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Principles of Motor Unit Physiology
Evolve With Advances in Technology

Movements are generated by the coordinated activation of motor units.

Recent technological advances have made it possible to identify the concur-

rent activity of several tens of motor units, in contrast with much smaller

samples available in classic studies. We discuss how these advances in tech-

nology have enabled the development of a population perspective of how the

central nervous system controls motor unit activity and thereby the forces

exerted by muscles.

Dario Farina,1 Francesco Negro,1
Silvia Muceli,1 and Roger M. Enoka2

1Institute of Neurorehabilitation Systems, Bernstein Focus
Neurotechnology Göttingen, Bernstein Center for

Computational Neuroscience, University Medical Center
Göttingen, Georg-August University, Göttingen, Germany; and
2Department of Integrative Physiology, University of Colorado,

Boulder, Colorado
dario.farina@bccn.uni-goettingen.de

Movements are controlled by the coordinated ac-
tivation of neuromuscular units that produce
force: the motor units (28, 48). Each motor unit
comprises a motoneuron and a muscle unit, where
the latter refers to the muscle fibers innervated by
the motoneuron. The nervous system produces
movements by delivering synaptic inputs to mo-
toneurons that innervate at least several muscles.
Once activated, the motoneurons engage the mus-
cle units in the involved muscles to produce both
synergistic and antagonistic muscle forces.

To perform movements accurately, the neural
drive to muscles (the ensemble output of mo-
toneurons) transmitted by motoneurons from su-
praspinal centers and sensory receptors must be
reliable. As a first approximation, motoneurons
process synaptic inputs by functioning as inte-
grate-and-fire systems (66), which means that mo-
toneurons are activated when the time integral of
the synaptic inputs causes a change in membrane
potential that exceeds the voltage threshold of the
motoneuron. The muscle force at which this oc-
curs is known as the recruitment threshold of the
motor unit. The rate at which motoneurons dis-
charge action potentials is positively associated
with the difference between the synaptic input re-
ceived by the motoneuron and its voltage thresh-
old. Modulation of discharge rate is known as rate
coding (48).

Motor units transduce the neural activation sig-
nal into muscle forces, which means that the dis-
charge characteristics of motor units contain
information about the neural control signal. It is
for this reason that methods were developed to
record and decode the discharge characteristics of
motor units with intramuscular electrodes (1, 28).
One feature of such methods is the high selectivity
of the recording, which ensures signal detection
but limits the number of motor units that can be
discriminated concurrently. Recent developments
in electrode technology and biological signal pro-
cessing have greatly reduced this limitation by

making it possible to monitor the concurrent ac-
tivity of many motor units (85). The concurrent
recordings and computational modeling have en-
abled the development of a population perspective
of how the nervous system controls movement.
Several key findings indicate that classic concepts
of motor unit function derived from recording the
activity of only a few motor units need to be
revised.

The aim of the current review is to describe the
influence of recent advances in technology on our
current understanding of how the nervous system
controls motor unit activity and thereby the forces
exerted by muscles.

Motor Unit Investigation in
Humans

Advances in three main areas (electrode fabrica-
tion, signal processing, and modeling) have greatly
expanded the opportunities to study motor unit
activity.

Electrode Fabrication

Motor unit action potentials are recorded by plac-
ing electrodes within (1) or above a target muscle.
One classic approach is to insert highly selective
needle/wire electrodes into the muscle so that it is
possible to identify the action potentials of individ-
ual motor units (74, 75, 77). However, only a few
motor units can be unambiguously discriminated
from such recordings.

To overcome the limited sample of motor unit
action potentials, advances in electrode design
have increased the number of recording sites on
each electrode. This has been achieved by micro-
fabricated intramuscular wire electrodes with mul-
tiple recording sites (40, 85) and by high-density
grids of surface electrodes (52, 61, 72, 73, 81, 108,
119). FIGURE 1 shows examples of these systems
and the electric potentials associated with muscle
activity recorded at multiple locations inside the
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muscle (FIGURE 1A) or on the skin overlaying the
muscle (FIGURE 1B).

Multi-channel electrode systems have made it
possible to increase the number of motor unit ac-
tion potentials identified from intramuscular re-
cordings and to introduce accurate methodologies
that can identify several motor units from surface
recordings. For example, blind source separation
methods require several observations (channels) of
the same sources to discriminate the activity of
single motor units, which has been made possible
with the extension of electrode design to multi-
channel high-density systems.

Signal Processing

The study of motor unit activity requires the sep-
aration of the action potentials for individual mo-

tor units from multi-unit recordings. This task,
which allows the identification of the times at
which motoneurons discharge action potentials, is
referred to as EMG decomposition (74). The classic
approach to decompose intramuscular EMG sig-
nals into single motor unit activities is based on
semi-automatic methods to first extract the action
potentials that do not overlap in time with those of
other motor units (isolated potentials) and then
disentangle the action potentials that do overlap
with one another (41, 62, 74, 75, 79, 80, 118). This
methodology enables each detected action poten-
tial to be associated, with appropriate clustering
methods, to a specific motor unit. A requirement
for this approach is that the number of overlapping
action potentials must be substantially less than
the number of isolated action potentials. This

FIGURE 1. Examples of technology used to obtain multi-channel EMG recordings
Examples of technology used to obtain multi-channel EMG recordings with an intramuscular electrode (A) and high-
density surface grids (B). A: schematic representation of a thin-film wire electrode with 16 recording sites. The wire is
inserted into the muscle with a needle that is removed after the insertion, leaving the wire electrode inside the mus-
cle during a contraction. The 16 traces show monopolar signals recorded from the tibialis anterior muscle during a
contraction at 10% of the maximal force (85). B: the surface electrode grid comprises 8 � 8 electrodes that are
equally spaced in the two directions. The 56 traces shown correspond to bipolar signals derived from adjacent re-
cording sites during a low-force dynamic contraction with the wrist flexors.
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criterion can be achieved with selective intramus-
cular recordings at low contraction forces but not
with surface EMG signals that mainly comprise
overlapping action potentials with similar shapes
(31, 35, 37) (see opposing views in Refs. 14, 19, 20,
87). Decomposition of surface EMG signals has not
been possible until the last decade (33).

The development of systems with multiple re-
cording sites has changed the approach used to
decompose EMG signals. With the availability of
several observations (recording sites), the dis-
charge times of many motor units can be identified
with blind separation methods (32, 53). These
methods are not impeded by the amount of over-
lap in the recorded action potentials (53-59) and
have been proven to identify the discharge times of
motor units with high accuracy in both multi-
channel intramuscular (93) and surface EMG re-
cordings (58).

The availability of multi-channel electrode tech-
nology and advanced decomposition algorithms
has made it possible to discriminate the concur-
rent activity of many motor units. FIGURE 2, for
example, shows the activity of 96 motor units in the
tibialis anterior muscle during a contraction at 30%
of the maximal force (for validation of the accuracy
of this approach, see Refs. 32, 34, 57). This motor
unit sample is an order of magnitude greater than
is possible with classic motor unit recordings.
Given that tibialis anterior comprises �445 motor
units (30) and the relatively low muscle force in
this example, the identified motor units likely rep-

resent a large proportion of those that were active
during the contraction. This result was achieved by
using two multi-channel intramuscular wires
(FIGURE 1A) and one surface grid of electrodes
(FIGURE 1B) (85); the surface EMG signals were
decomposed with a fully automatic blind source
separation method (58, 93), whereas the intramus-
cular signals were decomposed manually (see Ref.
85 for details).

Computational Modeling

The augmented quality and quantity of informa-
tion made available by experimental multi-chan-
nel recordings have also made it possible to
develop more realistic mathematical descriptions
of motor unit function with computational ap-
proaches (67). Models of motoneuron pools have
been developed (10) and used to complement ex-
perimental findings (11, 36, 89, 91, 115). Moreover,
sensitivity analyses of model parameters provide
insight on key experimental findings under differ-
ent conditions (16, 24, 25, 29).

In addition to the mathematical description of
motor unit function with computational models,
analytical approaches based on the theoretical
modeling of motor unit function have suggested
alternative methods for information extraction
with respect to classic signal analysis methodolo-
gies. For example, the coherence analysis of motor
unit discharge times has been refined using ana-
lytical derivations based on emerging knowledge
on motoneuron function (91, 94).

FIGURE 2. Decomposition of multi-channel surface and intramuscular EMG recordings into the discharge
times of 96 motor units
The recording systems are the same as shown in FIGURE 1. The EMG signals were recorded during isometric contractions of
the tibialis anterior muscle at 30% of the maximal force (85). The discharge rate of each identified motor unit is also reported.
pps, Pulses per second.
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Population View of Motor Unit
Activity

The technological advances that have made it pos-
sible to study the concurrent activity of many mo-
tor units have shifted our understanding of motor
unit function to a population view. This shift has
produced significant findings on the linearity in
the transformation of synaptic input into an output
signal by motoneurons, the influence of indepen-
dent input on the activation signal sent from mo-
toneurons to muscle, and the characteristics of the
synaptic input that determines the force exerted by
muscle.

Input-Output Linearity

Individual motoneurons process synaptic input
nonlinearly, mainly due to the presence of a volt-
age threshold and the relatively low rates at which
they discharge action potentials. One consequence
of this nonlinearity is that the same synaptic input
received by motoneurons with different intrinsic
properties will result in output signals that may
comprise different nonlinear terms, i.e., frequency
components (39, 65, 90). Due to this nonlinearity,
the strength of the common synaptic input re-
ceived by two motoneurons will not be translated
into a proportional degree of correlation between
the discharge times of the two trains of action
potentials (13, 91). Rather, the amount of correla-
tion in the output signals will depend on the char-
acteristics of the synaptic input and on the
intrinsic properties of the two motoneurons (13,
94, 110). It is for this reason that the variability in
correlation between the discharge times of action
potentials by pairs of motoneurons that receive the
same strength of common input can be quite large
(18, 105).

In contrast to individual motoneurons, groups of
motoneurons exhibit a more linear transformation
of common synaptic input into a cumulative train
of action potentials that provides the activation
signal for muscle (90). The contrasting transforma-
tions achieved by individual motoneurons (nonlin-
ear) and groups of motoneurons (approximately
linear) have a profound impact on the methods
that can be used to analyze neural connectivity and
correlation indexes between trains of motor unit
action potentials.

Independent Inputs

In addition to common synaptic input, motoneu-
rons also receive synaptic inputs that are indepen-
dent for each neuron. The origin of common and
independent synaptic inputs is not yet known. For
example, common synaptic input could arise from
the branching of last-order axons onto motoneu-

rons or from a common source that projects to
multiple neurons via anatomically separate path-
ways. It is difficult to distinguish between these
two potential origins of common synaptic input
due to the similar influence of the two sources on
the output of the motoneuron pool.

At the level of individual motoneurons, indepen-
dent and common synaptic inputs have similar
effects on the trains of action potentials they dis-
charge. In contrast, the relative influence of inde-
pendent and common synaptic inputs received by
groups of motoneurons on the force generated by
muscle differs substantially. The activation signal
sent to muscle (the neural drive to the muscle)
corresponds to the sum of the discharge events of
the activated motor units. The sum, which is sim-
ilar to an average, attenuates the influence of com-
ponents that differ from those that are common.
Therefore, the independent synaptic inputs re-
ceived by each motoneuron are effectively sup-
pressed in the neural drive to the muscle and have
small influence on the force generated by the mus-
cle (36). The reduced influence of independent
synaptic inputs on muscle force provides new in-
sights on such movement attributes as the accu-
racy of force control.

Synaptic Inputs Responsible for Force
Generation

Based on the preceding discussion, the concept
emerges that it is the common synaptic input re-
ceived by a population of motoneurons that
mainly determines the force exerted by muscle.
This common input is transformed into the neural
drive to the muscle with a gain that is varied by
neuromodulation (49). Moreover, the time course
of the mechanical response (twitch) elicited in
muscle by each action potential reduces the effec-
tive neural drive to a relatively small low-frequency
bandwidth of the common synaptic input to mo-
toneurons (�10 Hz) (2). From this perspective,
muscle force can be controlled by delivering com-
mon synaptic input in the low-frequency band-
width to a large number of motoneurons whose
gain is regulated by neuromodulatory pathways
(116). For this reason, the neural signal resulting
from this low-frequency common input has been
termed the effective neural drive to the muscle, the
drive that generates muscle force (88).

Computational studies have recently suggested
that common input resulting from a low-frequency
modulation of a higher carrier frequency (e.g., 20
Hz) may also contribute to the effective neural
drive to the muscle (115). This finding is consistent
with our prior suggestion that amplitude demod-
ulation of high-frequency carriers might explain
the role of high-frequency components in the neu-
ral drive to the muscle (39, 92). Components that
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modulate high-frequency carriers might contribute
to the average force (115), although the relative
significance of demodulated high-frequency com-
mon input with respect to low-frequency common
input in the resultant neural drive to the muscle is
unclear. Nonetheless, there is no doubt that mus-
cle force depends on the effective neural drive to
the muscle (the drive within the low-frequency
bandwidth of force) and that force control can be
obtained only from input common to many
motoneurons.

The above conclusion on the role of common
synaptic input in generating muscle force is obvi-
ous when considering the function of a population
of motor units rather than individual units sepa-
rately. Indeed, a population of motor units can
modulate force only if all the units generate com-
mon force trajectories. If each motor unit pro-
duced independent and random force trajectories,
the net output would be constant, and force con-
trol would be greatly compromised. The popula-
tion view, as opposed to the single-unit view,
provides a simple way of interpreting force gener-
ation as directly determined by the low-frequency
components of the neural drive to muscle (36),
generated by common synaptic input to motoneu-
rons. Such a perspective has implications for some
of the classic methods used to study motor unit
function, such as short-term synchronization (39).

From the preceding perspective, differentiation
of motoneurons by size is needed to linearize the
transmission of common synaptic input (88). Ac-
cordingly, a computational study indicated that a
population of motoneurons with a broad range of
innervation numbers was needed to optimize sev-
eral criteria for motor performance (26). Signifi-
cantly, the same study also showed that activation
of the motoneurons did not require an order based
strictly on motoneuron size (26). Despite the gen-
eral acceptance of the size principle as a requisite
mechanism to ensure adequate force control (5, 8,
12, 22, 23, 50, 114), the activation order of motor
units can be more variable than that prescribed
solely by differences in motoneuron size, as sug-
gested by the computational study (26) and also
evident in experimental data (e.g., Ref. 46).
Changes in recruitment order due to differences in
intrinsic biophysical properties (e.g., specific
membrane conductance) and the strength of syn-
aptic currents (6, 44, 48) likely have a relatively
minor influence on force control.

The delivery of common input to motoneurons
determines the discharge characteristics of the
pool, which also depend on the intrinsic properties
of motoneurons and the neuromodulatory input
that each motoneuron receives (49). Due to the
interaction between motoneuron properties and
the different types of inputs received by motoneu-

rons, some observations on the modulation of dis-
charge rate remain unexplained. For example,
there is not yet an adequate explanation for why
the initial discharge rate of motor units with dif-
ferent recruitment thresholds depends on the force
trajectory during a prescribed task (48). Gradual
increases and then decreases in muscle force (i.e.,
ramp contractions) are characterized by the first
recruited motor units exhibiting greater initial and
peak discharge rates than later recruited motor
units (15, 17, 99) but not in all muscles (97). In
contrast, the discharge rates of low-threshold
motor units when matching relative target forces
(% recruitment threshold) are less than those for
higher-threshold motor units (3, 84). Also, peak
discharge rates during submaximal ballistic con-
tractions are least for low-threshold motor units
(21, 113). These differences in rate modulation
across conditions likely depend on the relative
time courses of the changes in ionotropic and neu-
romodulatory synaptic inputs, and adjustments in
the intrinsic properties of the motoneurons (48).

Emerging Principles of Motor Unit
Function

The three concepts described in the preceding sec-
tion have a major impact on several aspects of
motor unit function as established with classic
methods. The following three examples indicate
how some traditional concepts need to be revised
based on the findings obtained with population
recordings of motor unit activity.

Accuracy in Force Control

When requiring an individual to exert a constant
force during a brief contraction, small oscillations
in force around the target value are observed and
indicate that the control of force is not perfectly
accurate. The determinants of accuracy in force
control, also referred to as force steadiness, have
been of interest for decades (27, 45, 69, 70, 109,
111). Moreover, force steadiness has been used as
a paradigm to compare fine motor control by dif-
ferent groups of individuals, such as young and
elderly adults (3, 42, 60, 68, 69, 98, 112).

One of the factors suggested as a potential de-
terminant of steadiness is the variability in the
interspike interval of the active motor units, where
variability is often quantified as the standard devi-
ation of the interspike interval normalized relative
to the mean (45, 69, 84). However, for each mo-
toneuron, this variability is determined by both in-
dependent (synaptic noise) and common synaptic
inputs as well as by the nonlinearity of the motoneu-
ron behavior (27, 78, 100). Conversely, independent
inputs and nonlinear components have a small in-
fluence on the activation signal transmitted by the
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activated motor units and thus on force (see preced-
ing section). It is therefore not surprising that some
experimental studies have failed to find an associa-
tion between the coefficient of variation for inter-
spike interval in individual motoneurons and force
steadiness (3, 104). Accordingly, Negro et al. (88)
demonstrated that, except at low forces, the variabil-
ity in interspike interval was poorly correlated with
the coefficient of variation for force during steady
submaximal contractions (�20% of maximal force)
performed by hand and leg muscles.

Given the bandwidth of the force exerted by
muscles and the filtering effect of the pool of mo-
toneurons, force oscillations during steady con-
tractions are almost exclusively determined by the
low-frequency component of the neural drive to
the muscle, i.e., the effective neural drive (17, 39,
88). The amplitude of this component is strongly
associated (negatively) with force steadiness (38),
and its time series is highly correlated with the
fluctuations in muscle force (88). Muscle force can
indeed be predicted accurately by the effective
neural drive to the muscle. To demonstrate this
principle, FIGURE 3 shows experimental record-

ings of 11 concurrently active motor units of the
abductor digiti minimi muscle during a low-force
contraction (10% of the maximal force). The low-
pass-filtered cumulative discharge times of these
motor units provides a reasonable estimate of the
effective neural drive to muscle. This estimate ex-
plains most of the variance in the low-pass-filtered
individual spike trains (72% in this example, in
agreement with more extensive results presented
in Ref. 88), indicating a strong common input to
this set of motoneurons. Moreover, the filtered cu-
mulative discharge times also explain most of the
variance in the force exerted by the muscle (R2 �

0.70). The fluctuations in force during steady sub-
maximal contractions are, therefore, mainly ex-
plained by these common oscillations at low
frequency in the discharge times of the activated
motor units. These oscillations likely correspond to
the variability in the common input to the mo-
toneurons in the same bandwidth (36), although
higher frequency components of the common in-
put may be demodulated by the residual non-lin-
ear behavior in the motoneuron pool and may add

FIGURE 3. Low-frequency oscillations of the neural drive to muscle predict the force it
exerts
The activity of 11 motoneurons has been decoded from intramuscular EMG signals obtained from the ab-
ductor digiti minimi muscle during a contraction at 10% of the maximal force. The series of discharge times
(column of spikes) were low-pass filtered with a 400-ms-duration Hanning window (middle column) to ex-
tract only the low-frequency oscillations (right column) (88). The cumulative series of discharge times (bot-
tom trace), which corresponds to the sum of the motor unit discharge times, were also low-pass filtered to
resemble the force exerted by the muscle (red trace). The sizes of the circles representing the motoneurons
are for graphical purposes only and are not intended to indicate the actual sizes of the motoneurons.
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some components as well to the effective neural
drive to the muscle (115).

Short-Term Synchronization and Other
Correlation Indexes

Because the recruitment of one motor unit adds
relatively little to the force being exerted by a mus-
cle (43), even weak contractions require the con-
current activation of many motor units. This is
accomplished by the delivery of common synaptic
input to several large groups of motor units (within
and across muscles). Such common synaptic input
to a population of motor units invariably elicits
some degree of correlation in the timing of the
action potentials discharged by the involved mo-
toneurons, as has been reported in classic experi-
mental studies for several decades (64, 101, 103).
One measure of the correlation between motor
unit discharge times is short-term synchronization
(107), which is quantified as the peak of the cross-
histogram between pairs of motor unit discharge
times. Several approaches have been developed to
quantify and normalize this peak (9, 101, 102), with
claims on specific properties for each index, in-
cluding the independence on discharge rate (96).
Short-term synchronization has been interpreted
as the presence of shared input to pairs of mo-
toneurons and has been associated with specific
functional effects (7, 51, 76, 82, 83, 102, 107), in-
cluding force steadiness (63, 106, 117).

The cross-correlation histogram used to quantify
short-term synchronization is the time representa-
tion of the coherence function; the two functions
are associated by the Fourier transform. Due to the
properties of the Fourier transform, the peak of the
cross-correlation histogram is the area of the co-
herence function in its entire bandwidth, whereas
the peak of the cross-correlation histogram filtered
by a certain bandwidth corresponds to the area of
the coherence function in that bandwidth. Such an
effect is also produced by filtering the discharge
times of motor unit action potentials due to the
linearity of the involved operators. The coherence
function, therefore, quantifies the correlation asso-
ciated with different frequency bandwidths. The
area of the entire frequency bandwidth corre-
sponds to the classic concept of short-term syn-
chronization, whereas the low-frequency portion
of this function represents the concept of common
drive (17). Other bandwidths of the coherence
function can be associated with different common
features of the neural drive to muscle.

Due to the input-output nonlinearity of individ-
ual motoneurons, the relative strength of common
synaptic input to a pool is not proportional to the
amount of correlation between the discharge times
for pairs of motoneurons. Therefore, it is not pos-
sible to infer details about the structure of synaptic

input to motoneurons based on the strength of the
correlation between trains of action potentials for
two motoneurons. Such an approach can produce
misleading results (18, 102). For example, De Luca
and Kline (18) concluded that the synaptic input to
the motoneurons innervating a single muscle is not
distributed to the entire population due to the
absence of significant correlations between the
trains of action potentials discharged by most pairs
of motor units. The low levels of correlation in the
output signals for pairs of motor units, however,
may be attributable to the nonlinearity of the
transformation of synaptic input by the individual
motoneurons. By extension, it is not appropriate to
compare correlation levels in the discharge times
for pairs of motor units between muscles, subject
groups, or conditions (91).

The coherence (correlation) values between cu-
mulative discharges for the same muscle in the
low-frequency bandwidth of force generation in-
crease monotonically with the number of motor
units used to derive the estimate and reaches the
maximal value of 1 if the common synaptic input is
uniformly distributed to the entire pool of mo-
toneurons (FIGURE 4A). This is due to the obser-
vation that the cumulative discharge times of any
group of motor units approximates the common
synaptic input (see previous discussion on the re-
duction of independent input in the cumulative
discharge times) (39). The slope of the increase in
the coherence values as a function of the number
of motor units used in the calculation depends on
the proportion of common synaptic input relative
to the amount of independent synaptic input. In-
deed, the averaging process to compute the cumu-
lative discharge times tends toward the common
component more quickly when the proportion of
this component is greater. This property can be
verified with an analytical function that describes
the coherence peak as a function of the number of
motor units used in the estimate when the com-
mon input to the pool is assumed to be uniform
(94). When the analytical function was fitted to
the experimental data in FIGURE 4A by optimizing
the unknown parameters, it was possible to esti-
mate the proportion of common synaptic input
relative to independent synaptic input received by
a motoneuron pool in the force bandwidth in ex-
perimental conditions. The result was that most
(�60%) of the synaptic input delivered to mo-
toneurons in the effective bandwidth was common
to the entire pool (94). The relative influence of
sources of common input at higher frequencies
demodulated in the effective bandwidth (115) is
still unknown but does not influence the above
conclusions.

The population view of motor unit activity also has
direct consequences for the functional meaning of
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the correlation indexes derived from the discharge
times of motor unit action potentials. These in-
dexes express the strength of shared (common)
synaptic input to motoneurons relative to inde-
pendent noise. This approach has limited func-
tional significance, not because the synaptic input
is not common, as recently claimed (18), but rather
because force control depends on only the com-
mon synaptic input. Quantifying its relative
strength with respect to an input that has a negli-
gible impact on force generation (independent in-
put) does not provide functional information
about force control. In contrast, the absolute
power or amplitude of the actual common compo-
nent (not its relative strength with respect to inde-
pendent input) has a direct functional significance
(38, 88) (see also FIGURE 3).

Neural Connectivity

Coherence between the discharge times for pairs of
motor units in different muscles has been used to
characterize the connectivity between motoneu-
ron pools (e.g., Refs. 47, 95). Due to the nonlinear-
ity in the transformation of synaptic input by
motoneurons, however, coherence analyses typi-
cally exhibit considerable variability as intramus-
cular coherence. Because individual motoneurons
discharge action potentials at relatively low rates,
the output only represents the low-frequency com-
ponents of the synaptic input. To determine neural
connectivity with coherence measures, it is neces-
sary to use the cumulative discharge times from
several motoneurons so that the synaptic input can
be represented over a broader frequency range.

FIGURE 4. Common and independent inputs to motoneurons within the same motoneuron pool
A: common (orange arrow) and independent (thin blue arrows) inputs to motoneurons within the same motoneu-
ron pool (one muscle). Coherence was computed from cumulative discharge times for sets of motor units (two
separate groups) from the same muscle. The coherence peak, shown in the plot on the right, increases monotoni-
cally with the number of motor units used for the estimate. The experimental relation between coherence peak
and number of motor units (open symbols) was fit by a function (dashed orange line) that was derived theoretically
and approached a value of 1 (94). B: schematic representation of two pools of motoneurons innervating separate
muscles. Each motoneuron receives independent inputs (thin blue arrows), input common to the motoneurons of
the same pool (orange arrows), and input shared between the two pools (thick blue arrows). The coherence func-
tions estimated from recorded discharge times of motor units belonging to each muscle are shown. Coherence
was computed for pairs of motor units (1 motor unit per muscle) and for cumulative series of discharge times with
an increasing number of motor units (�10) from each muscle.
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This approach has the advantage that several mo-
toneurons transmit the synaptic input in the cu-
mulative output almost linearly for a large
frequency bandwidth, which means it is appropri-
ate to analyze the signals with linear techniques,
such as coherence analysis.

To illustrate these concepts, FIGURE 4B shows
coherence functions computed between the dis-
charge times of motor units in the vastus medialis
and lateralis muscles during brief contractions
with the knee extensor muscles at 30% of the max-
imal force. The peak intermuscular coherence
value for a pair of motor units was �0.4, and the
coherence values exceeded the confidence level
only for frequencies below �2 Hz. However, when
the coherence analysis was extended to include a
greater number of motor units, both the level of
coherence and its bandwidth increased
(FIGURE 4B), as for the case of intramuscular co-
herence (FIGURE 4A). An analysis with 10 motor
units from each muscle resulted in coherence val-
ues that exceeded the confidence level for low fre-
quencies up to �4 Hz, with a peak value of �0.8
and for higher frequencies with significant peaks of
�0.2. The multi-unit result indicates that most of
the input to the two muscles is shared (coherence
of �0.8) (71), mainly at frequencies �4 Hz but with
some higher-frequency components. This example
indicates that valid estimates of the neural connec-
tivity between two muscles require a sufficient
number of motor units. A practical criterion is to
add motor units until the coherence estimates re-
main stable, i.e., until the coherence values change
negligibly when further motor units are added.
With a similar approach, it has been shown that
much of the synaptic input received by motoneu-
rons innervating synergistic muscles is shared
(common) (71).

A Contemporary View of Force
Control

Technological advances in the study of motor units
have made it possible to record the activity of a
large number of motor units concurrently and to
derive a population perspective of how the nervous
system controls muscle force. The synaptic inputs
delivered to the several hundred, on average, mo-
toneurons innervating muscles comprise both
common and independent synaptic inputs. Al-
though the input-output properties of individual
motoneurons are nonlinear, the engagement of a
large number of motoneurons partly linearizes the
transformation and suppresses the influence of
synaptic (independent) noise. The motoneuron
pool, therefore, corresponds to an averaging sys-
tem that augments the common (and linear) com-
ponents of the synaptic inputs it receives relative

to the independent components. Due to the low-
pass filtering property of muscle, it is the low-
frequency components of the common synaptic
input that generates the effective neural drive to
muscles and controls muscle force, although a role
for demodulated high-frequency common input
has been also postulated (92) and validated in sim-
ulation (115).

Common synaptic input establishes correlations
between the discharge times of motor units, al-
though this correlation is usually weak when as-
sessed between pairs of units due to the
nonlinearity of the individual motoneurons. Esti-
mates of the shared synaptic input delivered to a
population of motoneurons by correlation analysis
derived from the discharge times for pairs of motor
units underestimate the strength of the common
synaptic input and lead to erroneous conclusions
about its frequency content. Population measures,
which provide accurate measures of the propor-
tion of common synaptic input, indicate that most
of the synaptic input received by the motoneuron
pool innervating both single (94) and synergistic
muscles (71) is common, in contrast to the results
achieved for pairs of motor units. Due to the sig-
nificance of common synaptic input and attenua-
tion of a role for independent synaptic inputs, the
classic concepts of synchronization or common
drive–indexes of the amounts of shared synaptic
input with respect to independent synaptic input
in large and small bandwidths, respectively– have
limited functional significance. Indeed, the accu-
rate control of muscle force by the nervous system
depends solely on the power or amplitude of the
low-frequency oscillations (or demodulated to the
low frequency) present in the common synaptic
input (common, not independent, noise).

Based on this perspective, movements emerge
due to a combination of muscle forces that are
determined by synaptic inputs shared (common)
by groups of motoneurons. The involved motoneu-
rons may belong to the same or multiple muscles
or constitute only one part of a muscle. The central
nervous system sends common synaptic inputs to
the functional groups of motoneurons that pro-
duce a specific force vector, likely independently
on the anatomical muscle boundaries. This re-
duces the challenges of movement control to that
of generating activation signals for a few groups of
motoneurons that can produce the requisite
forces. Because the synaptic input is delivered to
multiple motoneurons, the activation is approxi-
mately linear, and a movement can be controlled
by simply changing the relative strength of the
common synaptic inputs to each of these groups of
motor units. Moreover, the relatively high synaptic
noise due to the excitory and inhibitory inputs
delivered to the thousands of synaptic connections
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of each motoneuron (4) is effectively filtered by the
same strategy. This view, made possible by ad-
vances in technology for motor unit studies, pro-
vides a foundation for the global-level prediction
about the modularity of human movement gener-
ation (86) and describes the neural mechanisms by
which motor modules can be engaged and com-
bined linearly by the central nervous system. �
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