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Abstract— This paper proposes and tests on able-bodied 

subjects a control strategy that can be practically applied in 

unilateral transradial amputees for simultaneous and 

proportional control of multiple degrees of freedom (DOFs). We 

used artificial neural networks to estimate kinematics of the 

complex wrist/hand from high-density surface EMG signals of 

the contralateral limb during mirrored bilateral movements in 

free space. The movements tested involved the concurrent 

activation of wrist flexion/extension, radial/ulnar deviation, 

forearm pronation/supination and hand closing. The accuracy in 

estimation was in the range 79-88% (r2 index) for the four DOFs 

in six able-bodied subjects. Moreover, the estimation of the 

pronation/supination angle (wrist rotation) was influenced by the 

reduction in the number of EMG channels used for the 

estimation to a greater extent than the other DOFs. In conclusion, 

the proposed method and set-up provide a viable means for 

proportional and simultaneous control of multiple DOFs for 

hand prostheses. 

 
Index Terms—Electromyography, degrees of freedom, 

kinematics, prosthetic control  

I. INTRODUCTION 

esearch in myoelectric control has produced active 

prosthetic devices with many degrees of freedom (DOFs), 

paralleled by EMG-based control strategies. Nevertheless, 

these advances did not proceed at the same speed. Advances in 

mechatronics have yielded multi-fingered prosthetic hands 

capable of mimicking the functions that the human counterpart 

provides (Cyberhand [1], Touch Bionics's i-LIMB [2]). On the 

other hand, most commercial upper limb prostheses (e.g., Otto 

Bock hands [3]) are still one DOF grippers because of 

limitations in controlling more complex systems with current 

EMG processing methods. Many attempts have been carried 

out to increase the number of functions to be controlled. In 

research settings, classification algorithms have been proposed 

for decoding multiple DOFs, e.g. forearm pronation and hand 
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closing [4, 5]. However, these approaches are limited to 

controlled laboratory conditions. 

Current myoelectric control is not adequate for actuating all 

the functions offered by the prosthetic technology available 

nowadays and thus to replicate the motor capability of the 

amputated hand. For example, pattern recognition based 

myoelectric control systems employ a sequential strategy, 

where only one function of the prosthetic device can be active 

at a time. Conversely, natural limb movements consist in the 

continuous and simultaneous activation of multiple DOFs, 

which is required even by the simplest daily life activities, e.g. 

pouring water from a bottle. The absence of combined 

functions forces the users of myoelectric prostheses to actuate 

unnatural strategies to achieve movements that normally-

limbed individuals accomplish effortlessly. In turn, this 

implies a high level of cognitive effort put into the control of 

the prosthesis and consequently a low degree of acceptance. 

Cosmetic prostheses are thus often preferred to active 

prostheses [6].  

The simultaneous control of multiple DOFs movements was 

analyzed by Jiang et al. [7] who proposed a semi-unsupervised 

algorithm capable of providing a linear mapping between 

multichannel EMG amplitude and force produced during wrist 

contractions involving flexion/extension, radial/ulnar 

deviation, and the combination of both. Due to its semi-

unsupervised nature, the algorithm does not require recording 

of the force signals, which is important in practical 

applications since forces cannot be recorded from amputees. 

However, this approach failed when applied to wrist 

pronation/supination. This effect could be mitigated by using 

an artificial neural network (ANN) able to capture the non-

linearity of the system. The drawback of using an ANN is that 

its training requires recordings of the force exerted from the 

hand ipsilateral to the arm from which the EMG is recorded. 

This is not possible in amputees. Nielsen et al. [8] faced this 

issue by proving that the surface EMG recorded from one 

upper limb can be used to estimate the force produced by the 

contralateral limb in the case of bilateral, symmetric 

contractions. That study was however still limited to only two 

DOFs. The difficulties in estimating pronation/supination 

forces were also related to force translation across the three 

DOFs introduced by the experimental apparatus used to gather 

force [7], which restrained the subject’s hand. 
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The present study aims at overcoming the above limitations 

by presenting a method for the continuous extraction of 

control information during movements which involve 

simultaneous activation of the three DOFs of the wrist, in 

addition to hand closing. We concurrently recorded the 

kinematics of both hands and the surface EMG from forearm 

muscles (unilaterally) while the subjects performed bilateral, 

mirrored movements, and we estimated the kinematics of the 

contralateral hand from the EMG using ANNs. Since in this 

study the subjects executed dynamic tasks in the free space 

and with a greater number of DOFs, we propose the use of 

high-density recordings [9] in an attempt to increase the 

information extracted from the surface EMG. In myoelectric 

control, not more than 8 bipolar channels are usually 

employed as the source of control [4, 8, 10, 11]. This suffices 

in decoding movements which are controlled by superficial 

muscles whose activity is easily detected at the surface of the 

skin (e.g., flexion/extension). However, anatomical factors 

hamper the detection of muscles responsible for 

pronation/supination. Precisely, the pronator teres is partly 

covered by the bicipital aponeurosis and the supinator muscle 

is deep [12]. We hypothesized that high-density surface EMG 

recordings [9] would allow to better exploiting the spatial 

information across the muscles compared with bipolar 

recordings routinely used in myoelectric prosthetic control 

studies [4, 7, 8, 10, 11]. As in other studies [13, 14], we 

mapped EMG to kinematics rather than force while subjects 

performed movements in free space. 

This paper describes a new strategy to estimate the 

kinematics of the contralateral hand from the EMG of forearm 

muscles during mirrored, bilateral movements which involve 

the combined articulation of four DOFs of the complex wrist-

hand in free space. 

II. METHODS 

A. Subjects 

Similar to most recent studies that proposed novel strategies 

for myoelectric control [5, 15-17], we analyzed our method in 

normally-limbed subjects, which is a necessary basis for future 

testing in amputees. Six normally-limbed subjects (age, 28.3 ± 

6.4 yrs) participated to the experiment, after providing written 

informed consent. The procedures were approved by the local 

ethic committee. 

B. Procedure 

The subject was standing with the arms along the body in a 

resting semipronated position (palm facing inward). The 

protocol included 7 single DOF movements and 14 combined 

movements, as listed in Table I. The selection of movement 

combinations was based on functionally relevant tasks. 
 

TABLE I 

MOVEMENTS INCLUDED IN THE PROTOCOL. THE TASKS WERE PERFORMED BY 

THE SUBJECTS IN BLOCKS (BLOCK INDEX) AND RANDOMIZED WITHIN EACH 

BLOCK (MOVEMENT INDEX). THE ORDER OF THE BLOCKS WAS ALSO 

RANDOMIZED. 

 

Block 

index 
Movem 

index 
Movements 

 1 Rest 

1 2 Wrist flexion 
1 3 Wrist extension 

1 4 Radial deviation 

1 5 Ulnar deviation 
2 6 Forearm pronation 

2 7 Forearm supination 

2 8 Hand closing 
3 9 Forearm pronation & Wrist flexion  

3 10 Forearm pronation & Wrist extension 

3 11 Forearm pronation & Radial deviation  
3 12 Forearm pronation & Ulnar deviation  

4 13 Forearm supination & Wrist flexion 

4 14 Forearm supination & Wrist extension 
4 15 Forearm supination & Radial deviation  

4 16 Forearm supination & Ulnar deviation  

5 17 Hand closing & Wrist flexion  
5 18 Hand closing & Wrist extension 

5 19 Hand closing & Radial deviation 

5 20 Hand closing & Ulnar deviation 
5 21 Hand closing & Forearm pronation 

5 22 Hand closing & Forearm supination 

 

The subject was instructed to perform a series of mirrored, 

bilateral, dynamic contractions starting from the resting 

position. The movements to be reproduced were displayed on 

a computer screen located in front of the subject. Each 

movement had a duration of 6 s, with 1 s of absence of activity 

(pre-movement phase), approximately 1 s of movement from 

the initial to the final position, maintenance of the final 

position for approximately 1 s, approximately 1 s of 

movement from the final to the initial position, and absence of 

activity (post-movement phase) for the remaining time 

interval. Following a period of familiarization with the 

protocol, the subjects performed each of the 22 movements 

listed in Table I 4 times, divided in 5 blocks of trials to 

minimize fatigue and the need of concentration. At least 5 

minutes of rest was provided between the blocks of trials and 

extended under the discretion of the subjects. 

Surface EMG signals were detected from forearm muscles 

of the right limb and hand kinematics of both limbs was 

concurrently recorded during the mirrored bilateral 

movements.  

C. EMG Recordings 

Surface EMG signals were recorded from forearm muscles 

using two semi-disposable adhesive grids of 64 electrodes 

each arranged in 5 rows and 13 columns with 8 mm of inter-

electrode distance (LISiN-OT Bioelettronica, Torino, Italy), 

placed around the circumference of the right forearm at a 

distance from the elbow of one third of the elbow–wrist 

distance (Fig. 1). Prior to electrode placement the skin was 

shaved, if necessary, and lightly abraded. The EMG signals 

were amplified with a gain of 2000 (EMG-USB, LISiN – OT 

Bioelettronica, Torino, Italy), band-pass filtered (8th order 

Bessel filter, bandwidth 10-750 Hz), sampled at 2048 Hz, and 

A/D converted on 12 bits. A reference electrode was placed at 

the wrist of the right arm. 
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D. Kinematics 

Two sets of seven reflective ball shaped markers (12-mm 

diameter) were symmetrically placed on the two arms of the 

subject (Fig. 1). Two markers were positioned parallel to the 

medial (MEP) and lateral (LEP) epicondyles of the humerus 

through a rigid plastic fixture. The other five markers were 

placed in correspondence of the styloid processes of radius 

(STR) and ulna (STU), the radial head of the second 

metacarpal bone (RMC), the ulnar head of the fifth metacarpal 

bone (UMC) [18], the radial side of the joint between the 

proximal phalanx and the middle phalanx of the index finger 

(FIN). The positions of the markers were tracked with a 

motion analysis system (Qualisys Track Manager, Qualisys 

AB, Gothenburg, Sweden) with 8 infrared digital video 

cameras (ProReflex MCU, Qualisys AB, Gothenburg, 

Sweden). The kinematics data were recorded with a sampling 

frequency of 256 Hz. 

E. EMG Processing 

The EMG signals were off-line band-pass filtered (4th order 

zero-lag Butterworth digital filter, pass-band 20-400 Hz) to 

attenuate DC offset, motion artifacts, and high frequency noise 

[19]. Two matrices provided 102 bipolar channels in the 

direction of the muscle fibers. Signals were visually inspected 

before processing and signals corresponding to missing 

contacts were eliminated. The number of bipolar channels 

discarded was within the range 5-16. Therefore, hereafter, we 

refer to all the channels to indicate the full number of available 

channels after discarding the bad contacts, which 

corresponded to channels in the range 86-97, depending on the 

subject. The filtered signals were full-wave rectified and low-

pass filtered (2th order zero-lag Butterworth digital filter, cut-

off frequency 16 Hz) to obtain the muscle activity envelopes 

and synchronized with the kinematics signals at a common 

sampling rate of 32 Hz. 

F. Kinematics Data Processing 

Movements were quantified in terms of angular 

displacement with respect to the resting position, according to 

[18]. Briefly, a reference coordinate system for the hand was 

defined as follows (ELB is defined as the midpoint between 

MEP and LEP) (Fig.1): 

- origin (O): midpoint between STR and STU, 

- z-axis: line O-ELB, pointing to ELB, 

- y-axis: line perpendicular to the plane STR-STU-ELB 

and passing through O, pointing anteriorly, 

- x-axis: cross product by the right hand rule. 

The flexion/extension (radial/ulnar deviation) angle was 

calculated as angular displacement of the projection of the 

vector O-HAN, HAN being the midpoint between RMC and 

UMC, on the plane y-z (x-z). The pronation/supination angle 

was estimated from the projections of the lines STR-STU and 

MEP-LEP on a plane perpendicular to the line O-ELB. 

Since the fingers move in agreement during the 

opening/closing, the movement of the index finger was 

considered as indicative of the global closing movement. 

Therefore, the opening/closing angle was calculated as the 

angle between the planes O-UMC-RMC and UMC-RMC-FIN.  

Positive values corresponded to flexion, radial deviation, 

pronation and closing. The angles were low-pass filtered by a 

second-order dual-pass Butterworth filter at a cutoff frequency 

of 1 Hz (see next Subsection). 

 

UMC

STU

LEP
MEPELB

O

HAN

FIN

STR

RMC

z
x

y

 
Fig. 1. Marker position and hand reference system. LEP: lateral epicondyle; 
MEP: medial epicondyle; ELB: elbow; STR: styloid process of radius; STU: 

styloid process of ulna; RMC: radial metacarpal bone; UMC: ulnar metacarpal 

bone; FIN: finger; HAN: hand; O-x-y-z: hand reference system. 

G. Estimation of Hand Kinematics from the EMG 

ANNs were used to learn the association between EMG and 

hand kinematics. The EMG signal is known to be related to 

the force produced by the muscle [20]. Ultimately, the forces 

developed by all the muscles acting on a joint determine the 

position of that joint. The setup we chose ensures a well-

defined relation between position and force since each 

position requires a specific force to overcome gravity. We thus 

assume that the ANNs can learn the associations EMG-force 

and force-position in order to estimate position from EMG. 

Static ANNs were used because for this application they 

perform as well as time-delayed ANNs in spite of the simpler 

architecture [18]. Eight multilayer perceptrons (MLPs) were 

used to estimate the flexion/extension, radial/ulnar deviation, 

pronation/supination and opening/closing angles of the ipsi 

and contralateral hand. We used different MLPs for different 

angles with the aim of obtaining an accurate estimation for 

each DOF. Each MLP had the bipolar EMG channels 

envelopes (or a selection/projection of them, as specified in 

Subsection H) as input and one of the angles as target. All the 

MLPs had one hidden layer with a number of neurons varying 

between 1 and 10 during training while the estimation error 

was monitored. The neurons in the hidden and output layers 

had a sigmoid and a linear activation function, respectively. 

The MLPs were trained using the Levenberg-Marquardt back-

propagation algorithm [21]. The network output was low-pass 

filtered at 1 Hz to match the frequency content of the network 

target (see Kinematics Data Processing). Such a cut-off 

frequency may appear low. Preliminary tests were done 

limiting the kinematics bandwidth to 6 Hz [22]. However, 

from the signals collected in this study, the network target had 

the majority of the power in the frequency band below 1 Hz. 

Therefore, we further low-pass filtered kinematics data at 1 

Hz.  

A four-fold cross validation procedure was used to evaluate 
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the MLP performance, where 3 out of the 4 repetitions of each 

movement were used for training/validation (70%/30% 

respectively), whereas the fourth was used to test the behavior 

of the MLP in presence of novel inputs. Previous studies [7, 8] 

provided an indication of the global quality of the estimation 

(i.e. without differentiating among the different DOFs) 

through the multivariate coefficient of determination [23], 

whereas we are interested in assessing how accurately each 

single DOF was estimated. Therefore, the performance of the 

MLP in the estimation of each angle was evaluated through 

the coefficient of determination r2 (the percent variability in 

the actual angular values explained by the estimated values) 

[18] and the mean relative error rE (the magnitude of the 

difference between the measured and the estimated value, 

divided by the range of motion).  

For future applications in unilateral amputees, the 

kinematics can be extracted for training from the limb 

contralateral to the one used to gather EMG. Nonetheless, in 

this study the kinematics was recorded bilaterally to verify 

afterwards that movements of the two hands were mirrored 

and synchronized (using the peak of the normalized cross-

correlation function).  

H. Feature Analysis 

Since the inter-electrode distance was 8 mm, signals from 

adjacent channels were highly correlated. Therefore, we 

investigated if the dimensionality of the inputs needed for 

learning might be reduced via feature selection/projection.  

Channel selection is graphically represented in Fig. 2 for the 

different tests made. Seven and 14 equally spaced channels 

around the forearm were selected in some tests (Fig. 2A,B). 

The possibility of using linear arrays of electrodes rather than 

matrices was also investigated through the selection of 26 

channels, corresponding to a row of the matrices (Fig. 2C). 

 

A

B

C

Matrix 1 Matrix 2

 
Fig. 2. Channel selection. Seven (A), 14 (B) and 26 (C) bipolar channels along 

the muscle fiber direction were selected as input for the MLPs in different 

tests. The results for these channel selections were compared to the results 
obtained using all bipolar channels. 

 

In addition to channel selection, the reduction in the feature 

space was also investigated by applying Principal Component 

Analysis (PCA) [24] to the envelopes of the original channels. 

Fourteen principal components sufficed to explain > 95% of 

the EMG envelopes variance for all subjects (see RESULTS). 

Therefore, the first 7 and 14 components were retained for 

comparison.  

The MLPs training was repeated using the channels 

subset/principal components as input. ANOVA followed by 

the post-hoc Student Newman–Keuls test was applied to 

investigate the effect of channel selection /projection on the 

resulting performance. Separate ANOVAs were performed for 

the four angles. ANOVA was also applied to investigate if 

performance from the ipsi and contralateral limbs differed. 

Statistical significance was set at P<0.05. 

III. RESULTS 

The number of neurons in the hidden layer influenced the 

performance, however extensive preliminary data analysis 

(results not shown for clarity) indicated that when using more 

than 6 neurons the performance did not improve further, 

irrespective of the number of features provided as input. 

Therefore, 6 neurons were used in the hidden layer of each 

MLP in the subsequent results. 

The subjects performed symmetric movements in concert 

with both limbs. The peak of the normalized cross-correlation 

function between corresponding angles at the two sides was 

0.83 ± 0.16 (average across the four DOFs and the 6 subjects). 

The estimation performance for the ipsi and contralateral 

limbs were similar for all the DOFs and all input features 

(both in terms of the coefficient of determination and the mean 

relative error), with the only exception of the estimation of the 

pronation/supination angle. For this angle, when using all 

channels as input, the ipsilateral estimation was slightly but 

significantly better than the contralateral estimation (r2, 86.5 ± 

3.2% vs 83.5 ± 3.4%; rE, 3.7 ± 0.5% vs 4.2 ± 0.6%; P<0.05). 

Hereafter, we detail the results for the estimation of the 

contralateral hand kinematics only, because this is the only 

viable training solution for amputees and thus the most 

relevant. 

Fig. 3 displays representative results from one subject 

(contralateral case) to illustrate the quality of angular position 

estimation by the MLPs when using all the channels. The 

estimation is of high quality in this example. The protocol 

prescribed the activation of a single DOF or two DOFs at a 

time. However, the angle traces show that the movements that 

the subjects were requested to reproduce implied the 

activation of other DOFs as well (see Fig. 3), due to the fact 

that muscles controlling the hand operate in a synergistic 

fashion [7]. It is worth noting that the estimation had good 

accuracy even during the concurrent involvement of the 4 

DOFs (Fig. 3). 

Group data are represented in Fig. 4, which shows the 

average coefficient of determination (A) and the mean relative 

error (B) between the measured and the estimated angular 

displacement for the four DOFs for the contralateral hand 

when varying the input features. 
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20 s

20º

Clo

Pro/Sup

Rad/Uln

Fle/Ext

Measured angles  
Fig. 3. Measured and estimated angular displacements for one representative 

subject during combined activation of the four DOFs. In this example, the 

coefficient of determination and the mean relative error were 93.8% (1.9%) 
for flexion/extension, 86.3% (3.5%) for radial/ulnar deviation, 89.8% (3.3%) 

for pronation/supination and 88.9% (3.1%) for closing. Estimates are obtained 

for the contralateral hand. 
 

The results obtained with r2 and rE were consistent, 

although differences in the estimation quality were more 

evident when using the coefficient of determination. The 

values of r2 and rE differed depending on the inputs 

(P<<0.001 for each of the angles), with superior performance 

when using all channels than in the other conditions (P<0.01 

in all cases, not indicated in Fig. 4 for clarity). The r2 values 

were 88.5 ± 4.4%, 79.3 ± 3.9%, 83.5 ± 3.4%, and 83.8 ± 3.8% 

for flexion/extension, radial/ulnar deviation, 

pronation/supination and closing, respectively. The worst 

performance corresponded to the configuration of 7 equally 

spaced channels around the circumference of the forearm 

(77.5 ± 8.0%, 64.8 ± 8.0%, 43.7 ± 6.7%, 68.7 ± 6.0%). 

Interestingly, r2 was halved for pronation/supination with this 

configuration with respect to the full number of channels. 

Fourteen channels yielded better performance than 7. Twenty-

six channels further improved the quality of the estimation but 

only for the pronation/supination angle. The linear array 

configuration (Fig. 2C) yielded a coefficient of determination 

of 83.5 ± 6.7%, 72.2 ± 5.8%, 67.4 ± 7.9%, and 78.4 ± 4.0% 

for the four angles. The reduction in the r2 with respect to the 

matrix configuration was about 15% for pronation/supination, 

and only about 5% for the other DOFs. Despite the reduction 

in number of channels, the performance can still be considered 

generally acceptable, as confirmed by the fact that the mean 

relative error was inferior to 6% with such a reduced 

configuration.  

Seven (14) components accounted for 92.6 ± 2.5% (96.7 ± 

0.8%)) of the EMG envelopes variance. Fourteen principal 

components outperformed 7 components regardless of the 

DOF. The number of channels being equal, channel projection 

resulted superior to channel selection only in case of 

flexion/extension and pronation/supination. 
 

IV. DISCUSSION 

This paper has proposed the estimation of the contralateral 

hand kinematics during movements which involve combined 

activation of four DOFs of the hand in free space from high-

density surface EMG.  

A. Simultaneous Control of Multiple DOFs 

The proposed method showed performance comparable or 

superior to those obtained in other studies on simultaneous 

control of multiple DOFs [7, 8, 11], although validated in a 

more complex scenario. First of all, our control scheme 

comprises the hand closing, whereas previous studies on 

simultaneous activation of multiple DOFs [7, 8, 11, 18] only 

considered the wrist as joint of interest. Hand closing, 

however, is a fundamental function in prosthesis control, 

included in all commercial devices. Moreover, the protocol 

followed in [7, 8, 11] requested to restraint the subject’s hand, 

whereas we focused on dynamic movements in free space, which 

are inherently more variable and closer to real scenarios. The fact 

that in current research, training and test data are often acquired 

with the arm in a constrained setting maybe one of the cause of 

the degradation of performance when the prosthesis is used in 

everyday life [25]. It should be pointed out that the kinematics 

estimator was trained with the arm held at a specific orientation. 

Therefore, a drop in performance is expected in case of multi-

position use, as it normally happens in daily life movements. This 

problem may be mitigated collecting training data in multiple 

positions [26]. 

B. Mirror Training 

The fact that ANNs could be successfully trained to provide 

hand kinematic estimation from the EMG of the ipsilateral 

forearm shows that the information embedded in the surface 

EMG of the forearm is sufficient to decode the user intent, at 

least when limited to the investigated movements. However, 

ipsilateral kinematics is not available in amputees. The 

proposed training strategy, which requires the kinematics from 

the limb contralateral to the one used to gather EMG, can be 

directly replicated in unilateral amputees. Another possibility 

would be to ask the amputee to imitate the movements of a 

human teacher with his phantom limb, as in [27], and to use 

the teacher kinematics as target for the ANNs. The teacher 

imitation modality has the advantage of being applicable also 

in bilateral amputees. However, mirror training may be a 

preferable option in case of unilateral amputees because 

synchrony between the normal and the phantom limb of the 

amputee may be easier to achieve than synchrony between the 

teacher movement and the amputee imitation. A temporal 

misalignment between input and target would affect the ANN 

training procedure.  

The study was conducted on normally-limbed subjects to 

test the feasibility of the approach and to provide a benchmark 

for future validation in amputees, as it is conventionally done 

in the myoelectric control research community [7, 16, 17, 28].  
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Fig. 4. Mean ± standard deviation of the coefficient of determination (A) and mean relative error (B) between the measured and estimated angular position of the 

contralateral hand using the different feature sets. ALL: all the channels; 7, 14 and CIRC: 7, 14 and 26 channels resulting from feature selection (Fig. 2 A, B and 

C); PCA7 (PCA14): the first 7 (14) principal components; * P < 0.05, ** P < 0.01, *** P < 0.001. 
  

Nevertheless, it has been shown that amputees can 

voluntarily produce different movements of their phantom 

hand and that these movements are associated with stump 

muscle activity patterns distinct and reproducible over time 

[29]. The fact that distinguishable and consistent patterns in 

the surface EMG can be associated to diverse movements also 

in amputees provides the physiological basis to make the 

proposed training strategy potentially applicable in prosthesis 

users. 

C. High-density EMG 

The investigation on feature projection/selection indicated 

the benefits of employing a high-density configuration in 

collecting the EMG, at least when only the envelopes of the 

signal are used as features. Indeed, using all channels, all the 

angles could be estimated with r2 > 79 %. When the feature set 

dimensionality was reduced, the estimation of all angles was 

negatively affected, especially for pronation/supination (r2 ≈ 

43%, using 7 channels only). Flexion/extension could still be 

estimated with a r2 ≈ 77%, even with the minimal 

configuration. This was somehow expected from the forearm 

anatomy. Indeed, many of the muscles involved in 

flexion/extension (flexor carpi ulnaris, flexor carpi radialis, 

flexor digitorum superficialis, extensor carpi radialis, extensor 

digitorum, extensor digiti minimi, extensor carpi ulnaris) are 

superficial. Therefore, even an equispaced placement of 7 

electrodes around the forearm circumference provides a good 

spatial sampling of their surface activity, although less 

comprehensive that the one available from the matrixes. On 

the other hand, the supinator is a deep muscle, thus its activity 

is relatively weaker at the surface of the skin. Pronation is 

mainly served by two muscles: pronator teres and pronator 

quadratus. However, being the latter located in the distal 

forearm, transradial amputees only retain the pronator teres. 

The situation is made even more complex by the fact that the 

pronator teres is partly covered by the bicipital aponeurosis, 

which reduces the signal amplitude at the surface of the skin. 

Nevertheless, high-density EMG enables to cope with the fact 

that EMG produced by the muscle responsible for 

pronation/supination are low and/or buried by cross-talk from 

other muscles. 

The abundance of channels results in surface EMG patterns 

which are distinguishable and consistent over time even in 

case of pronation/supination, although of low amplitude. 

Moreover, in dynamic conditions, the relative sliding of the 

muscles beneath the skin can move them away from the 

electrode detection areas while the configuration that we 

proposed covers the full forearm circumference with several 

closely spaced electrodes. Nevertheless, it is difficult to 
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predict to what extent the muscle sliding problem may be 

relevant in amputees. During surgical amputation, the residual 

muscle or tendon are directly sutured to the bone (myodesis) 

to provide stability. Therefore, it is expected that changes in 

muscle shape and length are less pronounced in amputees than 

in normally-limbed subjects. 

D.  Feature Reduction 

A configuration with 14 electrodes equispaced around the 

forearm resulted in better performance than 7 electrodes but an 

additional inclusion of 12 channels (array like configuration) 

caused a significant further increase in the estimation quality 

only for pronation/supination. In general, the full high-density 

recordings outperformed all the investigated channel subsets. 

However, the arrangement with 26 channels retained 

reasonable performance, especially for three DOFs (r2 within 

the range ≈ 67% (pronation/supination) - 83% 

(flexion/extension), rE < 6%).  

 Seven components explained ~92% of the multi-channel 

EMG signal variance. Nevertheless, the extra information 

carried by the subsequent seven components was relevant for 

the decoding of the four DOFs. The number of channels being 

equal, channel projection sometimes resulted superior to 

channel selection, maybe because it provides more 

comprehensive information. 

Although the performance needed to be quantified with 

metrics, indices often reported to describe the accuracy of 

myoelectric control systems do not necessarily relate to the 

usability of the system [15]. Therefore, it is unclear if the gain 

in performance when using the full electrode system 

configuration is functionally relevant. From Fig. 4, the 

effective benefit from high-density recording concerns mainly 

the pronation/supination DOF. 

E. Implementation 

Most studies on myoelectric control make use of 8 or less 

electrodes [4, 7, 8, 10, 11], mainly for practical reasons, i.e. to 

keep the computational time low and to simplify positioning. 

Regarding the processing time, it must be taken into account 

that some signal processing frameworks compensate for the 

reduced number of channels increasing the number of feature 

extracted from them [30], while the scheme that we proposed 

simply relies on the signal envelope [27, 31]. In addition, 

considering the sampling rate of our data and that filters of the 

2nd order were used, the delay introduced by the estimation is 

only ~100ms, in line with real-time requirements of 

myoelectric control [32]. Moreover, the electrode placement 

time is limited because there is no need to target specific 

muscles [7, 27] as it is sometimes done in setups that make use 

of a limited number of channels [8]. Electrode technology may 

in the near future further simplify positioning (e.g., with 

textile electrode systems [33]). However, it should be noted 

that the present study also shows that the number of electrodes 

can be reduced from the full configuration proposed by 

retaining acceptable performance. This is important because 

an increase in the electrode number would imply an increase 

in power consumption and cost of the prosthesis. 

To actuate the proposed training strategy in a clinical 

setting, kinematics may be measured using a simpler system 

than the one applied in this study, consisting e.g. of 

goniometers and torsiometers. Furthermore, the protocol that 

we used for training/validation includes many contractions 

because the study was meant to analyze the system 

performance in a systematic fashion. As far as the training 

protocol includes movements representative of the DOFs at 

the joints of interest, the MLPs should be able to capture the 

association between EMG and kinematics. Therefore, to speed 

up the training procedure in a clinical setting, the protocol 

could include only free movements in 3D. This would also 

allow evaluating the performance of the system in case of 

transition from a DOF to another without returning to the 

resting state. 

V. CONCLUSION 

We have shown that kinematics from the complex wrist-

hand can be estimated from high-density EMG signals of the 

contralateral arm while the subject performs mirrored 

movements involving the simultaneous articulation of four 

DOFs. When reducing the number of channels used for the 

estimation, the system retained good performance for at least 

three DOFs. The approach proposed in this paper represents a 

potential solution that can be practically applied in unilateral 

transradial amputees for simultaneous and proportional control 

of multiple DOFs. 
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