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Abstract Co-simulation is widely used in the industry for the simulation of multidomain
systems. Because the coupling variables cannot be communicated continuously, the co-
simulation results can be unstable and inaccurate, especially when an explicit parallel ap-
proach is applied. To address this issue, new coupling methods to improve the stability and
accuracy have been developed in recent years. However, the assessment of their performance
is sometimes not straightforward or is even impossible owing to the case-dependent effect.
The selection of the coupling method and its tuning cannot be performed before running the
co-simulation, especially with a time-varying system.

In this work, the co-simulation system is analyzed in the frequency domain as a sampled-
data interconnection. Then a new coupling method based on the H-infinity synthesis is de-
veloped. The method intends to reconstruct the coupling variable by adding a compensator
and smoother at the interface and to minimize the error from the sample-hold process. A
convergence analysis in the frequency domain shows that the coupling error can be reduced
in a wide frequency range, which implies good robustness. The new method is verified using
two co-simulation cases. The first case is a dual mass–spring–damper system with random
parameters and the second case is a co-simulation of a multibody dynamic (MBD) vehicle
model and an electric power-assisted steering (EPAS) system model. Experimental results
show that the method can improve the stability and accuracy, which enables a larger com-
munication step to speed up the explicit parallel co-simulation.
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1 Introduction

Co-simulation is widely used in the virtual development of multidomain systems. It brings
about new opportunities and challenges in the simulation of a multibody dynamic (MBD)
system interacting with other systems, e.g., the pantograph–catenary interaction [21], or the
vehicle–track interaction [2, 22]. Especially in automotive engineering, an MBD vehicle
system always needs to interact with hydraulic, and electronic subsystems. The subsystem
models from each domain are usually built in domain-specific software tools, shared as black
boxes from suppliers and integrated using co-simulation for holistic system development. To
integrate the different models in a unified format, a functional mock-up interface standard
has been introduced in the academia and industry [8]. According to this standard, each model
can be calculated as a single functional mock-up unit (FMU) and its input–output variables
(i.e., coupling variables) are synchronized and communicated by a co-simulation master. As
each local solver can adapt to the subsystem model, co-simulation is a computationally time
efficient solution. A multicore distributed simulation of a combustion engine has been pre-
sented by Khaled [4]. The simulation is accelerated by partitioning different cylinder models
involving discrete events. Andersson partitioned a race car model to achieve an accelerated
parallel co-simulation [1]. Gallrein used a co-simulation of high-fidelity tyre models and an
MBD vehicle model for real-time driver-in-the-loop application [15].

In a mono-simulation where the dynamic equations are solved together by a single solver,
the simulation accuracy and stability depend on the time-stepping method. However, the co-
simulation accuracy and stability are also related to the discrete communication between
each subsystem, and this issue has been an active topic of research in the last decade
[1, 3, 9, 29, 30]. An extensive state-of-the-art survey on the co-simulation of continuous,
discrete, and hybrid systems was conducted by Gomes [16]. First, a co-simulation can be
distinguished by the time-stepping method of the master, namely the explicit (non-iterative),
semi-explicit, and implicit (iterative) co-simulation. In addition, the slave subsystems can
be calculated in parallel (Jacobi scheme), sequential (Gauss–Seidel scheme), and iterative
schemes. For a co-simulated mechanical system, the coupling configuration can be further
distinguished by the algebraic constraint [29] and applied force [30] approaches. The ap-
plied force approach, in which the coupling variables are force–displacement (FD coupling)
or displacement–displacement (DD coupling), is the preferred one because an algebraic loop
can be avoided [9].

The explicit parallel co-simulation, i.e., where each subsystem model is simulated on
its own in parallel and exchanges the coupling variables only at specified communication
instants, can be easily implemented and is more common than the alternatives. In this ap-
proach, the master is not required to control an iterative process or a calculation sequence
of the slaves. Besides, the slave model is not required to be controllable for rollback or ob-
servable for the internal states. This feature can be supported by most commercial software
tools and black-box models for intellectual property protection. In general, the explicit par-
allel co-simulation has a reduced computational burden and a shorter elapsed time, which
is more suitable for optimization and real-time applications, e.g., the hardware-in-loop sim-
ulation. However, it is well known that the explicit parallel co-simulation has drawbacks
in accuracy and stability, because the input to each subsystem is unknown during the com-
munication interval �t (i.e., the macro-step) and needs to be approximated by some ex-
trapolation methods. The simplest method is to keep the latest exchanged value during the
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macro-step, i.e., the zeroth-order hold (ZOH) method. The resulting approximation error,
i.e., the coupling error, can be significant regarding the accuracy and stability. Unlike itera-
tive approaches [29], explicit co-simulation cannot undo the step and recalculate the input.
Therefore, to improve its result by coupling methods is challenging but highly needed in
engineering.

Busch [9] systematically analyzed extrapolation methods with Lagrange and Hermite
polynomials containing first-order derivatives. It shows that higher-order extrapolation poly-
nomials increase the error order, may stabilize or destabilize the system, and the perfor-
mance varies with the system parameters. To predict the coupling variable, usually addi-
tional information about the system is needed. Andersson [1] used the partial derivatives
with respect to the coupling variables for a linear correction. Another interesting concept
is the energy-based coupling method. The rationale is that the inconsistent energy from the
discrete communication can yield instability of the system, and thus, should be avoided.
Benedikt [7] used the generalized energy in a macro-step to correct the coupling variables.
Drenth [13] proposed a new sample-hold design to preserve the energy in a power bond. In
these approaches, the coupling variables are actually corrected separately to preserve their
product, i.e., the energy. However, if only the energy is conserved, the result might be still
incorrect, as shown by González [17] and Wu [32]. González [18] developed an energy-leak
monitoring framework, in which the dissipated energy inside the system is needed to correct
the coupling variables. Rahikainen [25] took the residual energy as an indicator, using its
linearity with the macro-step to verify the co-simulation accuracy and stability. In the afore-
mentioned methods, the energy reference is usually calculated from the available results
in a previous macro-step, which causes an inherent macro-step delay. Furthermore, some
adaptive coupling methods are developed for complex systems. Sadjina [28] considered the
residual energy as an error estimator to control a variable macro-step. Stettinger [31] de-
veloped a model-based coupling approach using extended Kalman filter and recursive least
square algorithms, which are commonly used control techniques. Khaled [5] developed a
context-based heuristic method to adapt the extrapolation polynomial. Peiret [23] used an
adaptive reduced-order interface model to represent complex systems and generate approx-
imated variables during the communication interval.

From the point of view of the authors, some challenges still remain in the state-of-the-
art methods. First, the parameters of the aforementioned methods do not always have a
straightforward or physical interpretation, which makes their tuning work less transpar-
ent. Second, the parameter values are not optimized due to the lack of an objective func-
tion and a reference system. Several parameters can be dependent and difficult to tune to-
gether to improve the performance. Third, the performance of the coupling method can
be strongly case-dependent. The combination effect of different system dynamics and cou-
pling configurations (e.g., DD and FD couplings) makes the performance assessment less
intuitive and its generalization to a more complex engineering system even impossible
[17, 30].

In this work, we see the explicit parallel co-simulation in the frequency domain as a
sampled-data interconnection. The objective is to focus on the coupling interface itself,
which releases the complexity of subsystems. Some well-established control theorems are
adopted to interpret the co-simulation problems. Furthermore, we design a new coupling
method similarly as a signal reconstruction work, which relies on the H∞ synthesis. This
method intends to reduce the coupling error directly by minimizing its L2 norm.

This paper is organized as follows: a co-simulated system is formulated as a closed-
loop interconnection in Sect. 2. The stability is analyzed by the Nyquist stability criterion.
Then the coupling method design is formulated as a H∞ synthesis problem in Sect. 3 and
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solved by an optimization routine, followed by a convergence analysis and a parameter
study. In Sect. 4, the new method is verified with a dual mass–spring–damper system and
a real engineering case, which is a co-simulation of an MBD vehicle model and an electric
power-assisted steering (EPAS) system model. The work is further discussed and concluded
in Sect. 5.

2 Analysis of co-simulated system

In the first step, we present a basic co-simulated system as a sample-data system because
of the common nature of discrete communication. Then we show how the co-simulation
degrades in terms of error and stability.

2.1 Closed-loop interconnection formulation

A basic parallel co-simulated system can be simplified as two weakly coupled subsystems.
For ease of analysis, we assume that 1. the subsystems are linear time-invariant (LTI) with
zero initial condition; 2. the subsystems are coupled by a single input and a single output;
3. each subsystem can be accurately solved by an appropriate solver, so the integration error
is minor compared to the coupling error [14, 26]. Then we use transfer functions Q1(s) and
Q2(s) to represent two subsystems, s denoting the Laplace domain. A non-feed-through
subsystem [20] yields a strictly proper transfer function (i.e., the degree of the numerator
polynomial is less than that of the denominator). A feed-through subsystem yields a proper
transfer function.

In parallel co-simulation, the input–output variables are communicated every macro-step
�t . This is similar to adding sample and hold devices to the continuous reference system.
Thus, the system becomes a sampled-data closed-loop interconnection (Fig. 1(a)), which
introduces error and stability issues [24]. The sampled input u∗(t) is a product of the con-
tinuous input u(t) and a periodic impulse train and its Laplace transform is known as

u∗(t) =
∞∑

n=−∞
u(t)δ(t − n�t), u∗(s) = 1

�t

∞∑

n=−∞
u(s − jnωs), (1)

where ωs = 2π/�t . The continuous approximation ũ(s) during �t is obtained from holding
u∗(s) with an extrapolation operator H(s), e.g., the ZOH method.

ũ(s) = H(s)u∗(s). (2)

Actually, H(s) can differ in each subsystem, but we assume that the same H(s) is applied in
the interconnection. Afterwards, two important characters of co-simulation are concerned:
1. the accuracy of the coupling method; 2. the stability and robustness of co-simulation.

2.2 Analysis of the coupling error

The coupling error ξu(s) is the difference of the continuous input and its approximation

ξu(s) = ũ(s) − u(s)

=
(H(s)

�t
− 1

)
u(s)

︸ ︷︷ ︸
low-frequency component

+ H(s)

�t

∞∑

n=1

u(s ± jnωs)

︸ ︷︷ ︸
high-frequency component

, (3)
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Fig. 1 (a) Co-simulated system is formulated as a closed-loop interconnection. (b) A truncated subsystem
on one side and coupling error ξu is an input multiplicative disturbance

which can be modeled as an input multiplicative disturbance (Fig. 1(b)). When the sam-
pling frequency ωs = 2π/�t is not typically higher than the signal frequency ω, the high-
frequency components can be mirror into the low-frequency part, i.e., an aliasing effect oc-
curs in the co-simulation [6]. In this circumstance, a severe low-frequency error is introduced
and should be avoided in the first place. Engineers can select �t according to the subsys-
tem bandwidth or an estimation of frequency components from its standalone simulation.
However, this requirement cannot guarantee the accuracy and stability of the co-simulation.

The hold operator H(s) varies with the extrapolation degree k. For simplicity, we con-
sider the zeroth-order hold Hzoh(s), first-order hold Hf oh(s), and second-order hold Hsoh(s)

methods (k = 0,1,2, respectively):

Hzoh(s) = 1 − e−s�t

s
,

Hf oh(s) = 1 + s�t

�t
(
1 − e−s�t

s
)2,

Hsoh(s) = (
2 + 3s�t + 2s2�t2

2�t2
)(

1 − e−s�t

s
)3.

(4)

ξu(s) in combination with different H(s) can be expanded with the Taylor series

ξu,zoh(s) = [ − 1

2
s�t + s2O(�t2)

]
u(s) + [

1 + sO(�t)
]
�(s),

ξu,f oh(s) = [ − 5

12
(s�t)2 + s3O(�t3)

]
u(s) + [

1 + s2O(�t2)
]
�(s),

ξu,soh(s) = [ − 3

8
(s�t)3 + s4O(�t4)

]
u(s) + [

1 + s3O(�t3)
]
�(s),

where �(s) =
∞∑

n=1

u(s ± jnωs).

(5)

When �t is sufficiently small ξu(s) can be approximated adequately by its low-frequency
component [24]. Then a k-degree extrapolation method yields an error with an order of
O(�tk+1). This might not be true if the high-frequency component �(s) is non-negligible.
For LTI subsystems, the output error is a result of linear mapping from the input error

ξy(s) = ξu(s)Q(s), (6)
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which has a same error order of O(�tk+1), and the convergence property is preserved. This
is consistent with a time-domain analysis based on a LTI system [9]. Similarly, the state
error ξx(s) is mapped from ξu(s) with a transfer function Qx(s), and thus, it has the same
order.

When the subsystem Q(s) and Qx(s) are underdamped and have fast dynamics, they
become less robust to the disturbance ξu(s). The corresponding output y and state x can be
more easily excited by its high-frequency component, and consequently, ripples may occur
in co-simulation.

2.3 Analysis of stability and robustness

In a stable co-simulation, the error ξy(s) is convergent. In other words, it will not propagate
incrementally in the closed-loop interconnection. To derive ξy(s), an exogenous input vector
ue should be added to excite both subsystems in the interconnection (Fig. 1(a)). The output
of the two subsystems becomes

ỹ = 1

1 − (1 + φ)2Q1Q2

[
(1 + φ)Q1 (1 + φ)2Q1Q2

(1 + φ)2Q1Q2 (1 + φ)Q2

]
ue (7)

where the notation s is dropped for clarity and φ is the operator for the multiplicative dis-
turbance. In the continuous nominal system, the error-free output is

y = 1

1 − Q1Q2

[
Q1 Q1Q2

Q1Q2 Q2

]
ue (8)

then ξy can be derived from the difference

ξy = 1

1 − (1 + φ)2Q1Q2

1

1 − Q1Q2

[
φQ1 + φ(1 + φ)Q2

1Q2 φ(2 + φ)Q1Q2

φ(2 + φ)Q1Q2 φQ2 + φ(1 + φ)Q1Q
2
2

]
ue.

(9)
Subsystems Q1, Q2, and the terms cascaded with φ are always stable. In addition,

the nominal closed-loop system is stable. Therefore, the convergence of ξy is determined
by −(1 + φ)2Q1Q2, i.e., the loop transfer function of the system. For a stable system,
its loop transfer function should not encircle the point −1 + j0 in the complex plane as
s ∈ (−j∞,+j∞) according to the Nyquist stability criterion. Besides this geometrical ap-
proach, two well-established control theorems can be used in co-simulation problem.

Remark 1 (Small-gain theorem) The closed-loop interconnection (Fig. 1(a)) is stable if it
fulfills ||(1 + φ)2Q1Q2||∞ < 1 (it can be generalized to a nonlinear multi-input and multi-
output system) [19].

||(1 + φ)2Q1Q2||∞ is the maximum gain of a single-input single-output system or the
maximum singular value of a multi-input and multi-output system. It means that the system
is stable if −(1 +φ)2Q1Q2 is bounded within a unit circle. Since the ZOH method does not
amplify the system gain, it guarantees a stable co-simulation if the nominal system fulfills
||Q1Q2||∞ < 1 and no aliasing occurs.

Furthermore, the system with a smaller loop gain −(1 + φ)2Q1Q2 has a better rejection
to the disturbance (i.e., the coupling error). This can be achieved by selecting a more robust
coupling configuration [27]. In an FD coupling, applying the force variable to the stiffer
side can also reduce the loop gain and make the co-simulation more stable and accurate.
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Examples can be seen in the vehicle–steering interaction [10] and the vehicle–track inter-
action [22]. Scaling down the coupling variables can also reduce the loop gain and enhance
the stability. It gives incorrect simulation results but can be useful to obtain a stable initial
setup.

Remark 2 (Passivity theorem) The closed-loop interconnection (Fig. 1(a)) is stable if its
subsystems (1 + φ)Q1, −(1 + φ)Q2 are either strictly passive or output strictly passive and
zero-state observable (it can be generalized to a nonlinear system) [19].

It means that the system is stable if −(1 +φ)2Q1Q2 has a phase angle in (−180o,180o).
However, extrapolation method (4) always shows an ever-increasing phase delay in high
frequency. This destroys the passivity of subsystem Q1, Q2. Physically, an additional energy
flows into the interconnection, and if it is not sufficiently dissipated or stored, the system
might get unstable. This brings an intuitive explanation on the physics of a co-simulated
system. Herein, we can conclude that to improve the stability, the phase delay should be
compensated or the loop gain should be reduced.

3 Improved coupling method by H∞ synthesis

From the foregoing analysis, the sample-hold process is the error source of co-simulation.
To reduce this error, a new coupling method is given next. It adds a compensator and a
smoother at the coupling interface.

3.1 Formulation of the error system

The concept can be illustrated using an error system (Fig. 2) inspired by the modern signal
reconstruction work [33]. u(s) is a coupling variable from subsystem 1 to subsystem 2. An
appropriate coupling method should minimize ξu(s) in the entire frequency range or at least
in the bandwidth of interest. A compensator K1(s) and a smoother K2(s) are added, respec-
tively, to the output and input of the two subsystems. They can be calculated by different
solvers and should be invariant with the integration step. Therefore, a continuous expres-
sion is taken. In addition, the sample-hold process H ∗(s) ≈ H(s)/�t is simplified using a
second-order Padé approximation. The problem is to find the best pair of K1(s), K2(s) to
reduce ξu(s).

In this method, we focus on the interface itself and exclude the subsystem dynamics,
which can be quite complex or difficult to know. On the contrary, the sample-hold process
is determined (2), and it is invariant with a fixed macro-step �t . The subsystem dynamics is
implicitly incorporated by u(s).

In practice, the exact input u(s) is unspecified and not accessible, and consequently ξu(s)

is unknown. However, it is apparent that ξu(s) = 0 if K1(s)K2(s) = H ∗(s)−1. Unfortunately,

Fig. 2 Formulation of an error
system for one coupling variable
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this solution is not valid because it is unstable and improper, and thus not implementable.
Instead, the design objective can be formulated as a minimization of the L2 norm of error
||ξu||2. We denote the transfer function of the error system as Tue , then ||ξu||2 fulfills

||ξu||2 = ||Tueu||2 ≤ ||Tue||∞||u||2 (10)

which means that ||ξu||2 is upper-bounded by ||Tue||∞||u||2. Therefore, the well-designed
terms K1(s), K2(s) should give a minimal ||Tue||∞. ||Tue||∞ by definition is the worst-case
energy gain. This implies that the concept intends to minimize the energy of the coupling er-
ror, which is similar to the energy-based concept. At this stage, the coupling design problem
can be solved by the H∞ synthesis framework.

3.2 H∞ synthesis for the coupling design

To apply the H∞ synthesis, the error system (Fig. 2) needs to be reformulated into a gener-
alized plant G connected with a controller K (Fig. 3). Wf is a weighting function added to
the error system and will be explained later. The problem can be stated as follows.

H∞ synthesis problem: Given a LTI system G, find a feedback controller K such that the
closed-loop system is stable and the following objective is satisfied:

||ξu||2 < γ ||u||2, ||Tue||∞ := sup
Re{s}>0

||Tue(s)|| < γ (11)

where the scalar γ is the L2 gain performance to be minimized. The solution of control law
K is the correction term K1(s), which is always proper, and therefore implementable.

In the aforementioned assumption, H ∗(s) is simplified using Padé approximation. How-
ever, its high-frequency component (3) still exists in reality, which yields a large piecewise
constant input after H ∗(s). To address this issue, K2(s) is designed as a low-pass filter to
smooth the input signal to the subsystem. The weighting function Wf (s) cascaded to the out-
put ξu is another low-pass filter, and its purpose is to reduce more the error in low frequency.
The introduction of Wf (s) is also necessary for a feasible solution. Because the worst-case
ξu occurs in high frequency, a minimization of ||ξu||2 in all frequency range would largely
distort the low-frequency component.

The problem (11) can be readily solved using the Matlab Robust Control Toolbox. For
the scope of this journal, we provide the detailed procedure of the solution in Appendix A.
In the optimization, a pole-placement constraint is given to bound the poles of Tue(s), and
consequently, the poles of K1(s) [12]. The constraint is for the purpose of implementa-
tion:

Fig. 3 A generalized plant G

and an undetermined controller
K as an equivalence to the error
system
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1. K1(s) can be guaranteed to be stable with a specified solver. If its poles λ are in a disc-
shaped region {λ ∈ C, |1 + hλ| < 1}, a forward Euler method with step h, and other
methods, can be applied.

2. The fast mode of K1(s) can be removed to avoid a small integration step and a longer
computation time.

The pole-placement constraint mainly affects the fast modes, and thus it is more relevant
to computation than to the accuracy. In summary, K1(s) is optimized according to the base
terms K2(s), Wf (s), and sample-hold process H ∗(s) (Table 1). Therefore, their selection
and effects are studied in the next section.

3.3 Convergence analysis and parameter study

The accuracy of the coupling method can be verified by the transfer behavior of Tue(s).
In this analysis, the error ξu with different coupling methods is approximated by the low-
frequency component (3). To show the convergence property with �t , the error magnitudes
are plotted versus a normalized frequency fn = ω�t/2π similarly to [6], in both decibel
and absolute scales (Fig. 4).

In the decibel scale, the error order can be clearly observed from the slope of the error
magnitude, and a higher-order ξu converges faster by reducing �t . In the absolute scale, it
is apparent that a higher-degree extrapolation is more accurate with a low fn and a small
�t . However, ξu is minor in this circumstance and the co-simulation problem might be less
crucial. Meanwhile, a higher-degree extrapolation introduces a larger ξu with a high fn and
a big �t , and the co-simulation problem becomes more critical. Therefore, a high-degree
extrapolation is rarely employed for coupling in practice.

A parameter study is taken to investigate how K2(s), Wf (s), and H ∗(s) in H∞ method
influence its convergence property. First, the ZOH, FOH, and SOH methods are selected for
H ∗(s). Actually, K1(s) is optimized accordingly to compensate H ∗(s), the resulting Tue(s)

is very similar. This means that H ∗(s) is less important to ξu, and the result is shown in
Appendix B. Moreover, a general H∞ synthesis gives a K1(s) with a same order as the
generalized plant, so that a higher-degree H ∗(s) adds to the computation and implementa-
tion difficulty. As a consequence, H ∗(s) can be simply fixed with the ZOH method without a
loss of accuracy improvement, and its only parameter is �t . Similarly, a low-order smoother
K2(s) is preferred. Thus, a second-order low-pass filter is taken to mitigate the sharp edges
of the input signal, which can be incurred with a first-order filter. The key parameter is the
cut-off frequency fK2 . The tuning of fK2 is very intuitive and it defines how smooth the input
signal is desired. In a general setup, fK2 can be specified with the Nyquist frequency 0.5/�t ,
because the main component of the signal should have a frequency lower than 0.5/�t to be
sufficiently sampled.

Wf (s), which can have various orders and cut-off frequencies fWf
, is important to the

accuracy because it is the weighting of the optimization target. In the study, Wf (s) are spec-
ified as first-order, second-order, and third-order Butterworth filters, and the corresponding

Table 1 Three base terms of H∞ method and their parameters

Base terms Parameters Proposed specification

H∗(s) approximation order, �t ZOH method, �t is given

K2(s) order of filter, fK2 second order, fK2 needs to be tuned

Wf (s) order of filter, fWf
the order and fWf

need to be tuned
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Fig. 4 Magnitude of ξu with different coupling methods. A k-degree extrapolation introduces an error of
order sk+1O(�tk+1). The H∞ method with a higher-order Wf yields an error that converges faster, and a
lower limit occurs below fWf
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error magnitudes are compared in Fig. 4. It can be seen that Wf (s) introduces an error with
a same order. In this regard, the H∞ method with a higher-order Wf (s) behaves as a higher-
degree extrapolation. Moreover, ξu does not drop monolithically and it reaches a lower limit
below fWf

. From the point of view of the authors, this saturation is not a weakness of the
method because the lower limit can be substantially small. In addition, �t is lower-bounded
by the solver integration step and cannot be arbitrarily small in reality.

By lowering fWf
, the lower limit can be reduced, but ξu is amplified in high frequency

(see Fig. 4, and when Wf (s) is of third order, fwf
reduces from 0.06/�t to 0.01/�t ).

This implies a compromise between low-frequency and high-frequency accuracy. The low-
frequency accuracy weights more with a higher-order Wf (s) and a smaller fWf

. To achieve
a good compromise, fWf

can be specified, by trial and error, as 0.01/�t , 0.03/�t , 0.06/�t

for the first-order, second-order, third-order Wf (s), respectively. With the proposed speci-
fication, ξu is reduced compared with other basic methods (Fig. 4). The reduction occurs
in a wider frequency range, which implies that the method is robust and can well approxi-
mate an input with diverse frequency components. This feature is achieved by the worst-case
minimization nature of the H∞ synthesis method.

In summary, the three base terms H ∗(s), K2(s), and Wf (s) can be simplified without a
loss of accuracy improvement. Only three key parameters need to be tuned and their effects
are independent. fK2 defines the input signal smoothness. Wf (s) is relevant to the conver-
gence property, and fWf

defines the weights of the frequency components.

3.4 Approximation by H∞ method

The H∞ method is further experimented in the time domain to demonstrate how it works.
We assume a sweep signal (e.g., a force/velocity variable) ranging from 0.001 to 30 Hz
is communicated with a �t of 10 ms. The performance of the method can be assessed
by how well it reconstructs the reference input. According to the parameter study, K2(s)

is a second-order filter with fK2 = 0.5/�t = 50 Hz and Wf (s) is a first-order filter with
fWf

= 0.01/�t = 1 Hz, and the base terms are specified as follows:

Hzoh(s) = 1 − e−0.01s

s
,

H ∗(s) ≈ 120000

s2 + 600s + 1.2e05
(by second-order Padé approximation),

Wf (s) = 1
s

2πfWf

+ 1
= 6.283

s + 6.283
,

K2(s) = 1

( s
2πfK2

)2 + 1.4142 s
2πfK2

+ 1
= 9.87e04

s2 + 444.3s + 9.87e04
.

(12)

The pole-placement constraint is defined as {λ ∈ C, |1 + 0.001λ| < 1}. The optimization
takes 55 iterations and an elapsed time of 1.628 s to determine K1(s):

K1(s) = (s + 1942.9)(s + 6.2789)(s2 + 599.9s + 1.2e05)(s2 + 444.3s + 9.87e04)

(s + 1924.0)(s + 6.2837)(s2 + 2240s + 1.392e06)(s2 + 774.8s + 7.154e05)
,

(13)
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which can be seen as a combination of terms with different orders and optimal weights.
Alternatively, the smoother K2(s) can be specified with fK2 = 30 Hz, which is the input
bandwidth. A different K1(s) is synthesized accordingly:

K1(s) = (s + 1682.9)(s + 6.2825)(s2 + 600s + 1.2e05)(s2 + 266.6s + 3.553e04)

(s + 1470.1)(s + 6.2833)(s2 + 1870s + 9.674e05)(s2 + 617.6s + 5.111e05)
.

(14)
The approximation results by the ZOH and H∞ methods are shown in Fig. 5. The rebuilt

signal is fairly close to the reference. In addition, the large piecewise constant signal is
smoothed, which introduces a phase delay. Actually, this phase delay is already compensated
by K1(s). In this experiment, a quite large �t is taken to make the deviation more visible.

Fig. 5 Comparison of input approximation. h∞ unsmoothed is the compensated signal sent every �t and
h∞ smoothed is the signal sent to the model after the smoother. With a stronger smoother (b), K1(s) amplifies
more the input magnitude for compensation
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K2(s) with a lower fK2 = 30 Hz makes the input signal smoother, and the compensator
K1(s) increases more the input magnitude and adds more phase-lead in advance.

In another aspect, the H∞ method works similarly to a correction–interpolation approach
given that a corrected value, instead of the exact value (as in the ZOH method), is commu-
nicated.

4 Case study

In this section, the H∞ method is implemented in two co-simulation cases, where the sub-
systems are involved. The first case is a dual mass–spring–damper system, which is a classic
benchmark problem in co-simulation. The second case, is a co-simulation of multibody ve-
hicle system with a steering mechatronic system.

4.1 Co-simulation of a dual mass-spring-damper system

The dual mass–spring–damper system can be partitioned into two models with a single mass
(Fig. 6). Both models are solved by a forward Euler method with a step of 1 ms. The coupling
variables are the force Fc = kc(x1 − x2)+ dc(ẋ1 − ẋ2) and the velocity ẋ2, which is the same
as FD coupling and velocity being used to avoid a derivation error.

For comparison, a mono-simulation reference and co-simulation with other coupling
methods (ZOH, FOH, and SOH) are implemented. The macro-step is defined as �t = 50
ms, and the H∞ method is designed following a general setup: Wf (s) is of first order with
fWf

= 0.01/�t = 0.2 Hz and K2(s) is of second order with fK2 = 0.5/�t = 10 Hz.
A coupling method might perform well in a specific case but much worse in other cases.

To avoid this case-dependent effect, the parameters are specified in a stochastic way as the
uniform distributed random variables in Table 2. The damping coefficients d1 and d2 are cal-
culated to maintain the damping ratio ζ1 = d1/

√
m1k1, ζ2 = d2/

√
m2k2 in the target range.

Thus, it is possible to cover various cases such as stiff and non-stiff systems, overdamped
and underdamped systems, and highly asymmetric systems.

An external input at a given frequency may excite the system in a certain frequency range
that makes a coupling method always win (see [25]). To avoid this, the system dynamics is
examined by its impulse response. During a simulation of 5 s, two external force impulses
of 1 N are applied on m2 at the first and the fourth second. In total, 2000 random cases are

Fig. 6 The dual
mass–spring–damper system is
coupled by force and velocity.
The state vectors of the two
models are [ẋ1, x1]T , [ẋ2, x2]T

Table 2 Parameters of the dual
mass–spring–damper system

* dc is defined as a uniform
distributed random variable in
[0, d1]

Parameters Unit Range

m1, m2 kg [0,10]
k1, k2, kc N/m [0,1000]
ζ1, ζ2 – [0,1.3]
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simulated, and the coupling methods are fixed. Some cases, where the solver is unable to
calculate the model owing to an extremely small mass or large stiffness, are excluded. The
accuracy of the results is evaluated by a normalized root mean square (NRMS) error of the
coupling variable:

εnrms,x =

√
∑T

t=0

(
(x(t) − xref (t)

)2
/T

xref,max − xref,min

(15)

where x is the coupling variable, T is the simulation time, and xref,max and xref,min are
the maximum and minimum values of the reference. The NRMS errors of both coupling
variables, i.e., εnrms,Fc and εnrms,ẋ2 , can reflect the simulation accuracy. If they exceed a
threshold value η

εnrms,Fc > η or εnrms,ẋ2 > η (16)

then an inaccurate case can be counted. The numbers of inaccurate cases with different
threshold values η are presented in Table 3. The H∞ method is more accurate in more pos-
sible cases, showing its advantages of accuracy and robustness. The other coupling methods
have more unreliable cases, which might be due to the imprecision of a low-order approxi-
mation (ZOH) or the lack of robustness of a high-order method (SOH).

The stability is examined by the simulation traces of ẋ2, Fc . The impulse response of
a stable LTI system should either converge monotonically (overdamped) or oscillate with
a decay (underdamped). Otherwise, the system is unstable. The statistical results of the
unstable case are presented in Table 4. In general, the stability deteriorates with the increase
in extrapolation degree, and it is enhanced with the H∞ method.

Furthermore, four representative cases are shown in Fig. 7–Fig. 10. The system is highly
underdamped in the first case (Fig. 7). Two masses oscillate after the impulse excitation.
The SOH method is better than the lower-order coupling method. The second case is an
overdamped system (Fig. 8), in which the SOH method introduces an oscillatory result. The
H∞ method yields a small εnrms,ẋ2 and a minimum εnrms,Fc . In the third case (Fig. 9), the
system is numerically stiff with small masses and large stiffness, and the mass ratio m1/m2 is
very small. The result is similar to the previous case in that the H∞ method can approximate
the coupling variable fairly well. The fourth case is also a stiff system (Fig. 10), but the
mass ratio m1/m2 is very large. This can introduce a severe instability problem, because the
system loop gain is enlarged [10]. In this case, the co-simulation is stable only with the H∞
method, and the error grows with the extrapolation degree.

Table 3 Number of inaccurate cases exceeding the threshold value (16)

Threshold value ZOH FOH SOH H∞

η = 0.2 1062 1368 1641 967

η = 0.4 538 902 1400 446

η = 0.6 458 786 1342 378

η = 0.8 427 749 1325 359

Table 4 Number of unstable
cases by examining the
simulation traces

ZOH FOH SOH H∞

407 669 1138 323
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Fig. 7 Time response of ẋ2,Fc and εnrms,ẋ2 , εnrms,Fc . In this case, the system is highly underdamped with
ζ1 = 0.0934, ζ2 = 0.1053. m1,m2 are 8.6856,6.7863 kg, k1, k2, kc are 176.6611,895.8553,171.7 N/m,
d1, d2, dc are 3.6585,16.4162,0.0857 Ns/m, respectively

Fig. 8 Time response of ẋ2,Fc and εnrms,ẋ2 , εnrms,Fc . In this case, the system is overdamped with
ζ1 = 1.0236, ζ2 = 1.2271. m1,m2 are 3.2365,8.9549 kg, k1, k2, kc are 120.5520,995.0490,701.9907 N/m,
d1, d2, dc are 20.2187,231.6654,12.5715 Ns/m, respectively



W. Chen et al.

Fig. 9 Time response of ẋ2,Fc and εnrms,ẋ2 , εnrms,Fc . In this case, the system is stiff with small masses and
large stiffness. m1,m2 are 0.0901,2.8877 kg, k1, k2, kc are 871.8076,712.9230,654.9675 N/m, d1, d2, dc

are 8.6864,86.5947,0.5438 Ns/m, respectively

Fig. 10 Time response of ẋ2,Fc and εnrms,ẋ2 , εnrms,Fc . In this case, the system is stiff with small
masses and large stiffness. m1,m2 are 9.9049,0.3935 kg, k1, k2, kc are 586.9352,956.6108,741.3214 N/m,
d1, d2, dc are 50.9125,20.1711,40.3909 Ns/m, respectively

Even in a specific case, for one coupling method it is difficult to be the optimum for
both coupling variables. Therefore, it is difficult to assess their performance with a complex
system. To adapt the coupling method to the model might be a solution. However, this can
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be challenging in implementation and computation. Alternatively, the H∞ method may ad-
dress this issue with a fixed solution owing to its robustness, which has been verified in the
convergence analysis and the statistic experiment. This is similar to the H∞ control tech-
nique, which can control a complex, nonlinear, or even uncertain system with a robust linear
control law.

4.2 Co-simulation of an MBD vehicle model and an EPAS system model

The second application case is a co-simulation of an MBD vehicle model and an EPAS
system model. The vehicle model is composed of a vehicle body, four suspensions and
wheels. One of the front suspension is presented in Fig. 11. The knuckle is constrained by
five linkages so it moves up and down, and steers by the moving tie rods. The wheel rotation
and forces are transmitted to the steering rack through the linkages, which are modeled as
rigid bodies. The vehicle model is created using the multibody system library in Dymola
and it has 36487 equations. It is computationally heavy owing to the calculation of large-
size matrices and a DASSL solver is used. In a high-frequency maneuver, the maximum
integration step is around 18 ms. In a low-frequency maneuver it can be 100 ms with much
less Jacobian evaluations.

Fig. 11 Layout of a co-simulation of an MBD vehicle model and an EPAS system model. The models are in
functional mock-up units (FMU) and the discrete ECU software model is in s-function as a black box
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Table 5 Parameters of the EPAS system model

Notation Value Notation Value

Jcol 0.04 kg m2 σ0 5e5 N/m

Jm 2.5906e-04 kg m2 σ1 316 Ns/m

mr 3.78 kg σ2 0.4 Ns/m

ipinion 0.0098 m/rad Fc 320 N

ibelt 0.3509 rad/rad Fs 320 N

ibs 0.0011 m/rad

* Parameters of Tcfriction are not given here as its effect is minor than Frfriction

The EPAS system model has 3 degrees of freedom (Fig. 11): the rotation of steering
column δs , EPAS motor δm and the rack displacement xr :

Jcol δ̈s =Ts − Tpinion − Tcfriction ,

Jmδ̈m =Tm − Tbelt,

mr ẍr =Fpinion + Fassist − Fr − Frfriction ,

(17)

the forces Fpinion and Fassist can be calculated from the transmission ratios: Fpinion =
Tpinion/ipinion,Fassist = Tbelt/(ibeltibs). The belt drive and the ball screw mechanism generate
a large inertia ratio and highly underdamped dynamics, which makes the model numerically
stiff. The friction force Frfriction (similarly to friction torque Tcfriction ) are represented by the
LuGre friction model:

ż = v − σ0z/g(v)|v|,
g(v) = Fc + (Fs − Fc)e

−(v/vs )
2
,

Ffriction = σ0z + σ1ż + σ2v,

(18)

to capture the stick–slip effect, which further adds to the stiffness. v is the sliding velocity,
z is the internal state. The bristle stiffness σ0 and micro-damping σ1 produce a spring-like
behavior in small displacements. σ2 is the viscous friction coefficient. g(v) is a velocity-
dependent term based on the Coulomb friction Fc , the static friction Fs and the Stribeck
velocity vs (g(v) has been simplified in this case). The parameter values are summarized in
Table 5. To solve the EPAS system model, a fourth-order Runge–Kutta method with a step
of 0.25 ms is employed in the FMU.

The EPAS system model is further coupled with an electric control unit (ECU) model
which is discrete with a step of 1 ms (Fig. 11). It is a black box from the supplier and
comprises the control code to generate Tm. More information of the model is provided in the
work of the authors [11].

An explicit parallel co-simulation is applied in this complex engineering case. The vehi-
cle model and the EPAS model are coupled using the rack force Fr and rack speed ẋr with
�t1 = 1 ms and �t2 = 20 ms. Here, the H∞ method with a general setup is implemented
inside the FMUs.

Two steering tests are simulated, in which a steering torque Ts with a magnitude of 2.5
Nm is applied. A low-frequency Ts growing from 0 to 1 Hz is applied in the first test,
and a high-frequency Ts from 0 to 3 Hz is applied in the second test. The system states,
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Fig. 12 NRMS error of the simulation results with a low-frequency (left) and a high-frequency (right) steer-
ing torque input (the results of the SOH method are not plotted owing to the large deviation)

Fig. 13 Simulation results with a low-frequency steering torque input

i.e., the steering angle δs , rack speed ẋr , vehicle yaw rate, and vehicle lateral velocity are
shown in Fig. 13 and Fig. 14. The vehicle states show less discrepancies due to their slow
dynamics.
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Fig. 14 Simulation results with a high-frequency steering torque input (unstable results with the SOH
method are not plotted for a better visibility)

Table 6 Elapsed time of the simulation with different coupling methods

Simulation case REF ZOH FOH SOH H∞

Low-frequency steering test 916.33 s 29.30 s 29.64 s 36.10 s 30.44 s

High-frequency steering test 947.04 s 31.92 s 31.43 s 34.43 s 32.89 s

The SOH method gives unstable results with large deviations. According to the NRMS
error (Fig. 12), the H∞ method is more accurate than the ZOH and FOH methods in both
the low-frequency and the high-frequency cases. In the low-frequency case (Fig. 13), no
significant error is incurred with all the methods, and the accuracy improvement is a bit
saturated due to the inherent error from the discrete communication. In the high-frequency
case (Fig. 14), the FOH method gives an oscillatory rack speed. However, the H∞ method
shows both an oscillation depression and accuracy improvement.

Furthermore, the elapsed time has been reduced drastically in the co-simulation (Table 6),
comparing it to the mono-simulation. The H∞ method shows an elapsed time close to that
of the basic coupling methods, because the additional workload is only the computation of
the fixed compensator and smoother.
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5 Conclusion

In this work, we reviewed the explicit parallel co-simulation approach in a new framework.
Its analysis has been conducted in the frequency domain and we have the following obser-
vations:

– The coupling method has a frequency-domain characteristic. Therefore, its performance
depends on the system dynamics and also the system input, which was discussed previ-
ously in the literature.

– Co-simulation stability is a closed-loop property, which is highly dependent on the input–
output transfer behavior of each subsystem.

– There is no optimal coupling method in general. One should specify the possible fre-
quency range of the coupling variable. Otherwise, it is expected that the coupling method
can reduce the error in a wider frequency range.

Based on the new framework, a coupling method relying on the H∞ synthesis is de-
veloped, which can fulfill the aforementioned needs. Despite its theoretical complexity, the
implementation is not challenging as the H∞ synthesis problem can be solved by Matlab
functions. The limitation and unmet challenges are:

– To add a compensator and a smoother at the interface can be easy for the engineers who
prepare the subsystem models, but it might be challenging when the subsystems are un-
changeable black boxes by the current standard.

– The aliasing effect should be taken into account, but has been simplified in the current
step.

Nonetheless, the H∞ method has shown a potential in accuracy improvement and ro-
bustness, which is much desired for complex systems but has not been addressed explicitly
before. The approach might be also useful to optimize other existing coupling methods, if
they can be formulated as a fixed-structure H∞ synthesis problem.
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Appendix A: Procedure to solve the H∞ synthesis problem

The base terms inside G can be expressed by state-space realizations

H ∗(s) :=
[

Ah Bh

Ch Dh

]
, Wf (s) :=

[
Aw Bw

Cw Dw

]
, K2(s) :=

[
Ak2 Bk2

Ck2 Dk2

]
(19)

then the generalized plant G added with Wf (s) can be derived as

G :=
⎡

⎣
A B1 B2

C1 D11 D12

C2 D21 D22

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

Ah 0 0 0 Bh 0
Bk2Ch Ak2 0 0 Bk2Dh 0

BwChDk2 BwCk2 Aw 0 BwDhDk2 0
0 0 0 Aw 0 Bw

−ChDk2Dw −Ck2Dw −Cw Cw −DhDk2Dw Dw

0 0 0 0 I 0

⎤

⎥⎥⎥⎥⎥⎥⎦

(20)
Closing the loop with the undetermined controller

K1(s) ≡ K(s) :=
[

Ak Bk

Ck Dk

]
(21)

the error system becomes Tue(s) = Ccl(sI − Acl)
−1Bcl + Dcl , where

Acl =
[
A + B2DkC2 B2Ck

BkC2 Ak

]
, Bcl =

[
B1 + B2DkD2

BkD21

]
,

Ccl = [
C1 + D12DkC2 D12Ck

]
, Dcl = [

D11 + D12DkD21
]
.

(22)

According to the bounded real lemma [12], problem (11) is equivalent to the existence of a
positive definite matrix P 	 0 fulfilling the linear matrix inequality (LMI) condition:

min γ

subject to

[
AT

clP + PAcl + CT
clCcl CT

clDcl + PBcl

BT
clP + DT

clCcl DT
clDcl − γ I

]
≺ 0

(23)

and K1(s) can be determined with a feasible γ .

Appendix B: Parameter study of H ∗(s)

ZOH, FOH, and SOH methods can be applied in H ∗(s), and different K1(s) are synthesized
accordingly. It can be seen that no significant change of ξu occurs (Fig. 15), and only the
high-frequency component increases with a higher-order approximation.

In addition, the approximated H ∗(s) has an order of two with the ZOH method, four with
the FOH method, and six with the SOH method. This results in a K1(s) with an order of
five, seven, and nine, respectively, which needs an unnecessary effort in implementation and
computation.
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Fig. 15 Comparison of error magnitude when the ZOH, FOH, and SOH methods are applied in the H∞
method. The other base terms, K2(s) and Wf (s), are the same
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