of which are individual languages
(as opposed to being one language with different syntaxes).
However, some environments, such as Aseba, offer a unique
language with different syntaxes.
EditorAs the main interface to use the respective languages,
the editor toolings in our environments offer typical edi-
tor capabilities (e.g., copy, paste, or undo). We classify the
editing support into EditingMode, SemanticServices, and
SyntacticServices features.

Not surprisingly, given the mostly visual syntaxes of our
environments, the underlying editing technology (feature
EditingMode) is primarily projectional editing (a.k.a., struc-
tured or syntax-directed editing) [9,100,112]. As opposed
to parser-based editing, where the user edits textual code
character-by-character, which is then parsed and translated
into an abstract syntax tree (AST), in projectional editing, the
user’s editing gestures modify the AST directly. The AST
is projected using projection rules into a user-observable
syntax, which can resemble textual and visual syntax or a
combination of both. All of our environments offer projec-
tional editing. 12 of them also come with a parser-based
editor to handle the languages with textual syntax—the lat-

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

VisualHighlighting

SyntacticServices

QuickFixes

RunTime

LiveTranslation

EditingMode

ErrorMarking

Projectional

ViaCable

SingleRobot

SpecificationTime

ParserBased

SyntacticCompletion

Simulator

Debugger

MissionDeployment

Language

DesignTime

SemanticServices

Editor

OverTheAir

Legend:
Mandatory
Optional

Collapsed

103

Concrete Feature
Abstract Feature
Alternative

MultiLanguageSupport

Autoformatting

ReferenceResolution

MultiRobot

RuntimeRedeployment

SpecificationEnvironments

Fig. 8 Overview of the features (137 features in total)

Fig. 9 Visual and textual syntax side-by-side in EasyC’s projectional
editor (from [28])

ter is either an alternative syntax for the visual language or
the main syntax of another language offered by our environ-
ments.While being the default for editing visual syntax, only
once it is also used for textual syntax—in the environment
EasyC, displaying visual and textual syntax side-by-side, as
shown in Fig. 9. The typical continuous enforcement of a cor-
rect AST in projectional editing guides users toward correct
mission specifications, which can also be seen as a seman-
tic service. For instance, in Open Roberta, while specifying a
mission, the next block cannot fit if it is not syntactically cor-
rect. In textual notations such as Edpy in Edison software,
projections of the next possible text to type are suggested
while specifying a mission.

The majority of our environments (26) provides so-called
syntactic services (feature SyntacticServices) [30]. These
support developers in creating syntactically correct missions,
according to the language’s syntax. We identified three syn-
tactic services:

– Visual Highlighting consists of language-specific syn-
tax coloring of text, or shapes of notation primitives to
guide syntax. 25 of the 30 environments provide syntax-
highlighting services.

– Syntactic completion suggests a template of concrete syn-
tax primitives (e.g., a code snippet) to the user. Such
syntactic completion templates are offered by six envi-
ronments.

– Automated formatting helps in the restructuring and
layout of the mission being specified. Five of our envi-
ronments offer this support.

For convenience, seven of our environments offer so-
called semantic services (feature SemanticServices) [30].
These support developers in creating semantically correct
missions by offering information about mission primitives
and how they are used. Semantic services guide the user by
providing editing support using:

– Error marking highlights mission elements with errors
by showing the error message. For instance, a pop-up
help displays errors in Edison software, MissionLab, and
Choregraphe.

– Quick-fixes are proposed solutions to fix a problem when
selected, such as interactive tooltips in PICAXE, pop up
help, and autocomplete in Edpy of Edison software.

– Reference resolution links declarations to the usage
of variables. For instance, invalid variable names are
pointed out in MiniBloq.

– Live translation is the immediate generation of code from
the mission as it is specified, which is displayed side-by-
side to the graphical notation, such as in EasyC(Fig. 9).

As seen in Table 5, five of the environments offer semantic
services to the end-user.
Simulator As many as 10 of the 30 environments provide a
simulator to test missions in a virtual environment before
deployment. Eight of these are limited to simulating sin-
gle robots, while two, namely FLYAQ and PROMISE, even
supportmulti-robot simulation using off-the-shelf simulators
(Mavproxy3 and Gazebo,4 respectively).
Debugging We identified debugging support in nine of the
30 environments. Specifically, we found a variety of debug-
ging tools, including the live monitoring of sensor data,
actuator states, and mission variables—in addition to typical
debuggers with stepwise execution, breakpoint support, and
stack-tracemonitoring. A very typical debugger is contained,
for instance, in Robot Mesh Studio. Interestingly, Makecode
communicates execution traces via sound and by printing

3 https://ardupilot.org/mavproxy.
4 http://gazebosim.org.

123

https://ardupilot.org/mavproxy
http://gazebosim.org

S. Dragule et al.

GraphBased

LanguageParadigm

FlowchartBased

CustomMapBased

ScriptingSupport

GPLSupport

BlockBased

DSL

TextBased

Extensibility

Compiled

Notation
Language

Legend:
Mandatory
Optional

Collapsed

87LanguageConcepts

SemanticsRealization
Interpreted

AddLanguageConcepts

Concrete Feature
Abstract Feature
Alternative

Fig. 10 General language characteristics identified

text between the execution of program blocks. Furthermore,
Open Roberta provides a ‘check box’ in the start block that,
when checked, displays current values of the connected sen-
sor data during program execution.
SpecificationTime Missions are specified either at design
time or run-time. Design-time specification provides all the
details about the mission before the execution starts. All
environments support design-time specifications. Five of our
environments (namely Turtlebot3-blockly, Sphero, EasyC,
MissionLab, and Choregraphe), however, also offer some
remote-control functionality to intercept the mission execu-
tion at runtime.
MissionDeploymentMissions, once specified, are deployed
to the robots for execution. We identified three features
related to mission deployment:

– Over the air.Supported by10 environments,we identified
the WiFi and Bluetooth connections as wireless options
used for deploying missions.

– Via cable. Supported by 23 environments, the cable
options for mission deployment observed are USB cable,
Ethernet cable, and custom cables.

– Runtime redeployment. Two of our environments support
re-deploying amodifiedmission at runtime, i.e., when the
previously specifiedmission was already started, without
restarting the robot.

5.2 General language characteristics

As illustrated in the feature model in Fig. 10 and the feature
matrix in Table 5 (Appendix A), we identified the following
general characteristics in which the languages differ. These
are represented by the features Notation, SemanticsRealiza-
tion, LanguageParadigm, and Extensibility.

The actual concepts offered by the languages will be
discussed in Sect. 5.3. Here, we discuss their core charac-
teristics.
Notation As already discussed above in Sect. 4, all our
environments offer languages with a domain-specific visual
notation, which forms the concrete syntax for their end-users.
The textual and visual notations offered by the respective
environments are summarized in Table 3. According to def-
initions provided in Sect. 4, we classified the considered
languages as block-based (in 24 environments), flowchart-
based (in 3 environments), graph-based (in 14 environments),
map-based (in one environment), and text-based (in 13 envi-
ronments).

Almost every syntax is customized with robotics-domain-
specific visual symbols. For instance, a blockMotor forward
inTRIKStudiohas a gear iconwith a forward arrowdepicting
a forward-running motor. The user only specifies the motor
power and the port to which the motor connects. As many as
13 of the 30 environments additionally offer a textual syntax,
often obtained by allowing the use of a general-purpose pro-
gramming language to be used as an alternative to the main
DSL. Some environments use a mix of textual and visual
notations, such as EasyC, as shown in Fig. 9.
SemanticsRealization The semantics of our languages are
realized by either interpretation (in two environments) or
compilation, i.e., generation of code in a target language (in
28 of our environments). The mission is either semantically
translated (compiled), as shown in Table 4, or executed by an
interpreter. LEGO Mindstorms EV3 and Code Lab interpret
the visualmission directly during execution.Metabotdirectly
generates assembler code, while the rest compiles gener-
ated code. TRIK Studio supports multiple robots (Lego EV3,
Lego NXT, Pioneer Kit, and the TRIK robot). While it does
not cross-compile, sincemissions are robot-specific, it gener-
ates code in various target languages, includingC, JavaScript,
Pascal, Python, and F#.
LanguageParadigmWhile all our environments comewith
a DSL for mission specification, nine of them also support
GPLs usable directly in the environment. Examples of the
latter are C/C++, Java, and Python, as shown in Table 3. The
DSLs all provide language concepts related to the robotics
domain.
Extensibility Someenvironments provide features for extend-
ing the language with new concepts, which we classified into
ScriptingSupport (12) and AddLanguageConcepts (16).
ScriptingSupport allows the creation and launching of new
language constructs to extend the existing language. For
instance, Choregraphe allows users to write new scripts for
defining action boxes for theNAO robot.AddLanguageCon-
cepts allowsusers to edit and create newblocks. For example,
LEGO Mindstorms EV3 allows importing custom blocks
from vendors that manufacture sensing blocks compatible
with the Lego Mindstorms EV3 robot.

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

Table 3 Kinds of notation
supported by the environments.
The visual notations typically
belong to the primary DSLs of
the environments; the textual
notations typically to additional
languages supported

Notation Environment

Visual

Block-based SparkiDuino, Ardublockly, Aseba, BlocklyProp,
Code Lab, Edison software, Enchanting, LEGO
Mindstorms EV3, Makeblock 5, Makecode, Marty
software, Metabot, Ozoblockly, PICAXE, Robot
Mesh Studio, Scratch EV3, Sphero, Tello Edu App,
Turtlebot3-blockly, VEX Coding Studio, MiniBloq,
Open Roberta, RobotC

Flowchart-based EasyC, PICAXE, Robot Mesh Studio (flowol)

Graph-based Choregraphe, MissionLab, TRIK Studio, TiViPE,
PROMISE

Map-based FLYAQ

Textual

C/C++ SparkiDuino,Makeblock 5, RobotMesh Studio, VEX
Coding Studio, RobotC, TRIK Studio

Python Code Lab, Edison software, LEGOMindstorms EV3,
Marty software, Robot Mesh Studio, TRIK Studio

JavaScript Marty software, PICAXE, Sphero, TRIK Studio

Basic PICAXE

Textual DSL Aseba (custom event-based language), PROMISE
(textual behavior-tree language)

Table 4 Target general-purpose language when code is generated by
the environment

Target language Environment

C/C++ RobotC, BlocklyProp, Robot
Mesh Studio, SparkiDuino, Open
Roberta, TRIK Studio, Chore-
graphe, EasyC, MiniBloq, TiViPE

Java Open Roberta, Enchanting, Scratch
EV3, VEX Coding Studio

Java Script Open Roberta, Makecode,
Ozoblockly, Sphero, TRIK Stu-
dio, Choregraphe

Python Open Roberta, Turtlebot3-blockly,
Robot Mesh Studio, Tello Edu
App, Makeblock 5, Marty software,
TRIK Studio, Choregraphe, Edison
software

Others Ardublockly (Arduino code),
Metabot (assembly code), TRIK
Studio (F#, PascalABC, NXT
OSEK C), Choregraphe (Matlab),
PICAXE(Basic), FLYAQ(QBL),
Aseba (VPL to Aseba event
scripting language AESL),
PROMISE(PROMISE interme-
diate language)

5.3 Language concepts

We found a range of different concepts offered by the lan-
guages for specifying missions. We consider a concept as

a distinct element of the abstract syntax of the language.
We focus on concepts that are recognizable via the nota-
tion (concrete syntax), since many of our environments are
not open-source, and a look at the exact implementation of
the language’s abstract syntaxes is not possible. End-users
observe these concepts via the language’s notation and utilize
them via the respective projectional editor, or in a parser-
based editor for the textual languages available in some
environments. As shown in Fig. 11 and Table 6, we classified
the concepts into the following features: MissionSpeci-
ficationParadigm, ControlFlow, Modularity, DataTypes,
EventSupport, ReadSensor, Actions, ExceptionHandling,
FileAccess, FunctionLibrary, Multithreading, and Multi-
RobotHardwareSupport. Below, we discuss details of the
concepts.
MissionSpecificationParadigm In the robotics domain,
the two programming models typically used are imperative
programming and reactive programming, with an explicit or
implicit expression of control flow. In reactive control, the
perception obtained via sensors and the actions is directly
coupled, as can be seen in Aseba, where the control flow
is also implicit. The idea is that a robot can respond timely
in a dynamic environment. Imperative programming explic-
itly expresses the control flow via control-flow statements.
Thereby, it is up to the programmer to encode (and assure)
reactions to events using a viable control flow in the pro-
gram. Another paradigm, recently discussed in the literature,
is goal-based specification [70,71], where the goals are

123

S. Dragule et al.

FunctionLibrary

Imperative

Actions

ComplexAlgorithms

FileAccess

ConditionalsSelection

ControlFlow

ReactiveControl

ReadSensor

CompoundTypes

Loops

Modularity

StringOperations

MultiThreading

CloseDelete

ReadWrite

VariableDataTypes

Legend:
Mandatory
Optional

Collapsed

32

30

Alternative
Abstract Feature
Concrete Feature

Interrupts

MultithreadingFork

PrimitiveTypes

EventSupport

MissionSpecificationParadigm
LanguageConcepts

ExceptionHandling

ArithmeticFunctions

MultiRobotHardwareSupport

Fig. 11 Language concepts

expressed (potential patterns over their order of fulfillment),
but not the behavior necessary to achieve those goals.

Among the 30 environments, the majority (29) follow the
imperative paradigm, with an explicit expression of control
flow. Only two follow the reactive control paradigm: Aseba
and MissionLab. In Aseba, events, which act as triggers, are
matchedwith corresponding actions. SeeFig. 12 for an exam-
ple. MissionLab relies on state machines as the underlying
modeling technique. As such, it can be classified as reactive,
since state transitions are triggered by events upon the current
state.

However, the boundaries between imperative and reac-
tive programming are blurred. In some of the imperative
environments, such as PICAXE, reactive aspects are also
realized, where the robot can be instructed to respond to
sensor data duringmission execution.An interesting environ-
ment is PROMISE, relying on a behavior tree language [35].
Behavior trees [22,39], originally coming from the games
domain, encode control flow explicitly in a tree structure,
which is executed via time-triggered traversal.While primar-
ily imperative, by a respective ordering of the tree, reactions
can be placed prominently in the tree structure to assure they
are executed first.
ControlFlow Not surprisingly, almost all (29) languages
offer several kinds of statements for explicitly expressing
control flow. Typical examples of conditionals we found
are if-do, if, if-else, and switch. Explicit loop concepts are
also common (28), represented by statements such as do-

Fig. 12 An example of Aseba’s block-based syntax for its language
VPL—an event-based language consisting of event-action pairs. Here,
when an object is detected (event), the top color (action) is set to red

Fig. 13 Program control flow example in LEGOMindstorms EV3: The
robot says ”Hello” once, then “Go” six times, then “Bravo” once

while, while, forever, repeat while, repeat count, and repeat
until. The latter two are shown for LEGOMindstorms EV3 in
Fig. 13 (repeat count) and in RobotC (repeat until). Notably,
even though, MissionLab with its state-machine-like lan-
guage has no explicit concept for loops, they can still be
expressed in the missions using a respective structuring of
transitions (which can be as easy as a self-transition). Finally,
execution interrupts are provided (20), such as for loops with
loop interrupt inLEGOMindstormsEV3and stopall inTello
Edu App, and for general execution using wait (time/event)
in Makeblock 5.

Multi-threading controls are also found in TRIK Stu-
dio (fork, join, and kill thread), inLEGOMindstormsEV3for
running tasks simultaneously (sequence plug exit), and in
Robot Mesh Studio, where the start block creates a thread
and sleep for x seconds forces a thread to yield. See the fea-
ture Multithreading below for more information.
Modularity The majority of the environments (17/30) offer
modularization concepts to structure larger missions. We
found functions that are graphically represented using dedi-
cated blocks, such as functions or procedures, or modules in
the environments. Each function gets input parameters and
(often) return values. This represents a relatively basic, but
pragmatic modularity mechanism, which the non-technical
end-users of the environments can utilize. Environmentswith
modularity features include: Metabot, Ardublockly, Open
Roberta, Choregraphe, Sphero,RobotMeshStudio,Metabot,
Makeblock 5, Ozoblockly, and Turtlebot3-blockly. These
create mission modules using functions and function calls.
Choregraphe implements robot behaviors as boxes,which are
connected in a flowchart to form a mission. LEGO Mind-
storms EV3 imports blocks from external environments that
are compatible with LEGO Mindstorms EV3. TRIK Stu-
dio implements subprograms, functions, and modules with

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

symbolic icons of what these components do; however, these
program modules do not have information on return values
and scoping information. PICAXE implements procedures
of particular concepts, which can then be invoked and used.
DataTypes The environments’ main languages offer ded-
icated data types for variables or functions, comprising
primitive (25) and compound (25) types. Only FLYAQ, Mis-
sionLab, TiViPE, and TRIK Studiodo not have exclusive
variable data types. The primitive types we found include
integer, decimal, character, float, number, and Boolean.
Compound types include string, array, table, and list. Not
surprisingly, we also found domain-specific types, such as
sound in Ozoblockly, degrees in Tello Edu App, and color
in Sphero. The environment LEGO Mindstorms EV3 calls
the Boolean type logic apparently also for enhancing com-
prehension by end-users. In Aseba, state is a type, which is
essentially an enumeration (e.g., a state variable temperature
can take the values off, low, medium, or high).
FunctionLibrary Almost all of the languages come with
function libraries that offer typical arithmetic and logic (23),
and string operations (10) on data, but also complex algo-
rithms used to process data. For the latter, since it would be a
subjective assessment, we do not detail which environment
provides such algorithms in Table 6. For the others, essen-
tially, we found the full range of functions one would expect,
including logical operators (e.g., conjunction, disjunction,
negation), mathematics functions for trigonometric calcula-
tions, rounding, aggregation, and so on. String operations
include create, append, build string, length, substring, while
list operations include find, sublist, isEmpty, join, and so on.
Actions Every language provides statements representing
actions. These are activities that robots execute to achieve
a given task. Some are reactions to events, while others are
activities that are imperatively specified in the mission.

The first distinguishing characteristic we found is the
action type, as shown in Fig. 14 and Table 6. Specifically,
actions can be of type:

– An instantaneous action (14) is executed immediately
and only once, such as take photo in FLYAQ.

– A continuous action (14) executes immediately for an
infinite amount of time or a fixed time, for instance, ran-
dom eyes duration ms in Open Roberta changes the NAO
robot’s eye colors for a specified duration inmilliseconds,
or initiated and stopped by events, e.g., user interaction.
Another example is follow line in LEGO Mindstorms
EV3 and Sphero, or record a video in FLYAQ.

– A delayed action (19) starts after a delay, which can be
due to an event or specified time to wait.

Most environments support instantaneous actions. The
other actions (continuous and delayed) typically require
some notion of time and timermanipulation, where we found

PublishSubscribe

GripperAction

ActionType

PhotoVideo

Timed

LineFollowing

MotorControl

Direction

MapCoordinates

CommunicationActions

Light

TupleSpace

Distance

CompositeMotorControl

Delayed

Actions

Text

MessagePassing

Video

Audio

Legend:
Mandatory
Optional

Instantaneous

Continuous

WithHymans

WithAgents

Gesture

AbsoluteMovement

RelativeMovementMovementActions

ManipulatorActions
GestureAction

PickPlaceAbstract Feature
Concrete Feature

Fig. 14 Kinds of actions supported by the languages

different realizations. In LEGO Mindstorms EV3, a timer
block can be used together with a loop or wait block. Simi-
lar time constructs also exist in other environments, such as
the statementswait time and elapsed time in Ardublockly, the
statements set roll time in seconds as a variable, time elapsed,
get current time, set timeout, and set time interval in Sphero,
and finally the statements set timer (seconds), timer, andwait
(seconds) in VEX Coding Studio.

Then, the environments typically realize concrete actions
as dedicated language concepts, which sometimes result in
relatively large languages. We further classified the actions
into actuation, communication, and movement actions as
explained below.

CommunicationActions. This includes interacting with
humans (7) or other agents (12). Communication with
humans can be of the form text, video, audio, light, or
gesture. Communication with non-human agents can be
categorized as tuple space, publish-subscribe, or message-
passing. Tuple space is a shared space where shared data
items are kept for access to entities entitled to access them.
In publish-subscribe, the publishers create messages regard-
less of receivers, while subscribers receive messages they
have subscribed to. Message-passing refers to a loose way
of communicating, where robots send messages (e.g., via
infrared), but have no guarantee of others receiving the
message. It is also up to the developer to implement the recep-
tion of messages, for instance, Edison software provides a

123

S. Dragule et al.

Boolean function to check whether an infrared message was
received. Communication examples include infrared mes-
sages exchanged among robots in Edison software, LEGO
Mindstorms EV3, and Open Roberta, and Bluetooth mes-
sages exchanged among robots in LEGO Mindstorms EV3.
In MissionLab, robots can share information about target
goal position and map of the environment among each
other directly or through broadcasts. Sphero, VEX Coding
Studio, Makeblock 5, and Tello Edu App broadcast mes-
sages between robots. FLYAQ supports synchronization and
communication messaging among drones at runtime. TRIK
Studio supports sending messages to other robots. For what
concerns communication to humans, examples are speak
short phrase in Code Lab, say text to the environment in
TRIK Studioand TiViPE. In Choregraphe, a robot can speak
text to humans. In SparkiDuino, humans interact with the
robot through beep and status led colors. 11 of the 30 environ-
ments do not offer any communication language constructs.

MovementActions. Languages offer concepts that spec-
ify how a robot moves from one location to another, either
with absolute (e.g., map coordinates) or relative (e.g., direc-
tion, distance, or travel time) parameters specifying the
target. Few of the environments support absolute movement
actions, such as goto (coordinates) in FLYAQ, MissionLab,
and Makeblock 5; moveto (coordinates), movefast (coordi-
nates, duration) in TiViPE; roll (angle, speed, time), spin
(angle, time in seconds) in Sphero; drive (distance) in Code
Lab. For relative movements we mention go, move, drive,
turn, fly (forward, backward, left, right, room) as seen in
most of the environments.

ManipulatorActions refer to skillful ways robots can
control manipulators (e.g., a gripper or a robotic arm) to
handle objects in the environment. Not surprisingly, the lan-
guages offer dedicated concepts in the form of statements
that can be used, which we represent by the seven fea-
tures under ManipulatorActions in Fig. 14. Specifically, we
found a variety of very low-level motor actuation commands,
which users can use to control manipulators, as well as
commands (CompositeMotorControl) that provide complex
movements involving multiple motors, e.g., to control grip-
pers or robotic arms.
EventSupport 24 of our languages provide event support,
which concerns the languages’ abilities to handle events,
such as creating event handlers, declaring the types of events
that can be recognized; and specifying the mechanisms of
synchronizing events to subsequent actions. For instance, in
VEX Coding Studio, the common language constructs for
event support include: when (event), when (event) do, wait
for (event), wait until (event), wait (event), on (event), cap-
ture (event), move until (event), broadcast and wait (event).
MissionLab has even more domain-specific events, such
as AtGoal, or AtEndOfHall. The events are sensory data
that trigger the next robot action. However, in the environ-

Bumper

EnergyMeter

Temperature

Torque

FaceRecognition

SpeedEncoder

Time

GPS

PowerConsumption

FingerPrintScanner

LineDetector

Voltage

Accelerometer

Clap

PressureBarometer

TactileSensors Proximity

ForceResist

Motor

Optical

Sonar

VideoStream

Sound

Gyro

Compass

LightSensor

Speech

ReadSensor

VisionSensors

Current

Legend:
Optional

Button

TouchSensor

MotorRotationSensor

MovementSensor
GearPotentiometer

Magnetometer

OrientationSensors

LandMarkPatternDetector

InfraredRadiation

OtherMeasurements

Abstract Feature
Concrete Feature

Fig. 15 Kinds of sensors supported by the languages

ments SparkiDuino, TiViPE, MiniBloq, Turtlebot3-blockly,
and RobotC, we did not recognize event support in their lan-
guages.
ReadSensor All of the considered environments provide
dedicated concepts for reading sensor data. The sensor con-
cepts identified are shown inFig. 15.Weclassified the sensors
into: tactile sensors, movement sensors, orientation sensors,
vision sensors, and sensors for other measurements. Tactile
sensors measure physical interactions with the environment
or humans, which includes touch sensors, buttons, proxim-
ity sensors (via optical detection or via sonar), bumpers, and
even a fingerprint sensor (in BlocklyProp). Given the vast
number of language concepts for reading different sensor
data, we did not analyze the exact availability of individual
sensors in the respective environments, but present the kinds
of sensors we identified for which the languages provide sup-
port. Movement sensors measure the actual robot movement
via, as we identified, a motor rotation sensor (with dedi-
cated encoders to determine velocity), a gear potentiometer,
a magnetometer, or an accelerometer. Orientation sensors
we identified include gyro sensor, compass sensor, GPS, line
detector, and landmark pattern detector—the latter two via
visual information (so, they could also be classified as vision

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

sensors). The vision sensors we found include light (inten-
sity) sensors, infrared radiation sensors, cameras offering a
video stream, and face recognition support based on the lat-
ter. Further support for reading sensor data that does not fall
into any of these categories, organized in the feature Other-
Measurements include: sound sensors (some environments
also offer support for recognizing claps or speech upon sound
sensors), temperature/thermometer, barometer (air pressure
sensor), timer, energy meter (reads battery energy), power
meter (measures power consumption), force sensors, and
various motor sensors (measuring motor torque, voltage, or
current).

It is interesting to note that some languages allow to
obtain sensor data via respective functions, while others
only provide events for certain sensor data. For instance,
some allow directly reading the state of a bumper sensor,
while others abstract that away via functions that check for
obstacles detected (e.g., Edison software). Some environ-
ments are flexible and allow both, e.g., Choregraphewith its
classAL_Memory [90], allowing reading for instance the foot
bumper data, but also subscribing to events generated from
it.

Finally, most languages offer additional libraries provid-
ing off-the-shelf algorithms for computations over sensor
data (e.g., face recognition), contributing to the intelligence
of the robot. In TiViPE and Choregraphe, the NAO robot
senses sound data, and intelligently determines the direction
of the sound. Picture frames are captured by theNAO robot at
intervals to determinemoving objects. The NAO robot tracks
known people by comparing all people in a videowith known
ones, thereby automatically identifying unknown people. In
Open Roberta and Choregraphe, the NAO robot recognizes
predefined words and phrases in different languages. Data
from vision sensor in VEXCoding Studio robots can be used
to track up to seven individual colors at once, analyze objects
for advanced tracking and path planning.
ExceptionHandlingWe identified exception handling con-
structs inOpenRoberta,Choregraphe,MissionLab, PROMISE,
and Code Lab environments, particularly in their textual lan-
guages but not their primary, visual DSLs. More specifically,
Open Roberta exploits the Python exception handler. Chore-
graphe exploits the try/catch block for all errors in its C++
software development kit (SDK), and the try/catch block for
face detection error in its Python SDK. Code Laboffers sup-
port for exception handling for very specific error (e.g., action
error, animations not loaded, cannot place objects on this,
connection aborted).
FileAccess Eight of our visual languages provide con-
cepts for file access. For example, LEGO Mindstorms
EV3provides blocks for reading and writing data to the local
storage, and to close or delete a file. Such files can record,
for instance, ambient light measurements taken at given time
intervals.

Multithreading 11 of the 30 environments provide sup-
port for concurrency. Multithreading allows users to do
several activities without waiting for one activity to end,
improving the performance of executions. In Robot Mesh
Studio, using the Blockly editor, the start block creates
a thread, sleep for x seconds forces the thread to yield,
start autonomous creates a thread that runs the autonomous
mode of the robot, and start driver creates a thread that
runs a driver. Recall that Robot Mesh Studioalso supports
various textual general-purpose languages (cf. Table 3),
where the typical multi-threading concepts can be used.
For instance, in Python concepts like sys.run_in_thread(f),
sys.thread_id(), sys.sleep(t) are offered. In C++, thread
(void (*callback)(void)), get_id(), join(), interrupt(), yield(),
sleep_for(unit32_t time_ms), lock(), try_lock(), and unlock()
are used. TRIK Studiooffers fork, join, kill thread, and send
message to thread. Furthermore, LEGO Mindstorms EV3
offers dedicated blocks for creating parallel tasks, as well as
Makecodeand RobotC.

TiViPEoffers splitSCIS to split and run modules in par-
allel. MissionLab supports Cthread, which is a lightweight
process threads package that operates under Unix-style oper-
ating systems. Also, PICAXE supports multi-tasking with
operations such as restart, resume, and suspend.
MultiRobotHardwareSupportElevenof our environments
support more than one robot hardware platform. However,
the reuse of missions across robot models is limited. There
are always concepts in the languages specific to certain hard-
ware. In the ideal case, when none such concepts are used, the
robotmodel can just be changed, butwedid not see that any of
these environments support that. Mostly, changing the robot
model requires recreating the mission. Sometimes, only the
initialization block is robot-specific; in this case, the mission
is reusable, which we observed in very few environments. As
an example, consider Sphero, which has some missions that
are compatiblewithmore than one robot, even though,we did
not observe a single mission that runs in all the Sphero robot
varieties. The aspect of robot independent missions therefore
remains a dream to be achieved by roboticists and language
engineers.

6 Findings and implications

We now discuss our main findings and their implications for
practitioners, language vendors, and the research community.

6.1 Language engineering

The environments are especially interesting from a language
engineering perspective. Specifically, none of them has been
developed using standard language-engineering technology,
such as language workbenches [30]. While we cannot judge

123

S. Dragule et al.

their development processes, it does not seem that the ven-
dors followed textbook methods [13,23,56,100], creating
abstract and concrete syntax as well as static and dynamic
semantics.Whether language-engineeringmethods and tech-
nologies are too difficult, do not provide sufficient benefit, or
the vendors are just not aware of it, constitutes an interesting
question for future studies.

In this respect, our study and the environments we stud-
ied can constitute a benchmark for the language-engineering
community—steering research into lightweight language-
engineering tools that are increasingly adopted in practice,
especially in the highly relevant domain of robotics, which
needs effective mission-specification languages and would
probably benefit from language-engineering technology.

Considering the implementation of our environments, it
appears that Blockly and Scratch have become standard
tools for engineering the visual syntax and the respective
editing infrastructure. The vendors appear to be pragmatic
here. They often used an off-the-shelf language and made
it domain-specific by tailoring it down to the needs of mis-
sion specification, and by creating a visual, domain-specific
syntax.

Notably, Blockly and Scratch appear to have made pro-
jectional editing popular and efficient to use. They are also a
pragmatic way of realizing projectional editing [9,100,112],
requiring much less intricate knowledge than using a projec-
tional editing language workbench, such as Jetbrains Meta
Programming System. Of course, Blockly and Scratch lack
most of the advanced capabilities of projectional editing,
such as language composition, views, and even more flexible
syntax, combining textual and visual ones. To what extent
lightweight libraries such as Blockly and Scratch can be
extended toward these advanced capabilities is an interest-
ing open question. Specifically, language composition and
views could be powerful techniques to foster more extensive
tailoring of mission-specification languages to the different
end-users, who might want to use different language levels
and views abstracting over complex missions (or projecting
extra information relevant for advanced users).

Another advantage of projectional editing is its ability to
use DSLs without having the traditional and heavyweight
language infrastructurewith transformations,where the feed-
back is provided only implicitly or late. In projectional
editors, the feedback can be given immediately, easing the
use (or combination) of different languages, as opposed to
traditional model-driven engineering. An interesting direc-
tion would be to extend the feedback to runtime information,
to help debug complex missions. An interesting work to con-
sider here is that of Miguel Campusano et al. [19] on “live
robot programming.” The authors present a language that
supports live feedback. It helps end-users in rapid creation
and variation of robot behavior at run-time. This approach,
however, does not provide the end-user with domain con-

structs to simplify the programming effort during mission
specification.

Finally, most environments focus on languages that are
very tailored-down versions of imperative programming
languages. Others are built upon well-known specification
languages, including state machines (MissionLab), behavior
trees (PROMISE), and custom DSLs for drone operations
(FLYAQ). As such, they all offer a very limited syntax and
require a very exact specification adhering to this syntax.
None is more flexible by allowing, for instance, natural-
language-like specifications. In the future, the language-
engineering community might want to look into frameworks
or even language workbenches allowing these kinds of lan-
guages. An interesting work in this direction is done by
Gorostiza et al. [40], who proposed a natural programming
environment in which robot skills are accessed verbally to
interact with end-users. The environment uses a dialog sys-
tem to extract actions and conditions to create a sequence
function chart. The challenge is still that the end-user can-
not add new dialogue constructs for new tasks, making the
languages inflexible.

6.2 Core language aspects

Actions We found that actions are often very concrete and
every action has its own language concept. On the one hand,
this is unavoidable. On the other hand, it would be beneficial
to find a way to categorize or organize the various possible
actions in groups in order to facilitate their definition, man-
agement, and treatment.

Furthermore, the language concepts for actions found in
the environments are relatively basic. Consequently, they
cannot sufficiently express what end-user might need. It is
important that more vibrant libraries of controllers to specify
behaviors with well-defined semantics are built to facilitate
real-life mission specification for end-users.
Abstraction In general, the languages we surveyed have a
rather low-level of abstraction. In most cases, the user is
required tomodel in detail the behavior that the robots should
perform to achieve themission. This has somedisadvantages:

– it is error-prone, and the user should know details about
the language concepts used, which are not standard and
in most cases biased to the robotics domain;

– it is difficult to estimate the partial satisfaction of themis-
sion that is needed when re-planning is required by some
changes in the execution environment or in the mission
specification itself; and

– it requires knowledge and expertise that the potential end-
users will not necessarily have.

Goal-based and declarative mission specification lan-
guages look more promising and attractive.

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

Composition Mechanisms and Strategies An important
aspect to consider when scaling, maintaining, and evolving
mission specifications is mission composition—the strate-
gies and mechanisms to compose complex missions from
lower-level behavior (e.g., tasks). As discussed above, the
majority of our environments offers relatively simple com-
position mechanisms known from imperative programming.
Functions are the prime units of composition, brought into an
execution order (e.g., sequence or loop) using plain impera-
tive programming statements. The majority of our languages
is imperative. We did not observe any more sophisticated
composition mechanisms known from general-purpose lan-
guages, such as object-oriented or functional programming
concepts.

Composition strategies in robotics typically classify into
horizontal and vertical composition [60,69,93]. Horizontal
(de-)composition refers to putting lower-level functionality
(e.g., tasks) into a respective execution order (e.g., sequence
or loop), while vertical (de-)composition refers to refining
functionality needed to realize that functionality.

In almost all languages, given their modularity con-
cepts, both kinds of composition are possible. However,
the different kinds of decomposition are less obvious and
enforced. In the imperative languages that are tailored ver-
sions of general-purpose languages, which is the majority
of our environments, developers use control-flow state-
ments for horizontal decomposition and functions for vertical
decomposition. However, functions do not necessarily rep-
resent vertical decomposition—when they are just used for
reusing code or making the mission more comprehensible
by refactoring out code into functions. As such, the kind of
decomposition is not immediately obvious. An interesting
environment is PROMISE with its behavior-tree-like lan-
guage [21,39], where horizontal and vertical decomposition
is more explicit and encouraged by the language. Sibling
tasks in the tree represent horizontal decomposition of these
tasks. With respect to their parent, they are their vertical
decomposition. Finally, Aseba’s event-based language only
supports horizontal decomposition, as seen by the event-
action pairing detect object – set top color red in Fig. 12)
Intelligence A core aspect to build into languages in the
robotics domain is intelligence—the ability of robots to act
automatically without human intervention. Intelligence can
be triggered by events from the environment as captured by
sensors, timed executions, or learning from past experience.
Our feature model presents concepts such as event support
in Fig. 11, delayed action type in Fig. 14 and reading sen-
sor data in Fig. 15 , which can facilitate intelligence in the
robot systems. Specifically, some environments offer com-
plex facilities, such as face recognition, in function libraries,
as discussed in Sect. 5.3 (feature ReadSensor).

An important aspect is the programming model, which
facilitates expressing the necessary intelligence. Pure imper-

ative programming is the default, and while behavior trees,
state machines, and the reactive control concepts in one of
the languages (Aseba) are not more expressive, they provide
a more abstract and restricted form of mission specification,
forcing the developer to focus more on expressing the intel-
ligence in an intuitive and comprehensible way.
Collaborative Multi-Robots The large majority of our
environments and their languages support one robot. Increas-
ingly, the multiple robots need to collaborate to achieve com-
plex missions. Environments such as FLYAQ, PROMISE,
and MissionLabsupport collaborative mission specification.
FLYAQ[12] facilitates the specification of missions for mul-
tiple drones. The end-user explicitly sequences the tasks for
each robot, together with location details, thereby avoid-
ing collisions. Some of the mission primitives used include:
Takeoff, Goto(location), DoPhoto, Land. Since the distri-
bution of tasks to drones is done manually, there are no
language concepts to express multi-robot mission specifi-
cations as shown in Fig. 7. PROMISE[38] proposes a visual
mission specification environment formulti-robots, however,
the decomposition of the mission to local missions for each
robot is also done manually. The operator parallel (paral-
lelOp) takes robots as input and assigns a robot to each branch
(each child). Beyond that, there is no more dedicated support
for multi-robot missions, such as scheduling support or robot
pooling for complexmissions. This indicates thatmulti-robot
mission specification and task distribution is not trivial, cer-
tainly not from an algorithm perspective, but also not from a
language perspective. An interesting work in this direction is
probably Doherty et al [26], who propose a framework and
architecture for the automated specification, generation, and
execution of missions for multiple drones that collaborate
with humans. The focus of the study is on how the language
can clearly and concisely specify and generate missions, but
not on how the language is easy for end-users.

7 Practical usage of the survey

To illustrate the practical use of our survey, we define one
usage scenario for each of our end-users: a teacher, a robotic
manufacturer, and a language engineer.

7.1 End-user—teacher

A teacher has to instruct a robot development course to stu-
dents with limited background in programming languages.
The teacher has to select a robotic mission specification envi-
ronment based on the requirements:

1. Simulation support: The environment shall support sim-
ulating the mission execution and deploying the mission
on the physical robots.

123

S. Dragule et al.

2. Language control flows:The language shall support spec-
ifying sequences of tasks repeated until a certain condition
holds (loop statements) and executing alternative tasks
depending on some conditions (conditional statements).

3. Actions: The language shall allow users to specify move-
ment actions and robot to human communication.

4. Runtime environment: The mission specification environ-
ment shall run both on a web interface (for quick mission
prototype) and as a stand-alone application.

Within this scenario, to select the mission specification
environment to be used in her course, the teacher uses the
results of this survey as follows:

1. Simulation support: Table 5 shows that Aseba, FLYAQ,
Makecode, Metabot, PICAXE, Robot Mesh Studio, Mis-
sionLab,OpenRoberta,RobotC, andTRIKStudioprovide
simulation support and can be used within the course.

2. Language control flows: Table 6 shows that 26 of our 30
environments provide loop and conditional statements,
and can be used within the course.

3. Actions: Since all environments offer movement actions,
checking Fig. 14, selection of appropriate environment
will depend on the environments that offer communica-
tion with humans. From Table 6, the following environ-
ments support robot to human communication: Chore-
graphe, Enchanting, SparkiDuino, MissionLab, Code
Lab, Open Roberta, and TiViPE.

4. Runtime environment: Table 2 shows that Open Roberta,
FLYAQ, Robot Mesh Studioand Sphero provide both the
web interface and can be executed as stand-alone appli-
cations, and therefore can be used in the course.

Based on the results of all these steps, the teacher finally
selects Open Roberta as the mission specification environ-
ment to be used during the course.

7.2 End-user—robot manufacturers

Robots are usually ensembles of existing parts. It is handy
for robotics engineers to check mission specification envi-
ronments for the features that the robot should have. Let us
consider a robot manufacturer interested in creating a new
robot that can move on land and recognize objects as well
as sound. The purpose of the robot is to aid in learning pro-
gramming and research.

The robot manufacturer needs to know:

1. Robotmobility, e.g., motor, steering:Whatmovement fea-
tures exist in mobile robots for benchmarking;

2. Actions, e.g., movement actions, instantaneous actions,
relative movement actions, and manipulation actions:
Which robot actions a new robot can execute.

3. Simulation support:Which robots has a simulator?

The robot manufacturer can be guided as follows:

1. Mobile robots: Table 2 contains a list of mobile robots,
such as VEX robots, PICAXE, and LEGO robots. By
further profiling the manufacturer specifications of such
robots, a robot manufacturer can take informed decisions
on what mobility features she can incorporate in the new
robot.

2. Actions:Figure 14 and Table 6 can guide themanufacturer
to analyze a variety of actions, which the robot can exe-
cute. Actions such as movement, instantaneous actions,
relative actions, delayed actions and actuations can be
performed by VEX robots.

3. Simulation support: For instance, Aseba’s Thymio robot
can be simulated, as well as nine other environments pro-
viding a simulator, as shown in Table 5.

The robot manufacturer can use VEX robotics. Specifi-
cally, VEX robots are open and can be programmed by many
environments, such as VEX Coding Studio, EasyC, Robot
Mesh Studio, and RobotC.

7.3 End-user—language engineer

A language engineer wants to develop a language for mis-
sion specification targeting children below seven years. The
engineer wants to understand the features provided by sim-
ilar languages to determine which languages are providing
features that are relevant for this class of users. The engineer
has the following requirements:

1. Notation: The environment shall provide a visual lan-
guage based on blocks and connections, since users can
barely read and write.

2. Simulation support: The environment shall provide sim-
ulation support to allow children to play and simulate the
behavior of the robots when executing differentmissions.

3. Language control flows: Choice of control flow from
available options such as loops, conditional, and inter-
rupts is also required.

4. Actions: Children shall be able to specify complex
movement actions, such as making the robot dance. Fur-
thermore, children should be allowed to communicate
with the robots.

5. Runtime environment: The environment shall be exe-
cutable as a stand-alone application.

Within this scenario, the language engineer uses the results
of this survey as follows:

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

1. Notation:Section 4 lists each environment’s syntax(es). A
block-based syntax, such as in SparkiDuino,Ardublockly,
Aseba, BlocklyProp, Edison software, or LEGO Mind-
storms EV3, fits the requirement (Table 2 lists all with a
block-based syntax).

2. Simulation support: Based on table 5, Aseba, FLYAQ,
Makecode, Metabot, PICAXE, Robot Mesh Studio, Mis-
sionLab, Open Roberta, RobotC, PROMISE, and TRIK
Studioprovide simulation support.

3. Language control flows: Table 5 guide on the available
control flow concepts offered by the languages. All envi-
ronments offer loop control flows except for FLYAQ,
and MissionLab (where loops can still be emulated with
self-references). Almost all (29) environments also offer
conditional control flows, such as if, if-else, and switch,
while 20 of the environments offer interrupt controls.
TRIK Studio provides multithreading fork control-flow
support.

4. Actions: The language concepts summarized in Table 6
can help the language engineer to identify the language
concepts required to develop the actions that need to
be incorporated in the new language. All the environ-
ments support movement actions. For communication
with agents, language engineers can explore environments
such as SparkiDuino, BlocklyProp, Edison software,
FLYAQ, LEGO Mindstorms EV3, Makeblock 5, Sphero,
and Tello Edu App.

5. Runtime environment: Using Table 2, the engineer can
determine features of stand-alone environments. Most of
them offer support for stand-alone installations, except
Edison software, Makecode, Marty software, Metabot,
Ozoblockly, and Scratch EV3.

8 Threats to validity

Internal ValidityThemanual process of collecting and clas-
sifying the features is subject to biases. We mitigated this
effect by distributing environments among the authors to
collect features and allow one author to verify the features
collectedbyanother, followedbydiscussions to reconcile any
differences on views. This made the data collection rigorous
and thorough. Secondly, the Google search engine returns
different results to different people on the same search due to
personalized search behavior customized by Google. There-
fore, if anyone else did the same search, the results might not
necessarily be the same. We resolved this issue by relying
on multiple sources of data as well as searching for robots
and then trying to identify any environment they are shipped
with, and by snowballing. Another threat is the fact that the
total number of results returned is greater than the actual
number. For instance, our search result returned 774,000
results, but when we scanned all the results, the last page

only reported 373. However, this is not a limitation, since we
used different sources of information and, as can be seen in
Table 1, all the results fromGoogle searchwere also captured
by other data sources, including authors’ experience, list of
mobile robots, snowballing, and alternative environments for
the robots, with exception of BlocklyProp.
External Validity Extracting the features using independent
data collection based on documentation available in the pub-
lic domain is a threat to external validity. Contacting the
developers of the tool would have providedmore information
and allowed to detect more features. However, this has been
countered by the fact that the considered environments are
significantly different among each other. As these tools try
to cover user needs from different angles, features that are
hard to identify in one type of environment are usually key
and easily identifiable features in a different environment.

Furthermore, there is diversity in phrases and terms used to
describe mission specifications. Since we observed that dif-
ferent authors refer tomission specification by using different
terminologies, we constructed a search string comprising of
a number of phrases as explained in Sect. 3.1.

9 Related work

Bravo et al. [14] review intuitive robot programming envi-
ronments for education. They categorize their languages into
textual, visual, and tangible languages. However, they do not
discuss individual language features that facilitate end-user
programming, as we do.

Biggs et al. [10] survey robot programming systems,
which they classify into manual and automatic. The manual
systems require users to specify missions, while the auto-
matic ones control robots based on their interactions with
the environment, indicating that such missions are specified
on a higher level, for instance, by declaring the mission goals
instead of the concrete movements. However, the survey did
not discuss language features that enhance robot program-
ming by novice programmers.

Ray et al. [91] survey user expectancies from robots. They
find that, at a personal level, users expect support with house-
hold daily tasks, security, entertainment, and company (child,
animal, or elderly care).More than half of them expect robots
providing such services to be in the market soon. These find-
ings imply raising mission specification to higher levels of
expressiveness and closer to the end-user domains.

Abdelfetah Hentout et al. [42] survey development envi-
ronments for robotics. They identify frameworks for pro-
gramming robotic systems, but not targeting mission speci-
fications.

Jost et al. [48] in their review of 10 visual programming
environments for educational robots, discuss advantages of
visual over textual environments, in order to present theOpen

123

S. Dragule et al.

Roberta project. They do not analyze any of the existing envi-
ronments to the extent we do, however.

Luckcuck et al.’s survey [65] identifies challenges, for-
malisms, and formal methods for specifying and verifying
autonomous robot missions. For instance, it covers KLAIM,
a formal languageused to capture properties about distributed
systems. The survey has little to do with the features to sup-
port end-user programming or features expected to support
visual specification.

Nordmann et al.’s [83,84] survey on DSLs for robotics
identifies a large number of languages. Surprisingly, none of
the languages supports mission specification, which makes
their work distinct from our study. Specifically, the survey
covers aspects of environmental features and constraints,
which are expressed using formalisms such as LTL, OWL,
and (E)BNF. Scenario definitions are made using formalisms
such as ANTLR grammars, (E)BNF, UML/MOF, LTL, or
Ecore. These formalisms are suitable for robotic and software
engineers, but not novice end-users. This gap also motivated
our study.

Sun et al. [104] use models to raise the level of abstrac-
tion of implementation details to support developers in
solving challenges (e.g., maintenance), supporting multi-
ple platforms, and validating timing requirements. However,
the level of abstraction is not to the graphical level where
novice developers can easily comprehend the implementa-
tion details.

Ghzouli et al.’s [39] work analyzes behavior tree language
concepts, such as root node, composite nodes (sequence,
selector, decorator and parallel nodes), and leaf nodes, which
are well suited for robotics especially the specification of
robot missions. The authors also study the use of these lan-
guage concepts in open-source robotic applications, where
the robot behavior is represented in behavior tree models.

10 Conclusion

Mobile robot systems have become general-purpose in terms
of the number of actuators and tasks which they can exe-
cute. As such, it is not realistic to hard-code their missions
at manufacturing time. It is also unrealistic to keep relying
on robotic and software engineers to program these mis-
sions. With the increasing presence of robots in our everyday
life, more research and development effort has focused on
enabling end-users to specify robotic missions. Recognizing
that visual environments are more motivating for end-users
as they reduce the burden of memorizing intricate syntax
in textual languages (e.g., C++ and Java) [72], many end-
user-oriented mission specification environments have been
presented. However, to the best of our knowledge, there was
no study identifying and organizing the features provided by
such environments and languages.

In our survey, we studied the design space of 30 specifi-
cation environments providing dedicated end-user-oriented
languages for mission specification.

We presented the design space as a feature model and
further analyzed how the environments provide these features
and how they differ from each other.

In summary, we found many typical constructs (e.g.,
control-flow statements) from general-purpose languages,
provided using visual syntax. Many environments appear to
have taken a general-purpose language and stripped it down
to the needs of mission specification, implementing the syn-
tax for the remaining language concepts often using Blockly
or Scratch. In addition to the primary visual DSLs sup-
ported by the environments, many—often general-purpose
languages—provide alternative textual syntax to comple-
ment the visual DSLs when they are not expressive enough.
While all these visual languages come with a projectional
editor, we also found environments that provide textual nota-
tion projected right next to the visual one. The majority of
our environments also use theBlockly or Scratch library, both
of which have significantly eased the development of visual
syntax.

Most languages use control-flow statements for horizontal
decomposition and functions for vertical decomposition. The
environments provide computation algorithms over sensor
data to intuitively realize intelligence in the robots. While
collaborativemulti-robot systemsdonot offer automated task
scheduling among robots, end-users explicitly assign tasks
for each robot in the team.

Even though, complex andpowerful algorithms are hidden
behind single language concepts, we found the abstraction
level of the languages in general relatively low, especially
with respect to specifying the mission, which coordinates the
skills and actions of the robot. Goal-based and declarative
mission specification languages look more promising and
attractive.

In summary, the language engineering community and
researchers, should use thefindings as a benchmark and apply
tools such as language workbenches and domain modeling
to develop better DSLs for robot mission specifications.

As future work, we plan to study the syntax of these lan-
guages in more detail, aiming to understand what are the best
ways of presenting the mission-specification concepts our
surveyed languages are offering. Ideally, future languages
can be customizable to the individual users’ needs, estab-
lishing language product lines [109,110] for roboticsmission
specification.

A possible route is to assess the syntax with respect to
Moody’s notational design principles [79]. Furthermore, a
user study can validate the need for certain features as well as
recover needs not realized so far. Particularly eliciting user
experiences with different kinds of decomposition mecha-
nisms for missions would be valuable to inform the design

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

of future mission-specification languages. We also plan to
establish how the mission-specification languages are used
and perceived, for instance, what concepts are used fre-
quently, and in what combination. We hope to eventually
build the next generation of languages upon these empiri-
cal results, also lifting the language to higher levels, perhaps
offering different language profiles.

Acknowledgements This work is supported by the Swedish Develop-
ment Agency SIDA (Project Bright 317). The authors also acknowledge
financial support from the Swedish Wallenberg Academy, the Centre
of EXcellence on Connected, Geo-Localized and Cybersecure Vehicle
(EX-Emerge), funded by the Italian Government under CIPE resolution
n. 70/2017 (Aug. 7, 2017), and from the European Research Council
under the European Union’s Horizon 2020 research and innovation pro-
gramme GA No. 694277 and GA No. 731869 (Co4Robots).

Funding Open Access funding provided by University of Gothenburg

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Environment-feature matrix

Table 5 shows an overview of features in the specification
environments. Table 6 reports the features related to language
concepts.

B Subject environment descriptions

This section provides a high-level textual description of the
environments identified. In Table 2, for each environment we
report: (i) the version we considered; (ii) whether the envi-
ronment is designed for desktop computers, mobile devices
or is web-based; (iii) the mobile robot that is supported and
its manufacturer.
Ardublockly [5,44] is aBlockly-based environment support-
ing an educational, wheeled robot called Spartan [5,38,44],
manufactured by Modern Robotics, Inc. Spartan also relies
on an Arduino board, and the environment is described as
compatible with multiple other Arduino-based robots.
Type of language: Block-based.
Aseba [67,105] is a collection of environments with the same
languages, but different syntaxes and, therefore, editors:

Fig. 16 The environment Choregraphe for the robot NAO

VPL-based (Visual programming language) [102], Blockly-
based, Scratch-based, and text based for programming an
educational, wheeled robot called Thymio. VPL provides
icons of events and corresponding actions as building blocks.
Type of language: Block-based and text-based.
BlocklyProp is a Blockly- and web-based environment
for specifying missions for the wheeled educational robots
ActivityBot robot and Scribbler robot [86].
Type of language: Block-based.
Choregraphe [77,90,96] is a desktop-based environment
that allows users to create animations, behaviors and dia-
logues for the NAO humanoid robot—meant for experimen-
tation and research, as shown in Fig. 16. Choregraphe allows
to test these missions on a simulated NAO robot or directly
on a real NAO.
Type of language: Graph-based.
Code Lab provides two variants of a Scratch-based envi-
ronment: Sandbox for novice programmers and Constructor
for intermediate programmers, both to specify missions for
a wheeled educational robot called Cozmo [2].
Type of language: Block-based and text-based.
EasyC [28] is an environment with a flow-chart-like visual
language for programming the educational robot kits (Lego-
Mindstorms-like) VEX EDR and VEX IQ, used for building
wheeled or stationary robots. For advanced programmers, a
C-like textual syntax is also available.
Type of language: Flowchart-based.
Edison software [7,75] is an environment for the educational
wheeled robots EdisonV1.0 andV2.0. The environment pro-
vides a language with two visual notations—one based on a
custom block-based syntax and one based on Scratch. It also
offers Python for advanced programmers.
Type of language: Block-based and text-based.
Enchanting is a Scratch-based environment for program-
ming the educational and toy robot Lego Mindstorms NXT
[29,64]—a kit like the VEX robots above (EasyC). Its suc-
cessor, EV3, is supported by LEGO Mindstorms EV3 and
Scratch EV3, explained shortly.
Type of language: Block-based.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

S. Dragule et al.

Table 5 Feature matrix for specification environment features and general language characteristics

Ardublockly Aseba BlocklyProp Choregraphe CodeLab EasyC EdisonSoftware Enchanting

Specification environments

MultiLanguageSupport x x x x x x � x

Editor Modes

Projectional � � � � � � � �
Parser-based x � x x x � � x

Semantic services

Error Marking � � � x x x � x

Quick fixes x x x � x x � x

Reference resolution x x x x x x x x

Live translation x � x x x � x x

Syntactic services

Visual highlighting � � � x � � � �
Syntactic completion x x x � x x x x

Auto formatting � x x x x x x x

Simulation

Single Robot x � x x x x x x

Multi-robot x x x x x x x x

Runtime specificationa x x x � x � x x

Debugging x � x � x x x x

Mission deploymentb

Runtime redeployment x x x x x x x x

Over the air x x x � � x x x

Via cable � � � � x � � �

LEGOMindstorms EV3 [16,31] is an environment for the
educational and toy robot with the same name. It provides a
visual language with blocks connected to form a control flow
(see also Fig. 13 in Sect. 5.3).
Type of language: Block-based and text-based.
Makeblock 5 is a Scratch-based environment for pro-
gramming the educational, wheeled robots micro:bit and
makeblock [68,111]. Beyond Scratch, it also offers Python
for advanced programmers.
Type of language: Block-based and text-based.
Makecode provides an online visual editor for programming
the (typicallywheeled) LegoEV3 robot [76]. JavaScript code
is generated from the visual program, which can be down-
loaded to the computer to which the EV3 robot is connected.
The environment also provides a simulator, and it can also
be used for other robots, such as micro:bit.
Type of language: Block-based.
Marty software [95] is a Scratch-based environment specif-
ically created for the humanoid educational robot marty. A
screenshot of the Scratch-based visual language is shown in
Fig. 18. The environment also offers a customized Python
language called martypy.
Type of language: Block-based and text-based.

Metabot is web-based environment relying on Blockly, to
create missions for the 4-legged robot Metabot v1 and v2
[74,87]. Figure 17 shows a mission demonstrating the use of
loop control structure with a corresponding assembler code
generated [74,87].
Type of language: Block-based.
Ozoblockly [34,85] is a Blockly-based environment particu-
larly for the educational, wheeled robot ozobot. The language
and its visual syntax offer five levels of complexity, ranging
from icon-based blocks to advanced programming con-
structs, which offer low-level control functions and advanced
programming features.
Type of language: Block-based.
PICAXE [47,89] is an environment for educational wheeled
robots based on PICAXE microcontrollers, such as the
PICAXE 20X2microbot. The environment offers a language
with syntaxes based on Blockly and a flowchart-like syntax,
but it also comes with a Basic-style language with a textual
syntax.
Type of language: Block-based, Flowchart-based, and text-
based.
Robot Mesh Studio [73] is used for programming the
wheeled educational robots from VEX Robotics, such as the
VEX V5, IQ, and EDR. It offers two languages: one with a

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

Table 5 continued

Ardublockly Aseba BlocklyProp Choregraphe CodeLab EasyC EdisonSoftware Enchanting

Language characteristics

Language conceptsc

Notation

Block-based � � � x � x � �
Flowchart-based x x x x x � x x

Graph-based x x x � x x x x

Text-based x � x x � x � x

Custom map-based x x x x x x x x

Semantics

Compiled � � � � x � � �
Interpreted x x x x � x x x

Language Paradigm

DSL � � � � � � � �
GPL support x x x x x x � x

Extensibility

Scripting support � � � � x � � x

Add language concept � � x x x � x �

FLYAQ LegoMindstormsEV3 Makeblock5 Makecode MartySoftware Metabot Ozoblockly PICAXE

Specification environments

MultiLanguageSupportx x x � x x x x �
Editor Modes

Projectional � � � � � � � �
Parser-based x x � � x x x �
Semantic services

Error Marking x x x x x x x x

Quick fixes x x x x x x x �
Reference resolution x x x x x x x x

Live translation x x x x x x x x

Syntactic services

Visual highlighting x � � � � � � �
Syntactic completion x x x x x x x �
Auto formatting x x x x x x x �
Simulation

Single Robot � x x � x � x �
Multi-robot � x x x x x x x

Runtime specificationa x x x x x x x x

Debugging x x x x x x x �
Mission deploymentb

Runtime redeployment x x x x x x x x

Over the air x � x x x � � x

Via cable x � � � � � x �

123

S. Dragule et al.

Table 5 continued

FLYAQ LegoMindstormsEV3 Makeblock5 Makecode MartySoftware Metabot Ozoblockly PICAXE

Language characteristics

Language conceptsc

Notation

Block-based x � � � � � � �
Flowchart-based x x x x x x x �
Graph-based x x x x x x x x

Text-based x � � x � x x �
Custom map-based � x x x x x x x

Semantics

Compiled � x � � � � � �
Interpreted x � x x x x x x

Language Paradigm

DSL � � � � � � � �
GPL support x x � x � x x x

Extensibility

Scripting support x x x � x x x x

Add language concept � � � x x x � x

RobotMesh
Studio

ScratchEv3 SparkiDuino Sphero TelloEduApp TiViPE Turtlebot3
Blockly

Specification environments

MultiLanguageSupport � x � � x x x

Editor Modes

Projectional � � � � � � �
Parser-based � x � � x x x

Semantic services

Error Marking � x x x x x x

Quick fixes x x x � x x x

Reference resolution x x x x x x x

Live translation x x x x x x x

Syntactic services

Visual highlighting � � � � � x �
Syntactic completion � x x x x x x

Auto formatting � x � x x x x

Simulation

Single Robot � x x x x x x

Multi-robot x x x x x x x

Runtime specificationa x x x � x x �
Debugging � x x x x x x

Mission deployment

Runtime redeployment x x x � x x �
Over the air x � x x � x �
Via cable � x � x � � �

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

Table 5 continued

RobotMesh
Studio

ScratchEv3 SparkiDuino Sphero TelloEduApp TiViPE Turtlebot3
Blockly

Language characteristics

Language conceptsc

Notation

Block-based � � � � � x �
Flowchart-based � x x x x x x

Graph-based x x x x x � x

Text-based � x � � x x x

Custom map-based x x x x x x x

Semantics

Compiled � � � � � � �
Interpreted x x x x x x x

Language Paradigm

DSL � � � � � � �
GPL support � x � � x x x

Extensibility

Scripting support x x � x x x �
Add language concept x � x x � � x

VexCodingStudio MiniBloq MissionLab OpenRoberta RobotC TrikStudio PROMISE Frequency

Specification environments

MultiLanguageSupport� x x x � x x 8

Editor Modes

Projectional � � � � � � � 30

Parser-based � x x x � x � 12

Semantic services

Error Marking � x x x x x � 7

Quick fixes x x � x x x x 5

Reference resolution x � x x x x � 2

Live translation x x x x x x x 2

Syntactic services

Visual highlighting � � x � � � � 26

Syntactic completion � x � x x � � 7

Auto formatting � x x x x x x 5

Simulation

Single Robot x x � � � � x 10

Multi-robot x x x x x x � 2

Runtime specificationa x x � x x x x 5

Debugging � x � � � � x 9

Mission deploymentb

Runtime redeployment x x x x x x x 2

Over the air x x x x x � � 10

Via cable � � x � � � x 23

123

S. Dragule et al.

Table 5 continued

VexCodingStudio MiniBloq MissionLab OpenRoberta RobotC TrikStudio PROMISE Frequency

Language characteristics

Language conceptsc

Notation

Block-based � � x � � x � 24

Flowchart-based x x x x x x x 3

Graph-based x x � x x � x 4

Text-based � x x x � � � 14

Custom map-based x x x x x x x 1

Semantics

Compiled � � � � � � � 28

Interpreted x x x x x x x 2

Language Paradigm

DSL � � � � � � � 30

GPL support � x x x � � x 9

Extensibility

Scripting support x � x � � x x 12

Add language concept x x � � � � � 16

aAll environments support design time specification. bNo environment supports runtime interference. c Language concepts in Table 6

Fig. 17 Example of Metabot’s visual notation (left), together with gen-
erated assembler code (right) from [87]

flow-chart-like syntax (Flowol), and one based on Blockly.
It also support C++ and Python for advanced programmers.
The studio can be run online or on a Windows computer.
Type of language: Block-based, Flowchart-based, and text-
based.
Scratch EV3 [101] is the original Scratch from MIT, but
tailored to support the educational robot kit LegoMindstorms
EV3. To this end, it offers dedicated language constructs for
theEV3.Notably, a study has shown learning-related benefits
of this Scratch-based environment over the original LEGO
Mindstorms EV3 environment (see above) [54].
Type of language: Block-based.
SparkiDuino [4] provides a Blockly-based programming
environment for a robot called Sparki—a wheeled educa-
tional robot kit for teaching programming. The robot relies on

a specific Arduino board, and the environment uses Arduino-
specific software for uploading the mission to the robot.
Type of language: Block-based and text-based.
Sphero is an environment for programming the spherical
educational robots Sphero BOLT, SPRK+, and Sphero Mini
[46,103], which have a derivative resembling StarWars’ BB8
robot that was sold by the respective company under a license
agreement. The language’s visual syntax is based on Scratch,
while JavaScript is also offered as a language with textual
syntax.
Type of language: Block-based and text-based.
Tello Edu App [41,114] is a Scratch-based environment that
generates Python code for the educational drone Tello. It is
essentially Scratch extended with a library that adds Tello-
specific blocks (mainly drone flight controls).
Type of language: Block-based.
TiViPE [61] is a research environment for programming
robots that provides support to wrap any program code mod-
ules (e.g., functions) of the supported programming language
as nodes in a graph, with edges representing control and
data-flows. The environment incorporates the API for the
humanoid robot NAO, as demonstrated by Lourens et al [63].
Type of language: Graph-based.
Turtlebot3-blockly [55,107] is a Blockly-based environ-
ment for programming the experimental robot turtlebot
(essentially a Roomba without vacuum cleaning facilities,
extensible with various sensors). It generates Python code
for the turtlebot.
Type of language: Block-based.

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

Table 6 Feature matrix for language concepts

Ardublockly Aseba BlocklyProp Choregraphe CodeLab EasyC EdisonSoftware Enchanting

General concepts

Control flow

Conditionals � � � � � � � �
Loops � � � � � � � �
Interrupts x x � � x � � x

Multithreading forks x x x x x x x x

Modularity-modulesa � x � � x x x x

Variable Data types

Primitive � � � � � � � �
Compound � � � � � � � �

Mission Specification paradigm

Reactive Control x � x x x x x x

Imperative � x � � � � � �
Function Library

Arithmetic functions � x � � x � � �
String operations x x � x x x x x

Multithreading � x � � x � � x

Multirobot Hardware Support x x � � x � x x

File access

Read/write x x x � x x x x

Open/close x x x � x x x x

ReadSensorb � � x � � � � �
Event support � � � � � � � �
Exception Handling x x x � � x x x

Actions

Action type

Instantaneous � x � x x x x �
Continuous x � � � x x � �
Delayed � � � � x x � �

Communication actions

With Human x x x � � x x �
With Agent x x � x x x � x

Movement actions

Absolute x x x x � x x x

Relative � � � � � � � �
Manipulator actions c � � � � � � � �

FLYAQ LegoMindstormsEV3 Makeblock5 Makecode MartySoftware Metabot Ozoblockly PICAXE

General concepts

Control flow

Conditionals x � � � � � � �
Loops x � � � � � � �
Interrupts x � � � � � � x

Multithreading forks x x x x x x x x

123

S. Dragule et al.

Table 6 continued

FLYAQ LegoMindstormsEV3 Makeblock5 Makecode MartySoftware Metabot Ozoblockly PICAXE

Modularity-modulesa � � � x x � � �
Variable Data types

Primitive x � � � � � � �
Compound x � � � � � � �

Mission Specification paradigm

Reactive Control x x x x x x x x

Imperative � � � � � � � �
Function Library

Arithmetic functions x � � � � � � �
String operations x x � � � x � �

Multithreading x � � � � x x �
Multirobot Hardware Support x x � x x x x x

File access

Read/write x � x x x x x �
Open/close x � x x x x x x

ReadSensorb � � � � � � � �
Event support � � � � � � � �
Exception Handling x x x x x x x x

Actions

Action type

Instantaneous � � x � x x � x

Continuous � � x x x x x x

Delayed x � � x � � � �
Communication actions

With Human x x x x x x x x

With Agent � � � x x x x x

Movement actions

Absolute x x � x x x � �
Relative � � � � � � � �

Manipulator actions c � � � � � � � �

RobotMesh
Studio

ScratchEv3 SparkiDuino Sphero TelloEduApp TiViPE Turtlebot3
Blockly

General concepts

Control flow

Conditionals � � � � � � �
Loops � � � � � � �
Interrupts � � x � x � x

Multithreading forks x x x x x x x

Modularity-modulesa � x x � x � �
Variable Data types

Primitive � � � � x x �
Compound � x � � � x �

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

Table 6 continued

RobotMesh
Studio

ScratchEv3 SparkiDuino Sphero TelloEduApp TiViPE Turtlebot3
Blockly

Mission Specification paradigm

Reactive Control x x x x x x x

Imperative � � � � � � �
Function Library

Arithmetic functions � � � � x � �
String operations � � x x x x x

Multithreading � x x x x x x

Multirobot Hardware Support x � x � x x x

File access

Read/write x x � x x x �
Open/close x x � x x � x

ReadSensorb � � � � � � x

Event support � � x � � x x

Exception Handling x x x x x x x

Actions

Action type

Instantaneous x � � x x � �
Continuous x x � x � � x

Delayed � x x � � x �
Communication actions

With Human x x � x x � x

With Agent x x � � x x x

Movement actions

Absolute � x x � � � x

Relative � � � � � x �
Manipulator actions c � � � � � � �

VexCodingStudio MiniBloq MissionLab OpenRoberta RobotC TrikStudio PROMISE Frequency

General concepts

Control flow

Conditionals � � � � � � � 29

Loops � � x � � � � 28

Interrupts � x � � � x � 20

Multithreading forks x x � x x � x 2

Modularity-modulesa � x � � x � x 17

Variable Data types

Primitive � � x � � � x 25

Compound � � x � � � x 25

Mission Specification paradigm

Reactive Control x x � x x x x 1

Imperative � � � � � � � 29

Function Library

Arithmetic functions � � � � � x x 24

String operations x � x � x x x 10

Multithreading x x x x � x x 11

Multirobot Hardware Support x � � � x � � 11

123

S. Dragule et al.

Table 6 continued

VexCodingStudio MiniBloq MissionLab OpenRoberta RobotC TrikStudio PROMISE Frequency

File access

Read/write x x � x � � x 8

Open/close x x � x � x x 6

ReadSensorb � � � � � � x 27

Event support � x � � x � � 25

Exception Handling x x � � x x � 5

Actions

Action type

Instantaneous x x � x � x � 14

Continuous x x � x � � � 14

Delayed � � x � x x x 19

Communication actions

With Human x x � � x x x 7

With Agent � x � � x � � 12

Movement actions

Absolute � x � x x x � 11

Relative � � � � � � x 28

Manipulator actions c � � � � � � � 30

aModules comprise functions and components. cList of kinds of manipulation actions in Fig. 14

Fig. 18 The mission specification environment Marty software

VEX Coding Studio [20,97] is the robot vendor’s environ-
ment for programming the educational robot kits VEX EDR
and VEX IQ (like EasyC). The language has a Scratch-based
syntax (VEXcodeBlocks) and a text-based syntax (VEXcode
Text).
Type of language: Block-based and text-based.
FLYAQ [12,25,33] is an experimental (research) environ-
ment to specify missions of drones, specifically the Parrot
AR Drone2.0, while not being restricted to a drone model. It
allows to specify missions and their parameters (e.g., flight
locations), on a live map. It generates flight plans from a
stack of languages, such as the monitoring mission language
(which provides the user interface), to a behavioral language
and a robot configuration language.

Type of language: Custom, map-based.
MiniBloq [49,81] is an environment that can be used to pro-
gramArduino-board-based robots, such as the wheeled robot
Sparki. Its language provides a custom syntax with relatively
large icon-based blocks.
Type of language: Block-based.
MissionLab [1,6,108] is a research environment enabling
mission specification through a state-machine-based visual
language. Missions can be executed on a simulator or on
the following wheeled robots used for smaller commercial
applications: ATRV-Jr, UrbanRobot, AmigoBot, PioneerAT,
and Nomad 150 & 200.
Type of language: Graph-based.
Open Roberta [45,48,52] is a web-based, educational, and
Blockly-based environment for programming a variety of
robots: Lego Mindstorms EV3 amd NXT, Calliope mini,
micro:bit, Bot’n Roll, NAO, and BOB3. It can either be
run on the cloud or installed on a local server. The environ-
ment generates Code in Python, Java, Javascript, and C/C++
depending on the target robot.
Type of language: Block-based.
RobotC [94,99] is an educational environment providing a
language that tries to be close to natural language, mainly
through more natural language keywords and expressions
(e.g., “Understood==True”). It allows programming the
VEX, LEGOMindstorms EV3and NXT, and other Arduino-
based robots.

123

A survey on the design space of end-user-oriented languages for specifying robotic missions

Table 7 provides links to online resources for the respec-
tive specification environment resources
Type of language: Block-based and text-based.
TRIK Studio [80,106] is an educational tree-based environ-
ment in which blocks connected to the chart are symbols of
functions the block does. The studio provides an interactive
simulation mode and supports multiple robot types, such as
the drone Geoscan Pioneer and the wheeled robot kits LEGO
Mindstorms EV3and NXT.
Type of language: Graph-based and text-based.
PROMISE [35,36] provides a graphical and a textual syn-
tax for mission specification for multi-robot applications.
The environment5 allows the seamless integration and usage
of both syntaxes to specify different aspects of the same
mission. The language provides a list of operators—which
are inspired by the behavior trees’ operators [21]—that can
be composed to encode complex missions. These opera-
tors are interconnected following a behavior tree style and
notation [21,39]. The language relies upon a catalog of pat-

5 https://github.com/SergioGarG/PROMISE_implementation.

terns based on temporal logics, which encodes recurrent
robotics missions from literature [71]. PROMISE automati-
cally generates and forwards the missions to be achieved by
the robotic application, decomposing the overall specifica-
tion into robot-specific missions. PROMISE is intended to
be robot-agnostic, so it could be integrated with any robot.
Type of language: Graph-based and text-based.

C Additional online resources

See Table 7.

123

https://github.com/SergioGarG/PROMISE_implementation

S. Dragule et al.

Table 7 Links to respective specification environment resources

Environment URL Link

Ardublockly https://ardublockly.embeddedlog.com/ , https://modernroboticsinc.com/product-category/spartan/

Aseba https://www.thymio.org/en:star

BlocklyProp http://blockly.parallax.com/blockly/editor/blocklyc.jsp?project=27294#

Choregraphe http://doc.aldebaran.com/1-14/software/installing.html

Code Lab https://anki.com/en-us/cozmo/create-with-cozmo/constructor/create.html

EasyC https://www.vexrobotics.com/easyc-v5.html

Edison software https://meetedison.com/robot-programming-software/

Enchanting http://enchanting.robotclub.ab.ca/tiki-index.php

FLYAQ http://www.flyaq.it/

LEGO Mindstorms EV3 https://www.lego.com/en-us/mindstorms/downloads, https://education.lego.com/en-us/
downloads/mindstorms-ev3/software#MicroPython

Makeblock 5 https://www.makeblock.com/software

Makecode https://makecode.mindstorms.com/#editor

Marty software http://martytherobot.com/users/using-marty/program/scratch/getting-started-with-scratch/

Metabot http://blocks.metabot.fr/#

Ozoblockly https://ozoblockly.com/editor?lang=en&robot=evo&mode=5

PICAXE http://www.picaxe.com/software

Robot Mesh Studio http://docs.robotmesh.com/ide-project-page

Scratch EV3 https://scratch.mit.edu/projects/editor/?tutorial=ev3

SparkiDuino http://arcbotics.com/lessons/sparki/

Sphero https://www.sphero.com/education/

Tello Edu App https://play.google.com/store/apps/details?id=com.wistron.telloeduIN

TiViPE https://www.tivipe.com/2016/08/30/merging-modules/#more-461

Turtlebot3-blockly https://turtlebot-3-blockly-wiki.readthedocs.io/en/latest/

VEX Coding Studio https://www.vexrobotics.com/vexedr/products/programming

MiniBloq http://blog.minibloq.org/p/documentation.html

MissionLab https://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab

Open Roberta https://lab.open-roberta.org/

RobotC http://www.robotc.net/graphical/

TRIK Studio http://www.trikset.com/products/trik-studio#download

PROMISE https://github.com/SergioGarG/PROMISE_implementation

References

1. Ali, K.S., Balch, T.R., Cameron, J.M., Chen, Z., Endo, Y., Hal-
liburton, W.C., Kaess, M., Kira, Z., Lee, J.B., MacKenzie, D.C.,
Martinson, E.B., Merrill, E.P., Ranganathan, A., Sgorbissa, A.,
Stoytchev, A., Ulam, P., Wagner, A.: User manual for MissionLab
version 7.0. Technical report, Georgia Tech Mobile Robot Lab-
oratory. https://www.cc.gatech.edu/aimosaic/robot-lab/research/
MissionLab/mlab_manual-7.0.pdf

2. Anki: Codelab for cozmo robot. http://www.anki.com/en-us/
cozmo/code-lab/how-it-works (2020)

3. Aragão, M., Moreno, P., Bernardino, A.: Middleware interoper-
ability for robotics: a ROS-YARP framework. Front. Robot. AI 3,
64 (2016). https://doi.org/10.3389/frobt.2016.00064

4. Arcbotics: Arcbotics, learning with robots (2020). http://
arcbotics.com/lessons/sparki/

5. Ardublockly: Ardublockly. https://ardublockly.embeddedlog.
com/ (2020)

6. Arkin, R.: Missionlab: multiagent robotics meets visual program-
ming. Working notes of Tutorial on Mobile Robot Programming
Paradigms, ICRA 15 (2002)

7. Bacca-Cortés, B., Florián-Gaviria, B., García, S., Rueda, S.:
Development of a platform for teaching basic programming using
mobile robots. Revista Facultad de Ingeniería 26(45), 61–70
(2017)

8. Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva,A., Becker,
M., Chechik, M., Czarnecki, K.: What is a feature? a qualitative
study of features in industrial software product lines. In: Interna-
tional Software Product Line Conference (SPLC) (2015)

9. Berger, T., Völter, M., Jensen, H.P., Dangprasert, T., Siegmund,
J.: Efficiency of projectional editing: A controlled experiment. In:
International Symposium on the Foundations of Software Engi-
neering (FSE). ACM (2016)

10. Biggs, G., Macdonald, B.: A survey of robot programming sys-
tems. In: Proceedings of the Australasian conference on robotics
and automation, p. 27 (2003)

123

https://ardublockly.embeddedlog.com/
https://modernroboticsinc.com/product-category/spartan/
https://www.thymio.org/en:star
http://blockly.parallax.com/blockly/editor/blocklyc.jsp?project=27294#
http://doc.aldebaran.com/1-14/software/installing.html
https://anki.com/en-us/cozmo/create-with-cozmo/constructor/create.html
https://www.vexrobotics.com/easyc-v5.html
https://meetedison.com/robot-programming-software/
http://enchanting.robotclub.ab.ca/tiki-index.php
http://www.flyaq.it/
https://www.lego.com/en-us/mindstorms/downloads
https://education.lego.com/en-us/downloads/mindstorms-ev3/software#MicroPython
https://education.lego.com/en-us/downloads/mindstorms-ev3/software#MicroPython
https://www.makeblock.com/software
https://makecode.mindstorms.com/#editor
http://martytherobot.com/users/using-marty/program/scratch/getting-started-with-scratch/
http://blocks.metabot.fr/#
https://ozoblockly.com/editor?lang=en&robot=evo&mode=5
http://www.picaxe.com/software
http://docs.robotmesh.com/ide-project-page
https://scratch.mit.edu/projects/editor/?tutorial=ev3
http://arcbotics.com/lessons/sparki/
https://www.sphero.com/education/
https://play.google.com/store/apps/details?id=com.wistron.telloeduIN
https://www.tivipe.com/2016/08/30/merging-modules/#more-461
https://turtlebot-3-blockly-wiki.readthedocs.io/en/latest/
https://www.vexrobotics.com/vexedr/products/programming
http://blog.minibloq.org/p/documentation.html
https://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab
https://lab.open-roberta.org/
http://www.robotc.net/graphical/
http://www.trikset.com/products/trik-studio#download
https://github.com/SergioGarG/PROMISE_implementation
https://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/mlab_manual-7.0.pdf
https://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/mlab_manual-7.0.pdf
http://www.anki.com/en-us/cozmo/code-lab/how-it-works
http://www.anki.com/en-us/cozmo/code-lab/how-it-works
https://doi.org/10.3389/frobt.2016.00064
http://arcbotics.com/lessons/sparki/
http://arcbotics.com/lessons/sparki/
https://ardublockly.embeddedlog.com/
https://ardublockly.embeddedlog.com/

A survey on the design space of end-user-oriented languages for specifying robotic missions

11. Bozhinoski, D., Bucchiarone, A., Malavolta, I., Marconi, A.,
Pelliccione, P.: Leveraging collective run-time adaptation for
UAV-based systems. In: EuromicroConference onSoftwareEngi-
neering and Advanced Applications (SEAA). IEEE (2016)

12. Bozhinoski, D., Di Ruscio, D., Malavolta, I., Pelliccione, P.,
Tivoli, M.: Flyaq: Enabling non-expert users to specify and gener-
ate missions of autonomous multicopters. In: International Con-
ference on Automated Software Engineering (ASE). IEEE/ACM
(2015)

13. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers, San
Rafael (2012)

14. Bravo, F.A., Gonzalez, A.M., Gonzalez, E.: A review of intuitive
robot programming environments for educational purposes. In:
Conference on Automatic Control (CCAC). IEEE (2018)

15. Brugali, D., Prassler, E.: Software engineering for robotics. IEEE
Robot. Autom.Mag. 16(1), 9–15 (2009). https://doi.org/10.1109/
MRA.2009.932127

16. Burnett, W.: Alternative programming languages for lego
mindstorms. http://www.legoengineering.com/alternative-
programming-languages/ (2020)

17. Burnett, W.: Blockly. https://developers.google.com/blockly/
(2020)

18. Button, R.W., Kamp, J., Curtin, T.B., Dryden, J.: A survey of
missions for unmannedundersea vehicles. Technical report (2009)

19. Campusano,M., Fabry, J.: Live robot programming: the language,
its implementation, and robot api independence. Sci. Comput.
Program. 133, 1–19 (2017)

20. Caron, D.: Competitive robotics brings out the best in students.
Tech Dir. 69(6), 21–24 (2010)

21. Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI:
an introduction (2018). https://doi.org/10.1201/9780429489105

22. Colledanchise, M., Ögren, P.: Behavior Trees in Robotics and Al:
An Introduction. CRC Press, Boca Raton (2018)

23. Combemale, B., France, R., Jézéquel, J.M., Rumpe, B., Steel, J.,
Vojtisek, D.: Engineering Modeling Languages: Turning Domain
Knowledge into Tools. CRC Press, Boca Raton (2016)

24. Czarnecki, K., Helsen, S.: Feature-based survey of model trans-
formation approaches. IBM Syst. J. 45, 621–645 (2006)

25. Di Ruscio, D., Malavolta, I., Pelliccione, P.: A family of domain-
specific languages for specifying civilian missions of multi-robot
systems. In: CEURWorkshop Proceedings, vol. 1319, pp. 16–29
(2014)

26. Doherty, P., Heintz, F., Kvarnström, J.: High-level mission speci-
fication and planning for collaborative unmanned aircraft systems
using delegation. Unmanned Syst. 01(01), 75–119 (2013)

27. Dragule, S., Garcia, S., Berger, T., Pelliccione, P.: Languages for
specifying missions of robotic applications. In: Software Engi-
neering for Robotics. Springer (2020)

28. EasyC: Easyc v5 for cortex and vex iq. http://www.intelitek.com/
engineering/easyc/ (2020)

29. Enchatnting: http://enchanting.robotclub.ab.ca/tiki-index.php
(2020)

30. Erdweg, S., van der Storm, T., Völter, M., Boersma, M., Bosman,
R., Cook, W.R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A.,
et al.: The State of the Art in Language Workbenches. In: Erwig,
M., Paige, R.F., VanWyk, E. (eds.) Software Language Engineer-
ing. Springer, Berlin (2013)

31. EV3, L.M.: Apps. https://www.lego.com/en-us/mindstorms/
downloads/download-software (2020)

32. Fernández-Perdomo, E., Cabrera-Gómez, J., Domínguez-Brito,
A.C., Hernández-Sosa, D.: Mission specification in underwater
robotics. J. Phys. Agents 4(1), 25–34 (2010)

33. FLYAQ:Graphical specification and execution ofmissions. http://
www.flyaq.it/ (2020)

34. Fojtik,R.: Theozobot and educationof programming.NewTrends
Issues Proceed.Humanit. Soc. Sci. 4(5) (2017). https://doi.org/10.
18844/prosoc.v4i5.2666

35. García, S., Pelliccione, P.,Menghi, C., Berger, T., Bures, T.: High-
level mission specification for multiple robots. In: International
conference on software language engineering. ACM (2019)

36. Garcia, S., Pelliccione, P., Menghi, C., Berger, T., Bures, T.:
Promise: high-level mission specification for multiple robots.
In: International Conference on Software Engineering (ICSE),
Demonstrations Track (2020)

37. Garcia, S., Strueber, D., Brugali, D., Berger, T., Pelliccione, P.:
Robotics software engineering: a perspective from the service
robotics domain. In: International Symposium on the Foundations
of Software Engineering (FSE). ACM (2020)

38. García-Zubía, J., Angulo, I., Martínez-Pieper, G., Orduña, P.,
Rodríguez-Gil, L., Hernandez-Jayo, U.: Learning to program in
k12 using a remote controlled robot: roboblock. In: Auer, M.,
Zutin, D. (eds.) Online Engineering & Internet of Things, pp.
344–358. Springer, Berlin (2018). https://doi.org/10.1007/978-
3-319-64352-6_33

39. Ghzouli, R., Berger, T., Johnsen, E.B., Dragule, S.,Wasowski, A.:
Behavior trees in action: a study of robotics applications. In: Inter-
national Conference on Software Language Engineering (SLE).
ACM (2020)

40. Gorostiza, J.F., Salichs, M.A.: End-user programming of a social
robot by dialog. Robot. Auton. Syst. 59(12), 1102–1114 (2011).
https://doi.org/10.1016/j.robot.2011.07.009

41. Guide, A., Guide, B., Foundation, F.: Program tello drone to
do back ips with scratch! https://www.aerial-guide.com/article/
program-tello-drone-to-do-backflips-with-scratch (2020)

42. Hentout, A., Maoudj, A., Bouzouia, B.: A survey of development
frameworks for robotics. In: International Conference on Mod-
elling, Identification and Control (ICMIC). IEEE (2016)

43. Hocraffer, A., Nam,C.S.: Ameta-analysis of human-system inter-
faces in unmanned aerial vehicle (UAV) swarm management.
Appl. Ergon. 58, 66–80 (2017)

44. Holwerda, R., Hermans, F.: A usability analysis of blocks-based
programming editors using cognitive dimensions. In: Symposium
on Visual Languages and Human-Centric Computing (VL/HCC),
pp. 217–225. IEEE (2018)

45. IAIS, F.: Open roberta lab. https://lab.open-roberta.org/ (2020)
46. Ioannou, M., Bratitsis, T.: Teaching the notion of speed in kinder-

garten using the sphero sprk robot. In: International Conference
on Advanced Learning Technologies. IEEE (2017)

47. Jarvinen, E.M., Karsikas, A., Hintikka, J.: Children as innovators
in action–a study of microcontrollers in finnish comprehensive
schools. J. Technol. Educ. 18, 37–52 (2007)

48. Jost, B., Ketterl,M., Budde, R., Leimbach, T.: Graphical program-
ming environments for educational robots: Open roberta—yet
another one? In: International Symposium on Multimedia. IEEE
(2014)

49. Junior, L.A., Neto, O.T., Hernandez, M.F., Martins, P.S., Roger,
L.L., Guerra, F.A.: A low-cost and simple arduino-based educa-
tional robotics kit. J. Sel. Areas Robot. Control (JSRC) 3(12), 12
(2013)

50. Kang, K., Cohen, S., Hess, J., Novak,W., Peterson, A.S.: Feature-
oriented domain analysis (FODA) feasibility study. Software
Engineering Institute, Universitas Carnegie Mellon, Pittsburgh,
Pennsylvania (1990)

51. Kaučič, B., Asič, T.: Improving introductory programming with
scratch? In: Proceedings of the International ConventionMIPRO.
IEEE (2011)

52. Ketterl, M., Jost, B., Leimbach, T., Budde, R.: Open roberta—a
web based approach to visually program real educational robots.
Int. J. Learn. Media (2016). https://doi.org/10.7146/lom.v8i14.
22183

123

https://doi.org/10.1109/MRA.2009.932127
https://doi.org/10.1109/MRA.2009.932127
http://www.legoengineering.com/alternative-programming-languages/
http://www.legoengineering.com/alternative-programming-languages/
https://developers.google.com/blockly/
https://doi.org/10.1201/9780429489105
http://www.intelitek.com/engineering/easyc/
http://www.intelitek.com/engineering/easyc/
http://enchanting.robotclub.ab.ca/tiki-index.php
https://www.lego.com/en-us/mindstorms/downloads/download-software
https://www.lego.com/en-us/mindstorms/downloads/download-software
http://www.flyaq.it/
http://www.flyaq.it/
https://doi.org/10.18844/prosoc.v4i5.2666
https://doi.org/10.18844/prosoc.v4i5.2666
https://doi.org/10.1007/978-3-319-64352-6_33
https://doi.org/10.1007/978-3-319-64352-6_33
https://doi.org/10.1016/j.robot.2011.07.009
https://www.aerial-guide.com/article/program-tello-drone-to-do-backflips-with-scratch
https://www.aerial-guide.com/article/program-tello-drone-to-do-backflips-with-scratch
https://lab.open-roberta.org/
https://doi.org/10.7146/lom.v8i14.22183
https://doi.org/10.7146/lom.v8i14.22183

S. Dragule et al.

53. Kolling, A., Walker, P., Chakraborty, N., Sycara, K., Lewis, M.:
Human interaction with robot swarms: a survey. IEEE Trans.
Hum. Mach. Syst. 46(1), 9–26 (2016)

54. Korkmaz,Ö.: The effect of scratch and legomindstorms ev3 based
programming activities on academic achievement, problem solv-
ing skills and logical mathematical thinking skills of students.
Malays. Online J. Educ. Sci. 4(3), 73–88 (2016)

55. Krishnan, A.: Turtlebot3blockly documentation. https://
readthedocs.org/projects/turtlebot-3-blockly-wiki/downloads/
pdf/latest/ (2020)

56. Lämmel, R.: Software languages: syntax, semantics, andmetapro-
gramming. Springer, Berlin (2018)

57. Lane, A., Meyer, B., Mullins, J.: Robotics with Enchanting and
LEGO NXT-A Project Based Introduction to Programming, ver-
sion 1.1 edn. 2012Monash University under a Creative Commons
(2012)

58. Linsbauer, L., Berger, T., Grünbacher, P.: A classification of vari-
ation control systems. In: International Conference on Generative
Programming: Concepts & Experience (GPCE). ACM (2017)

59. Linsbauer, L., Schwaegerl, F., Berger, T., Gruenbacher, P.: Con-
cepts of variation control systems. J. Syst. Soft. (2020). Preprint

60. Lotz, A.: Managing non-functional communication aspects in the
entire life-cycle of a component-based robotic software system.
Dissertation, Technische Universität München, München (2018)

61. Lourens, T.: Tivipe-tino’s visual programming environment. In:
International Computer Software and Applications Conference
(COMPSAC). IEEE (2004)

62. Lourens, T.: Programming robots using tivipe–a step by step
approach using aldebaran’s nao robots. Technical report, TiViPE,
Netherlands (2011)

63. Lourens, T., Barakova, E.: User-friendly robot environment for
creation of social scenarios. In: International Work-Conference
on the Interplay Between Natural and Artificial Computation,
(IWINAC). Springer (2011)

64. Lozenko, G.F., Dzhenzher, V.O., Denisova, L.V.: Training future
teachers in computer skills in extra-curricular activity with
schoolchildren. Life Sci. J. 11(8s), 203 (2014)

65. Luckcuck, M., Farrell, M., Dennis, L., Dixon, C., Fisher, M.: For-
mal specification and verification of autonomous robotic systems:
a survey. Comput. Surv. 52(5), 1–41 (2019). https://doi.org/10.
1145/3342355

66. MacKenzie, D.C., Arkin, R.C., Cameron, J.M.: Multiagent mis-
sion specification and execution. Auton. Robots 4(1), 29–52
(1997). https://doi.org/10.1023/A:1008807102993

67. Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., Mon-
dada, F.: Aseba: a modular architecture for event-based control
of complex robots. Trans. Mechatron. 16(2), 321–329 (2011).
https://doi.org/10.1109/TMECH.2010.2042722

68. Makeblock: Makeblock. https://www.makeblock.com/software
(2020)

69. Medeiros, A.A.: A survey of control architectures for autonomous
mobile robots. J. Braz. Comput. Soc. 4(3) (1998)

70. Menghi, C., Tsigkanos, C., Berger, T., Pelliccione, P.: PsALM:
Specification of dependable robotic missions. In: International
Conference on Software Engineering (ICSE), Demonstrations
Track. IEEE/ACM (2019)

71. Menghi, C., Tsigkanos, C., Pelliccione, P., Ghezzi, C., Berger,
T.: Specification patterns for robotic missions. Trans. Softw. Eng.
(2019). https://doi.org/10.1109/TSE.2019.2945329

72. Menzies, T.: Evaluation issues for visual programming languages.
In: Chang, S.K. (ed.) Handbook of Software Engineering and
Knowledge Engineering: Volume II: Emerging Technologies, pp.
93–101. World Scientific, Singapore (2002)

73. Mesh, R.: Robot mesh studio. http://docs.robotmesh.com/ide-
project-page (2020)

74. Metabot: Metabot blockly. http://blocks.metabot.fr (2020)

75. Microbric: Edison software. http://meetedison.com/robot-
programming-software/ (2020)

76. Microsoft: mindstorms. http://makecode.mindstorms.com (2020)
77. Miskam, M.A., Shamsuddin, S., Yussof, H., Omar, A.R., Muda,

M.Z.: Programming platform for nao robot in cognitive interac-
tion applications. In: International Symposium on Robotics and
Manufacturing Automation (ROMA). IEEE (2014)

78. Mohamed, N., Al-Jaroodi, J., Jawhar, I.: Middleware for robotics:
a survey. In: International Conference on Robotics, Automation
and Mechatronics, RAM, pp. 736–742. IEEE (2008)

79. Moody, D.: The physics of notations: toward a scientific basis
for constructing visual notations in software engineering. Trans.
Softw. Eng. 35(6), 756–779 (2009). https://doi.org/10.1109/TSE.
2009.67

80. Mordvinov, D., Litvinov, Y., Bryksin, T.: Trik studio: technical
introduction. In: Conference of Open Innovations Association
(FRUCT). IEEE (2017)

81. Multiplo: Minibloq. http://blog.minibloq.org/ (2020)
82. Nesic, D., Krueger, J., Stanciulescu, S., Berger, T.: Principles of

feature modeling. In: International Symposium on the Founda-
tions of Software Engineering (FSE). ACM (2019)

83. Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A
survey on domain-specific modeling and languages in robotics. J.
Softw. Eng. Robot. 7(1), 75–99 (2016)

84. Nordmann, A., Hochgeschwender, N., Wrede, S.: A survey on
domain-specific languages in robotics. In: Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR). Springer,
Berlin (2014)

85. Ozobot: Ozoblockly. http://ozoblockly.com/editor?lang=en&
robot=bit&mode=2 (2020)

86. Parallax: Getting started with blocklyprop. https://learn.parallax.
com/tutorials/language/blocklyprop/getting-started-blocklyprop
(2019)

87. Passault, G., Rouxel, Q., Petit, F., Ly, O.: Metabot: A low-
cost legged robotics platform for education. In: International
Conference on Autonomous Robot Systems and Competitions
(ICARSC). IEEE (2016)

88. Pasternak, E., Fenichel, R., Marshall, A.N.: Tips for creating a
block language with blockly. In: Blocks and Beyond Workshop,
B and B. IEEE (2017). https://doi.org/10.1109/BLOCKS.2017.
8120404

89. PICAXE: Picaxe. http://www.picaxe.com/software (2020)
90. Pot, E., Monceaux, J., Gelin, R., Maisonnier, B.: Choregraphe: a

graphical tool for humanoid robot programming. In: International
Symposium on Robot and Human Interactive Communication.
IEEE (2009)

91. Ray, C., Mondada, F., Siegwart, R.: What do people expect from
robots? In: International Conference on Intelligent Robots and
Systems. IEEE (2008)

92. Robin, C., Lacroix, S.: Multi-robot target detection and tracking:
taxonomy and survey. Auton. Robots 40, 729–760 (2016)

93. Robmosys: Task-level composition for robotic behavior. https://
robmosys.eu/wiki/composition:task:start (2019)

94. Robotc: Robotc’s graphical feature. http://www.robotc.net/
graphical/ (2020)

95. Robotical: Marty application. http://martytherobot.com/users/
using-marty/program/scratch/getting-started-with-scratch/
(2020)

96. Robotics, S.: Documentation. http://doc.aldebaran.com/1-14/
software/choregraphe/interface.html (2020)

97. Robotics, V.: Vex robotics. http://www.vexrobotics.com (2020)
98. Ruscio, D.D., Malavolta, I., Pelliccione, P., Tivoli, M.: Auto-

matic generation of detailed flight plans from high-level mission
descriptions. In: International Conference onModel Driven Engi-
neering Languages and Systems. ACM (2016)

123

https://readthedocs.org/projects/turtlebot-3-blockly-wiki/downloads/pdf/latest/
https://readthedocs.org/projects/turtlebot-3-blockly-wiki/downloads/pdf/latest/
https://readthedocs.org/projects/turtlebot-3-blockly-wiki/downloads/pdf/latest/
https://doi.org/10.1145/3342355
https://doi.org/10.1145/3342355
https://doi.org/10.1023/A:1008807102993
https://doi.org/10.1109/TMECH.2010.2042722
https://www.makeblock.com/software
https://doi.org/10.1109/TSE.2019.2945329
http://docs.robotmesh.com/ide-project-page
http://docs.robotmesh.com/ide-project-page
http://blocks.metabot.fr
http://meetedison.com/robot-programming-software/
http://meetedison.com/robot-programming-software/
http://makecode.mindstorms.com
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
http://blog.minibloq.org/
http://ozoblockly.com/editor?lang=en&robot=bit&mode=2
http://ozoblockly.com/editor?lang=en&robot=bit&mode=2
https://learn.parallax.com/tutorials/language/blocklyprop/getting-started-blocklyprop
https://learn.parallax.com/tutorials/language/blocklyprop/getting-started-blocklyprop
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1109/BLOCKS.2017.8120404
http://www.picaxe.com/software
https://robmosys.eu/wiki/composition:task:start
https://robmosys.eu/wiki/composition:task:start
http://www.robotc.net/graphical/
http://www.robotc.net/graphical/
http://martytherobot.com/users/using-marty/program/scratch/getting-started-with-scratch/
http://martytherobot.com/users/using-marty/program/scratch/getting-started-with-scratch/
http://doc.aldebaran.com/1-14/software/choregraphe/interface.html
http://doc.aldebaran.com/1-14/software/choregraphe/interface.html
http://www.vexrobotics.com

A survey on the design space of end-user-oriented languages for specifying robotic missions

99. Salcedo, S.L., Idrobo, A.M.O.: New tools and methodologies for
programming languages learning using the scribbler robot and
alice. IEEE (2011)

100. Schauss, S., Lämmel, R., Härtel, J., Heinz, M., Klein, K., Härtel,
L., Berger, T.: A chrestomathy of dsl implementations. In: Inter-
national Conference on Software Language Engineering (SLE).
ACM (2017)

101. Scratch: http://scratch.mit.edu/projects/editor/?tutorial=ev3
(2020)

102. Shin, J., Siegwart, R., Magnenat, S.: Visual programming lan-
guage for thymio ii robot. In: Conference on Interaction Design
and Children (IDC’14). ETH Zürich (2014)

103. Sphero: Sphero app. http://www.sphero.com/education/ (2020)
104. Sun, Y., Gray, J., Bulheller, K., von Baillou, N.: A model-driven

approach to support engineering changes in industrial robotics
software. In: International Conference on Model Driven Engi-
neering Languages and Systems. Springer

105. Thymio: The aseba language. http://www.thymio.org/en:start
(2020)

106. Trikset: Trik studio. http://www.trikset.com/products/trik-studio
(2020)

107. TurtleBot3Blockly: Turtlebot3 blockly. http://turtlebot-3-
blockly-wiki.readthedocs.io/en/latest/launchBlockly.html
(2020)

108. Ulam, P., Endo, Y., Wagner, A., Arkin, R.: Integrated mission
specification and task allocation for robot teams - design and
implementation. In: International Conference on Robotics and
Automation, pp. 4428–4435. IEEE (2007)

109. Vacchi, E., Cazzola, W.: Neverlang: a framework for feature-
oriented language development. Comput. Lang. Syst. Struct. 43,
1–40 (2015)

110. Vacchi, E., Cazzola, W., Pillay, S., Combemale, B.: Variability
support in domain-specific language development. In: Interna-
tional Conference on Software Language Engineering (SLE).
Springer (2013)

111. Vandevelde, C., Wyffels, F., Ciocci, M.C., Vanderborght, B., Sal-
dien, J.: Design and evaluation of a diy construction system for
educational robot kits. Int. J. Technol. Des. Educ. 26(4), 521–540
(2016). https://doi.org/10.1007/s10798-015-9324-1

112. Völter, M., Siegmund, J., Berger, T., Kolb, B.: Towards user-
friendly projectional editors. In: International Conference on
Software Language Engineering (SLE). Springer (2014)

113. Weintrop, D., Afzal, A., Salac, J., Francis, P., Li, B., Shepherd,
D.C., Franklin, D.: Evaluating coblox: A comparative study of
robotics programming environments for adult novices. In: Con-
ference on Human Factors in Computing Systems (CHI). ACM
(2018)

114. Wiedu: Tello eduapp. http://www.wiedu.com/telloedu/index_en.
html (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Swaib Dragule is a Ph.D. Fellow
in Computer Science and Soft-
ware Engineering at Chalmers Uni-
versity of Technology and Mak-
erere University. He holds M.Sc.
and B.Sc. in computer science.
He is an academic staff of Mak-
erere university, College of Com-
puting and Information Sciences.
His research interests are in pro-
gramming languages, domain-specific
languages, and robotics.

Thorsten Berger is a Profes-
sor in Computer Science at Ruhr
University Bochum in Germany.
After receiving the Ph.D. degree
from the University of Leipzig in
Germany in 2013, he was a Post-
doctoral Fellow at the University
of Waterloo in Canada and the IT
University of Copenhagen in Den-
mark, and then an Associate Pro-
fessor jointly at Chalmers Univer-
sity of Technology and the Uni-
versity of Gothenburg in Sweden.
He received competitive grants from
the Swedish Research Council, the

Wallenberg Autonomous Systems Program, Vinnova Sweden (EU
ITEA), and the European Union. He is a fellow of the Wallenberg
Academy—one of the highest recognitions for researchers in Swe-
den. He received two best-paper awards and one most influential paper
award. His service was recognized with distinguished reviewer awards
at the tier-one conferences ASE 2018 and ICSE 2020. His research
focuses on model-driven software engineering, program analysis, and
empirical software engineering.

Claudio Menghi is a Research
Associate at the Interdisciplinary
Centre for Security, Reliability and
Trust (SnT), at the University of
Luxembourg. After receiving his
Ph.D. at Politecnico di Milano
in 2015, he was a post-doctoral
researcher at Chalmers University
of Technology and University of
Gothenburg. His research inter-
ests are in software engineering,
with a special interest in cyber-
physical systems (CPS) and for-
mal verification.

123

http://scratch.mit.edu/projects/editor/?tutorial=ev3
http://www.sphero.com/education/
http://www.thymio.org/en:start
http://www.trikset.com/products/trik-studio
http://turtlebot-3-blockly-wiki.readthedocs.io/en/latest/launchBlockly.html
http://turtlebot-3-blockly-wiki.readthedocs.io/en/latest/launchBlockly.html
https://doi.org/10.1007/s10798-015-9324-1
http://www.wiedu.com/telloedu/index_en.html
http://www.wiedu.com/telloedu/index_en.html

S. Dragule et al.

Patrizio Pelliccione is an Asso-
ciate Professor at University of
L’Aquila and an Associate Pro-
fessor at the Department of Com-
puter Science and Engineering at
Chalmers University of Technol-
ogy and University of Gothen-
burg. He got his PhD in 2005
at the University of L’Aquila and
since 2014 he is Docent in Soft-
ware Engineering, title given by
the University of Gothenburg. His
research topics are in software
architectures modeling and verifi-
cation, autonomous systems, and

formal methods. He has co-authored more than 120 publications in
journals and international conferences and workshops. He has been
on the program committees for several top conferences, is a reviewer
for top journals, and has chaired the program committees of several
international conferences. He is very active in European and national
projects. In his research activity he has pursued extensive and wide
collaboration with industry.

123

	A survey on the design space of end-user-oriented languages for specifying robotic missions
	Abstract
	1 Introduction
	2 Background and motivation
	3 Methodology
	3.1 Identification of environments (RQ1)
	3.2 Analysis of identified environments (RQ2)

	4 The environments (RQ1)
	4.1 Environments with block-based languages
	4.2 Environments with flowchart-based languages
	4.3 Environments with graph-based languages
	4.4 Environments with text-based languages
	4.5 Environments with map-based languages

	5 The environments' features (RQ2)
	5.1 Specification environments
	5.2 General language characteristics
	5.3 Language concepts

	6 Findings and implications
	6.1 Language engineering
	6.2 Core language aspects

	7 Practical usage of the survey
	7.1 End-user—teacher
	7.2 End-user—robot manufacturers
	7.3 End-user—language engineer

	8 Threats to validity
	9 Related work
	10 Conclusion
	Acknowledgements
	A Environment-feature matrix
	B Subject environment descriptions
	C Additional online resources
	References

