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Abstract

The use of artificial intelligence, Machine Learning and in particular Deep Learning (DL), have recently become
a effective and standard de-facto solution for complex problems like image classification, sentiment analysis or
natural language processing. In order to address the growing demand of performance of ML applications, research
has focused on techniques for compressing the large amount of the parameters required by the Deep Neural
Networks (DNN) used in DL. Some of these techniques include parameter pruning, weight-sharing, i.e. clustering
of the weights, and parameter quantization. However, reducing the amount of parameters can lower the fault
tolerance of DNNs, already sensitive to software and hardware faults caused by, among others, high particles
strikes, row hammer or gradient descent attacks, et cetera. In this work we analyze the sensitivity to faults of
widely used DNNs, in particular Convolutional Neural Networks (CNN), that have been compressed with the use
of pruning, weight clustering and quantization. Our analysis shows that in DNNs that employ all such compression
mechanisms, i.e. with their memory footprint reduced up to 86.3×, random single bit faults can result in accuracy
drops up to 13.56%.
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I. INTRODUCTION

In recent years, artificial intelligence, machine learning and in particular deep learning have seen a
steady growth in popularity thanks to their ground-breaking results. An example of this can be found in
Deep Neural Networks (DNN) and in particular Convolutional Neural Networks (CNNs), a special kind
of DNN models. CNNs revolutionized the field of computer vision by classifying with high accuracy
images from a large set of possible classes. CNNs do so by repeatedly tensor-multiplying an input image
with a set of parameters, called weights. The resulting tensor can be then further multiplied for the next
set of weights. This is process is repeated for a certain amount of steps, or layers, each characterized by
its own weight parameters. The final result of the data processed throughout the layers is a probability
vector that highlights the corresponding class which the image belongs to.

In order to achieve their high accuracy, CNNs go through a process called supervised training, which
effectively tunes their parameters by aiming at minimizing the error between expected image labels
(training images) and the ones produced by the network. Once trained, a CNN can be utilized to classify
images never seen during training. The use and execution of trained networks is usually referred as
inference.

Since CNNs, and DNNs in general, are typically composed of several layers, made of thousands of
weights each, running DNNs inference requires a significant amount of memory accesses, eventually
making the memory a performance bottleneck. Because of that, accelerating DNNs on general purpose
CPUs, GPUs and FPGAs had proved being a challenging task. This drove a lot of research effort into
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compressing the memory footprint of DNNs in order to improve their performance at inference time in
terms of execution time.

However, compressing DNNs, and in particular CNNs, can make the networks more sensitive to faults
and attacks. For instance, a CNN can be utilized for classifying objects in images coming from a camera
sensor. If the camera is mounted on a self-driving car, the CNN inference would require fast computation
and high accuracy in detecting possible objects (like street signs or obstacles) [1]. One straightforward
way for improving its performance is to reduce its parameter space, for example by using parameter
quantization, i.e. moving from a floating point representation to a fixed point one, commonly at 16 or 8
bit. In this scenario, a fault happening in any of the layer parameters of the CNN can eventually propagate,
due to the network structure, to the following layers, thus possibly affecting the classification task (like
not being able to identify an incoming obstacle). The problem can become even more severe because of
the compression in place: a fault, or attack, in a fixed point parameter, that results in a bit flip, can cause
a change in its value of a greater magnitude compared to faults taking place in floating point values. This
can ultimately increase the chances of the CNN producing wrong outputs, and in turn to a lower accuracy.

In this work, we investigate if and how single and multi bit flip faults can have more severe conse-
quences on the output of compressed DNNs running inference, compared to uncompressed networks. Our
hypothesis is that faults happening in the compressed network parameters may cause CNNs to misclassify
inputs at a higher rate compared to their original, uncompressed, counterparts, thus significantly reducing
their accuracy score. Based on that, our final aim is to check the conditions for utilizing Odd-ECC from
Malek et al. [2]. In fact, Odd-ECC can take advantage of the different fault sensitivity of the data to
provide efficient and light-weight ECC protection to the different application data regions.

For our analysis, we explore the sensitivity to faults of several DNNs, with a focus on CNNs widely
used in research, that have been compressed down to ×86 their original size, i.e. the memory footprint of
their weights. In order to perform our analysis, we propose a novel framework, named Caffe Macchiato,
which we used to compress the networks and then inject single and multi bit faults in specific data regions.
To the best of authors’ knowledge, this is the first work to analyze and compare the fault tolerance of
several CNNs at different levels of compression.

In the remainder of this work, Section II offers an overview of related works on injecting faults or
attacks in deep neural networks. Section III gives the necessary background knowledge behind CNNs’
architectures. In Section IV we describe the implementation of Caffe Macchiato and the methodology we
followed to measure the sensibility of compressed CNNs against transient faults. Finally, in Section V we
evaluate the performance of the networks and show the results of our experiments, before concluding in
Section VI with a discussion on our findings.

II. RELATED WORK

Many authors have investigated the robustness of deep neural networks against faults. DNNs can be
executed and accelerated on a variety of computing devices, such as GPUs, ASICs and FPGAs. When
focusing on faults in accelerators, faults can happen in the accelerator datapath, such as in MAC units
[3]–[5], or in buffers [3], [6]. Faults happening in buffers can have a higher impact on DNNs performance
than in the datapath counterpart, since buffers are usually used to store partial results of an accumulation
and so eventual errors can add up, thereby leading to significant drops in the network accuracy.

Other works focus on studying faults and attacks happening in the network parameters stored in main
memory [7], [8]. One example of attacks are trojan attacks on CNNs. Trojan attacks attempt to make
the networks misclassify images upon receiving a specific trigger image, while maintaining the same
functionality in all the other cases [9]–[12]. Other types of attacks include row hammer, laser beam,
gradient descend [13] or backdoor [14], [15] attacks.

DNNs are traditionally utilizing single precision floating point representation for their parameters.
However, it has been showed that the accuracy of DNNs is not particularly affected when moving to



a fixed point representation, i.e. after performing a parameter quantization. When testing and analyzing
the sensitivity to faults, Reagen et al. [6] propose a fault-injecting framework that accounts for this change
of precision, while in Li et al. [3] single and multi bit faults are injected in different positions within the
quantized network parameters. Both works show that quantized parameters are more sensible to faults
compared to floating point values due to their reduced bit width. Along side floating and fixed point
values, particular networks called Binarized Neural Networks (BNN) can utilize parameters reduced to
binary or ternary values. Khoshavi et al. [16] inject cumulative faults in different parts of a BNN that has
been implemented as an FPGA accelerator. In their work, they show that 100 single bit faults can cause
a drop of 76.7% when injected in the last fully connect layers. However, these works do not account
for networks in which multiple compression techniques are applied. In fact, parameter quantization is
orthogonal to pruning and weight sharing.

When it comes to fault detection, prevention and correction instead, Li et al. [3] selectively apply latch
hardening to DNNs accelerators datapath. Another solution from Qin et al. [17] is instead correcting the
detected faulty parameters by setting them to zero. Along side with that, they also introduce a binary
representation for real numbers that is able to limit the effects of faults. Regarding ECC mechanisms
targeting DNNs, Guan et al. [18] propose to store error check bits in the unused MSB of quantized
CNN 8 bit parameters. Their approach is based on a novel training algorithm that regularizes the spatial
distribution of large magnitude weights, allowing to exploit unused space for allocating the ECC bits.

Among approaches for protecting DRAM applications that are not tailored to DNNs, Malek et al. [2]
work, Odd-ECC, dynamically selects and sets the fault tolerance level of different data regions. The ECC
bits are in fact stored in separate physical pages, but are physically aligned with the data they protect.
This solution allows to access memory efficiently, reducing the energy consumption and significantly
improving memory fault tolerance.

Closest to our analysis is the work of Segee et al. [19], in which a feed forward neural network
is first pruned and then tested for measuring its fault tolerance. Compared to our work, they are not
injecting faults by flipping bits, but rather by zeroing out the faulty weights. Moreover, they only focus on
one single-input-single-output feed-forward neural network, whereas we analyze a set of more complex
networks classifying images. Finally, we not only consider pruning, but also more advanced compression
techniques such as weight sharing and quantization.

III. BACKGROUND

A. Convolutional Neural Networks
Deep neural networks (DNNs) have been extensively applied to many classes of problems like image

classification [20], [21], scene labeling [22] or language translation [23]. Figure 1 shows an example of
a Convolutional Neural Network (CNNs), a particular type of DNNs. DNNs are usually composed of
several layers, which are represented by the various blocks and rectangles in figure. Layers are typically
connected in a pipeline fashion, where data flows from a layer to the next one. The data produced and
consumed by a layer is usually referred as either Feature Maps (FM) or activations. A layer can contain
a set of parameters called weights, which are used to process the incoming data. Other layers can process
incoming inputs without requiring weights. Layers including weights are showed as boxes in the figure,
they are, for instance, convolutional (CONV) and fully connected (FC) layers. Weight-free layers are
instead pictured as rectangles: Max Pooling, Rectified Linear Unit (ReLU) and Softmax layers are some
examples of this kind of layers.

Weights can be learned, i.e. finetuned, through a process called training. Training allows a DNN to
tune its weights to solve a specific problem, such as image classification.

CONV layers in particular perform a convolution of an input feature map with a weight tensor W of
dimension Co ×Kh ×Kw ×Ci. The tensor is divided in kernel matrixes of height Kh and width Kw, as
illustrated in Figure 2. The terms Ci and Co represent the number of input and output channels of the



  

Fig. 1: An example of Convolutional Neural Network (CNN) called LeNet-5, from the work of Le Cun
et al. The CNN classifies black and white images of hand-written digits [20].
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Fig. 2: Input, output and kernel volumes of a CONV layer.

input and output data. Given a Feature Map FMi as input, e.g. an image, a CONV layer produces an
output Feature Map FMo whose elements at coordinates (ho, wo, co) can be obtained following Equation
1.

FMo(ho, wo, co) = B(co)+
Kh−1∑
kh=0

Kw−1∑
kw=0

Ci−1∑
ci=0

FMi(ho · S + kh, wo · S + kw, ci) ·W (co, kh, kw, ci),
(1)

where S corresponds to a stride parameter that can further reduce the output feature map dimensions and
the amount of operations, while B is a bias term. The idea is to convolve the input feature maps with
the kernels, i.e. weights, saving parameters and preventing overfitting [20]. The usual step that follows
the convolution operation is applying an activation function to the FMo. Typically, activation functions
are non-linear functions which are applied to the output of a layer before forwarding it to the next one.
ReLU is a popular activation function [24] whose behavior is described in Equation 2.

ReLU(x) = max(x, 0) + γ ·min(x, 0), (2)

where γ represents the negative slope of the function.



1

0

0

3

2

1

9

8

1

3

5

6

0

8

2

1

2

9

8

6

Max Pooling

stride = 2
2 2 filters

4 4 32
2 2 32

 

Fig. 3: Visual representation of a Max Pooling layer. Pooling layers downsample a given tensor reducing
the number of parameters and improving the network accuracy.

Pooling layers are generally placed after CONV layers and are layers responsible for reducing the size
of the feature maps thereby preventing the network from overfitting [25], i.e. avoids the network learning
only the training data. They do so by downsampling the input tensors, as shown in Figure 3.

After a series of CONV layers, a CNN generally includes a set of FC layers in its ending part, before
concluding with a Softmax layer. FC layers perform Equation 3, which consists of a simple matrix-matrix
multiplication with a weight matrix W followed by a bias addition B. Like CONV layers output, the FC
layers output is further modified by applying an activation function like ReLU.

FMo = FMi ·W +B (3)

DNNs including only FC layers are defined as Fully Connected Deep Networks (FCDN). A FCDN
typically features two to three FC layers with ReLU activation functions and also terminates with a
Softmax layer when solving a classification problem. Finally, a Softmax layer normalizes the output of
the last network into a probability distribution over the classes to predict. Hence, the predicted class is
identified by picking the class corresponding to the highest probability.

B. DNNs Compression
Modern neural network architectures generally include a large amount of parameters [26]. However, it

has been shown that neural networks can tolerate a reduction in the amount of parameters without loosing
significant accuracy. Such removal of elements is referred as pruning [27]. There exists in literature several
ways of pruning a network [28]. One popular and effective technique for pruning consists of iteratively
prune and finetune a network to maintain its accuracy [29].

Once most of the weights are zeroed out and do not contribute anymore to the network execution, they
can be further compressed by techniques such as weight-sharing and/or quantization (to fixed point or to
half-precision floating point representations). Weight-sharing [29], or network clustering, is a technique
that attempts to map a limited number of weights in a layer (referred as centroids) to all the rest of the
weights. In this way, each layer weight is associated to a specific centroid thanks to an index pointing to it.
Because of that, only the centroids and the indexes are required during network execution. The centroids
can be generated with a clustering algorithm and then finetuned with a backpropagation algorithm to
restore the original network accuracy.
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Fig. 4: How a fault in a weight parameter can affect the classification of an image. A fault in any weight
parameter can propagate to the final output and cause a misclassification.

Finally, the centroids can be quantized from a floating point 32 or 64 bit representation to 8 or 16
dynamic fixed point representation [30]. The conversion typically causes drops in the network accuracy
and therefore requires a retraining phase to calibrate the fixed point parameters.

C. Soft Errors and Accuracy Degradation in DNNs
Focusing on classification tasks, like assigning a label to a given image, the Softmax layer is a popular

final layer for DNNs. The Softmax function is responsible for normalizing the values of the output vector
into a probability distribution and for highlighting its maximum value. In practice, it applies Equation 4
to all the elements of the output of a DNN.

σ(xi) =
ex

i∑N−1
j=0 e

xj
, i = 0, 1, ..., N − 1 , xi ∈ RN (4)

where N is the length of the vector and so the number of classes. Once the elements are processed, i.e.
all normalized in [0, 1] and all adding up to 1, the index of the maximum value is selected to identify
the class which the input belongs to. This means that having a maximum value at a different index will
cause the network to classify the input into another class.

In presence of a fault in one of the weight parameters, the faulty value might generate, in the DNN’s
output, a different maximum value than the expect one, thereby altering the network prediction. An example
of such scenario is depicted in Figure 4. Since the FC layer performs a vector-matrix multiplication, a fault
in any of its weight matrix parameters can propagate to the layer output and so to the final Softmax layer.
In case the fault significantly changes the magnitude of one output parameter, the network will select it
as being the class with the highest probability. Because of the fault, if the maximum value results in a
different class than the expected one, then the input image is misclassified, thus degrading the accuracy
of the DNN.

IV. DESIGN AND METHODOLOGY

In this section we describe the implementation of our proposed framework Caffe Macchiato, its com-
pression scheme, the application data regions that are sensible to faults and finally how we perform the
sensitivity analysis of DNNs.
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Fig. 5: The Caffe Macchiato framework. After training in Caffe, Caffe Macchiato prunes and clusters the
network while Ristretto finally quantizes it. Besides compression, Caffe Macchiato injects faults in any
compression step parameters, as indicated by the red lightnings on the top.

A. Caffe Macchiato Framework
We modified Caffe [31] and Ristretto [30] to implement the Caffe Macchiato framework, illustrated in

Figure 5. In developing Caffe Macchiato, we followed the work of Han et al. [29] for designing the steps
for network compression without causing significant drops in accuracy. Caffe Macchiato integrates Caffe
for training a network given a specification file (in Google Protocol Buffer format [32]), it then performs
pruning and clustering before calling Ristretto for the final quantization1 step. Macchiato also implements
a fault injection system for causing bit flips in any compressed network.

Focusing on the implementation details, starting from pruning, we modified the CONV and FC layers
in Caffe to include a zero mask to prune the parameters of both weights and bias that are below an
adjustable threshold. In order to prune an entire network, Caffe Macchiato first sets the zero masks of all
the layers, then retrains the network, i.e. finetunes it, while keeping the zero masks fixed.

Once the network is pruned, Caffe Macchiato proceeds applying weight sharing by clustering each
layer’s weights into a set of k clusters through the K-means algorithm. Caffe Macchiato then stores all
the clusters centroids of a layer into a codebook, while each weight is substituted by an index, i.e. pointer,
to its corresponding centroid value. After populating the codebook, Caffe Macchiato retrains the network,
thereby finetuning the centroids by following the methodology described in [29], but maintaining the
indexes fixed. At run time, the codebook values are used as a substitute of the original weight values,
further improving the memory footprint of the network.

Finally, after pruning and clustering, Caffe Macchiato utilizes the Ristretto framework [30] to quantize
the network parameters from single precision floating point to a dynamic fixed point representation. We
maintain the same non zero parameters and cluster index while quantizing, thus leaving the networks
pruned and clustered. In particular, only the non zero values and the codebook values are quantized.

In order to perform our experiments, we first train the networks to achieve a similar accuracy per-
formance as the one reported in literature. We then proceed to prune them to have more than 87% of

1Han et al. in [29] define clustering, i.e. weight-sharing, as “quantization”. In this work we instead use the term quantization for indicating
the approximation of the network parameters to fixed point representation.



their values set to zero while maintaining an accuracy drop below 2% after finetuning, i.e. retraining.
After pruning we cluster the weight values in codebooks of at most 128 centroids, still maintaining a 2%
accuracy drop after finetuning.

In order to test the sensitivity of the networks, Caffe Macchiato is able to inject single and multi bit
faults in any network layer parameters which has not been zeroed, i.e. either weights or biases.

B. Application Data Regions
A deep neural network is typically composed of several layers that transform an input into either

probabilities (classification problem) or real values (regression problem). A layer can include a set of
weights and bias parameters that are used to process the layer input activations. During execution, these
parameters will need to be available in main memory and so they can be susceptible to faults or attacks.
In this chapter we limit our experiments to faults happening only offline in the network parameters, i.e.
weights and bias values, and not at run time in the activations. The top part of Figure 5 provides a
simplified view of how weight matrices are compressed and where the faults can happen.

We assume that a fault does not cause the application to crash, but rather that can possibly change the
network output, i.e. that can affect its accuracy, thus causing Silent Data Corruption (SDC) faults.

For the baseline networks, we marked the layers’ weights and bias parameters as a data region for faults
to happen. For pruned networks, we further limit the data region to the non-zero parameters only, since
the zero values are not required for the computations of a layer. If a network is also clustered, the non
zero weights are substituted by a codebook and a list of indexes to the elements of the codebook (referred
as weight indexes). Hence, for clustered networks, the data region consists of the codebook values, the
weight indexes and the non zero bias parameters. We assume the codebook values being in a protected
fault-free region of memory and so we are not testing faults happening in the codebook.

For non quantized networks, the weight, bias and codebook parameters are stored as single precision
floating point values, whereas the weight indexes (in case of clustered networks) are assumed unsigned
integers of bitwidth log2(k), where k is the number of clusters per layer. For quantized networks instead,
we have the parameters quanzited to dynamic fixed point representation [30], [33].

C. Sensitivity Analysis and Methodology
In order to conduct a sensitivity analysis of DNNs, we follow the methodology described as follows.

Given a network specification, we generate in Caffe Macchiato a series of network models which are
compressed at different levels. In particular, out of a single network specification we obtain six different
network configurations: a baseline network (B), a pruned network (P), a pruned and clustered network
(P+C), a quantized network (Q), a quantized pruned network (Q+P) and a quantized pruned clustered
network (Q+P+C). All compressed configurations exhibit a reduction in the accuracy of at most 3.1%
with respect to the baseline.

Caffe Macchiato is then able to inject single and multi bit faults in any of the above network config-
urations by flipping bits at random locations in randomly selected parameters. Both the bit position and
the targeted parameters for the faults to occur are uniformly distributed.

For the baseline configuration we use Caffe Macchiato for injecting a single-bit fault in a single
parameter (either weight or bias) in any network layer. For simulating multi-bit flips instead, the framework
swaps the value of two parameters, either two weight or two bias values. We then follows a similar
approach for injecting faults in pruned networks, but only targeting a parameter chosen from the non zero
ones. In case of pruned and clustered networks instead, we inject single- and multi-bit faults in either the
codebook indexes or the bias parameters (both aren’t zero). For single-bit flips in clustered networks, we
flips a random bit in either a random weight index or a random non zero bias value. Multi-bit flips are
instead performed by either swapping two weight indexes or by swapping two non zero bias values.



TABLE I: Description of fault types per network configuration. The faults can be injected in Baseline
(B), Pruned (P) and Clustered (C) networks configurations. The location of faults can be either in weights
(w) or in bias values (b). For pruned configurations, only the non-zero (NZ) values are selected.

Config Loc Single bit fault Multi bit fault

(B) (w) bit flip in random weight swap 2 random weights
(b) bit flip in random bias value swap 2 random bias values

(P) (w) bit flip in random NZ weight swap 2 random NZ weights
(b) bit flip in NZ random bias value swap 2 random NZ biases

(P+C) (w) bit flip in random weight index swap 2 random weight indexes
(b) bit flip in NZ random bias value swap 2 random NZ biases

(Q) (w) bit flip in random quant weight swap 2 random quant weights
(b) bit flip in random quant bias value swap 2 random quant biases

(Q+P) (w) bit flip in random NZ quant weight swap 2 random NZ quant weights
(b) bit flip in NZ random quant bias swap 2 random NZ quant biases

(Q+P+C) (w) bit flip in random weight index swap 2 random weight indexes
(b) bit flip in NZ random quant bias swap 2 random NZ quant biases

A summary of the types of faults that can be simulated in Caffe Macchiato is reported in Table I. Since
Quantization is an orthogonal technique, it can be applied to all the three reported configurations. In case
of single bit flips, a fault can only happen within the bitwidth of the parameters.

V. EVALUATION

In this section we present and evaluate the results of simulating faults in different networks, compressed
in different configurations. For our analysis we chose a series of networks popular in the field of machine
learning: a FCDN, LeNet-300-100 [20], and two CNNs: LeNet-5 [20] and CaffeNet [34]. Each network
attempts to assign a class to the images from a test dataset. The more test images are correctly classified,
the higher is the network accuracy.

The chosen networks have been pruned and clustered without a significant loss of accuracy, as reported
in Table IIa. The configuration of the compressed networks after quantization is instead reported in Table
IIb, which illustrates the bitwidth of the quantized parameters and the accuracy of the quantized networks.
A summary of the compression ratios achieved for different configurations is showed in Table IIc. For
our experiments, we report the accuracy drop as the averaged accuracy drop of 1000 fault injection tests.
We report a negative drop in cases where a fault is actually improving the original non-faulty accuracy.

a) LeNet-300-100 on MNIST: We injected faults in LeNet-300-100, a network consisting of three
fully connected layers classifying the MNIST database, which contains black and white images of hand-
written digits. After injecting single-bit and multi-bit faults in both weights and bias in each layer of the
baseline network, we do not see any particular drop in accuracy (the drops range from -0.03% to 0.05%).
The pruned version of the network is also not affected by random single- and multi-bit faults, showing an
accuracy drop between 0% and 0.07%. A similar scenario happens for the clustered network: the accuracy
drop is insignificant when injecting single and multi bit flips in both weights and bias, oscillating between
0% and 0.05%. A detailed report of the accuracy drops for single precision parameters can be found in
Appendix A, Figure 6.

Table III shows the result of injecting faults in the quantized network configurations. We can notice
that a single bit-flip of the last fully connected layer can cause an average drop in accuracy of 3.95% if
injected in weights and 2.68% if injected in bias. For the other layers and fault types we do not see any
particular difference instead. A similar scenario happens with the quantized pruned network: a single bit
flip fault in the last FC layer can cause a significant drop of 5.12% while a single bit flip in the fc2 layer
reduces the accuracy of 1.03% for injecting in weights and 1.50% in bias. Finally, regarding the clustered,
pruned and quantized network, we experience significant drops in accuracy when injecting single bit flips
faults in both weights and bias parameters, up to 3.13% and 2.72% for weight and bias respectively.



TABLE II: Different configurations for the analyzed networks and network accuracy scores. The reported
configurations are: Baseline (B), Pruned (P), Clustered (C) and Quantized (Q).

(a) The percentage amount of non-zero elements (NZ) for the pruned configurations and the amount of clusters k for FC (kFC)
and CONV (kCONV ) layers. Notice that we cluster after pruning the networks and therefore the pruning percentage is the
same in the two configurations.

Network acc (B) NZ acc (P) kCONV kFC acc (P+C)
LeNet-300-100 98.01% 9.7% 98.43% - 8 97.17%

LeNet-5 99.13% 12.1% 99.09% 64 8|16 98.00%
CaffeNet 81.30% 11.7% 78.51% 128 8 79.11%

(b) Quantized networks accuracy and bitwidth for fully connected (BWFC) and convolutional (BWCONV ) layers.

Network BWCONV BWFC (Q) (Q+P) (Q+P+C)
LeNet-300-100 - 4 96.97% 96.60% 94.74%

LeNet-5 4 4 97.53% 97.20% 98.17%
CaffeNet 8 8 81.21% 78.20% 81.21%

(c) Original size and compression ratios for the selected networks in different configurations.

Network Orig Size (P) (P+C) (Q) (Q+P) (Q+P+C)
LeNet-300-100 8.14 MB ×10.3 ×80.3 ×8 ×83.1 ×86.3

LeNet-5 13.16 MB ×8.3 ×80.8 ×8 ×66.4 ×83.0
CaffeNet 2.73 MB ×8.5 ×37.3 ×4 ×34.0 ×41.6

TABLE III: Accuracy drop for LeNet-300-100 in configurations: Quantized (Q), Pruned (P) and Clustered
(C). The accuracy of the faulty networks is averaged over 1000 tests. The faults are Single bit-flips (S)
or Multi bit-flips (M), and are injected in Weights (w) or Bias (b) parameters.

Faulty Layer Drops: (S in w) (M in w) (S in b) (M in b)
(Q) fc1 0.11% 0.00% 0.26% -0.06%
(Q) fc2 -0.10% 0.00% -0.10% -0.13%
(Q) fc3 3.95% 0.03% 2.68% -0.02%
(Q+P) fc1 0.18% 0.00% 0.19% 0.00%
(Q+P) fc2 1.03% 0.00% 1.50% 0.06%
(Q+P) fc3 5.12% 0.00% - -
(Q+P+C) fc1 2.38% 0.00% 2.38% 0.00%
(Q+P+C) fc2 2.71% 0.00% 2.72% 0.02%
(Q+P+C) fc3 3.13% 0.01% - -

b) LeNet-5 on MNIST: LeNet-5 is a CNN composed of two CONV layers followed by two FC layers
classifying the MNIST dataset, same as LeNet-300-100. We first injected faults in both the baseline, pruned
and clustered networks with single precision floating point parameters. In presence of single- and multi-
bit faults in either weights or bias parameters, we do not see any significant drop in accuracy. All drops
remain below 1%, from as low as -0.06% up to 0.11%. More accurate accuracy drops results for single
precision parameters can be found in Appendix A, Figure 8.

For the quantized configurations, the results of the fault injection tests are reported in Table IV. The
quantized networks appear very resilient to multi bit flips, with almost all tests scoring no accuracy drops.
We can instead notice significant drops in accuracy when injecting single bit flips, both in weights and bias
parameters. For the quantized baseline, injecting faults in the first two CONV layers weights produces
high drops of 1.55% and 3.92%, while injecting in the weights of the FC layers does not impact the
accuracy. Single-bit faults happening in the bias parameters of any layer greatly affect the accuracy of
the quantized baseline, resulting in average drops up to 7.38%.

When analyzing the quantized pruned network configuration, single-bit flips in the weight parameters
largely influence the accuracy, causing average drops up to 17.84%. The pruned CaffeNet has most of



TABLE IV: Quantized LeNet-5. The accuracy of the faulty network is averaged over 1000 tests. The faults
are Single bit-flips (S) or Multi bit-flips (M), and are injected in Weights (w) or Bias (b) parameters.

Faulty Layer Drops: (S in w) (M in w) (S in b) (M in b)
(Q) conv1 1.55% 0.00% 1.38% 0.00%
(Q) conv2 3.92% 0.00% 6.18% 0.00%
(Q) fc1 -0.81% 0.00% 7.38% 0.00%
(Q) fc2 -0.32% 0.00% 5.27% 0.00%
(Q+P) conv1 1.22% 0.00% - -
(Q+P) conv2 13.92% 0.00% 2.71% -0.12%
(Q+P) fc1 13.87% 0.00% - -
(Q+P) fc2 17.84% -0.01% - -
(Q+P+C) conv1 1.72% 0.00% - -
(Q+P+C) conv2 1.22% 0.00% 1.48% 0.13%
(Q+P+C) fc1 0.04% 0.00% - -
(Q+P+C) fc2 12.37% 0.01% - -

its bias parameters pruned and so the only layer where we injected faults in bias is conv2, causing a
non-negligible drop of 2.71%. Lastly, injecting single bit flips in the codebook indexes of the quantized,
pruned and clustered network leads to high accuracy drops, as high as 12.37% (except when injecting in
the fc1 layer).

c) CaffeNet on CIFAR10: We injected faults in different configurations of CaffeNet, a CNN made of
three CONV layers followed by a final FC layer. CaffeNet is classifying the CIFAR10 dataset images, a
more challenging database of colored images [35]. For the network configurations utilizing single precision
floating point values, we could not see any significant accuracy drop after the fault injection tests. The
drops are slightly higher compared to LeNet-300-100 and LeNet-5, but still well below 1% (between
a minimum of -0.07% and a maximum of 0.53%). All the fault injection results for single precision
parameters can be viewed in Appendix A, Figure 10.

We then proceeded to analyze the quantized configurations of CaffeNet. We followed the same approach
as before and injected single- and multi-bit faults in the parameters of the layers, i.e. in weights and bias.
The results of the tests are shown in Table V. We can see that multi-bit flips do not cause any particular
accuracy drop, similarly to the previous cases (here we have an average drop between -0.01% and 0.55%).
However, we can clearly notice a consistent drop in accuracy when injecting single bit flips, both in weights
and bias parameters. In particular, for the quantized baseline network, the drop reaches up to 10.39% in
weights and 3.65% in bias (the highest drops show up when targeting the last FC layer). We experience
a similar trend for the quantized pruned configuration: the drop when injecting in weights is between
4.66% and 40.50%. It appears that random single-bit faults in the last FC layer can halve the original
accuracy of the network. Please note that the pruning operation set to zero all the bias parameters and
so no faults happening in bias were tested. Finally, the clustered, pruned and quantized CaffeNet shows
high accuracy drops when injecting single bit faults in all layers but conv3 (from 0.77% up to 13.56%).
Multi-bit faults do not cause significant drops instead.

A. Discussion and Limitations
In this work we do not investigate the possible causes that led to the obtained results. In particular,

when looking at networks utilizing single precision 32 bit floating point values, we suppose that the wider
bitwidth of the values might help in mitigating single bit flips. In fact, the faulty bit position is uniformly
distributed and the exponent field, where a bit flip can cause the largest magnitude change, is only 8 bit
wide, as specified in the IEEE-754 standard.

Our best speculation regarding the fault injection runs that show low accuracy drops, is that the ReLU
and Pooling layers might mask specific single bit-flip faults. In fact, the ReLU function, Equation 2, can
zero out any negative value when γ = 0, which was the case for our experiments. Because of that, all
single bit faults leading to a negative real value, even with very high magnitude, can be masked to zero.



TABLE V: Quantized CaffeNet-CIFAR10. The accuracy of the faulty network is averaged over 1000
tests. The faults are Single bit-flips (S) or Multi bit-flips (M), and are injected in Weights (w) or Bias (b)
parameters.

Faulty Layer Drops: (S in w) (M in w) (S in b) (M in b)
(Q) conv1 0.36% 0.12% 0.42% 0.01%
(Q) conv2 7.31% 0.09% 0.78% -0.01%
(Q) conv3 7.31% 0.07% 0.86% 0.00%
(Q) fc1 10.39% 0.05% 3.65% -0.01%
(Q+P) conv1 4.66% 0.45% - -
(Q+P) conv2 14.91% 0.55% - -
(Q+P) conv3 13.15% 0.39% - -
(Q+P) fc1 40.50% 0.42% - -
(Q+P+C) conv1 4.70% 0.11% - -
(Q+P+C) conv2 13.56% 0.01% - -
(Q+P+C) conv3 0.77% 0.00% - -
(Q+P+C) fc1 3.42% 0.00% - -

Listing 1: Fault masking of NaN values through the max operation.
1 # d e f i n e MAX( a , b ) a > b ? a : b
2

3 MAX( 1 . 0 , NaN) ; / / E v a l u a t e s t o : 1 . 0 > NaN ? 1 . 0 : NaN , r e t u r n s NaN
4 MAX(NaN , 1 . 0 ) ; / / E v a l u a t e s t o : NaN > 1 . 0 ? NaN : 1 . 0 , r e t u r n s 1 . 0

If the faulty value turns out to be a NaN (either because of a bit flip or as an accumulated result), both
Max Pooling, Figure 3, and ReLU layers can mask it through their max operation. Listing 1 provides a
simple example of the max implementation and the possible outcomes upon processing a NaN value.

Effectively, the IEEE-754 floating point standard does not specify the outcome of a comparison op-
eration with a NaN [36]. However, our framework is developed in C++11, following the original Caffe
implementation, which adheres to the IEC-559 standard [37], [38], which defines false as a return value
for any comparison involving a NaN. Because of this, depending on “which side” the NaN value falls in
the comparison, it can result in either a regular floating point number or a NaN value, thus eventually
masking the fault.

Overall, the above conclusions seem to be supported by our findings. In fact, according to the results
in Tables III, IV and V, the last FC layer in all of the tested networks, which is never followed by a
Max Pooling layer nor a ReLU layer, generally appears to be, on average, the most sensitive to faults,
i.e. leading to the highest accuracy drops.

VI. CONCLUSIONS

Our experiments suggest that using single precision floating point values ensures a high level of fault
tolerance against random single- and multi-bit flips. Even if compressed, DNNs and in particular CNNs
are able to correctly classify images in presence of faults and thus do not require any additional protection
mechanism. Instead, significant drops in accuracy are happening to the quantized network configurations
when injecting single bit flips. For the baseline quantized configuration, the networks are more tolerant to
faults happening in their first layer, while are more affected if happening in the last layer. The drops of
all pruned networks are higher than the ones of pruned and clustered networks, but both configurations
show the highest drops when injecting in the last layer. We do not see a clear difference in drops caused
when injecting single bit faults in weights or bias parameters, suggesting that both data regions are highly
sensitive to faults. Overall, we observed that the faults causing the highest drops happen at the back of the
network, i.e. in the last layers, whereas faults effects tend to be mitigated or compensated if happening
in the first layer.



We can conclude that quantizing a DNN can significantly lower the fault tolerance of FCDNs and
CNNs. In addition to this, our experiments show that further compressing the quantized networks by
applying pruning and eventually clustering can lead to even higher losses in tolerance, thus making the
networks requiring fault protection mechanisms. Based on our findings, as a future work we will be able
to apply and test the Odd-ECC [2] protection mechanisms tailored to the identified more sensitive data
regions.
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APPENDIX

In this section we provide a detailed set of graphs reporting the distribution of the accuracy of the
networks in presence of faults. For each experiment we collected 1000 accuracy samples, meaning that we
injected 1000 faults per scenario. The results are grouped by layer and are divided according to the network
configuration, being: Pruned (P), Clustered (C), Quantized to fixed point (Q) and their combinations. Faults
are indicated either as Single or Multi bit flips in Weights (SW or MW) or Single of Multi bit flips in
Bias (SB or MB).
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Fig. 6: Accuracy degradation distribution after injecting faults in LeNet-300-100.
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Fig. 7: Accuracy degradation distribution after injecting faults in quantized LeNet-300-100.
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Fig. 8: Accuracy degradation distribution after injecting faults inLeNet-5.
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Fig. 9: Accuracy degradation distribution after injecting faults in quantized LeNet-5.



co
nv

1_
_P

C_
M

W

co
nv

1_
_P

C_
SW

co
nv

1_
_P

__
M

W

co
nv

1_
_P

__
SW

co
nv

1_
__

__
M

B

co
nv

1_
__

__
M

W

co
nv

1_
__

__
SB

co
nv

1_
__

__
SW

co
nv

2_
_P

C_
M

W

co
nv

2_
_P

C_
SW

co
nv

2_
_P

__
M

W

co
nv

2_
_P

__
SW

co
nv

2_
__

__
M

B

co
nv

2_
__

__
M

W

co
nv

2_
__

__
SB

co
nv

2_
__

__
SW

co
nv

3_
_P

C_
M

W

co
nv

3_
_P

C_
SW

co
nv

3_
_P

__
M

W

co
nv

3_
_P

__
SW

co
nv

3_
__

__
M

B

co
nv

3_
__

__
M

W

co
nv

3_
__

__
SB

co
nv

3_
__

__
SW

ip
1_

_P
C_

M
W

ip
1_

_P
C_

SW

ip
1_

_P
__

M
W

ip
1_

_P
__

SW

ip
1_

__
__

M
B

ip
1_

__
__

M
W

ip
1_

__
__

SB

ip
1_

__
__

SW

0.0

0.2

0.4

0.6

0.8

1.0
CaffeNet

Fig. 10: Accuracy degradation distribution after injecting faults in CaffeNet.
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Fig. 11: Accuracy degradation distribution after injecting faults in quantized CaffeNet.


