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Effects of network topology on the
performance of consensus and distributed
learning of SVMs using ADMM
Shirin Tavara and Alexander Schliep

Data Science and AI division, Department of Computer Science and Engineering, Chalmers
University of Technology and University of Gothenburg, Gothenburg, Sweden

ABSTRACT
The Alternating Direction Method of Multipliers (ADMM) is a popular and
promising distributed framework for solving large-scale machine learning
problems. We consider decentralized consensus-based ADMM in which nodes
may only communicate with one-hop neighbors. This may cause slow convergence.
We investigate the impact of network topology on the performance of an
ADMM-based learning of Support Vector Machine using expander, and
mean-degree graphs, and additionally some of the common modern network
topologies. In particular, we investigate to which degree the expansion property
of the network influences the convergence in terms of iterations, training and
communication time. We furthermore suggest which topology is preferable.
Additionally, we provide an implementation that makes these theoretical advances
easily available. The results show that the performance of decentralized
ADMM-based learning of SVMs in terms of convergence is improved using graphs
with large spectral gaps, higher and homogeneous degrees.

Subjects Data Mining and Machine Learning, Distributed and Parallel Computing, Network
Science and Online Social Networks
Keywords Machine learning, Parallel and distributed computing, SVMs,ADMM, Expander graphs,
Distributed optimization, Convergence

INTRODUCTION
In recent years, the exponential growth of digital data opened new challenges for
traditional serial methods concerning computation and storage, or in short scalability.
Distributed optimization methods with centralized or decentralized computation
strategies are virtually inevitable to tackle the challenges arising from large-scale machine
learning problems. Because of issues such as failure of the central processing unit,
communication and synchronization overhead, scalability or privacy the centralized
strategies in which the training data is centrally accessible and the distributed agents
communicate with a central node may perform poorly (Yang et al., 2019). These issues
can be resolved by casting the centralized parallel problem into a set of decentralized
sub-problems. Decentralized distributed optimization methods in which peer to peer
communication is carried out and no central processing unit is involved play an important
role in solving large-scale problems. Their importance is amplified in scenarios where data
are located on distributed nodes, as in edge computing, or where there are concerns
preserving privacy (Forero, Cano & Giannakis, 2010).
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One effective distributed method is the Alternating Direction Method of Multipliers
(ADMM) that offers robustness, stability, distributedly parallelizability and provides
convergence guarantees (Tavara, 2019). Be that as it may, in specific circumstances,
ADMM can still suffer from slow convergence (Cao et al., 2016; França & Bento, 2017).
To resolve this issue, a centralized parallel problem can be cast into multiple decentralized
sub-problems with respect to consensus constraints on the classifier parameters. To
reach the consensus inter-node communication is required (Tsianos, Lawlor & Rabbat,
2012). In the decentralized setting of communication, nodes solve the local optimization
problems using only the locally accessible data and they update the local variables
after communicating with their one-hop neighboring nodes in order to reach the desired
consensus. A one-hop neighbor of a node is a directly connected node in the given
network/graph. In a fully distributed and decentralized ADMM, there is no need to
exchange training data between agents or nodes. Thus the inter-node communication stays
fixed and dependent on the network topology (Forero, Cano & Giannakis, 2010).
Therefore, the network topology has impact on the convergence rate of consensus-based
decentralized ADMM in the context of a specific consensus problem (França & Bento,
2017; Tavara & Schliep, 2018). This leads to the natural question whether this observation
generalizes. On one hand, solving the consensus distributed optimization in a fully
connected network, i.e., the complete graph, might lead to faster convergence and obtain
the global optimal classifier, while using a low-connected network might lead to slower
convergence and a sub-optimal classifier (Tavara & Schliep, 2018). On the other hand, the
consensus update requires inter-node communication and such communication in a fully-
connected network lead to an increase in communication complexity compared to a low-
connected network (França & Bento, 2017). This raises the question which topology is
preferable and what are the trade-offs involved in choosing a topology. We study network
properties in terms of connectivity, expansion property, and diameter of graphs. In
particular, we focus on the properties as follows; the second smallest eigenvalue of the
graph Laplacian for describing the connectivity of a graph, diameter for distinguishing
graphs that have the same average degree, but not the same longest shortest path to
traverse the graph, and finally expansion property for studying how strong the connectivity
of the given graph is and whether the graph is bipartite.

We investigate the impact network topology has on the performance of consensus and
distributed learning of Support Vector Machines (SVMs) using decentralized ADMM.
SVMs are one of the popular supervised machine learning methods that provides good
generalization performance and high accuracy for solving regression and classification
problems (Platt, 1998). In particular, we focus on answering questions as follows with
regards to the ADMM-based SVM algorithm; how much do the expansion property,
connectivity and diameter of the network influence the convergence and the training time,
how much does the homogeneous degree of a graph affect the convergence and the
training time, and which topology is preferable. We also supply an implementation making
these advances practically available.

The outline of the paper is as follows. In the next section, we briefly discuss network
properties including connectivity, expansion properties, and graph diameter. In the SVMs
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and ADMM sections, we give a brief summary of these methods. In the Material and
Method section, we describe the algorithm, datasets, network topologies implemented, and
other metrics. The results of the experiments and the analysis and discussion of the
results are presented in the Results and Discussion section and finally we conclude in the
last section.

Network properties
In this section, we briefly introduce the basics of network topology and properties.
In particular, we focus on the connectivity, expansion property, and diameter of graphs.

Connectivity of graphs
A network of distributed systems can be represented as a connected and undirectional
graph G (V, E), where V is the set of the nodes or agents and E � V � V represents
connections between the nodes; multiple connection between any two nodes are not
allowed. The network topology of a graph G is given by the corresponding adjacency
matrix A(G) = [aij]n×n, where

aij ¼ 1 forði; jÞ 2 E
0 otherwise:

�
(1)

The connectivity of a graph is related to the second smallest eigenvalue of the graph
Laplacian. The Laplacian matrix of a graph, denoted L(A), is a symmetric matrix and
L(A) = D(A) − A(G), where D(A) is a diagonal matrix in which each element of the
diagonal shows the degree of corresponding node, and A(G) is the adjacency matrix of
the graph. L(A) = [lij]n×n, where

lij ¼
�1 forði; jÞ 2 E & i 6¼ j
di for i ¼ j
0 otherwise:

8<
: (2)

Here, di is the degree of node i. The eigenvalues of L(G) satisfy

0 ¼ �1 � �2 � … � �n � 2dmax: (3)

Here, dmax is the largest degree of all nodes.
The algebraic connectivity, also known as the spectral gap of a graph network, is

measured using the second smallest eigenvalue of L(G), denoted λ2 (Donetti, Neri &
Muñoz, 2006). The first smallest eigenvalue of the Laplacian (λ1 = 0) is not interesting
since it is trivial and only shows whether the graph is connected, but not how well
the connectivity of the graph is (Chow et al., 2016). A large spectral gap refers to
non-modularity of the graph and a small spectral gap relates to a small number of edges
needed to be eliminated in order to create a bipartite graph. For details see Donetti, Neri &
Muñoz (2006).

Expansion property
The expansion property of a graph shows how a sufficiently large subset of nodes connects
to many nodes. Here, well-connectivity means that in order to make a bipartite graph out
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of the given graph, a large number of edges should be removed, thus the cut size becomes
large. The connectivity of a graph relates to the expansion property of the graph and it can
be defined by an isoperimetric or Cheeger constant (Donetti, Neri & Muñoz, 2006). The
Cheeger constant identifies whether there is a bottleneck in the graph; i.e., whether there
are two large subsets of vertices with only few edges between them. A large Cheeger
constant shows that there are many edges between any two subsets of vertices, thus no
bottleneck. In contrast, a small Cheeger constant shows that the graph has a bottleneck.
Figure 1 shows an example of a graph with bottleneck. The Cheeger constant of graph
G(V, E), denoted h(G), can be defined as follows,

hðGÞ ¼ minS�V ;jSj� jVj
2

j@Sj
jSj : (4)

Here, ∂S = {(e, e′) ∈ E : e∈ S, e′∈ V \ S}. S and V are any two large subsets of
vertices. The Cheeger constant is related to the connectivity or spectral gap by Cheeger
inequalities, i.e.,

�2

2
� hðGÞ �

ffiffiffiffiffiffiffiffiffiffiffi
2d�2:

p
(5)

Higher connectivity and spectral gap for a graph can be achieved by enhancing the
expansion properties. Graphs that have large Cheeger constants are expander graphs and
they are well-known for properties such as sparseness with high connectivity which are
preferred properties for constructing efficient and well-connected networks. In this regard,
d-regular random graphs, in which each node has the same degree d and it is connected
to d other nodes, are expanders if and only if the corresponding spectral gap is lower
bounded (Donetti, Neri & Muñoz, 2006). In the family of d-regular graphs, there is a
special type of graph known as the Ramanujan graph which is the optimal expander from
the connectivity or the spectral gap point of view (Parzanchevski, 2018). A d-regular
graph is Ramanujan if and only if jmj � 2

ffiffiffiffiffiffiffiffiffiffiffi
d � 1

p
holds for all the eigenvalues, μ, of the

Figure 1 A bottleneck on a graph. An example of a graph with a bottleneck, thus there is few edges
(links) between two subsets of vertices. Full-size DOI: 10.7717/peerj-cs.397/fig-1
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adjacency matrix of the graph. In this paper, we study the impact of Ramanujan graphs on
the performance of a parallel distributed ADMM-based SVMs.

Diameter
Measuring the diameter of graphs helps to distinguish d-regular expander graphs from
graphs with the same average degree, here, we call the latter mean-degree graphs.

Klee & Larman (1981) proved that the diameter of sparse random graphs is diam with
probability approaching 1 as n / ∞ if,

lim
n!1

ðpnÞdiam�1

n
! 0 and lim

n!1
ðpnÞdiam

n
! 1: (6)

Here n is the number of vertices and p is the probability of an edge in the graph. Suppose
we design d-regular graphs or graphs with the average degree of d, the graph would
have d � n

2
edges out of a maximal possible number of edges of the binomial coefficient

Bin(n, 2). Hence, the probability of an edge is

p ¼ d � n2
n�ðn�1Þ

2

¼ d
n� 1

: (7)

From Eqs. (6) and (7) we obtain after taking limn!þ1 n
n�1 ¼ 1

lim
n!þ1

ðpnÞðdiam�1Þ

n
¼ lim

n!þ1
dðdiam�1Þ

n
! 0 (8)

and

lim
n!þ1

ðpnÞðdiamÞ

n
¼ lim

n!þ1
dðdiamÞ

n
! þ1: (9)

Here diam and d respectively represent the diameter and the degree of the graph.
An intuition about the connection between diameter and dimension and how this is

reflected in Eqs. (8) and (9) can be gained by considering a breadth-first traversal from an
arbitrary vertex v to find its antipodal vertex w, i.e., the endpoint of the longest shortest
path from v to any w, and its distance. The diameter is the maximum over all v. If all
vertices processed add d vertices to the queue, then after diam − 1 rounds there will be
ddiam − 1, an insufficient number to assure that the antipodal vertex is among them per
Eq. (8). Note this is asymptotic as n / ∞ and the argument given by Chung and Lu
assumes p is fixed which requires d to grow as n increases, therefore it does not directly
help giving the diameter for fixed n, however it shows the general idea of the effect of an
increase in diameter. Expander graphs and in particular d-regular graphs are known as
highly connected graphs with low diameters. This distinguishes expanders from random
graphs with the same mean or average degree.

SUPPORT VECTOR MACHINES
Support Vector Machines are a supervised machine learning method to solve binary,
multi-class classification and regression problems. The original focus of SVMs was on
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binary classification to separate two classes of the training samples by finding a hyperplane
that has the maximum distance from the closets points on either sides of the hyperplane.
The parameters of the hyperplane construct the training model which is used to
predict the class label of new and unseen test samples (Vapnik, 2013). In order to find a
hyperplane with the maximum margin, SVMs solve the optimization problem of the form
as follows,

Primal :

minw;b
1
2
jjwjj2 þ C

XN
i¼1

ni

s:t: yiðwT�ðxiÞ þ bÞ � 1� ni; i ¼ 1;…;N
ni � 0; i ¼ 1;…;N:

(10)

Here, w is the weight vector of the separating hyperplane, i.e., it is orthogonal to the
hyperplane, xi is a vector of training samples, yis are the pre-defined labels of the training
samples and yi ∈ { + 1, − 1}, b is the bias parameter, ξis are the classification error and
Φ(x) is the map function. In the linear classification scenario where the training samples
are linearly separable, the map function is simply Φ(x) = x. The strength of SVMs
algorithm appears in real-world scenarios in which the training samples can not always be
classified by a linear classifier. In that case, SVMs map training data into a higher
dimensional space where data can be linearly separable (Byun & Lee, 2002). However,
mapping data into a higher dimensional space increases the complexity of the problem
known as the curse of dimensionality. To overcome this, SVMs use the kernel trick in
which instead of explicitly identifying the mapping function, it is replaced by the product
of mapping functions known as kernel functions. Some of the well-studied and -known
kernel functions are Gaussian also known as Radial Basis Function (RBF), polynomial and
sigmoid kernel functions. In order to use the kernel tricks, the primal optimization
problem should be reformulated as the dual optimization problem represented as follows,

Dual :

mina DðaÞ ¼ 1
2
aTQa� 1Ta

s:t:
PN
i¼1

yiai ¼ 0

0 � ai � C; i ¼ 1;…;N:

(11)

Here, a is Lagrangian multipliers and ai ∈ a, 1T is a vector of ones and Q = [qij]N× N,
where qij = yiyj F

T(xi)F(xj) = yiyj K(xi, xj), K is a kernel function.

ALTERNATING DIRECTION METHOD OF MULTIPLIERS
Distributed optimization methods are important approaches for solving large-scale
machine learning problems in a distributed manner. In these methods, the global
optimization problem which is formed as the sum of the local optimization problems is
solved by the cooperation of multi-agent systems. Each agent solves the local optimization
problem using its own local data and thereafter performs the updates based on the
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information received from neighboring agents through underlying communication
network (Yang et al., 2019). One of the major application is in edge computing in which
each device independently performs it own local computation and communicates with
other devices through a communication network.

Alternating Direction Method Of Multipliers (ADMM) is one of the powerful
approaches for solving an optimization problem in a distributed manner. The popularity
of ADMM comes from properties such as decomposability, the adaptability to solve
distributed optimizations in a decentralized manner, robustness, scalability and
parallelizability. Besides, the strong convergence property of ADMM regarding convex
functions along with no requirement of diffrerentioability of the objective function
describe the robustness of this method (França & Bento, 2017). For convex functions,
which is the case in SVMs, the convergence rate of ADMM is proven to be O(1/N), where
N is the number of ADMM interations (França & Bento, 2017;He & Yuan, 2012;Monteiro
& Svaiter, 2013). In practice the effect of network topology on the convergence and the
convergence rate of ADMM are poorly understood (França & Bento, 2017; Ghadimi et al.,
2012). The general optimization problem

minw f ðwÞ (12)

can be transformed into a consensus optimization problem of the form Eq. (13) and it can
be solved in a distributed and decentralized manner in which each agent performs
the computation using the local data to obtain the optimal solution w. The process
continues until it reaches the global consensus w. In the global consensus and centralized
model, all agents communicate with a central or a master agent to perform the update
of their local computations. Thus, we arrive at the distributed optimization equivalent to
Eq. (12), i.e.,

minwj

PN
j¼1

fjðwjÞ
s:t: wj � w ¼ 0; j ¼ 1;…;N:

(13)

Here, wjs are the local solution of the system and w is the global consensus variable. The
centralized distributed optimization in Eq. (13) can be solved in a decentralized manner
shown in Eq. (14) in which each agent performs local updates by only communicating with
neighboring agents through the underlying communication network. The process
continues until each agent reaches the consensus, i.e., the local optimization solution gets
close enough to the solutions of neighboring agents.

minwj

PN
j¼1

fjðwjÞ
s:t: wj � wi ¼ 0; j ¼ 1;…;N; i 2 N j:

(14)

Here,N j is the one-hop neighbor nodes of node j. In the constraints defined in Eq. (14),
local variables wjs are forced to agree across one-hop neighbors wis. For detailed
information, refer to Forero, Cano & Giannakis (2010) and Boyd et al. (2011).
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Training SVMs using ADMM
To make the exposition self-contained, we summarize some crucial steps on how ADMM
is applied to the training of SVMs. Forero, Cano & Giannakis (2010) introduced the
consensus and decentralized reformulation of Eq. (10) as

minwj;bj;nj
1
2

PJ
j¼1

jjwjjj2 þ JC
PJ
j¼1

1Tj nj

s:t: Yjð�ðXjÞwj þ 1jbjÞ � 1j � nj; j ¼ 1;…; J
nj � 0j; j ¼ 1;…; J
Gwj ¼ Gwi; j ¼ 1;…; J; i 2 N j

bj ¼ bi; j ¼ 1;…; J; i 2 N j:

(15)

Here, Xj = [xj1, …, xjNj]
T and Yj = diag([yj1, …, yjNj). To guarantee the convergence,

the optimization is performed over a connected network with J nodes represented by an
undirected graph with vertices {1, …, J}. The last two constraints in Eq. (15) are the
consensus constraints forcing local variables wjs and bjs to agree with variables across the
one-hop neighbor nodes, i.e., wi and bi. Applying ADMM on the non-linear SVM
classification requires the ADMM updates to be carried out in the Hilbert space also
known as the feature space (Rossi & Villa, 2005). The dimension of the feature space in
which the data can be linearly separable may increase to infinity. Thus the computation
and communication complexities are increased. As we mentioned in section Support
Vector Machines, the phenomenon is known as the curse of dimensionality. To reduce the
complexities, Forero, Cano & Giannakis (2010) project the consensus constraints into a
reduced rank subspace using matrix G. Here, G = [F(χ1), …, F(χL)]

T with predefined
vectors fvlgLl¼1. The size and the choice of these vectors determine the similarity between
the local classifiers. A large L leads to similar classifiers with the price of higher
computation and communication complexities. In contrast, a small L contributes to
reduced complexities with the price of dissimilar local classifiers. We consider a fixed L for
all the network topologies. For details about determining appropriate L see Forero, Cano &
Giannakis (2010). Applying ADMM to solve Eq. (15) leads to the following updates,

fwjðtþ1Þ;bjðtþ1Þ;njðtþ1Þg¼ argminfwj;bj;njgL
0ðfwjg;fbjg;fnjg;fajðtÞg;fbjðtÞgÞ (16)

ajðt þ 1Þ ¼ ajðtÞ þ h

2

X
i2N j

G½wjðt þ 1Þ � wiðt þ 1Þ� (17)

bjðt þ 1Þ ¼ bjðtÞ þ
h

2

X
i2N j

½bjðt þ 1Þ � biðt þ 1Þ�: (18)

Here, L0 is the corresponding augmented Lagrangian function and η > 0 is the
corresponding ADMM constant. The interesting point is that there is no need to explicitly
solve the ADMM iterations Eqs. (16)–(18) since wj(t)s are located in the high-dimensional
feature space. Besides the local discriminant functions can be determined using the
SVM kernels without explicitly finding wj(t)s. This is shown in Eq. (24). To do this, the
iteration Eq. (16) is solved by its dual Eq. (19). Suppose T = [χ1, …, χL]T with predefined
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vectors fvlgLl¼1, the kernel matrices K(.,.) and ~Kð:;:Þ and ~wjðtÞ ¼ GwjðtÞ, Forero, Cano &
Giannakis (2010) transformed the ADMM iterations Eqs. (16)–(18) into

λjðt þ 1Þ ¼ argmaxλj:0j	λj	JC1j � 0:5λTj YjðKðXj;XjÞ � ~KðXj;XjÞ þ
1j1Tj
2hjbjj

ÞYjλj

þ1Tj λj � ð~fTj ðtÞðKðT;XjÞ � ~KðT;XjÞ þ hjðtÞ 1T

2hjbjj
ÞYjλj;

(19)

~wjðt þ 1Þ ¼ ½KðT;XjÞ � ~KðT;XjÞ�Yjλjðt þ 1Þ � ½KðT;TÞ � ~KðT;TÞ�~f jðtÞ; (20)

bjðt þ 1Þ ¼ 1
2hjbjj

½1Tj Yjλjðt þ 1Þ � hjðtÞ�; (21)

ajðt þ 1Þ ¼ ajðtÞ þ h

2

X
i2N j

½~wjðt þ 1Þ � ~wiðt þ 1Þ�; (22)

bjðt þ 1Þ ¼ bjðtÞ þ
h

2

X
i2N j

½bjðt þ 1Þ � biðt þ 1Þ�: (23)

Here, λjs are the Lagrange multipliers. Consequently the local discriminant functions
are computed using the kernel trick as follows,

gðtÞj ðxÞ ¼
XNj

n¼1

ajnðtÞKðx; xjnÞ þ
XL
l¼1

cjlðtÞKðx; xlÞ þ bjðtÞ: (24)

For details about the theoretical analysis and the convergence proof see Forero, Cano &
Giannakis (2010) and the provided appendices.

MATERIAL AND METHOD
Algorithm
The ADMM-based SVMs algorithm, algorithm 3, given by Forero, Cano & Giannakis
(2010) served as a base of our C++ implementation for solving non-linear classification
problems in this paper. The iterations and the communication process in the algorithm are
summarized and illustrated in Fig. 2. As shown in subplot (A), every node j solves the
local optimization problem and computes λj(t + 1) which is used to obtain Vj(t + 1)
and then Vj(t + 1) is broadcasted to all the one-hop neighboring nodes, here we used
augmented vector Vj ¼ ½wT

j ; bj�T and the neighboring nodes of node j are {j1, j2, j3, j4}.
As shown in subplot (B), once every node j receives and gathers the corresponding V
from all the neighbors, it computes aj(t + 1). The advantage of the aforementioned
communication is that in the broadcasting phase, every node j sends a message of fixed size
L to the neighboring nodes per iteration, here L is the size of Vj. Similarly in the gathering
phase, every node receives messages of the same size from the neighbors. Note λj(t + 1)
and aj(t + 1) are not exchanged among the nodes.
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To the best of our knowledge this algorithm is the state-of-the-art ADMM with
decentralized and distributed learning of SVMs. Our implementation can handle solving
linear and non-linear classification problems with the focus on decentralized and
distributed computing to reach consensus.

Datasets
To conduct numerical experiments, we used a biological dataset, micro RNAs precursors
(pre-miRNAs) gathered by Lopes, Schliep & De Carvalho (2016). They created the dataset
by extracting 85 features describing sequence and structural aspects of pre-miRNAs
sequences (positive class) and hairpin like sequences (negative class). The other datasets
are from public data repositories gathered in LIBSVM Data (Chang & Lin, 2011) and UCI
(Dua & Graff, 2017). Table 1 shows the datasets used in the experiments and the
corresponding number of training instances and features. The format of the datasets that
we used is of the format of LIBSVM. Here, we briefly describe each dataset. Susy
comprises two classes, one for signal processes which produce supersymmetric particles,
and one for background processes which do not. The dataset has 18 distinct features or
attributes, the first eight features represent kinematic properties measured by particle
detectors. The next 10 features are functions of the first features derived by physicists to
discriminate between the two classes (Baldi, Sadowski & Whiteson, 2014). Higgs
comprises two classes, signal processes that produce Higgs bosons and background
processes that do not. From 28 kinematic features, the first 21 features represent properties
measured by particle detectors. The last 7 features are the functions of the first 21 features
derived by physicists to discriminate between two classes (Baldi, Sadowski & Whiteson,
2014). Covtype is used to predict the forest cover type from cartographic variables. A total
of 54 features in the dataset consisted of elevation, aspect, slope and other information

A B

Figure 2 Communication including the (A) broadcasting and (B) gathering in the ADMM-based
SVMs. White circles are one-hop neighbors to node j and black circles are non-neighbors.

Full-size DOI: 10.7717/peerj-cs.397/fig-2
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derived from spatial data obtained from geographic information system and US forest
service information (Dua & Graff, 2017; Blackard & Dean, 1999). SkinNonSkin is skin
segmentation dataset consisted of skin and non-skin classes. The dataset is generated from
skin textures of face images. Three features in the dataset represent age groups (young,
middle and old), race groups (white, black and Asian), and genders (Dua & Graff, 2017;
Bhatt & Dhall, 2012). Cod-rna is used to find non-coding RNAs in sequenced genomes
to understand/discover candidate drug targets. The features are related to a common
structure of two RNA sequences. The first feature represents the value computed by the
Dynalign algorithm, the second feature is the length of the shorter sequence, and the
rest represents nucleotide and dinucleotide frequencies of the sequences (Uzilov, Keegan &
Mathews, 2006). Seismic is used for vehicle type classification using seismic signals sensed
by the sensors. The features are extracted from the sensor data including time series data
observed at each sensor and sensor’s microphones (Duarte & Hu, 2004).

Network topology
We constructed four groups of graphs. The first group comprises random d-regular
expander graphs, in particular Ramanujan graphs. We followed the conditions described
in the Expansion Property section to construct Ramanujan graphs. The second group of
the graphs consists of random graphs with d-mean degree, i.e., each node of the
graph connects in average to the d number of nodes. Note in this group of the graphs, the
degree of nodes may not be the same. The third group consists of the complete graphs
in which each node has degree N − 1 and N is the number of graph nodes. Finally, the
fourth group consists of line, ring, 2-D torus, and star graphs representing some of the
common modern network topologies. We constructed aforementioned type of the graphs
with different degrees and/or number of graph nodes depending on the size of training
instances. For training datasets with a smaller number of instances, we generated
graphs with low degrees and for those of with larger instances, we created graphs with
higher degrees.

Binary classification and parallel computation
In this article, we focused on binary classifications since multi-class classifications can be
transformed into several binary classifications using the one-vs.-all or the one-vs.-one

Table 1 Dataset information.

Datasets Training points Features

Susy 700,000 18

Higgs 500,000 28

Covtype 480,960 54

SkinNonSkin 346,800 3

Cod-rna 180,960 8

Seismic 97,080 50

Pre-miRNAs 16,080 85
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techniques. We used the Message Passing Interface (MPI) (Barker, 2015) for
communication between nodes and mapped the graph nodes into the distributed cores.

Parameter tuning
The classification accuracy of a distributed ADMM-based SVM is influenced by important
parameters of the algorithm, i.e., γ, J, C and ρ. γ is the parameter of RBF kernel, J is
the number of nodes/agents, C is the regularizer that has the duty of balancing the
misclassification error, and ρ is the ADMM parameter. We tune the parameters using a
grid search with cross-validation. In case we get poor accuracy, we apply standardizing and
normalizing techniques.

Evaluation metrics
We evaluate the results using the standard statistics, i.e., accuracy metrics, true
positive/negative rate, and positive/negative predictive rate (Tharwat, 2020). To better
understand the impact of network topology on the performance of the algorithm,
we measure iterations, total time, and scaled communication time during training. Besides,
we measure total time, maximum iterations of the inner optimization solver, and time
versus errors for mean-degree and regular graphs.

RESULTS AND DISCUSSION
In this section, we briefly describe the findings and insights from the results. We highlight
some of the results and a more comprehensive view is presented in the supplement.

Connectivity and expansion properties
To obtain a better insight into the graph connectivity, we constructed 100 expander
(Ramanujan) and mean-degree graphs with the given degrees and the number of nodes.
As a base-line, we constructed complete graphs. Figure 3A shows the connectivity of
100 random d-regular and mean-degree graphs for N = 120 and d = {10, 20, 30, 40, 50, 60,
70, 80, 90, 100 } along with the corresponding complete graph. Figure 3B shows the
connectivity of the same types of graphs for N = 240 and d = {90, 100, 110, 120, 130, 140,

BA

Figure 3 Connectivity of the 100 regular, 100 mean-degree and complete graphs. (A) for 120 graph
nodes and (B) for 240 graph nodes. Full-size DOI: 10.7717/peerj-cs.397/fig-3
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150, 160, 170, 180, 190, 200}. As Figs. 3A and 3B show, the connectivity of mean-degree
graphs is similar or lower than the connectivity of the regular graphs for the same
degree and the number of nodes, however the variation of connectivity is higher in the
mean-degree graphs than in the regular graphs. As expected, the complete graphs in both
figures have the highest connectivity.

To study the connectivity for networks similar to the modern network topologies, we
constructed expander and mean-degree graphs for lower degrees d = {3, 6, 12, 24, 48, 96}.
For a fair comparison with a similar scale for the connectivity, we used the second
smallest eigenvalue of the normalized Laplacian matrix. Figure 4 shows the box plots

BA
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Figure 4 Connectivity of the 100 regular and 100 mean-degree graphs with 240 graph nodes. (A) for
degree 3, (B) for degree 6, (C) for degree 12, (D) for degree 24, (E) for degree 48, and (F) for degree 96.

Full-size DOI: 10.7717/peerj-cs.397/fig-4

Tavara and Schliep (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.397 13/26

http://dx.doi.org/10.7717/peerj-cs.397/fig-4
http://dx.doi.org/10.7717/peerj-cs.397
https://peerj.com/computer-science/


for the connectivity of 100 graphs constructed for the regular and mean-degree groups.
In each sub-plot, the upper and lower horizontal lines respectively represent the maximum
and minimum connectivity obtained for 100 graphs. The orange horizontal lines in the
body of the sub-plots represent the median of the connectivity regarding the regular and
mean-degree graphs constructed. It is visible that, the median and minimum connectivity
of mean-degree graphs are lower than that of the regular graphs. The maximum
connectivity of mean-degree graphs, except for degree 24, is lower than that of the regular
graphs. Besides, the variation in the connectivity for the mean-degree graphs is higher than
that of the regular graphs. This suggests that the connectivity of a mean-degree graph
will with a higher probability be lower than that of a random regular/expander graph with
the same average degree. These observations are more visible for graphs with lower
degrees, i.e., d = {3, 6, 12}. For the higher degrees, i.e., d = {24, 48, 96}, the variation in the
connectivity is reduced. Hence, the connectivity of mean-degree and regular graphs gets
closer as the degree increases towards the complete graphs.

Diameter
We complement our analysis by exploring the diameters of the different networks
constructed. We generated 5,000 random d-regular and d-mean degree graphs for d = {3, 6,
12, 24, 48, 96}, for which we computed the diameters. Results from prior work by Ludu
(2016) suggest that the diameters of the random regular graphs can be approximated by

diamðGÞ
logd�1ðnÞ þ logd�1ðlnðnÞÞ: (25)

Here n is the number of vertices and d is the degree of graph G. Our results confirm
roughly comparable diameters approximation for 5000 random regular graphs, i.e.,
diam(G) ± 1. However, the diameter for random mean-degree graphs varies a lot more
than those for random regular graphs, i.e., 2×(diam(G) ± 1). In the Diameter section,
page 4, we discussed the general idea of the effect of an increase in diameter. Based on the
results, diameters of mean-degree graphs are worse than those of regular graphs. This
might suggest that the inhomogeneity of graph degrees may impact the longest shortest
path of the graph. The difference between the diameters of regular and mean-degree
graphs decreases as the connectivity and the degree of nodes increase from 96 all the way
towards complete graphs.

The diameters and the connectivity of the random mean-degree graphs are shown in
Fig. 5. From Fig. 5A, it is visible that the variation of diameters for lower degree
graphs, d = {3, 6} is higher than those for the higher degree graphs, d = {12, 24, 48, 96}.
This might suggest that the diameter of a random mean-degree graph for d = {3, 6} has
a lower probability to reach its close-to-optimal diameter than that of a higher mean-
degree graph. The optimal diameter is the diameter with the lowest possible value.
The diameter improves as the degree of graphs increases. The variation in diameters
dampens as the degree of graphs increases. The same trend is valid for the connectivity
in Fig. 5B, i.e., the variation of connectivity for lower degree graphs is higher than that
for the higher degree graphs. As expected, the connectivity enhances as the degree of
graphs increases. In general, this suggests that for lower degrees, a random mean-degree
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graph has a lower probability to reach a comparable connectivity and diameter of a
random regular graph given the same average degree.

Numerical experiments
To study the impact of network topology on the performance of ADMM-based SVM,
we randomly chose d-regular and d-mean-degree graphs constructed for the given degrees
and nodes. Graphs nodes are mapped into distributed computing nodes on the Chalmers
cluster, Hebbe. “The Hebbe cluster is built on Intel 2650v3 CPU’s. The system consists
of in total 315 compute nodes (total of 6,300 cores) with 26 TiB of RAM and 6 GPUs”
(C3SESupport, 2020).

Effect of connectivity increase
We studied the effect of increase of connectivity on the performance of the algorithm using
d-regular and complete graphs. In the Connectivity and Expansion Properties section,
page 9, we discussed that increase in degree leads to higher connectivity. Here, the results
confirm whether it holds and what the corresponding consequences are. Figure 6 shows
the number of iterations, training time and communication time per iteration for Susy,
Higgs, Covtype and SkinNonSkin datasets using regular and complete graphs. Here, 240
graph nodes are mapped into 240 computing cores and d = {100, 110, 120, 130, 140, 150,
160, 170, 180, 190, 200, 210, 239 }.

The results shown by subplots (A) in Fig. 6 and those in the supplement suggest a
similar trend for the regular and complete graphs and that is that the number of iterations
decreases as the degree of graphs becomes larger. The most visible part of the trend for
each dataset is as follows; for Susy between 110 and 180 degree, for Higgs between 100
and 190, for Covtype between 100 and 210 degree, and for SkinNonSkin between 110
and 140 degree. Note the trend of decreasing the number of iterations saturates as the
degree of the nodes gets closer to the total number of graph node; i.e., the graph gets closer
to being the complete graph. In some cases, the number of iterations until convergence
behaves adversely and increases for the complete graphs due to the need to reach

BA

Figure 5 Diameters and connectivity of 5,000 d-mean-degree graphs generated using 240 graph
nodes and d = {3, 6, 12, 24, 48, 96}. (A) The diameters of the graphs and (B) the connectivity of the
graphs. Full-size DOI: 10.7717/peerj-cs.397/fig-5
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consensus between many nodes. For instance, this happens for Higgs in Fig. 6A and for
Seismic in Fig. 2A in the supplement. Subplots (B) in Fig. 6 and all the figures in
the supplement represent the training time in which the training gets faster as the degree of
graphs becomes larger, i.e., the ADMM-based SVMs require fewer iterations for the higher
degree of graphs to reach the target or given accuracy. This is most noticeable between
100 and 190 degree for Higgs, between 110 and 180 for SkinNonSkin, between 110 and
160 for Susy and between 100 and 150 for Covtype. As the degrees get closer to the
number of nodes the training time eventually plateaus. This is due to the increasing
communication time since many nodes need to reach consensus as the degrees increase.
This is shown in subplots (C) in Fig. 6 and all the figures in the supplement in which
the communication time increases as the degree of graphs becomes larger. This is most
noticeable for SkinNonSkin between 110 and 239 degree, for Higgs between 100 and
200 degree, for Susy between 100 and 200, and for Covtype between 100 and 239.
The results shown by subplots (C) suggest that the communication overhead increases as
the graph gets closer to being the complete graph even though the number of iterations
decreases.
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Figure 6 Iterations, total training time, and scaled communication time for Higgs, SkinNonSkin,
Susy and Covtype using regular and complete graphs. (A) Iterations for different degrees,
(B) Training time for different degrees and (C) Scaled communication time during training.

Full-size DOI: 10.7717/peerj-cs.397/fig-6
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Effect of homogeneous degree distribution
To study the effect of homogeneous degrees of graphs/networks on the performance of
ADMM-based SVMs, we trained the datasets using mean-degree graphs and compared
the results to regular graphs with the same given degrees and some of the commonmodern
network topologies represented with line, ring, star, and 2-D torus graphs. We study
the total training time, maximum number of inner solver iterations to solve the
optimization problem at each iteration of ADMM, the elapsed time vs. the difference
between local and neighboring classifiers, and finally the elapsed time vs. the difference
between the local classifier and the average of all classifiers for all type of graphs
constructed. Here, the degrees for mean-degree and random regular graphs are d = {3, 4, 6,
12, 24, 48, 96}. We split the plots of the result for some of the degrees due to dissimilarity
in the scales of y-axis. The results are as follows; Figs. 7–9 respectively represent
the results for Higgs, Covtype and Susy regarding line, ring, star, 2-D torus graphs,
mean-degree and regular graphs with degree d = {3, 4, 6, 12}. Figures 10 and 11

BA
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Figure 7 Total time, maximum iterations of the inner optimization solver, and time vs. e1 and e2 for
Higgs using line, ring, 2DTorus, d-mean-degree and d-regular graphs where d = {3, 4, 6, 12}.
(A) Total elapsed time of the training phase, (B) Maximum iteration in the inner optimization solver,
(C) Difference between the result of node j and its neighbors, time vs. e1 and (D) Difference between the
result of node j and the average results, time vs. e2. Full-size DOI: 10.7717/peerj-cs.397/fig-7
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respectivelty represent the results for Higgs and Covtype regarding mean-degree and
regular graphs with d = {24, 48, 96}. Note, in some cases, we only consider a limited
number of ADMM iterations due to slow training pace and to save CPU hours on the
distributed cluster, i.e., we choose 7 ADMM iterations for Higgs using line and ring graphs
and 8 ADMM iterations for Covtype using 3 and 6 mean-degree graphs and 4 iterations
for line and ring graphs.

Subplots (A) in Figs. 7–11 show that the total training time increases as we increase the
number of ADMM iterations for all the graphs constructed. However the gap between
the total training time of regular and mean-degree graphs in most cases is large. In subplots
7A–9A, except for degree 3, the gap is large for all the degrees shown. In Figs. 10A and 11A,
the most visible gap belongs to degree 48 and 96. In subplots 7A–9, the total training
time regarding 2-D torus graph is worse or similar to that of the 4-regular graph and that is
better than in the 4-mean-degree graph. Results of subplot (A) suggest that the
homogeneity of degrees affects the total training time. Note the small gaps for some of the
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Figure 8 Total time, maximum iterations of the inner optimization solver, and time vs. e1 and e2 for
Covtype using line, ring, 2DTorus, d-mean-degree and d-regular graphs where d = {3,4,6,12}.
(A) Total elapsed time of the training phase, (B) Maximum iteration in the inner optimization solver,
(C) Difference between the result of node j and its neighbors, time vs. e1 and (D) Difference between the
result of node j and the average results, time vs. e2. Full-size DOI: 10.7717/peerj-cs.397/fig-8
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degrees in subplots (A) can be due to the similarity between the connectivity of the random
regular and mean-degree graphs constructed since the graphs are randomly chosen.

Subplots (B) in Figs. 7–11 represent the maximum number of iterations from solving
local SVMs sub-problems on the distributed computing cores. We used an open-source
nonlinear optimization (NLopt) (Johnson, 2019) library as the inner optimization solver
to solve the local optimization sub-problems. The results in subplots (B), except for the
12-mean-degree graph, show a trend of slight decrease of the maximum of inner iterations
while the ADMM iterations increase. Comparing the results of mean-degree graphs with
regular graphs in subplots (B) shows that in most cases there is a large gap between the
maximum number of iterations for the inner solver. This implies that for regular graphs
the local optimization subproblems are solved in fewer iterations compared with those
of mean-degree graphs. This is most visible for degree d = {4, 6, 12} in subplots 7B-9B, for
degree 24 in subplot 10B, and for degree 96 in subplot 11B. For the ring graph the
optimization sub-problems are solved with the same or fewer iterations than those of the
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Figure 9 Total time, maximum iterations of the inner optimization solver, and time vs. e1 and e2 for
Susy using line, ring, 2DTorus, d-mean-degree and d-regular graphs where d = {3, 4, 6, 12}. (A) Total
elapsed time of the training phase, (B) Maximum iteration in the inner optimization solver, (C) Differ-
ence between the result of node j and its neighbors, time vs. e1 and (D) Difference between the result of
node j and the average results, time vs. e2. Full-size DOI: 10.7717/peerj-cs.397/fig-9
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line graph. The results shown by subplots (B) might suggest that for regular graphs the
consensus reaches faster than that of for mean-degree graphs which leads to a fewer
number of inner optimization iterations. Besides, the maximum number of iterations for
mean-degree graphs varies more than that of regular graphs. The maximum iterations
regarding the 2-D torus graph stay very close to the maximum iterations regarding the 4-
regular graph and that is better than that of the 4-mean-degree graph.

Subplots (C) in Figs. 7–11 show the e1 as the training proceeds. Here, e1 represents the
difference between the parameters of the local and neighboring classifiers. The results
shown by all the subplots (C) confirm that the error decreases as the training proceeds for
all the graphs. Comparing the results of regular with mean-degree graphs shows a clear
shift of the plots, i.e., regular graphs reach the lower errors faster than mean-degree graphs.
This is most visible for all the degrees except for degree 3 in which the gap between
the errors in the mean-degree and regular graphs are minor. The error for line graphs
is similar or slightly less than that of the ring graphs, i.e., it seems that for the line graph the
local classifiers are more similar to the neighboring classifiers compared to the ring graph.

A B
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Figure 10 Total time, maximum iterations of the inner optimization solver, and time vs. e1 and e2
for Higgs using d-mean-degree and d-regular graphs where d = {24, 48, 96}. (A) Total elapsed time of
the training phase, (B) Maximum iteration in the inner optimization solver, (C) Difference between the
result of node j and its neighbors, time vs. e1 and (D) Difference between the result of node j and the
average results, time vs. e2. Full-size DOI: 10.7717/peerj-cs.397/fig-10
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This might suggest that nodes reach faster consensus with their neighbors when the
number of neighbor nodes is few. For 2-D torus graphs results are as follows; in Fig. 7C,
the error is less than that of the 4-regular graph until the 7th ADMM iteration and as
the ADMM iteration proceeds the error gets worse than that of the 4-regular graph.
In Figs. 8C and 9C, the error is slightly better than that of 4-regular graph. Note for degrees
in which the gap between the results of regular and mean-degree graphs are not noticeable
it turns out the connectivity of those graphs are similar.

Subplots (D) in Figs. 7–11 show the e2 as the training proceeds. Here, e2 represents the
difference between the parameters of the local and global classifiers. To obtain the
global classifier, we calculate the average of all the classifiers. The results shown by all the
subplots (D) confirm that the error decreases as the training proceeds for all the graphs,
except for the 2-D torus in Fig. 7D. Comparing the results of regular with mean-degree
graphs shows a clear shift of the plots, i.e., regular graphs reach the lower errors
faster than mean-degree graphs. The most notable trend is as follows; the gap between the
errors in the regular and mean degree graphs is the largest for degree d = {3, 6, 12} in
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Figure 11 Total time, maximum iterations of the inner optimization solver, and time vs. e1 and e2
for Covtype using d-mean-degree and d-regular graphs where d = {24, 48, 96}. (A) Total elapsed time
of the training phase, (B) Maximum iteration in the inner optimization solver, (C) Difference between the
result of node j and its neighbors, time vs. e1 and (D) Difference between the result of node j and the
average results, time vs. e2. Full-size DOI: 10.7717/peerj-cs.397/fig-11
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Figs. 7D and 8D, for degree d = {3, 4, 6} in Fig. 9D, for degree 48 in Fig. 10D, and finally for
degree 24 and 96 in Fig. 11D. For degrees in which the gap between the results of regular
and mean-degree graphs are not noticeable it turns out the connectivity of those graphs
are similar. Unlike in subplots (C), the results demonstrated in subplots (D) show that,
except for Fig. 9D, the gap between the errors of the line and ring graphs is major, i.e., the
difference between the local classifiers and the global classifier is large for line graphs
compare to ring graphs. By comparing the results of subplots (C) and (D), we observe
that although each node might reach faster consensus with its neighboring node using line
graph compared to the ring graph, it might not reach the global consensus faster in
that setting.

Comparisons of the results shown by all the subplots reveals that the magnitude of the
gaps in subplots (A) are in line with the magnitude of the gaps in subplots (C) and (D) for
the given degree. This is visible in Fig. 7 in which the large gaps between the results of
the regular and mean-degree graphs in subplots (A), (C), and (D) belong to degree 6 and
12. Likewise, in most cases this is valid for the adverse cases, i.e., the smallest gaps
between the results of regular and mean-degree graphs in subplots (A) matches of those in
subplots (C) and (D) for the given degree. In Fig. 10, the smallest gap belongs to degree
24 and 96 in subplot (A) which is also the case in subpot (C) and (D). Comparison
of subplots (C) and (D) shows that even if the gap between local classifiers and the
neighboring classifiers is minor it does not mean that the local classifiers are close to the
global classifier. This is notable for ring and line graphs.

In the next part of the experiments, we proceed the training using graphs with
higher degrees, d = {100, 110, 120, 130, 140, 150, 160, 170, 190, 200}. It seems that the
random mean-degree graphs have similar or not significantly different behavior than the
random regular graphs for higher degrees since when the degrees become larger the mean
degree graphs become very similar to the regular graph. The corresponding results are
shown in Figs. 4 and 5 in the supplement. The results confirm that the number of iterations
decreases as the degree of graphs increase even though there is no significant differences
between regular and mean-degree graphs. Besides, the communication time increases
as the graph degree increases this is due to reach the consensus with many nodes.

Finally, comparing the total training time between the low and high degree graphs
reveals that the total elapsed time significantly increases for the lower degree graphs
than that of the higher degree graphs given the fixed number of ADMM iterations.

We exclude all the results regarding the star graph from subplots (A)–(D) due to totally
different scale of the results. For all the aforementioned metrics, namely total elapsed time,
maximum iteration in the inner solver, e1 and e2, the star graph performed much
worse than those of all the graphs constructed.

Further error analysis
We study the difference between the results of each node Vj and the average results of
the neighboring nodes Vi, i.e., |Vi − Vj|. Figures 6 and 7 in the supplement show that
increasing the degree leads to having smaller errors. This suggests that for higher degree
graphs the result of each node gets closer to the results of its neighboring nodes even
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though each node communicates with many nodes to reach the consensus for the given
ADMM iteration. Boxplots in Figs. 6 and 7 in the supplement show a clear shift of
decreasing error from left to right as the graph degree increases. This shift is visible in all
the subplots. Although the median lines, the orange horizontal line in the body of boxplots,
follow the shift, the decreasing trend eventually plateaus as the graphs gets closer to
the complete graph. In line with the results in the previous sections, this might suggest that
to get the error reduced, it is not necessary to use the complete graphs or the fully
connected networks.

CONCLUSION
The results from the previous section suggest that the performance of a distributed
ADMM-based SVMs algorithm in terms of the number of iterations improves as the
degree of graphs becomes larger, i.e., in the group of expander graphs with the fixed
number of nodes, the graphs with higher connectivity exhibit accelerated convergence and
the complete graphs outperform the expanders. Although this is expected, it turns out
that increasing the connectivity of graphs all the way towards complete graphs in some
cases increase the number of iterations. This can be explained with the increasing number
of neighbors for each node and the need for each node to reach consensus with all
neighbors, i.e., increasing the degree of graphs from 200 to 239 means that each node
should reach the agreement with 239 instead of 200 neighbors, which, in turn increases
the number of iterations needed and the communication time. This suggests that in order
to achieve the sufficient level of convergence, it may not be needed to implement complete
graphs as we used as our baseline and the expander graphs with lower connectivity will
do. Replacing complete graphs as the underlying networks with expander graphs with
lower degree is preferred in edge computing since lower degrees mean less communication
of each node with neighbors which is preferred in the applications of edge computing with
preserving privacy.

The next interesting point is that in the group of mean degree graphs, the second
smallest eigenvalue of the Laplacian matrix representing the connectivity of the graph has
higher variation compared to expander graphs. As shown in Fig. 3A random d-mean
degree graph may have better connectivity than a random d′ mean degree graph even if
d < d′, but this is not the case for random regular graphs. This describes the inconsistent
performance of the algorithm using mean degree graphs in the Results section. Even
though the difference in the degree distribution between the ring and line graphs is minor,
the ring graphs outperform the line graphs. These findings support the notion that the
homogeneity of degrees affects the performance of the algorithm. From this standpoint,
how the nodes are connected is also influence the performance. This may be the reason
why performance on a 2-D torus was worse compared to a 4-regular graph in some
circumstances.

Another promising finding was that the diameter of mean degree graphs is roughly
twice larger than those in random regular graphs. Note we used the same procedure of
constructing random mean degree graphs as random regular graphs except the extra
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conditions to obtain the expander graphs, i.e., the mean degree graphs used in the
experiments were the base for generating random regular/expander graphs constructed.
The comparisons of the graphs revealed that to reach the consensus, the communication
between the nodes in the mean degree graphs is not as efficient as that in the regular
graphs. This suggests that the expander graphs are a good candidate to be used in a
network-based distributed algorithm.
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