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Abstract

Text-based programming remains a challenge to novice programmers in all
programming domains, including robotics. The use of robots is gaining
considerable traction in several domains since robots are capable of assisting
humans in repetitive and hazardous tasks. Soon robots will commonly be used
in tasks-of-everyday-life in homes, hotels, airports, and museums. However,
robotic missions have been either predefined or programmed using low-level
APIs, making mission specification task-specific and error-prone. To harness
the full potential of robots, it must be possible to define missions for specific
application domains as needed. The specification of missions of robotic
applications should be performed via easy-to-use, accessible ways, and at
the same time, be accurate and unambiguous. Simplicity and flexibility in
programming such robots are important since end-users come from diverse
domains, not necessarily with sufficient programming knowledge.

The main objective of this licentiate thesis is to empirically understand the
state-of-the-art in languages and tools used for specifying robot missions by
end-users. The findings will form the basis for interventions in developing
future languages for end-user robot programming.

During the empirical study, DSLs for robot mission specification were
analyzed through published literature, their websites, user manuals, sample
missions, and using the languages to specify missions for supported robots.

After extracting data from 30 environments, 133 features were identified.
A feature matrix mapping the features to the environments was developed
with a feature model for robotic mission specification DSLs.

Our results show that most end-user facing environments exist in the
education domain for teaching novice programmers and STEM subjects. Most
of the visual languages are developed using Blockly and Scratch libraries.
The end-user domain abstraction needs more work since most of the visual
environments abstract robotic and programming language concepts but not
end-user concepts. In future works, it is important to focus on the development
of reusable libraries for end-user concepts; and further, explore how end-
user facing environments can be adapted for novice programmers to learn
general programming skills and robot programming in low resource settings
in developing countries, like Uganda.

Keywords

Mobile robots, Mission specifications, Robot missions, Robotic IDEs, Domain
specific languages, End-user programming.
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Research Contribution

Paper A: overview of robot programming languages, IDEs, and DSLs. From
this study, it was observed that robot software consists of control software
and robot mission software. The control software is programmed once and
embedded into the robot hardware. Mission software helps in programming
robot missions based on the user needs, which change from time to time.
Robots can be programmed using open source IDEs, which support generic
programming languages such as C/C++ and python. Programming missions
are usually done using DSLs with abstraction support for robotic and end-user
domains. Robotic IDEs offer facilities such as libraries and code editors.

Paper B: State-of-the-art—this paper extracts features from selected envi-
ronments. The features are presented as a feature model to depict what a
typical mission specification environment should have. The paper further
demonstrates how these features can be used by end-users such as teachers,
robot manufacturers, and language engineers.

Paper C: The paper extends the FLYAQ environment for use in the agri-
culture domain to spray and monitor crops on the farm. This demonstrates
how the environment can be extended to various user domains. However, the
extensions require qualified and skilled software and robotic engineers.
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Chapter 1

Introduction

This chapter presents an overview of the licentiate thesis, covering the general
introduction to the research area, background of the study, research questions,
and the methodology.

1.1 Introduction

Autonomous robots are increasingly replacing humans in repetitive, laborious,
or dangerous tasks and doing so often by interacting with humans, the environ-
ment, or other robots. According to H2020 Robotics Multi-Annual Roadmap
(MAR),1 inexpensive robots are becoming widely available, including ground
robots, multicopters and robotic arms. Also, according to a 2019 press release2

at the International Federation of Robotics, personal service robots are ex-
pected to exceed 61.1 million units in 2022, and sales for agricultural robots are
projected to grow by 50% each year. To use robots in activities-of-everyday-life,
they must be of general-purpose—can execute several tasks. This will allow
robots to be deployed in a large variety of contexts, leading to the presence of
robots in everyday life activities in many domains, including manufacturing,
healthcare, agriculture, civil, and logistics.

Typically robots are programmed by manufacturers, robotic engineers, or
software engineers. This involves programming a control system that defines
how components of a robot system work as well as specifies missions to be
executed by the robot. A robotic mission is a high-level behavior description
of what the robot must perform [1]. As such, a mission coordinates the skills
of robots which are translated to lower-level behaviors. Several approaches
have been proposed for mission specifications. These can be grouped into
two categories: formal and computation tree logic [1–7] and robotics-specific
DSLs [8–13]. Formal and computation tree logic, such as Linear-Temporal
Logic, require low-level and step-by-step descriptions of missions. Robotic
specific domain-specific languages (DSLs) require more high-level mission
specifications. The use of formal logic approaches is not only tedious to

1https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.

pdf
2https://ifr.org/ifr-press-releases/news/service-robots-global-sales-value-reaches-12.

9-billion-usd
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2 CHAPTER 1. INTRODUCTION

software developers with no background in formal logic but prohibitive to
non-programmers [14, 15].

For robots to make better sense in activities-of-everyday-life, it is apparent
that the end-users specify such missions. The end-users are experts in their
domains, such as domestic workers, healthcare professions, teachers, and
farmers. Involving end-users in mission specification will eliminate the need
to reprogram a robot whenever a new mission to be executed is determined. It
will also give flexibility in using general-purpose robots, with several actuators
for executing various tasks. The end-users know how the tasks are executed
and the outcomes of tasks. However, they may not necessarily know how to
program a robot to execute such tasks on their behalf. Weintrop et al. [16] define
end-user robot programming as writing programs for immediate and specific
tasks, which the robot(s) can execute as opposed to writing general-purpose
programs for others to modify.

Researchers and roboticists have invested substantial effort into achieving
end-user-oriented programming environments for robots [13, 16–19]. The end-
user programming systems are often either manual or automated. Manual end-
user programming systems provide a textual or visual notation for which the
end-user has total control over the programming instruction. The automated
programming systems hide the programming language from the end-user, for
instance, learning systems, gesture following robots, and programming by
demonstration. This research focuses on manual programming systems, with
a particular interest in visual programming systems, with DSLs for end-users.
With full access to programming instructions in the DSLs, the end-users can
achieve flexibility in specifying robot tasks for activities-of-everyday-life.

1.2 Background

This section provides a background to the main topics related to programming
robots, such as programming languages and robot programming (Sect. 1.2.1),
integrated development environments (Sect. 1.2.2) and DSLs (Sect. 1.2.3). The
section ends with motivation for studying DSLs as the flexible alternative for
specifying robot missions by end-users.

1.2.1 Robot programming

To ease developers in the development task, many middleware frameworks
have been proposed. These middleware frameworks provide an abstraction
layer between the hardware and application layers, largely hiding the inherent
complexity and heterogeneity of robotics hardware. Furthermore, middleware
frameworks typically support inter-robot communication. Some companies re-
lease middleware and software development kits (SDKs) (e.g., Choreographe3),
but they tend to be robot-specific and therefore their functionality and flexibility
is limited. Nevertheless, there exists a variety of middleware frameworks
whose goal is to be robot agnostic. Examples of those middleware frameworks
are the Robot Operating System (ROS) [20], ROS2 [21], the Open Robot Control

3http://doc.aldebaran.com/2-4/software/choregraphe/choregraphe overview.html
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Software (OROCOS) [22], Yet Another Robot Platform (Yarp) [23], and Smart-
Soft [24]. Among the mentioned robot-agnostic middleware frameworks, ROS
is considered the de facto standard for robot application development, officially
supporting more than 140 robots (including ground mobile robots, drones,
cars, and humanoids) [25]. Examples of repositories from robotics companies
that support the integration of ROS are the one from Kuka4, Aldebaran and
Softbank Robotics5.

Using ROS, robotic applications are modeled as networks of nodes. Each
node represents processes needed to perform specific functionalities, like
controlling an actuator, parsing and publishing sensor data, or running a
planning algorithm. ROS supports mainly Python and C++ programming
languages as languages to write these nodes, but there are also existing libraries
in Lisp, Java, and Lua.

Programming robots is broadly divided into two: the control software,
written during robot manufacturing, and embedded into the robot, and
end-user software for specifying missions which the robot executes. As the
control software is written once, the end-user software may keep changing
depending on the type of mission the robot should execute. Control software
are usually written using hardware-description languages such as Verilog or
VHDL to program the low-level electronics of robots [26, 27]. A commonly
used microcontroller for robots is Arduino6 [28]. While end-user software are
written using DSLs as elaborated in Sect. 1.2.3.

1.2.2 Integrated Development Environments (IDEs)

To develop software applications, developers usually rely on integrated devel-
opment environments (IDE), and roboticists are not an exception. However,
there is no standardized IDE to develop robotic applications, but a variety
of them. For instance, the official website of ROS lists all the IDEs that can
be configured to work with ROS7, allowing the building of ROS projects and
code debugging. There exist in fact a development environment called ROS
Development Studio8which integrates several ready-to-use tools as simulators
and artificial intelligence (AI) based libraries. However, the environment is
web-based and its use is not free. Working with general IDEs like Eclipse or Qt
Creator seems to be the most popular option among roboticists, which brings
to light the current lack of a free, robotics-centered IDE. The closest approach
is the integration of plugins that exist for some of the most popular IDEs. They
allow the integration with ROS, as is the case of Qt Creator9.

Software for robotic applications is developed and configured through
several binding times. Firstly, robotic functionalities (e.g., self-localization,
planning, collision avoidance) are programmed at the development stage.
Robotic applications comprise a network of those functionalities and their
interfaces. Robotic functionalities realized as software modules (i.e., software

4https://wiki.ros.org/kuka
5https://wiki.ros.org/Aldebaran
6https://www.arduino.cc
7https://wiki.ros.org/IDEs
8https://www.theconstructsim.com/rds-ros-development-studio/
9https://ros-qtc-plugin.readthedocs.io/en/latest/
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components) are then integrated with other modules and deployed into or
associated with specific robotic entities. If a robotic application comprises
several robots working as a team, the robotic entities will need to communicate
among them. Nevertheless, interfacing and inter-robot communication are
typically supported by middleware frameworks like ROS or OROCOS, as
previously explained. Once integrated, the robotic application typically
goes through several iterations of testing and validation, which is usually
accomplished via simulation as a first step before executing on real a robot.
Developing applications for Arduino microcontrollers can be done using
IDEs10, which support general purpose languages (GPLs) such as C/C++, Java
and Python.

1.2.3 DSLs

In robotics, there exist robot engineers and the end-users. The robot engineering
domain deals with manufacturing and developing tools for programming the
robots. The end-user domain categorizes the users with the kind of tasks robots
can execute. Specification of a robot mission can be influenced by controls
from the end-user and the programming languages. Missions specified using
dedicated DSLs are easy to comprehend by end-users. Such DSLs abstract the
underlying mechatronics and logic involved in the formal description of the
missions.

Many internal and external DSLs have been developed to facilitate robot
programming by end-users. Internal DSLs are extensions of a general-purpose
language—often called host language, which are embedded into a host lan-
guage, hence, using the host language’s syntax and infrastructure. Examples
of internal DSLs include: BehaviorTree.CPP [29], ROS Behavior Tree [30] and
SMACH [31]. An external DSL on the other hand is a language with indepen-
dent syntax, semantics, and other related language resources designed with
notation and abstractions suitable to the user domain. Examples of external
DSLs for robot programming include: NaoText [10], The Unreal Engine 4
(UE4) Behavior Tree [32] and FLYAQ [33–36].

Little is known about the features such DSLs provide and the user domains
in which they are applicable. It is also not clear what the expectations of the
end-users on such DSLs. It is necessary to understand areas of improvement
to meet the expectations of end-users and robot engineers.

1.3 The Research Focus

Programming is a challenge to most computing scientist, including roboti-
cists [37]. The challenge is daunting for novice programmers. The novice
programmers can be computing students or end-user domain experts who use
programmable systems. An example of an end-user interested in program-
ming a robot can be a farmer who wishes to use robots to plant, weed, spray
crops, or harvest farm produces. Graphical programming has demonstrated
some potential in mitigating the challenge of programming among novice
programmers.

Robots have become increasingly present in activities of everyday life.
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For robots to meet the needs of everyday life, they must be flexible both
physiologically and software to program execute the tasks. physiological—
mechatronic flexibility includes the ability to physically reconfigure the robot
to do a diverse category of tasks by plugging in various types of actuators on
the same robot.

The software—programs for operating such robots called robot missions
must be flexible. Traditionally robot missions are hard programmed by software
engineers and roboticists. This is not feasible for activities of everyday life
since the missions keep changing. It is important that end-users specify these
missions, based on the current need without necessarily involving software
engineers.

This research established state-of-the-art in end-user robot programming by
surveying visual mission specification environments and DSLs for specifying
robot missions. In the second phase, the research looks forward to investigating:
(a) introduction to programming for early programmers in universities in
Uganda (b) possibility of teaching robot programming to novice programmers
in low resource universities in Uganda. Low resource in this context refers to
inadequate laboratory facilities including robots.

Figure 1.1: The research focus comprises of knowledge creation — what is
already done and the solution creation — future works

The papers A, B, and C have shown the key features in DSLs for end-user
programming. The results show that most DSLs for end-user programming
are used in education for teaching early programmers. There is also a need to
develop libraries to abstract mission primitives in order to facilitate end-user
programming in the service domains such as hospitality, agriculture, and
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healthcare. In Uganda, most students joining universities have never had
any programming experience, let alone robot programming. Introducing
programming to such students using end-user programming environments
will aid in easy comprehension of programming. In future works, it is apparent
to understand what is required to adapt the end-user environments to teach
novice programmers in universities in Uganda, where laboratory resources
are scarce.

1.3.1 Research Questions

The qualitative research methodology was used to investigate robot program-
ming languages—mission specification DSLs. Then design science methodol-
ogy helped in prototyping the recommendations for DSL design and imple-
mentation. During qualitative methodology, we used observation and content
analysis methods to extract features of selected environments. The design
science methodology was used to extend an existing tool.

This work answers the following research question.
R.Q 1. What languages and tools exist for end-user robot programming? The
question explores the existing languages and tools being used for programming
robots by end-users. This question is motivated by the fact that robots are
typically pre-programmed. However, currently, there is an enormous effort
to supporting end-users in programming robot missions. There is a need to
understand the kind of languages and tools used for programming robots
by end-users. This question was answered by paper A by writing a book
chapter on languages for specifying missions of robotic applications, which
elaborates on existing programming languages for programming robots and
DSLs for mission specifications. Paper B critically explored the existing mission
specification environments and their futures by answering the following sub-
questions. R.Q 1.1 what visual, end-user-oriented mission specification environments
have been presented for mobile robots? These environments were selected from
three data sources—environments based on authors’ experience, google search,
and snowballing.
R.Q 1.2 what is the design space for in terms of common and variable characteristics
(features) that distinguish the environments? Extraction of the features was
done by installing and running sample missions in the environments, reading
publications on the environments, studying user manuals, and visiting the
environments’ websites. The environments were distributed among the
authors, and after initial extraction of features, authors verified what the
colleagues extracted to harmonize extracted data.

The following research questions are intended for full PhD work.
R.Q 2. How effective are the identified languages and tools for end-user
programming of robots?
We plan to conduct a user study to get feedback from language engineers,
researchers, and end-users to get feedback on the features extracted in RQ.1
and generate requirements from all the user segments. This study will inform
the recommendations for the design and implementation of future mission
specification environments.
R.Q 3. How can the languages and tools be improved to offer better support
to end-users while programming robots for activities of everyday life?
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This question will be answered using the design science method to review
and extend a visual DSL for novice programming. We shall first review
the introduction to programming course in Ugandan universities and match
the concepts in the course with the concepts presented by existing Visual
DSLs. Then Identify an appropriate DSL, which can be extended to capture
all the concepts required for teaching introduction to programming and robot
programming. This will involve reviewing the DSL to identify the missing
concepts, in order to extend it for robot programming.

1.3.2 Methodology

In this research, we used empirical research methods to create knowledge
and we plan to use the design science method to create the solution, a
popular approach in software engineering research [38]. During the empirical
studies, data were collected using techniques such as snowballing, web search,
experimentation, literature review, and author experience.

Paper A extracted data both from related literature and experimentation
from software —PROMISE DSLto analyze the state-of-the-art in robot pro-
gramming languages. For paper B, the data from each data source was studies,
and relevant data extracted in a feature matrix table, which is used to design a
feature model. Paper C used the design science approach to evaluate an exist-
ing tool FLYAQ and extend with new features, which helped in understanding
the design process of DSL.

Figure 1.2: The research methodology used for knowledge creation. The
solution creation is part of the future works.

1.4 Results

1.4.1 Summary of Papers

The section presents the summaries of the three papers, which form the basis
of this licentiate thesis.
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1.4.1.1 Paper A

Overview of robot programming languages, IDEs and DSLs In this work,
we present integrated development environments for developing robotic
applications and DSLs. The DSLs have been profiled as internal and external
DSLs. We further demonstrated how the PROMISE DSL works. PROMISE
uses mission patterns as mission primitives to specify and execute multi-robot
missions.

Robots are complex cyber-physical and safety-critical systems whose pro-
gramming requires developers with diverse backgrounds, ranging from logic,
mechatronics to end-users. The usage of robots can be as a single robot or
team of homogeneous or heterogeneous robots in natural environments such
as hotels and farms. It becomes necessary that the specification of missions for
such robots should be done by end-users, with tools that are easy to use yet
accurate.

From the DSLs identified for mission specification, it is apparent that more
needs to be done to facilitate mission specifications by end-users. There is a
need for tools to support mission reuse and managing the emerging situation
in natural environments during mission execution. The paper suggests future
research direction in mission re-usability, managing variability in the real
world, automatic fleet mission specification for multi-robot missions, and
human-robot collaboration.

1.4.1.2 Paper B

Design space of end-user oriented languages for specifying robotic missions.
Mobile robots are becoming increasingly important, and they are promising
instruments for fulfilling missions that support our everyday life. Simplicity
and flexibility in programming such robots are necessary since end-users
come from diverse domains, not necessarily with sufficient programming
knowledge.

This paper presents an empirical understanding of the current state-of-the-
art of end-user-facing languages and their environments used for programming
robots. 30 environments were selected and analyzed through a rigorous
process, from which a feature model was generated. An evaluation of how
the environments can be used by end-users based on their respective features
was done. Most of the environments are Blockly based and mostly used in
education. There is a need to do more so that visual programming can be used
in other technical domains such as agriculture, hospitality, and public order
management.

1.4.1.3 Paper C

AGenerated Property Specification Language for Resilient Multirobot Missions
As robots become more present in everyday life, robotic missions must be
domain-specific, resilient, and collaborative. This paper presents a high-level
mission specification language in which users declaratively specify domain
constraints as properties of the mission. The paper demonstrates how the
DSL can be generated automatically using the ProMoBox approach from the
mission language of FLYAQ.
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FLYAQ is an extensible platform designed for non-expert end-user for the
specification of robotic missions for a team of robots. The platform consists of
monitoring mission language, behavior language, and robot language. In this
work, the monitoring mission language has been extended to automatically
generate the mission specification language (MSL) for specifying missions
in commercial, emergency, and agriculture domains. During specification,
the user defines the mission goals and constraints at run time. With MSL, a
mission is specified by plotting an area on the map and defining a DetectPest
and Spray task in this area using the MSL mission layer, which is extended,
with language concepts from agriculture. As future works, there is a need
to map the MSL to behavior language, which describes the individual robot
movements and actions.

1.4.2 Discussion

The main contribution of this research is knowledge creation on the state-of-
the-art in DSLs for mission specifications. The empirical knowledge provides
decision support on the use of existing DSLs and the design of future DSLs for
end-user domains in robotics.

In order to specify a robot mission, it is important to consider: the range of
tasks to be executed, the end-users of the robots, number of robots involved,
the physical environment in which the mission will be executed, and the
programming language for specifying the mission. The robotics IDEs provide
programming environments with a number of programming languages in-
cluding visual programming languages, hardware abstractions and end-user
domain abstractions. Programming robots for activities-of-everyday-life by
end-user domains remains a challenge, especially in technical domains such as
healthcare, commerce, and agriculture. In these domains, robot missions are
preprogrammed, in most cases using textual notation. The end-user is only
provided with execution instructions.

Visual DSLs for robot programming use underlying formalisms such as
state machines, flowcharts, and behaviour trees [30, 84, 85]. Most of the
visual programming environments focus on education—supporting novice
programmers to learn how to program and boost critical thinking through
STEM support. The existing DSLs need to be abstracted further to fit specific
user domains such as healthcare and agriculture if experts from such domains
are to use the languages. Software engineers and user domain experts need to
collaboratively develop such DSLs for specifying missions used in activities-
of-everyday-life. This will ensure that the mission primitives are actual user
domain terms, which are easily understood by the domain experts. The
research community needs to develop library of robot skills as modules in
order to facilitate robot function abstractions at higher levels. This will makes
mission primitives easy to understand by end-users. More research needs to
be done to profile the user domains in order to facilitate user domain modeling
by the language engineers.

Most vendors of the visual DSLs implement the languages’ syntax using
Blockly and Scratch. The DSLs implement language concepts, robotic domain
concepts, and end-user domain concepts. The core language concepts com-
monly implemented are control flows, logic, and variable. Concepts such
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as movement, sensing, and communication are implemented in the robotics
domain. While in the end-user domains, concepts such as take picture, rec-
ognize humans and objects, pick and place objects, video streaming, and
reception services are commonly implemented. However, the potential of
Blockly and Scratch libraries to implement advanced language capabilities
such as language compositions is lacking.

Some core aspects in robotic missions are mission composition mechanism
and intelligence. Robotic mission compositions are classified into vertical
and horizontal decomposition. Horizontal (de-)composition refers to putting
lower-level functionality (e.g., tasks) into a respective execution order (e.g.,
sequence or loop), while vertical (de-)composition refers to refining functional-
ity needed to realize that functionality. Intelligence is the ability of robots to
act automatically without human intervention. Intelligence can be triggered
by events from the environment as captured by sensors, timed executions, or
learning from past experience.

Working with general IDEs, such as Eclipse or Qt Creator, appears to be
the most popular option among roboticists, despite the existence of a few free
robotic-centered IDEs. For many IDEs, there are instructions for configuring
towards robotics. For instance, the ROS community provides configurations
for several IDEs including Eclipse, Netbeans, KDevelop, Emacs, and RoboWare
studio, a variant of Microsoft Visual Studio. Similar to general-purpose IDEs,
Robotics IDEs offer facilities for robotics software engineering, including
code editors, robotics libraries, build tools, and quality-assurance tools (i.e.,
debuggers, test environments, and simulators).

1.5 Conclusion and Future Works

Conclusion. There is an increasing presence of robots in activities of everyday
life. It is infeasible to have robots pre-programmed by manufacturers, since the
robots are capable of doing several tasks that should be flexibly programmed.
The research community has recently given remarkable attention to robot
programming, with a particular interest in domain-specific languages for
mission specification, description of robot missions in natural languages, and
end-user-facing visual languages for robot mission specifications. These efforts
have led to more novice programmers participating in robot programming.

However, more effort is required to improve end-user-facing DSLs for
mission specification in activities-of-everyday-life. Some of the promising
domains to use robots in everyday life include healthcare, hospitality, education,
and agriculture. In order to specify complex missions by end-users, researchers
and practitioners need to develop domain specific abstractions and libraries
for expressing mission primitives. More DSLs are required to facilitate mission
specifications by end-user with detailed domain primitives. From the survey on
end-user-oriented languages for mission specifications, we observed that most
of the visual DSLs are used in the education domain to teach (a) introduction to
programming languages, (b) introduction to robot programming and (c)STEM
subjects.
Future Works. This research intends to contribute in the education domain by
further examining what is required to use visual environments for teaching
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programming. This can be achieved by answering the following questions:
(a) How visual programming can be used to introduce robot programming
to domain experts? In order to answer the question, we intend to explore
the following questions: What teaching concepts are covered in introductory
courses to robot programming? Which of these concepts are not covered
by existing visual programming DSLs. How can one of the visual DSLs be
enhanced, using the extension mechanism to incorporate the missing concepts.
This will make the DSL suitable for teaching introduction to programming
languages.

Once programming concepts are understood, robot programming can then
be introduced by exploring the following questions. What are the robot specific
concepts that must be taught? Does the DSL cover all of them? If not, then
extend the DSL to make it suitable for the introductory course.

At the end of the research, concrete steps, concepts and recommendations
must be derived to teach introduction to programming and robot programming
for novice programmers.
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Abstract

Robot-application development is gaining increasing attention both from
research and industry. Robots are complex cyber-physical and safety-critical
systems with various dimensions of heterogeneity and variability; they typi-
cally integrate modules conceived by developers with different backgrounds.
Programming robotic applications typically requires programming, mathe-
matical or robotic expertise from end-users. In the near future, multipurpose
robots will be used in the tasks of everyday life in environments such as
our houses, hotels, airports, museums, etc. It would be then necessary to
democratize the specification of missions that robots should accomplish. In
other words, the specification of missions of robotic applications should be
performed via easy-to-use and accessible ways, and, at the same time, it should
be accurate, unambiguous, and precise. This chapter presents domain-Specific
Languages (DSLs) for robot-mission specification, by profiling them as internal
or external, and by giving also an overview of their tooling support. The types
of robots supported by the respective languages and tools are mostly service
mobile robots, including ground and flying types.
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2.1 Introduction

Inexpensive and reliable robot hardware—including ground robots, multi-
copters, and robotic arms—is becoming widely available, according to the
H2020 Robotics Multi-Annual Roadmap (MAR).1 As such, robots will soon be
deployed in a large variety of contexts, leading to the presence of robots in
everyday life activities in many domains, including manufacturing, healthcare,
agriculture, civil, and logistics.

Robots are complex cyber-physical and safety-critical systems, which chal-
lenges engineering their software [39, 40]. In addition, the robotics domain is
divided into a large variety of sub-domains, including vertical ones (e.g. drivers,
planning, navigation) and horizontal ones (e.g. defence, healthcare, logistics),
with a vast amount of variability [41,42], further complicating robotics software
engineering. Due to this heterogeneity, a robot typically integrates modules
conceived by developers with different backgrounds. For instance, electrical
engineers design the robot’s hardware, control engineers develop planning and
control algorithms, and software engineers architect and quality-assure the soft-
ware system. Coordinating the integration of all these modules from developers
with different backgrounds is one of the major challenges that characterize
the domain of robotics [39, 40]. Further challenges comprise identifying stable
requirements, defining abstract models to cope with hardware and software
heterogeneity, seamlessly transitioning from prototype testing and debugging
to real systems, and deploying robotic applications in real-world environments.

A core activity when engineering robotics software is defining and imple-
menting the robot’s behaviour. Specifically, in addition to building and inte-
grating modules that define the lower-level behaviour, the overall behaviour of
robots needs to be defined. This behaviour, often called a mission, coordinates
the lower-level behaviours that are typically defined in modules realizing the
different skills. While this coordination has traditionally been implemented in
plain code [43], this will not be feasible in the near future, when multipurpose
robots will be used in our houses, hotels, hospitals, and so on, to accomplish
tasks of the everyday life. For these reasons, the use of dedicated (domain-
specific) languages is becoming increasingly popular [44–46]. These languages
target end-users without robotic, ICT or mathematical expertise, and allow
them to conveniently command and control robots. This trend is also expressed
by the MAR roadmap, given the increasing involvement of robots in our society,
especially service robots (i.e., robots that perform useful tasks for humans
excluding industrial automation applications2). In fact, the MAR roadmap de-
scribes DSLs [46–48], together with model-driven engineering [49–53], as core
technologies required to achieve a separation of roles in the robotics domain
while also improving, among others, modularity and system integration.

The specification of mission ranges from (i) very intricate and difficult-to-
use [2, 3] logical languages, such as Linear-Temporal Logic or Computation
Tree Logic [1, 4–7], whose instances are directly fed into planners; via (ii)
common notations for specifying behaviour, such as Petri nets [54,55] and state
machines [31, 56, 57], which require low-level and step-by-step descriptions

1https://eu-robotics.net/sparc/upload/about/files/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.

pdf
2https://www.iso.org/standard/55890.html
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of missions; to (iii) robotics-specific DSLs tailored to the robot at hand [8–13],
which often allow a more high-level mission specification.

This chapter contributes to the state of the art in mission specifications
for robots. We present an overview of programming languages for robotic
applications and respective IDEs (integrated development environments) in
Sect. 2.2. Thereafter, we present DSLs for mission specification in Sect. 2.3,
including internal and external DSLs, together with their tooling. In Sect. 2.4,
we discuss how robots are usable in everyday life, with specific reference to
the PROMISE tool for specifying missions for multi-robot applications. We
put PROMISE into practice by describing a real mission with PROMISE we
realized, together with the rest of the robotic software, including a multi-layer
architecture. We conclude and discuss areas for future work in Sect. 2.6.

2.2 Programming Languages and IDEs for Robotic
Applications

The software of a robotic application can be conceptually organized into two
main parts: (i) the software controlling the various modules (written once and
embedded into the robot) and (ii) the software that permits the specification
and execution of the mission (potentially changing from mission to mission,
especially for multipurpose robots). Traditionally, these two parts are mixed
for robots capable of doing specific tasks, where the mission specification
only involves setting some parameters that are specific for the environment
in which the mission will be executed. In this section, we briefly describe
programming languages (Sect. 2.2.1) and IDEs (Sect. 2.2.2) used in robotics.

2.2.1 Programming Languages for Robotic Applications

Many different languages are used for the development of mobile robotic ap-
plications. Starting from the lowest level of abstraction, hardware-description
languages (e.g. Verilog or VHDL) are mainly used by electronic engineers
to “program” the low-level electronics of robots [26]. Hardware-description
languages are commonly used to program field-programmable gate arrays [27],
which are devices that make it possible to develop electronic hardware without
having to produce a silicon chip.
At the level of microcontrollers, a widely used option is Arduino3 [28]. It
is an open-source electronics platform that consists of a board with assem-
bled sensors (and potentially actuators) that can be controlled using specific
software. Software for Arduino-based applications may be developed using
an open-source IDE4, which supports the languages C and C++, applying
a wrapper around programs written in these languages and using special
rules of code structuring. The hardware manufacturers typically also provide
proprietary software, such as RAPID5 technical reference manual from ABB

3https://www.arduino.cc
4https://arduino.en.softonic.com
5https://library.e.abb.com/public/688894b98123f87bc1257cc50044e809/Technical\

%20reference\%20manual_RAPID_3HAC16581-1_revJ_en.pdf
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and KRL6 reference guide from Kuka.

More powerful machines in terms of computation—including single-board
computer solutions such as Raspberry Pi—support Ubuntu distributions
and, therefore, the Robot Operating System (ROS) [58]. ROS [20] is an open-
source middleware offering a framework for structured communication among
various robotic components using a peer-to-peer connection. ROS currently
runs on Unix-based platforms, and the software for ROS is primarily tested on
Ubuntu. Therefore, a typical setup for a roboticist includes a certain version of
Ubuntu7 with a certain distribution of ROS.8

Most packages and libraries of ROS are developed using either C++ or
Python so those languages are the most commonly used. However, ROS’s
communication system is language-agnostic, which enables several languages
such as C++, Python, Octave, Java, and LISP to be used depending on the
user’s proficiency. ROS also offers modularized tool-based microkernel design
to aggregate various tools performing specific tasks such as navigating source
code tree, get and set configuration parameters, and visualize the peer-to-peer
connection topology, among others [59, 60].
ROS has evolved with a number of distributions, supporting more than 20
robotic systems9, including drones, arm robots, humanoids, and wheeled
mobile-base robots. Among the robot-agnostic middleware, ROS is considered
the de facto standard for robot application development [39], officially sup-
porting more than 140 robots (including ground mobile robots, drones, cars,
and humanoids) [25]. Examples of repositories from robotics companies that
support the integration of ROS are the one from Kuka10 or from Aldebaran
and Softbank Robotics.11

MATLAB (and its open-source relatives, such as Octave) is a popular
option among engineers for analysing data and developing control systems.
It has also been used for robotics software development [61], and there even
exists a robotics-dedicated toolbox.12 The toolbox contains tools that support
functionalities ranging from producing advanced graphs to implementing
control systems.

Machine learning is another technique applied in the context of robotics, as
is being used in decision making and image recognition. Machine-learning
models are first trained using platforms such as TensorFlow or PyTorch and
then implemented as ROS nodes [62]. These training platforms provide
dedicated APIs, and they are commonly Python or C++-based. Finally, image
processing is a key functionality in robotics, and the most used library in this
domain is OpenCV13 [63], written in C++. Its primary interface is written in
and uses C++, but there are bindings for Python, Java, and MATLAB.

6http://robot.zaab.org/wp-content/uploads/2014/04/KRL-Reference-Guide-v4_1.pdf
7https://wiki.ubuntu.com/Releases
8https://wiki.ros.org/Distributions
9http://wiki.ros.org/Distributions

10https://wiki.ros.org/kuka
11https://wiki.ros.org/Aldebaran
12https://www.mathworks.com/products/robotics.html
13https://opencv.org
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2.2.2 IDEs for Developing Robotic Applications

IDEs aid software engineering by providing editing, compilation, interpre-
tation, debugging, and related automation facilities. They often come with
version-control, refactoring, visual-programming, and multi-language support.
The usage of IDEs improves efficiency in software development and makes it
less error-prone.
Working with general IDEs, such as Eclipse or Qt Creator, appears to be the
most popular option among roboticists, despite the existence of a few free
robotic-centred IDEs. For many IDEs, there are instructions for configuring to-
wards robotics. For instance, the ROS community provides configurations for
several IDEs, including Eclipse, Netbeans, KDevelop, Emacs, and RoboWare
studio, a variant of Microsoft Visual Studio.

Eclipse, in particular with its tooling for model-driven software engineering
(e.g. Eclipse Modeling Framework), has been used to realize DSLs and
respective environments for building robotics applications in a model-driven
way. For instance, Arias et al. [64] offer a complete robotics toolset upon
Eclipse to support the engineering from design to code generation, called the
ORCCAD model.

Similar to general-purpose IDEs, Robotics IDEs offer facilities for robotics
software engineering, including code editors, robotics libraries, build tools,
and quality-assurance tools (i.e. debuggers, test environments, and simulators).
As opposed to general IDEs, robotics IDEs primarily target building robotic
applications, without support for other domains.

Table 2.1 summarizes IDEs for developing robotic applications with details
on target users, languages supported, and features that go beyond a general
IDE. To illustrate one of the IDEs, Fig. 2.1 shows a screenshot of the Robot
Mesh Studio. The user interface is separated into three main panes. Pane A
shows a description of the current mission—richtext entered by the developer
to describe and illustrate the mission (here, the visual recognition and lifting
of an object by the robot). Pane B shows the actual mission expressed in an
external DSL (with Blockly syntax) provided by the IDE, or alternatively the
generated textual code. Pane C shows help text, or alternatively the interactive
debugger or an overview on the current robot configuration.

2.3 Robot Mission Specification

As robots become an integral part of the everyday life, we need better ways to
instruct robots on the tasks they should accomplish. Mission specification is a
process that relies on a strategy and mechanism that determines the steps a
robot takes when performing a given task [8, 33, 35, 83].

The specification of a robot mission is influenced by the range of tasks the
robot can execute, the end-user of the robot, the number of robots involved,
the physical environment in which the mission will be executed, and the pro-
gramming languages provided by the robot manufacturer. Robots performing
a specific task are normally pre-programmed by manufacturers, while those
with the ability to do a number of tasks require frequent change of what they do
depending on the need at a given time—calling for flexible ways of specifying
missions.



18 CHAPTER 2. PAPER A

Table 2.1: List of Dedicated Robotic IDEs.
Name IDE details

RobotC [65, 66] C-based educational environment providing two notations, RobotC Graphical and
RobotC Natural Language e.g. Listing 2.4

Robot Mesh Studio [67] IDE for programming educational robots from Arduino, PICAXE, Parallax, and
Raspberry Pi microcontrollers. It offers two graphical DSLs: Flowol, a flowchart-
based language, and a Blockly-based language. Textual languages: C++, and
Python

VEX Coding Studio [68,
69]

A robot vendor’s environment for programming educational robot kits. The IDE
offers Scratch-based syntax (VEXcode Blocks) and a text-based syntax (VEXcode
Text)

PICAXE [70, 71] For programming educational PICAXE microcontroller-based robots. It offers the
PICAXE language in three syntaxes: PICAXE BASIC–textual, PICAXE Blockly–
graphical, and PICAXE Flowchart syntax

ROS Development Stu-
dio [72]

An online IDE with ready-to-use tools, such as simulators and AI-based libraries.
The ROS Development Studio supports all robots compatible with ROS and a variety
of languages, such as C++, Python, Java, MATLAB, and Lisp

Microsoft Robotic Devel-
oper Studio (MRDS) [73]

Microsoft product for hobbyist, academic, and commercial robot application de-
velopers. The IDE supports programming robot applications in Microsoft’s Visual
Programming Language (MVPL) and C#

MATLAB and Simulink
[74]

IDE offers hardware-agnostic robot control for Arduino and Raspberry Pi microcon-
trollers, that can be connected to ROS and ROS2. Code from a variety of embedded
hardware, such as Field Programmable Gate Arrays (FPGAs), Programmable Logic
Controllers (PLCs), and Graphics Processing Units (GPUs), can be generated to
various target languages including C/C++, VHDL/Verilog, Structured Text, the PLC
language, and Compute Unified Device Architecture (CUDA) language

Webots [75] An open-source, online IDE simulator that supports a number of robots and a range
of languages such as C, C++, Python, Java, MATLAB, and ROS-supported languages
C, C++, Python, Java, and MATLAB

Robot Task Commander
(RTC) [76]

The IDE is meant for automated task planning for robot(s) using one or more
computing devices over a network. It supports humanoid robots programmed using
Python scripting language and RTC visual programming language

The SmartMDSD
Toolchain [77]

IDE for developing robot systems by providing building blocks that can be used
for composing new systems from existing components. The IDE applies modelling
techniques using tools such as Xtext, Xtend, and Sirius from Eclipse

BRICS Integrated De-
velopment Environment
(BRIDE) [78]

IDE for developing editors in robotics based on model-driven engineering principles.
BRIDE incorporates the OROCOS and ROS frameworks. The ROS version offers
features such as graphical modelling of ROS nodes, code generation in C++ or
Python, and generation of launch files

Universal Robotic Body
Interface (URBI) [79]

Open-source IDE for programming robot controls, using client-server architecture.
The server manages low-level hardware controls for sensors, camera, and speakers,
and the client sends high-level behaviour commands like “walk” to the server.
Languages supported include C++, Urbiscript scripting language, MATLAB, Java,
and Lisp

TeamBots [60, 80] A Java-based environment for developing and executing control systems on teams
of robots and on simulation using the application TBSim. The IDE provides a set of
applications and packages for multi-agent mobile robots.

Pyro [81] An educational IDE that abstracts low-level details, making it suitable for students
learning to program robots using the C++, Java and Python. Pyro wraps Player/Stage
and ARIA, for easy access to its users.

CopeliaSim (VREP) [82] A multi-robot IDE, which uses distributed control architecture to model objects
through: embedded script, a plugin, a ROS or BlueZero node, a remote API client, or
a custom solution. The IDE supports programming using C/C++, Python, Java, Lua,
Matlab or Octave
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Figure 2.1: Screenshot of the Robot Mesh Studio IDE [67] with three panes.
Pane A provides a rich-text description of the mission, Pane B showsthe actual
mission expressed in a DSL with Blockly syntax, and Pane C shows help text or
alternatively the debugger or an overview on the current robot configuration.

Any mission specified using a DSL should be easily understood by experts
in that domain—e.g. logistics, commerce, and health. DSLs are recognized
for their ability to abstract low-level details of robotic implementations and
allowing users to specify their concerns from higher levels by using common
terms in the domain. This abstraction further enhances effective communica-
tion of concepts with the domain experts. Due to these reasons, DSLs have
been studied and proposed for mission specification by the community [8–13].

DSLs typically work based on the underlying formalisms such as state
machines, flowcharts, and behaviour trees [30, 84, 85]. We assume that the
reader has already some knowledge on state machines and flowcharts. Before
presenting the selected DSLs, we give a brief introduction to behaviour trees,
which are less widely known.

A behaviour tree is a hierarchical model in which the nodes of the tree are
tasks to be executed [30,84,85]. Behaviour trees emphasize modularity, coupled
with two-way control transfer using function calls, unlike one-way (transitions)
in finite-state machines. The modular character in behaviour trees makes the
reuse of behaviour primitives feasible. Behaviour trees have been applied in
computer science, robotics, control systems, and video games.14 Behaviour
trees consist of control-flow nodes (namely Parallel, Fallback, Decorator, and
Sequence) and executor nodes (i.e., Action and Condition). An action node
executes a task and returns success or failure, while the condition node tests if
a certain condition is met.

In the following subsections, we describe a selection of internal and external
DSLs for mission specification together with examples. Internal DSLs are
extensions of a general-purpose (i.e. programming) language—often called
host language. An external DSL is a language with independent syntax,
semantics, and other related language resources and designed with notation
and abstractions suitable to the user domain.Table 2.2 shows an overview of

14http://wiki.ros.org/behavior_tree
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Table 2.2: List of DSLs, their notation used and their styles (internal or external
DSL)

Name of DSL Notation Style

Choregraphe Visual External
NaoText Textual External
Microsoft Visual Programming Language Visual External
EasyC Textual, Visual External
SMACH Textual Internal
Open Roberta Visual External
FLYAQ Visual External
Aseba Textual, Visual External
LEGO Mindstorms EV3 Visual External
MissionLab Visual External
CABSL Textual Internal
BehaviorTree.CPP Textual External
ROS Behavior Tree Textual Internal
Unreal Engine 4 Behavior Trees Textual External
PROMISE Textual, Visual External

these DSLs with the notations supported (visual or textual) and style (internal
or external DSL).

2.3.1 Internal DSLs

Internal DSLs follow the host language’s syntax, and their execution is limited
to the host language’s infrastructure. They provide features specific to given
end-user domains, such as robotics engineering, which simplify specification
of domain user’s concerns. In each of the following internal DSLs, we look
into the host language, the developing organization (company), its semantics
(compiled/interpreted), features specific to the internal DSL, and the end-user
domain the language is targeting.

2.3.1.1 ROS Behavior Tree

ROS Behavior Tree [30] is an open-source C++ library for creating behaviour
trees. The DSL’s aim is to be used by expert robot developers, who are
conversant with the ROS framework and C++ or Python languages. Listing 2.1
shows sample code for creating a behaviour tree.15 It consists of header files
and demonstrates how the action node and the condition node are executed in
the behaviour tree.

15https://github.com/miccol/ROS-Behavior-Tree
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1 #include<actions/actiontestnode.h>
2 #include<conditions/conditiontestnode.h>
3 #include<behaviortree.h>
4 #include<iostream>
5 int main(int argc, char **argv){
6 ros::init(argc, argv, ”BehaviorTree ”);
7 try{
8 int Tick Period millisecond s = 1000;
9 BT::ActionTestNode *action1 = new BT::ActionTestNode (”Action1”);

10 BT::ConditionTestNode *condition1 = new BT::ConditionTestNode (”Condition1”);
11 action1−>set time(5);
12 BT::SequenceNodeWithMemory* sequence1= new BT::SequenceNodeWithMemory(”seq1”

);
13

14 condition1−>set boolean value(true);
15 sequence1−>AddChild(condition1);
16 sequence1−>AddChild(action1);
17 Execute(sequence1, Tick Period milliseconds);
18 } catch (BT::BehaviorTreeException& Exception){
19 std::cout<<Exception.what()<<std::endl;
20 }

21 return 0;
22 }

23

Listing 2.1: Creation of a new behavior tree using the ROS Behavior Tree DSL.

Selector nodes are used to find and execute the first child that does not
fail. A selector node immediately returns success or running when one of
its children returns success or running. Sequence nodes are used to find and
execute the first child that has not yet succeeded. A sequence node returns
failure or running when one of its children returns failure or running. The
parallel node ticks its children in parallel and returns success if M ≤N children
return success, it returns failure if N - M + 1 children return failure, and
it returns running otherwise. The decorator node manipulates the return
status of its child according to the policy defined by the user. Decorator Retry
retries the execution of a node if this fails; and Decorator Negation inverts the
Success/Failure outcome.

2.3.1.2 SMACH

SMACH [31] is a non-commercial application programming interface written in
Python, based on hierarchical concurrent state machines. It allows executions
to be controlled by a higher-level task-planning system.

The library enables a quick way to create robust robot missions with
maintainable and modular code. The DSL provides integration with ROS for
developing robot applications using state machines. The actionlib library in
SMACH provides an interface for tasks such as moving the base to a target
location, performing a laser scan and returning the resulting point cloud, and
detecting the handle of a door. SMACH Viewer is a graphical interface that
shows a hierarchy of state machines, transitions between states, active states,
and data passed between states. Once a state machine for a given mission is
created, it is executed in the ROS environment.

Listing 2.2 demonstrates how to create a state machine, adding states to the
state machine. In the state execution (line 10), “event” depicts the condition to
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execute outcome1 if true, outcome2 otherwise.

1 #!/usr/bin/env python
2 import rospy
3 import smach
4 # creating a state
5 class Foo(smach.State):
6 def init (self, outcomes=[’outcome1’, ’outcome2’]):
7 # Your state initialization goes here
8 def execute(self, userdata):
9 # Your state execution goes here

10 if event:
11 return ’outcome1’
12 else:
13 return ’outcome2’
14 # Adding states
15 sm = smach.StateMachine(outcomes=[’outcome4’,’outcome5’])
16 with sm:
17 smach.StateMachine.add(’FOO’, Foo(),
18 transitions={’outcome1’:’BAR’,
19 ’outcome2’:’outcome4’})
20 smach.StateMachine.add(’BAR’, Bar(),
21 transitions={’outcome2’:’FOO’})

Listing 2.2: Creation of a state and adding the state to a state machine in
SMACH

2.3.1.3 C-Based Agent Behavior Specification Language

The C-based agent behavior specification language (CABSL) [86] enables the
description of robot behaviours as a hierarchy of finite state machines. The
control program executes behaviours based on the acquired sensor data, which
maps the sensor data to actions the robot executes. In a state, when an action
is taken, either the state generates an output or calls another state machine.
Otherwise, there is a transition from one state to another state.

An active graph in CABSL is a tree consisting of a set of state machines
being executed. Each state machine can call any other state machine. The
language is implemented and compiled in C++.16 CABSL does not provide
the functionality of replacing the behaviour on the fly in case the acquired
sensor data requires a change in behaviour.

The DSL’s textual notation makes it suitable for developers with experience
in using the C language. It has reportedly been used for the NAO robot.

2.3.2 External DSLs

External DSLs have no dependence on the resources of another language.
In profiling the external DSLs, the following information is considered: the
developing organization (company), its semantics (compiled/interpreted),
notation, features specific to the external DSL, type of robots the DSL supports,
and the domain the language is targeting.

16https://github.com/bhuman/CABSL
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2.3.2.1 NaoText

NaoText [10] is an external DSL developed by the research group QualiTune.
The DSL is a role-based language for specifying collaborative missions for
NAO robots using a textual notation. Nao Text uses CPSTextInterpreter, which
runs on the Java runtime environment using Maven to manage dependencies.17

The code below shows the declaration of a pass action in a soccer game
between NAO robots.18 Some of the domain terms used in specifying the
mission in Listing 2.3 include striker, ballpossesor, and ballseeker.

1 activate for { // (1) player selection
2 BallPossessor p;
3 BallSeeker s;
4 } when { // (2) condition
5 ((p.robotInVision(s)) and
6 !(p as Striker).isGoalShotPossible());
7 }

8 with bindings { // (3) role binding
9 p + Sender; // bind Sender role

10 s + Receiver; // bind Receiver role
11 s − BallSeeker; // unbind BallSeeker role
12 } with settings { // (4) evaluation time settings
13 interval 500; // check every 500ms
14 after 1000; // start after 1s
15 continuously true;
16 }

Listing 2.3: A snippet of a mission for Pass Action in a soccer game between
Nao robots.

2.3.2.2 EasyC

EasyC is a commercial product of Intelitek that provides a graphical nota-
tion for programming VEX robots. The DSL auto-generates C code from
missions specified using the drag and drop graphical editor. Experienced
C programmers can seamlessly switch to a fully text-based development
environment. This DSL has been enriched with robotic abstractions such as
robot driving—Drive, Turn, Stop or Drive for Time.

EasyC uses a graphical interface on top of Intelitek’s own C library19, which
was custom made for the VEX Cortex and IQ robot controllers.

2.3.2.3 BehaviorTree.CPP

BehaviorTree.CPP [29] is a C++ library for creating behaviour trees. It is
developed by a research group at the Eurecat Technology Centre. The library
provides a flexible framework to easily specify robot mission as behaviour
trees that can be loaded at runtime for execution. The nodes of the tree are
either actions the robot can execute or conditions to be fulfilled before an action
is taken.

The BehaviorTree.CPP DSL provides mechanisms to monitor, log, and
debug the execution of a tree. The behaviour trees for robot missions are

17https://github.com/max-leuthaeuser/CPSTextInterpreter
18http://www.qualitune.org/?page_id=453
19https://www.slideserve.com/tova/april-27-2006-programming-with-easyc-and-wpilib
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executed using the C++ language runtime environment. Groot20 provides a
graphical editor for the C++ library to create and edit behaviour trees. The
primitives in Groot, built-in nodes, or custom nodes can be dragged and
dropped to build a required behaviour tree. Domain terms and expressions
such as DetectObject, Grasp, GetMapLocation, and MoveTo have been used
in the DSL for mobile robots with the ability to move, recognize, and grasp
objects.

2.3.2.4 Unreal Engine 4 Behavior Trees

The Unreal Engine 4 (UE4) Behavior Tree [32] is a commercial DSL developed
and maintained by Epic Games, Inc. Behaviour trees define the Unreal AI
agent’s processor, which makes decisions and executes various branches based
on the outcome of those decisions. The Unreal Engine implements behaviour
trees using the Blackboard tool which acts as the “brain” of the AI character
and stores key values that the behaviour tree uses to make its decisions. A
behaviour tree task is an action the AI character can perform, for instance,
move to a location or rotate to face an object.21 Some examples of domain
expressions are SetMovementSpeed, LookStraightAhead, and RapidMoveTo.
The DSL has been used for simulation characters in video games, representing
humans, helicopters, and vehicles. The Unreal Engine uses the Unreal scripting
languages with a graphical editor for creating UE4 behaviour trees, related
blackboards for the behaviour trees, and tasks—i.e. actions. The scripting
languages are compiled using the UnrealScript Compiler.22

2.3.2.5 Choregraphe

Choregraphe [87, 88] is a commercial DSL produced and maintained by
SoftBank Robotics for programming Aldebaran robots such as NAO. The
language aids users to create animations, behaviours, and dialogues for the
NAO humanoid robot—meant for experimentation and research. Choregraphe
also offers simulation support for the NAO robot. The graphical DSL provides
a flowchart-like interface in which end-users specify missions by connecting
boxes to construct a behaviour for the robot.23 Boxes are pre-programmed
libraries, which abstract mission primitives. Some of the mission primitives
include Play Sound, Set Speech Lang, and Speech Reco.

2.3.2.6 Microsoft Visual Programming Language

The Microsoft Visual Programming Language (MVPL) [73] is a DSL in Microsoft
Robot Development Studio used for programming robotic applications based
on the idea of boxes and arrows. The language concepts (activities) are
represented by boxes while the arrows connect the boxes to build a program.24

The MVPL data flow diagram consists of a connected sequence of activities

20https://github.com/BehaviorTree/Groot
21https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/

BehaviorTreesOverview/index.html
22https://docs.unrealengine.com/udk/Three/UnrealScriptReference.html
23http://doc.aldebaran.com/1-14/software/choregraphe/interface.html
24https://acodez.in/microsoft-robotics-developer-studio/
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Figure 2.2: Specifying a mission for a drone to hover in given space while
avoiding no-fly zones [11].

represented as blocks with inputs and outputs that can be connected to other
activity blocks.

2.3.2.7 Open Roberta

Open Roberta [89–91] is a web-based educational DSL developed by the
Fraunhofer Institute, which offers free use for individuals, but commercial use
for institutional use. The Blockly-based DSL can be used to program a variety
of robots: Lego Mindstorms EV3 and NXT, Calliope mini, micro:bit, Bot’n Roll,
NAO, and BOB3. This DSL provides a rich set of behaviour abstractions and
primitives, which are mainly categorized into actions (drive, turn, steer, show,
play, say), sensors (touch, ultrasonic, colour, infrared, temperature, gyro, timer),
control (program control flows), logic (comparisons, AND, OR, Boolean), math
(constants and arithmetic operators), text, colours, and variables. The specifics
of these abstractions vary according to the robot for which the mission is
specified. This DSL has a considerable potential in harnessing end-user
programming, since it is a drag and drop graphical language with syntactic
and semantic editor services. The DSL can either be run on the cloud or
installed on a local server. Open Roberta generates code in Python, Java,
JavaScript, and C/C++ depending on the target robot.

2.3.2.8 FLYAQ

FLYAQ [33–36] is an open-source research prototype developed and maintained
by a team of researchers that provides an extensible DSL for specifying missions
for a variety of robots, including quadrotors. The monitoring mission language
(MML) allows specification of mission context such as obstacles, flight path
(i.e., starting point, action points, ending point), and no-fly zones on a live map.
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The executable code is automatically generated to be executed by a robot or a
swarm of robots as shown in Fig. 3.6. The DSL is suitable for missions such as
surveillance, public order management, and agriculture. The concrete syntax
(i.e., the map) used for specifying the mission context makes the language
reachable for end-users. The FLYAQ virtual machine provides a ready-to-run
version for the end-user.

2.3.2.9 Aseba

Aseba [92, 93] is a DSL with variants of visual and text syntaxes, created
by Mobsya under Creative Commons Attribution-ShareAlike 3.0 License.
The language syntax variants are the visual programming language (VPL),
a Blockly-based language, a Scratch-based language, and the Aseba textual
language. VPL provides events and action-based programming in which, for a
given event, there is a corresponding action. These events are triggered by data
from sensor readings. Examples of events are press button, obstacle detector,
ground detector, robot tapped, and hand clap. In turn, examples of actions are
set motor speed, set top or bottom colour, and play music. The same language
concepts can be programmed using the other DSLs of Aseba. Some common
behaviours25 associated with the Thymio robot are: friendly (follow hand
and react to another Thymio robot), explore (avoid obstacles and stop when
the ground is dark), fearful (goes away when approached and scream when
cornered), attentive (changes colour and moves depending on the number of
claps detected), investigator (follows a black track), and obedience (reacts to
button and remote control).

2.3.2.10 LEGO Mindstorms EV3

The LEGO Mindstorms EV3 builder [94, 95] makes it possible to create robots
that can do a number of things such as walk, talk, or drive. The graphical
DSL provides a rich set of language constructs categorized into action, flow,
sensor, data, and advanced blocks. For instance, the action blocks include
move steering block, display block, and sound block, which can be used for
specifying a mission by kids learning how to program. The DSL is a visual
language with blocks connected to form missions. Figure 2.3 shows a mission
specification in which the robot says “Hello” once, then “Go” six times, and
then “Bravo” once. The sound blocks are used for creating the respective
sounds while the flow block—the loop is used for repeating the “Go” sound.
Each block is an icon of the function it executes.

2.3.2.11 MissionLab

MissionLab [83,96] was created by the Mobile Robot Laboratory at Georgia Tech
and is a research prototype DSL that facilitates mission specification through a
state-machine-based visual language. The DSL uses assemblage and temporal
sequencing constructs to create a temporal chain of behaviours as a mission.
The assemblage construct defines behaviour primitives and coordination
mechanisms. During mission specification, the assemblage is instantiated.

25https://www.thymio.org/basic-behaviours/
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Figure 2.3: Specifying a loop in LEGO Mindstorms EV3.

The temporal sequencing creates states with perceptual triggers to enable
transitions between states. MissionLab provides a graphical editor-based
configuration description language (CDL) to specify multi-agent missions.
Missions can be executed on a simulator or on the following wheeled robots
used for smaller commercial applications: ATRV-Jr, Urban Robot, AmigoBot,
Pioneer AT, and Nomad 150 & 200.

2.3.2.12 RobotC

The language primitives are in the form of blocks, which users drag and drop
to build a program, making it easy for novice programmers to write robot
missions. Listing 2.4 illustrates the same program in textual version of RobotC
Natural language.26 The expressions preserve the C language syntax, while
the natural language makes it easy for novice programmers to comprehend
the programs.

1 task main(){
2 int counter = 0; //set the value of variable ”counter” to zero
3 while(true) { //loop forever
4 //count the number of times the sensor is pressed
5 if(getTouchValuetouchSensor) == true){
6 counter = counter +1;
7 waitUntil(getTouchValue(touchSensor) == false); // wait for the sensor to no longer be

pressed
8 }

9 displayVariableValue(line1, counter); //display the value of ”counter” on line 1
10 }

11 }

Listing 2.4: Snippet of a program in RobotC Natural Language

2.4 Making Robots Usable in the Everyday Life

Mobile robots are increasingly used in everyday life to autonomously realize
missions such as exploring rooms, delivering goods, or following certain paths
for surveillance. The current robotic market is asking for a radical shift in the
development of robotic applications where mission specification is performed
by end-users that are not highly qualified and specialized in robotics or ICT.
To this end, in the context of the Co4Robots EU H2020 project,27 we developed

26http://www.robotc.net/NaturalLanguage/
27http://www.co4robots.eu
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our contribution in two steps.

• First (Sect. 2.4.1), with the aim of understanding the missions that are
currently expressed in practice, we surveyed the state of the art and for-
mulated and formalized a catalogue of 22 mission specification patterns
for mobile robots. We also provide tooling for instantiating, composing,
and compiling the patterns to create mission specifications [1, 97].

• Second (Sect. 2.4.2), using specification patterns as main building blocks,
we proposed a DSL that enables non-technical users to specify missions
for a team of autonomous robots in a user-friendly and effective way [8,
98].28

2.4.1 Mission Specification Patterns

The proposed patterns provide solutions for recurrent missionspecification
problems for service robots and they focus on robot movement and on how
robots perform actions within their environment. The first step for creat-
ing the catalogue of patterns was the collection and analysis of 245 natural
language mission requirements systematically retrieved from the robotics liter-
ature. From these requirements, we identified recurrent mission specification
problems to which we provided solutions and organized them as patterns.
The patterns provide a formally defined vocabulary that supports robotics
developers in defining mission requirements in an unambiguous way.

The patterns provide a formal and precise description of what robots should
do in terms of movements and actions, and therefore, relying on the usage of
the pattern catalogue as a common vocabulary makes it possible to mitigate
ambiguity in natural language formulations. Moreover, the patterns also
provide validated mission specifications for recurrent mission requirements,
facilitating the creation of correct mission specifications.

A pattern is described in terms of a structured English formulation, its usage
intent, known uses, relationships to other patterns, and, most importantly, a
template mission specification in temporal logics. Since the patterns do not
contain an explicit time or probability, the temporal logics used are LTL and
CTL. This catalogue might be extended in many directions, e.g. by considering
explicit time, probability, cost, utility, and other aspects. Patterns, while
keeping their roots in a formal language, can be used by non-experts as well.

To further support developers in designing missions, we have implemented
the tool PsALM (Pattern bAsed Mission specifier). PsALM allows the user (i)
to specify a mission requirement through a structured English grammar, which
uses patterns as basic building blocks and operators that enable composition
of the patterns into complex missions, and (ii) automatically generate specifi-
cations from mission requirements. PsALM also enables the composition of
patterns towards the specification of complex missions by the conjunction or
disjunction of the patterns [97].

We thoroughly validated the patterns [1]. We evaluated the benefits of using
our patterns for designing missions by collecting 441 mission requirements in
natural language: 436 obtained from robotics development environments used

28PROMISE webpage: https://sites.google.com/view/promise-dsl/home
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by practitioners, and 5 defined in collaboration with 2 well-known robotics
companies. Further information about the theoretical aspects might be found
in [1], and about the tool in [97], while details about the specification of each
pattern might be found in the website29.

2.4.2 PROMISE

In order to support the specification of more complex missions with respect
to those that can be specified using the specification patterns, and in order
to enable the specification of missions for multiple robots, we proposed a
domain-Specific Language called PROMISE. PROMISE considers the mission
specification patterns as atomic tasks that can be executed by robots and
proposes sophisticated composition operators for describing complex and
multi-robot missions. These operators are inspired by behaviour trees [99,100]
in their style and notation. The DSL is integrated into a framework,30 which
allows the seamless specification and execution of a mission. The framework
contains:

[a] The realization of the language using Eclipse and two plugins for lan-
guage workbench, namely, Xtext31 and Sirius.32 In this way, mission
specification can be performed through textual and graphical interfaces,
which are synchronized.

[b] A compiler implemented using Xtend33 for mission code generation.

[c] An interpreter, which parses the mission code and gives the low-level
commands to each robot accordingly.

While the DSL support is provided by a standalone tool and can be
integrated within a variety of frameworks, the current implementation has been
integrated with a software platform [101] that provides a set of functionalities,
including motion control, collision avoidance, image recognition, SLAM, and
planning. This software platform has been implemented in ROS.

Our DSL has been successfully validated through experimentation with
both simulation and real robots. Footage of the validation through experi-
mentation we have conducted can be found on the dedicated website. The
experimentation led to a demonstration of several missions to the Co4Robots
consortium, which triggered important feedback. For instance, an industrial
partner from the Bosch Center for Artificial Intelligence suggested that practi-
tioners from their logistics facilities would appreciate a response from the tool
stating a natural English description of the mission that had been specified.
An example of such a description is provided in Section 2.5. We targeted
specific robots during the experimentation, however, PROMISE is intended to
be robot-agnostic, so it could be integrated with any robot by modifying the
interpreter with the interfaces required for the new robot. The experimentation
enabled us to validate PROMISE from the point of view of expressiveness by

29Specification Patterns for Robotic Missions webpage: http://roboticpatterns.com
30https://github.com/SergioGarG/PROMISE_implementation
31https://www.eclipse.org/Xtext/
32https://www.eclipse.org/sirius/
33https://www.eclipse.org/xtend/
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measuring the ability to write missions defined by practitioners, as we will
detail in Section 2.5.

Our language and its framework implementation have been also validated
in terms of usability, by measuring the ability of potential end-users in using
the DSL for specifying missions. To this end, we conducted two user studies,
where participants were instructed before the study and then received a set of
tasks to be fulfilled within a given time frame. After the tasks’ completion, the
participants were asked to submit their results and to fill in a questionnaire.
The first of the studies was conducted at the University of L’Aquila as an
exploratory validation, which triggered important refinements in PROMISE,
especially in its implementation. Examples of refinements are the inclusion
of a wizard to help the users in the first steps of mission specification—e.g.
defining the number of robots and locations.

The second user study was designed to understand the elements of
PROMISE that could be perceived as error-prone by the participants and
to measure how confident the participants were of their provided solutions.
During this study, the participants had to specify missions using PROMISE
from textual descriptions within a time frame of 30 minutes. Furthermore,
the participants were requested to validate their solutions through experi-
mentation using a ROS and Gazebo-based setup in a provided laptop. All
the participants were able to correctly specify their missions within the given
time frame and to validate the results of two thirds of their missions through
simulation. Based on the responses to the questionnaire, the perception from
the users was positive towards the language and its implementation, not
considered error-prone. We collected qualitative data from the questionnaire
using open-ended questions, which also triggered refinements in the language
and its implementation. Some of the responses to those open-ended questions
remain as future lines of work, as, for example, enhancing the feedback offered
to the user during mission specification.

Further information regarding PROMISE and the validation procedure we
followed during its development might be found in our previous study [8], in
a tool paper [98], and in the DSL’s dedicated webpage.

2.5 Putting PROMISE into Practice

In the previous section, we introduced the methods and mechanisms we
developed to make robots usable in the everyday life in a descriptive way.
In the following, we present an example of a mission and its specification
using PROMISE together with a comprehensive discussion of the context in
which it has been defined. This example originates from our work in the
Co4Robots project,34 which aimed at developing a full functioning robot that
integrates several robotic skills that we have developed, including navigation,
self-localization, and planning. Its focus is on robotic applications realized
on top of robotic platforms provided by our industrial partners, including a

34http://www.co4robots.eu
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TIAGo robot35 and an ITA robot36, both in real life and simulation. To test
our developments, when we could not directly access any of these robots, we
used an economic and easy-to-use robot, the Turtlebot 2.37 It does not provide
a wide range of functionalities, but allows easy prototyping, while testing
recognition and navigation skills before deployment to the production-level
robots TIAGo or ITA.

Our example scenario is inspired by a mission proposed for the 2018 edition
of the well-known robotics competition RoboCup@Home. We replicated and
made available in PROMISE’s repository several missions proposed in the
rules of this RoboCup@Home’18 [102]. Concretely, we use here the restaurant
simulation scenario as an example. In this scenario, two robots collaborate to
help clients in a simulated restaurant at the same time. The robots are required
to ask the customers for their order and deliver drinks or snacks provided by
a barman (i.e. the human operator), while people walk around. Both robots
must work in parallel.

For our project, we have used Python as the development programming
language since it is one of the most common languages used in robotics together
with C++ [39], as discussed in Sect. 2.2. It is also well-supported by the Robot
Operating System (ROS) [20] middleware. Many libraries, such as for testing
or developing dedicated skills, are also written in Python. As anticipated
above, we make use of ROS since it is the most widespread middleware and it
is used by the Turtlebot 2 and TIAGo.

Next, also influenced by our middleware choice, we have designed a
three-layered software architecture for the software, because it supports the
separation of concerns among processes with different layers of abstrac-
tion [101]. We have also opted to adhere to a component-based approach,
mostly because ROS enforces the component-based software development
with its clustering of software modules into packages and nodes. If properly
performed, the step of designing and adhering to a software architecture
simplifies the later integration of robotic skills while promoting their docu-
mentation. As a mainstream IDE, we used Eclipse. In Section 2.2.2 we present
and discuss popular IDEs that support users in developing robotics software,
distinguishing between mainstream IDEs, such as Eclipse, which are extensible
via plugins for various robotics aspects, and dedicated robotics IDEs.

Figure 2.4 shows the representation of the restaurant scenario using the
graphical syntax of PROMISE. The image has been edited with circled numbers
to label nodes and ease the explanation of the mission. In turn, Fig. 2.5 shows
the textual representation of the same mission. This figure also contains circled
numbers, which label the same nodes, and therefore supports the reader while
linking the graphical-textual mapping.
Running example: mission defined using PROMISE.
The root of the mission specification, i.e. the operator parallel, is identified by
the node 1 and specifies that robot1 and robot2 must perform their missions in
parallel. A robot is assigned to each branch associated with this operator, as
indicated with labels in the edges between 1 and 2 in Fig. 2.4, and with the

35http://pal-robotics.com/robots/tiago/
36https://www.bosch-presse.de/pressportal/de/en/current-examples-of-robotics-research-102528.

html
37https://www.turtlebot.com/turtlebot2
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Figure 2.4: Running example specified with the graphical syntax of PROMISE.

name of the assigned robot (i.e., robot1 and robot2) in Fig. 2.5. Since the mission
for robot2 ( 22 ) is a replica of the one for robot1, we only show the latter for the
sake of conciseness.

The operator labelled with 2 is the eventHandler—more information
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Figure 2.5: Running example specified with the graphical syntax of PROMISE.

regarding PROMISE’s operators is available in [8]. It has a default behaviour;
in our example, it forces the robot to wait in location start ( 3 ). This behaviour
is paused when one of the events that are assigned to the eventHandler is
detected by the robot. The default robot’s behaviour ( 3 ) is resumed whenever
any of the behaviours triggered by an event is finished (either succeeding or
failing).

Each event is assigned to a child of the eventHandler (as represented in
Fig. 2.4) as grey circles and invoked in Fig. 2.5 by the keyword except. If the
event “help” is detected, the first operator condition ( 4 ) is executed. This
operator evaluates its associated events in order, and if they hold, it triggers the
behaviours associated with them. In this case, the operator condition evaluates
whether the request of help comes from table1 or table2.

In case “guest table1” holds (i.e. the request of help comes from table1),
another operator condition ( 5 ) is executed. This operator evaluates whether
this table is already being attended to by another robot (“table1 attended”)
and, in this case, makes the robot return to the starting position start. This
behavior is encoded by the instantiation of an operator delegate with a task
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Visit ( 6 ).
The next operator condition ( 5 ) evaluates “table1 not attended,” and, if it

holds, the execution of an operator sequence ( 7 ) is triggered. This operator
executes in sequence a set of operators. Concretely, the sequence of operators
starts with 8 , which “locks” table1 from the rest of the robotic team by
forwarding a message (in this case, other robots will recognize it with the event
“table1 attended’). The robot will then move to table1 ( 9 ), ask the order ( 10 ),

and receive and parse it ( 11 ). The robot will then move to kitchen ( 12 ) to
interact with the barman (i.e. the human operator). Note that this specific task
can be stopped by the user or human operator by means of the event “stop”
(see Fig. 2.4). Once the robot has reached location kitchen, it will repeat the
order to the barman ( 13 ), after which the robot will grab beverages ( 14 ) and

a tray with the ordered snacks ( 15 ). The robot will then return to table1 ( 16 )

with the order, where it will place the tray ( 17 ). The sequence of tasks finishes
with the robot “releasing” the table for other robots, in a similar way as to how
it locked it.

The operator condition 20 is a replica of 5 —see the conditions in the
textual representation in Fig. 2.5 “if guest table1” and “if guest table2”—and,
therefore, we do not show its whole graphical representation for the sake of
conciseness.

As suggested by an industrial partner after a demonstration to the Co4Robots
consortium, PROMISE prompts a natural English description of the mission
once specified and saved. An excerpt from the description of the example
introduced in this section is as follows.

Robot robot1 does by default wait in location start, and if event help occurs,
it will, if event guest table1 holds, and if event table1 attended holds, visit
(without any specific order) location(s) start. If event table1 not attended holds,
it will perform action lock table1 and then visit (without any specific order)
location(s) table1 and then perform action ask order, and then perform action
receive order, and then visit (without any specific order) location(s) kitchen,
and then perform action repeat order, and then perform action gra beverage,
and then perform action grab tray, and then visit (without any specific order)
location(s) table1 and then perform action release tray and then perform action
release table1.

The mission of the example was modelled through mission specifica-
tion from a natural English description, in this case, from the rules of the
RoboCup@Home’18 [102]. Once the mission was modelled, we proceeded
to validate it through experimentation in an iterative way. The first step we
took was simulation,38 for which we used simulated models of the facilities
and robotic models provided by the industrial partners of Co4Robots for
Gazebo [103]. Once the simulation was performed and the mission speci-
fication validated, we proceeded with validation in real life. As explained
above, we purchased a Turtlebot2 for experimentation. We validated the same
restaurant scenario with the Turtlebot in the facilities of the University of

38https://www.youtube.com/watch?v=F3BnIEPB8Sk
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Gothenburg.39 The last step was to conduct a demonstration in the presence
of the project consortium at the facilities of PAL Robotics, for which we used a
TIAGo robot.40 Through this process, we demonstrated the ability of PROMISE
to specify complex missions from textual descriptions. We also demonstrated
its capability to operate with different robots by accordingly modifying the
interpreter of its framework—see Section 2.4.2.

We invite the interested reader to learn more about the validation procedures
we followed during the development of PROMISE in our published studies [?,8]
and on its dedicated website.

2.6 Discussion and Perspectives for Future Research

As discussed in this chapter, in the last years there have been many contributions
from the research community to propose domain-specific languages for mission
specification [8, 36], the description of missions in natural language [104], and
visual and end-user-oriented mission environments [13, 16, 17, 105].

The approaches surveyed here greatly contribute to the field; however,
the mission specification-problem still requires solutions able to make robots
usable in everyday life for accomplishing complex missions. In the following,
we highlight the limitations of current approaches and we devise perspectives
for future research. As stated also in the Multi-Annual Roadmap (MAR) For
Robotics in Europe [106], in order to reduce costs and establish a vibrant
component market, there is a need for instruments for supporting mission
reuse and diversification, as well as coping with the variability of conditions of
application scenarios occurring in real environments. This is also testified by
our findings during our collaboration with practitioners in the robotic domain:
the complexity does not reside in commanding a robot with a set of tasks but
in making the robotic application robust enough to be able to cope with the
variability that characterizes the real environments in which the robots are
required to operate, especially those that involve humans [39].

To the best of our knowledge, few approaches try to address the reusability
and variability envisioned by the MAR. PROMISE and the specification
patterns are greatly contributing; however, there are some aspects that should
be investigated in the future. In the following, we devise important research
directions, which we identified based on our collaboration with companies in
the Co4Robots project and additional collaborations in the healthcare domain.
Specifically, we believe that the main research directions go in the following
directions:

• Reusability: the DSLs we will develop for enabling end-users to specify
missions will make use of libraries of tasks and skills. They will also
integrate with libraries produced by other projects and initiatives, like
RobMoSys.41

• Variability of the real world: the DSL will be conceived to enable the speci-
fication of the variability of conditions of complex real-world scenarios.

39https://www.youtube.com/watch?v=Qr9FqzSrZuk
40https://www.youtube.com/watch?v=zP1PjGX84Qk
41https://robmosys.eu
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Figure 2.6: Mission specification.

• Fleet specification of a mission: the end-user that will specify the mission
does not need to assign tasks to specific robots, but the mission speci-
fication will represent the “needs” of the end-user and robots will be
automatically assigned and potentially re-assigned during the mission
execution, according to the capabilities of robots and various quality
parameters.

• Human-robot collaboration: the mission specification will include also
humans, with two different roles, namely, operators, able to perform
actions needed to successfully accomplish the mission, and patients,
which will require actions from robots.

In order to support what we believe we might need, various libraries of
pre-defined solution schemes that can be reused, instantiated, and composed
by means of properly defined operators need to be implemented. As shown in
Fig. 2.642 we envision three different types of libraries organized on two levels,
one being application-domain-independent (specific for service robots), and
the other one being domain-specific, e.g. assistive healthcare, agriculture or
smart production.

• Mission specification movement patterns are pre-defined solutions concern-
ing movements of robots and provide the bridge between a mission
requirement expressed in structured English (a subset of English with a
well-defined semantics) and a formulation in temporal logic. An initial

42We use the same terminology in “Architectural Pattern for Task-Plot Coordination” of the EU
H2020 RobMoSys project: https://robmosys.eu/wiki/general_principles:architectural_patterns:
robotic_behavior
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result in this direction consists in the specification patterns described in
Section 2.4.1.

• Library of skills contains the implementation of the modules for enabling
the robot to do specific actions, like grasp object with constraint, low
dexterity, soft grasping, image recognition, gesture recognition, and so
on, that are compliant with the RobMoSys platform.

• Domain-specific declarative tasks are recurrent combinations of mission
specifications patterns and skills used to define declarative tasks for
domain-specific operations. For instance, in the assistive healthcare
domain, a declarative task can be “welcome,” and would require patterns
for movements and various skills such as human recognition, speech
recognition, etc. The tasks are declarative since they specify only what
the robot is able to do without saying how the robot will do that.
Then, planners will compute how the task will be solved in the specific
environment according to the capabilities of the robot that will be
allocated to this task.

• Domain-specific Languages, as for instance PROMISE (Section 2.4.2), enable
operators who are not required to have expertise in programming nor
robotics, to specify in an easy and correct way the mission they would
like the robots to safely accomplish. Each domain-specific language will
make use of the language operators that we will define. There will also be
specific “dialects” for specializing the language to the various domains.
In this way, healthcare operators will find in the domain-specific language
for assistive healthcare concepts that are specific of the domain, expressed
in terms of domain-specific declarative tasks for assistive healthcare.
The language enables the description of complex and sophisticated
missions, which will also take into account non-functional properties,
such as timing constraints. These properties are captured by composition
operators, like sequence, selector (fallback), or event-handler, which are
inspired by Behaviour trees [99,100] or by PROMISE.43 The DSL will help
healthcare operators (with a sort of wizard or recommendation system)
to deal with the variability that characterizes the environments in which
missions are executed. This includes “exceptional” behaviours, such as
a robot running out of battery, an unforeseen obstacle hampering the
mission satisfaction, an object falling down from the hand of the robot,
and so on. As testified by MAR [106] and also highlighted in a recent
study [39], one of the most difficult aspects in mission specification is to
deal with the variability of real-world scenarios.

Example of Mission specification. During the day, “robot” welcomes new-
comers when the bell “s2” of the door rings. According to the needs of the
guests, “robot” will provide the needed information or ask them to enter
the dining room, and if a human intervention is needed, “robot” informs
a caregiver. When “robot” is in the dining room, it acts as a caregiver and
interacts with people by calling them to drink and offering water that “tray”

43The PROMISE DSL has been developed in the context of the EU H2020 project Co4Robots [8].
PROMISE webpage: https://github.com/SergioGarG/PROMISE_implementation
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carries. During night, “robot” patrols for security and if it finds humans in
the environment it calls an operator. Robots recharge autonomously while
guaranteeing the welcoming and caregiving service. Notice that the example
does not include quality aspects, such as timing constraints, since patterns
including these aspects are not yet available, but they will be developed during
the project execution.
Mission specification: A healthcare operator will specify the mission by means
of the following domain-specific macros: Welcome, Security Patrolling, Caregiver,
and Call caregiver. The following figure shows the mission specified foreseeing
two different graphical languages, one (a) based on the blockly44 approach and
the other one (b) using PROMISE’s style [8]. This is just to explain what we
mean by graphical and easy-to-use language for mission specification.

Domain-specific macros, mission specification patterns, and library of tasks:
Behind the scene, i.e. invisible to the end-users, the macros will be built by
using the mission specification patterns and the tasks stored in the library.
For instance, welcoming might be realized by composing the sequenced visit
specification pattern45 to reach from the current location of the robot the door
(LTL formula: ^ (door location)), with a delayed action46 when the robot reaches
the door to welcome and activate the speech recognition—LTL formula:
�(door location⇒ ^(welcome)), where “welcome” is a task in the library of
tasks.

44https://developers.google.com/blockly
45http://roboticpatterns.com/pattern/sequencedvisit/
46http://roboticpatterns.com/pattern/delayedreaction/
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Abstract

Mobile robots are becoming increasingly important in society. Fulfilling
complex missions in different contexts and environments, robots are promising
instruments to support our everyday live. As such, the task of defining the
robot’s mission is moving from professional developers and roboticists to the
end-users. However, with the current state-of-the-art, defining missions is non-
trivial and typically requires dedicated programming skills. Since end-users
usually lack such skills, many commercial robots are nowadays equipped with
environments and domain-specific languages tailored for end-users. As such,
the software support for defining missions is becoming an increasingly relevant
criterion when buying or choosing robots. Improving these environments
and languages for specifying missions toward simplicity and flexibility is
crucial. To this end, we need to improve our empirical understanding of the
current state-of-the-art of such languages and their environments. In this
paper, we contribute in this direction. We present a survey of 30 mission
specification environments for mobile robots that come with a visual and
end-user-oriented language. We explore the design space of these languages
and their environments, identify their concepts, and organize them as features
in a feature model. We believe that our results are valuable to practitioners and
researchers designing the next generation of mission specification languages
in the vibrant domain of mobile robots.

Keywords

specification environments, language concepts, visual languages, robotic
missions, empirical study



40 CHAPTER 3. PAPER B

3.1 Introduction

Over the last decades, robots became increasingly present in our everyday
life. Autonomous service robots replace humans in repetitive, laborious or
dangerous activities, often by interacting with humans or other robots. Ac-
cording to a 2019 press release1 at the International Federation of Robotics,
the sales of robots for professional use, such as autonomous guided vehicles,
inspection, and maintenance robots increased by 32%. Personal service robots
are expected to exceed 22.1 million units in 2019 and 61.1 million units in 2022,
while the sales for agricultural robots is projected to grow by 50% per year.

Different techniques have been proposed for engineering the various aspects
of robotic behavior [35,83,107–109], such as interoperability at the human-robot
(or human-swarm) level [110, 111] and at the software-component level in
middlewares [112], or multi-robot target detection and tracking [109].

Engineering robotics control software is challenging. Specifying the be-
havior of a robot, typically called the robot’s mission, is far from trivial.
Sepcifically, a mission is a description of the high-level behavior a robot must
perform [1]. As such, a mission coordinates the so-called skills of robots, which
represent lower-level behaviors. Developing missions requires substantial
expertise [113, 114]. For instance, using logical languages such as LTL, CTL
or other intricate formalisms to specify missions is complex for users with low
expertise in formal and logical languages [14, 15].

Nowadays, the task of defining missions is moving from the robotic
manufacturer to the end users, who are far from being experts in robotics.
Robots are also evolving from single-purpose machines to general, multi-
purpose, and configurable devices. As such, the software support provided for
defining missions is becoming a more important ingredient for the selection of
a robot by end-users. For example, before buying a robot, in addition to the
actuation and sensing abilities of the mobile robot, end-users and developers
may want to understand which types of missions can be delegated to the robot
and which software support is provided for mission specification.

Over the last two decades, a range of more end-user-oriented programming
environments appeared. They allow specifying robot missions in a more
user-friendly way, alleviating the need for intricate programming skills, which
end-users are usually lacking [15, 16, 18]. Researchers and practitioners have
invested substantial effort into achieving end-user-oriented programming
environments for robots [13, 16–19]. In fact, almost every commercial mobile
robot nowadays comes with an environment, called mission-specification en-
vironment for programming the behavior. Most of these environments rely
on dedicated Domain-Specific Languages (DSLs) that end-users can utilize to
specify missions.

This paper aims at improving our empirical understanding of the current
state-of-the-art in mission specification. Our focus is on end-user-oriented lan-
guages providing a visual syntax. In our survey, we identify open-source and
commercial environments that allow end-user-oriented robotic mission speci-
fication. While robot programming environments consider all programmable
aspects of the robot system, we focus on environments in which robot missions

1https://ifr.org/ifr-press-releases/news/service-robots-global-sales-value-reaches-12.

9-billion-usd
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are created, designed or particularized. We consider a mission specification
environment as a collection of tools that facilitate definition and stipulation
of robot tasks that form a mission. We study the environments’ and their
languages’ main characteristics and capabilities, which we model as features
in a feature model [115, 116], a common method to analyse and document a
particular domain.

We formulated two main research questions:
RQ1: What visual, end-user-oriented mission specification environments have

been presented for mobile robots? We systematically and extensively identify such
environments from various sources, including the Google search engine and
research literature.

RQ2: What is the design space in terms of common and variable characteristics
(features) that distinguish the environments? Our focus is on understanding the
concepts that these environments and their languages offer, which end-users
utilize to specify the missions of mobile robots. We conduct a feature-based
analysis, resulting in a feature model detailing our results in terms of features
organized in a hierarchy.

We identified a total of 30 environments and created a feature model with 133
features, both reflecting mandatory features (those found in all environments)
and optional ones (those found in only some environments). These features
illustrate the design space covering those environments’ capabilities, general
language characteristics, and, most importantly, language concepts. Table A.1
and Table A.2 show the details of the features supported by each of the
considered environments. We show how our survey is useful for end-users,
robot manufacturers and language engineers by reporting a set of use case
scenarios and explaining how the results of this survey can be used within these
scenarios. We believe that our work is valuable to end-users, practitioners,
researchers, and tool builders for developing the next generation of mission
specification languages and environments and to support users in the selection
of the most appropriate robot(s) based on their mission specification needs.

3.2 Background and Motivation

To convey a first understanding of mission specification, we now introduce
some key terminology as well as we provide a small example of a mission
defined in a dedicated DSL of one of our subject environments, illustrating
its advantage over writing the mission in a general-purpose (off-the-shelf)
programming language.

A mission is a description of the high-level behavior a robot must perform.
A mission represents the logic that coordinates the lower-level functionalities
of robots, also known as tasks or skills. While this coordination logic can be
written in any programming language, expressing it in a DSL avoids writing
boilerplate code, focusing on the language concepts relevant for defining the
mission, as well as comprehending the mission for later maintenance and
evolution. Expressing a mission in a dedicated model also gives rise to specific
analyses, since a dedicated DSL captures more specific semantics that are not
obvious from code written in a general-purpose programming language.

Effectively using a mission-specification DSL requires a mission specification
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Figure 3.1: Block-based mission of a robot patrolling a perimeter wall, expressed
in Open Roberta

environment. We consider such environments as collections of tools centered
around one or more DSLs that provide dedicated concepts for defining robotic
missions. The tools provide an infrastructure for using the languages and
supporting the execution of their instances (i.e., the mission), for instance, by
compiling them into programs in general-purpose languages and deploying
them to the robots.

In this work, we consider end-user facing environments, which target end-
users who are technically skilled, but not experts in robotics or in programming.
Example: A Patrolling Mission.. In a patrolling mission, a robot is expected
to move along a predefined path repeatedly. During the patrolling, various
data-capturing events shall be triggered, including object recognition, live
video streaming, (periodically) taking photos, or recognizing noise. For each
of the events, corresponding actions are expected, e.g., raise alarm or send
message (text, voice, video) to a human or an agent (another robot or central
system). The patrolling can continue up to a given period of time, repeated
given number of times or until when a given event takes place, e.g., run out of
battery.

Various mission requirements might need to be specified, such as: (i) mobile
robot(s) that can move on land, air or water, (ii) patrolling data, e.g., sensing
data required to keep the robot on course (color detection, obstacle detection
or GPS coordinates), actions during patrolling (video screening, photography,
or special object recognition), make alarm (communication with human or
agent), end mission (number of rounds, time, event).

This mission has been specified using the Open Roberta environment,
as shown in Fig. 3.1 with a corresponding textual code in Listing 3.1. The
block-based mission can be more appealing for end-user domain experts, like
farmers, than text-based mission specifications. Figure 3.1 shows an example
mission for a Lego EV3 robot in Open Roberta: patrolling a perimeter wall.
Listing 3.1 shows the target C code generated from this mission by Open
Roberta. This code, while at the same level of abstraction as Open Roberta’s
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Table 3.1: Identified environments by data sources. The environments high-
lighted in bold were discovered first from that data source

Data Source Identified Environments (after applying inclu-
sion/exclusion criteria)

Environments from
experience (26 can-
didates, selected 14,
unique 14)

MissionLab, Choregraphe, LEGO Mindstorms EV3,
Sphero, TiViPE, Aseba, Robot Mesh Studio, Edison
software, Makeblock 5, TRIK Studio, Ardublockly,
MiniBloq, PROMISE, and FLYAQ.

List of mobile
robots (59 candi-
dates, selected 20,
unique 8)

MissionLab, Choregraphe, LEGO Mindstorms EV3,
Sphero, TiViPE, Aseba, Robot Mesh Studio, Edi-
son software, Makeblock 5, TRIK Studio, Ar-
dublockly, FLYAQ, PICAXE, Open Roberta, Ar-
cbotics’ SparkiDuino, VEX Coding Studio, Metabot,
Marty software, Tello Edu App, and Code Lab.

Google search
(373 candidates,
selected 23, unique
2)

MissionLab, Choregraphe, LEGO Mindstorms EV3,
Sphero, TiViPE, Aseba, Robot Mesh Studio, Edison
software, Makeblock 5, TRIK Studio, Ardublockly,
MiniBloq, FLYAQ, PICAXE, Open Roberta, Arcbotics’
SparkiDuino, VEX Coding Studio, Metabot, Marty
software, Tello Edu App, Code Lab, BlocklyPro, and
Ozoblockly.

Snowballing (80
candidates, se-
lected 15, unique
3)

LEGO Mindstorms EV3, MissionLab, Aseba, VEX
Coding Studio, Choregraphe, MiniBloq, Ozoblockly,
Sphero, TiViPE, Open Roberta, TRIK Studio, Robot
Mesh Studio, Enchanting, EasyC, and RobotC

Further alternative
environments (3)1

Turtlebot3-blockly, Makecode, and Scratch Ev3

1 Found by seeking alternative environments for robots supported by the
identified environments above

mission specification (Fig. 3.1), contains intricate boilerplate code hidden by
the latter’s language.

3.3 Method

We now explain our methodology for identifying end-user-oriented mission
specification environments (Sect. 3.3.1) and for classifying and analyzing their
features (Sect. 3.3.2).

3.3.1 Identification of Environments (RQ1)

We focus on environments that support end-user programming of mobile
robots, providing domain-specific languages for specifying robotic missions.
Data Sources.. We used three different data sources: (i) input provided by the
authors based on experience and knowledge in the field, (ii) the Google search
engine, and (iii) forward and backward snowballing upon a set of related



44 CHAPTER 3. PAPER B

Authors' 
Experience 

26 Candidate Environments 

List of Mobile 
Robots 

59 Robots 59 Environments 

Google 
Search 373 Search Results 

Snowballing 80 Candidate Environments 

Find Alternative 
Environments 

40 Robots from 
27 Environments 

3 Environments 30 
Environments 

Inclusion/Exclusion Criteria 

Inclusion 
/ 
Exclusion 
Criteria 

Programming 
Environments 

27 Environm
ents 

Filter D
uplicates

Figure 3.2: Identification of environments. More details in Table 3.1

survey papers. The survey did not use libraries, such as IEEE, Scopus, and
Web of Science, since they only list publications. Yet, there are emerging tools
that do not necessarily have publications.
Identification of Candidate Environments.. We identified our subject envi-
ronments with the following steps:

(a) identify robot programming software in general as candidates for mis-
sion specification environments, i.e. experience, Google search, and
snowballing;

(b) identify the mobile robots, being programmed by such software in (a).
The mobile robots were used to search for alternative environments for
programming them.

(c) apply inclusion and exclusion criteria to filter environments to be selected
as candidate environments.

Figure 3.2, shows the selection strategy used, the three steps are explained
in detail below:
Identify robot programming software in general as candidates for mission
specification environments.. Environment candidates from experience. From our
past experience in robotics software engineering, we assembled a list of 26
candidate environments from which 14 were selected. A list of 59 commercial
mobile robots was created based on the past experience of the authors (e.g.,
the authors were aware of many educational robots, such as Thymio, Sphero
or NAO). From the robots’ web pages, we identified the software that was
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offered for programming the robot missions. This step gave us exactly 59
environment candidates, from which 20 environments were selected and 8
were unique from the previously selected.

Google search. We conducted a search with the string (“programmable robots”
OR (“robot programming” OR “mission specification”) environment) “mobile robot”,
which yielded 373 results (note that Google reported 774,000 results, which
collapsed to 373 when scrolling to the last page, which is a common phenomena.
Out of the 373, 23 environments were selected but only 2 environments were
unique.

Snowballing. Based on a list of six survey paperswe were aware of
from our experience, we conducted snowballing. Specifically, we identified
environment candidates from reading these survey papers and then from
reading all papers being cited in each (backwards snowballing) and all papers
citing it (forward snowballing), also ignoring duplicates. We identified 12
from [17], 44 from [117], 14 from [90], 0 from [14], 6 from [13], and 7 from [59],
totaling 80 candidates. Out of the 80 candidates, 15 were selected and 3 were
unique. Table 3.1 shows environments identified from particular data sources.
The filter duplicate stage helped in eliminating duplicates before applying the
inclusion/exclusion criteria.

In summary, we collected 537 candidate environments, from which 27
environments were initially selected. After searching for alternative environ-
ments for robot found in the 26 environments, we discovered 3 more unique
environments, which makes the total of 30 environments selected.
Identify the mobile robots.. In the next step, we used the robots programmed
using the environments identified from the above data sources to identify
alternative environments for programming them. This was done through
a Google search with the robot name as the search string. In summary, we
identified 40 robots from the 27 environments selected, which yielded three
more environments. As such, our final number of environments identified is
30. Table 3.1 summarizes our results.
Application of Inclusion and Exclusion Criteria.. We sieved the 537 candidates
according to the following inclusion and exclusion criteria.
Inclusion Criteria. We included a candidate when it fulfilled all of the following
conditions. It must:

• allow the specification of missions for mobile robots;

• offer a domain-specific language with a visual notation targeting end
users;

• come with documentation about the environment and its language;

• be available to users in the sense that it is either sold or can be downloaded
freely.

Exclusion Criteria. An environment is excluded if any of the following conditions
holds. It must not:

• be an environment that focuses on programming system aspects of a
robot, such as the Robotics Operating System (ROS), instead of specifying
missions;
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• target non-mobile robots, such as stationary industrial robots, 3D printers
or Arduino boards;

• be a mission control application with pre-programmed missions;

• be a remote-control application for mobile robots.

In summary, we selected 27 environments using the inclusion/exclusion
criteria from the initial collection of 537.

3.3.2 Analysis of Identified Environments (RQ2)

Our goal is to identify the characteristics that distinguish our subjects in the
form of features [118] and to organize them in a feature model [115, 116].
Performing such a feature-based analysis is a common method for comparing
the design space of technologies, such as model transformations [119], language
workbenches [120] or variation control systems [121].

The data sources for analyzing the identified environments are scientific
papers about them, their websites, related documentation (e.g., user manuals
or programming guides), and examples of missions expressed in the respective
languages.

Our strategy is as follows. First, in a brainstorming meeting, after an initial
screening of the subjects, we identified key features of the environments—
mainly representing the top-level and intermediate features in the feature
model. Second, we consulted the websites to further identify key features
and organize them in a hierarchy. This first skeleton provided the basis
for an iterative refinement of the feature model by systematically, for each
environment: (i) reading the scientific publications and other technical doc-
umentations about the environment; (ii) when possible, downloading and
installing the environment to specify example missions, or alternatively for
web-based environments, using the online tooling; and (iii) reading through
the help menu for better understanding of how the environments are used to
specify missions.

In this process, we iteratively refined the feature model and maintained
notes about the realization of individual features in each environment. The
features were discussed among all authors to reach consensus.

3.4 The Environments (RQ1)

We now summarize the identified environments. We classify them by the
kind(s) of syntax they offer: block-, flowchart-, graph-, text- or map-based syn-
taxes. Table 3.2 lists all environments together with (i) the language syntax(es)
supported; (ii) whether the environment is designed for desktop computers,
mobile devices or is web-based; and (iii) the mobile robot that is supported,
and its manufacturer. Our online appendix2 provides further details about
each environment.

2https://drive.google.com/file/d/1sh5qNS7Oo3itioNijez6ryekZ4FRlXtx/view?usp=sharing
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3.4.1 Environments with Block-Based Languages

Block-based languages use visual blocks to represent the language syntax.
Such blocks have various shapes and colors for the various language constructs.
Typically, the block shapes visualize constraints, e.g., where in the mission
specification the language concept represented by the block can be used. Block
colors often depict a particular kind of functionality, such as yellow for actions
and green for sensor usages, as seen in the environment Open Roberta [89].

The majority, that is, 23 out of our 30 environments offer a block-based
syntax. Most of these environments are used for teaching, as shown in Table 3.2.
There is some attempt to use these languages for industrial use.3

The syntaxes of these block-based languages are typically implemented
using the popular open-source libraries Blockly [155, 156] and Scratch [157].
Specifically, Blockly is developed by Google for creating visual notations,
where each block represents a programming concept. The library can be
extended to define new blocks, support functions, and procedures. Blockly
allows access to the parse tree offers a code-generation framework to generate
code in the target (general-purpose) language [137]. Scratch is similar to
blockly, but developed by the MIT media laboratory [157]. The library can be
extended by adding custom, end-user-oriented blocks.

3.4.2 Environments with Flowchart-Based Languages

A flowchart is a diagram representing a step-by-step process of executing tasks.
Flowchart-based languages make use of flowcharts to define the behavior
and to organize the various blocks, which include: start/stop, process block,
decision block, and input/output block. Each of these blocks is connected by a
flow line (arrow) indicating the order of executing the mission. The syntax
supports language constructs such as if-then-else, loops, and assignments.

Only 3 of our 30 environments offer a flowchart-based syntax for mission
specification, namely EasyC, PICAXE, and Robot Mesh Studio. As an example,
Fig. 3.3 shows a flowchart for managing a flashlight that switches on and off
with a time interval of 0.25 time units. The program consists of a main program
and a subroutine (FLASH). After creating the mission in flowchart editor, a
separate text file is generated when the mission is compiled.

3.4.3 Environments with Graph-Based Languages

Environments offering languages with graph-based syntax represent mission
components, such as tasks and mission primitives, as graph nodes. These
nodes are connected in a directed graph, where the edges indicate control flow.

Only 4 out of our 30 environments exhibit languages coming with a
graph-based syntax, namely Choregraphe, TiViPE, MissionLab, and TRIK
Studio.

Figure 3.4 shows a graph-based mission specified using MissionLab. Mis-
sionLab offers finite state automata (FSA) to model the behavior of robots,
where each node represents a high-level behavior. The mission is specified
using the graphical configuration editor to create the FSA. The FSA in Fig. 3.4

3https://new.abb.com/news/detail/59950/abb-makes-robot-programming-more-intuitive-with-wizard-easy-programming-software
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Figure 3.3: Left: A mission specified in PICAXE’s flowchart-based language.
Right: generated target code in PICAXE’s BASIC language (from [70])

describes a scouting mission of multiple robots operating in different forma-
tions. Each state (illustrated by circle arrows) represents a formation, with
transitions (arrows with labels in rectangle boxes) representing conditions
in which to advance to a new state. In our example, the robots start in the
line formation, then column formation, then wedge formation, and finally the
diamond formation.

3.4.4 Environments with Text-Based Languages

Most of the textual syntaxes offered by our mission specification environments
are abstracted with domain-specific terms and expressions, either in the robotics
domain or the end-user domain. In total, 13 of our 30 environments support
mission specification in textual syntax—in almost all cases when the environ-
ment supports using a GPL in addition to its main DSL for mission specification.
Notable exceptions are Aseba and PROMISE, whose DSLs also offers a textual
syntax. In the other environments, the GPLs with textual syntax used include,
for instance, Python, C/C++, Java, Java-script, and BASIC. Figure 3.5 shows a
text-based mission specified for a robot to follow a line using Edison software.

3.4.5 Environments with Map-Based Languages

Finally, one environment, FLYAQ, provides a syntax that does not fit into
the types of syntaxes reported above. FLYAQ provides the DSL Monitoring
Mission Language (MML) to specify missions. By interacting with a map,
end-users indicate points of interest, as well as no-fly-zones. The environment
automatically generates the mission in an intermediate language, which is
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Figure 3.4: Graph-based state transition diagram for a multi-robot scouting
mission in MissionLab (from [158])

conceptually close to a flowchart diagram, with a swim lane for each robot.
Finally, the mission is executed on real robots or on a simulated environment.

Figure 3.6 shows an example mission specified in MML, where a drone
patrols a street to monitor a public event, while taking photos at specified
distances, avoiding no-fly zones.

3.5 The Environments’ Features (RQ2)

We now present the design space of our subject environments, focusing on
their DSLs for specifying robotic missions as well as the environments’ ca-
pabilities to use these languages. We identified 133 features that distinguish
our environments and that we organized in a feature model. In the following,
Sect. 3.5.1 presents the high-level features extracted from our subject environ-
ments; Sect. 3.5.2 presents the language-specific features we identified; and
Sect. 3.5.3 presents the features related to the constructs of the considered
languages.

The detailed mapping between each environment and its supported features
(a.k.a., feature matrix) is contained in Appendix ??, in Table A.1 (high-level en-
vironment features and language-specific features) and in Table A.2 (language
concepts offered by the DSLs).

3.5.1 Specification Environments

Figure 3.7 shows the top-level features characterizing our subject environments:
Language, MultiLanguageSupport, Editor, Simulator, Debugging, Specification-
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Time, MissionDeployment. The support of these features by each environment
is detailed in Table A.1 (upper half) in Appendix ??.
MultiLanguageSupport.. As a defining characteristic, all our subjects are built
around a DSL for mission specification. While we will discuss the languages
and their concepts shortly (Sections 3.5.2 and 3.5.3), we observe that all these
languages are domain-specific, tailored to the robotics domain. As many as
eight environments offer more than one language—either another mission-
specification DSL or an off-the-shelf programming language (e.g, Python, C,
Javascript) that can be used within the environment. This excludes any library
APIs for client applications, as sometimes offered by SDKs associated with
the respective environment (e.g., Choregraphe offers APIs for eight different
programming languages). When multiple languages were available, the en-
vironments typically offered a separate editor for each; there were no facilities
for language composition. A notable environment here is PICAXE, which
offers a block-based language, a flowchart-based language, and a language
in the style of the programming language BASIC with a textual syntax—all
of which are individual languages (as opposed to being language language
with different syntaxes). However, some environments such as Aseba offer
a unique language with different syntaxes.
Editor.. As the main interface to use the respective languages, the editor
tooling in our environments offers typical editor capabilities (e.g., copy, paste,
or undo). We classify the editing support into EditingMode, SemanticServices,
and SyntacticServices features.

Not surprisingly, given the mostly visual syntaxes of our environments, the
underlying editing technology (feature EditingMode) is primarily projectional
editing (a.k.a., structured or syntax-directed editing) [159,160]. As opposed to
parser-based editing, where the user edits textual code character-by-character,
which is then parsed and translated into an abstract syntax tree (AST), in
projectional editing, the user’s editing gestures modify the AST directly. The
AST is projected using projection rules into a user-observable syntax, which
can resemble textual and visual syntax, or a combination of both. All of
our environments offer projectional editing. 12 of them also come with a
parser-based editor to handle the languages with textual syntax—the latter
is either an alternative syntax for the visual language or the main syntax
of another language offered by our environments. While being the default
for editing visual syntax, only once it is also used for textual syntax—in the
environment EasyC, displaying visual and textual syntax side-by-side, as
shown in Figure 3.8. The typical continuous enforcement of a correct AST in
projectional editing guides users towards correct mission specifications, which
can also be seen as a semantic service. For instance in Open Roberta, while
specifying a mission, the next block can not fit if it is not syntactically correct.
In text notations like Edpy in Edison software, projections of next possible text
to type are suggested while specifying a mission.

The majority of our environments (26) provide so-called syntactic services
(feature SyntacticServices) [120]. These support developers in creating syn-
tactically correct missions, according to the language’s syntax. We identified
three syntactic services:

• Visual Highlighting consists in language-specific syntax coloring of text, or
shapes of notation primitives to guide syntax. 25 of the 30 environments
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provide syntax-highlighting services.

• Syntactic completion suggests a template of concrete syntax primitives
(e.g., a code snippet) to the user. Such syntactic completion templates
are offered by six environments.

• Automated formatting helps in restructuring and layout of the mission
being specified. Five of our environments offer this support.

For convenience, seven of our environments offer so-called semantic
services (feature SemanticServices) [120]. These support developers in
creating semantically correct missions by offering information about mission
primitives and how they are used. Semantic services guide the user by
providing editing support using:

• Error marking highlights mission elements with errors by showing the
error message. For instance, a pop-up help displays errors in Edison
software, MissionLab, and Choregraphe.

• Quick-fixes are proposed solutions, when selected can fix the problem,
e.g., interactive tooltips in PICAXE, pop up help and autocomplete in
Edpy of Edison software;

• Reference resolution links declarations to the usage of the variable, e.g.,
invalid variable names are pointed out in MiniBloq;

• Live translation is the immediate generation code from mission as it is
specified, which is displayed side-by-side to the graphical notation e.g.,
in EasyC Fig. 3.8.

As seen in Table A.1, five of the environments offer semantic services to the
end-user.
Simulator.. As many as ten of our environments provide a simulator to test
missions in a virtual environment before deployment. Eight of these are limited
to simulating single robots, while two, namely FLYAQ and PROMISE, even
support multi-robot simulation using off-the-shelf simulators (Mavproxy4 and
Gazebo,5 respectively).
Debugging.. We identified debugging support in 8 of our environments.
Specifically, we found a variety of debugging tools, including the live monitor-
ing of sensor data, of actuator states, and of mission variables. In addition to
typical debuggers with stepwise execution, breakpoint support, and stack-trace
monitoring. A very typical debugger is contained, for instance, in Robot Mesh
Studio. Interestingly, Makecode communicates execution traces via sound and
by printing text between the execution of program blocks. Furthermore, Open
Roberta provides a ‘check box’ in the start block that, when checked, displays
current values of the connected sensor data during program execution.
SpecificationTime.. Missions are specified either at design time or run-time.
Design-time specification provides all the details about the mission before the
execution starts. All environments support design-time specification. Three
of our environments (namely Turtlebot3-blockly, Sphero, and Choregraphe),

4https://ardupilot.org/mavproxy
5http://gazebosim.org
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however, also offer some remote-control functionality to intercept the mission
execution at runtime.
MissionDeployment.. Missions, once specified, are deployed to the robots for
execution. We identified three features related to mission deployment:

• Over the air. Supported by 10 environments, we identified the WiFi and
Bluetooth connections as wireless options used for deploying missions
to robots.

• Via cable. Supported by 23 environments, the cable options for mission
deployment observed are USB cable, Ethernet cable, and custom cables
specific to some robots.

• Runtime redeployment. Two of our environments support re-deploying a
modified mission at runtime, i.e., when the previously specified mission
was already started, without restarting the robot.

3.5.2 General Language Characteristics

As illustrated in the feature model in Fig. 3.9 and the feature matrix in Table A.1
(Appendix ??), we identified the following general characteristics in which
the languages differ, represented by the features Notation, SemanticsRealiza-
tion, LanguageParadigm, and Extensibility. The actual concepts offered by
the languages will be discussed in Sect. 3.5.3. Below, we discuss their core
characteristics.
Notation.. As already discussed above in Sect. 3.4, all our environments offer
languages with a domain-specific visual notation, which forms the concrete
syntax for their end-users. The textual and visual notations offered by the
respective environments are summarized in Table 3.3. According to definitions
provided in Sect. 3.4, we classified the considered languages as block-based
(in 24 environments), flowchart-based (in 3 environments), graph-based (in
14 environments), map-based (in one environment), and text-based (in 13
environments).

Almost every syntax is customized with robotics-domain-specific visual
symbols. For instance, a block Motor forward in TRIK Studio has a gear icon
with a forward arrow depicting a forward-running motor. The user only
specifies the motor power and the port in which the motor connects. As many
as 13 of our environments additionally offer a textual syntax, often obtained
by allowing the use of a general-purpose programming language to be used
as an alternative to the main DSL. Some environments use a mix of textual
and visual notations, like EasyC, as shown in Fig. 3.8.
SemanticsRealization.. The semantics of our languages are realized by either
interpretation (in two environments) or compilation, i.e., generation of code in a
target language (in 28 of our environments). The mission is either semantically
translated (compiled) as shown in Table 3.4 or executed by an interpreter.
LEGO Mindstorms EV3 and Code Lab interpret the visual mission directly
during execution. Metabot directly generates assembler code, while the rest
compiles generated code. TRIK Studio supports multiple robots (Lego EV3,
Lego NXT, Pioneer Kit, and the TRIK robot), while it does not cross-compile,



3.5. THE ENVIRONMENTS’ FEATURES (RQ2) 53

since missions are robot specific, it generates code in various target languages,
including C, JavaScript, Pascal, Python, and F#.
LanguageParadigm.. While all our environments come with a DSL for mission
specification, nine of them also support a general-purpose programming
languages (GPLs) usable directly in the environment. Examples of the latter
are C/C++, Java, and Python, as shown in Table 3.3. The DSLs all provide
language concepts related to the robotics domain.
Extensibility.. Some environments provide features for extending the lan-
guage with new concepts, which we classified into ScriptingSupport (12)
and AddLanguageConcepts (16). ScriptingSupport allows the creation and
launching of new language constructs to extend the existing language. For
instance, Choregraphe allows users to write new scripts for defining action
boxes for the NAO robot. AddLanguageConcepts allows users to edit and
create new blocks. For example, LEGO Mindstorms EV3 allows importing
custom blocks from vendors that manufacture sensing blocks compatible with
the Lego Mindstorms EV3 robot.

3.5.3 Language Concepts

We found a range of different concepts offered by the languages for specifying
missions. We consider a concept as a distinct element of the abstract syntax
of the language. We focus on concepts that are recognizable via the notation
(concrete syntax), since many of our environments are not open-source, a
look at the exact implementation of the language’s abstract syntaxes is not
possible. End-users observe these concepts via the language’s notation and
utilize them via the respective projectional editor, or in a parser-based editor
for the the textual languages available in some environments. As shown in
Fig. 3.10 and Table A.2, we classified the concepts into the following features:
MissionSpecificationParadigm, ControlFlow, Modularity, DataTypes, EventSup-
port, ReadSensor, Actions, ExceptionHandling, FileAccess, FunctionLibrary,
Multithreading, and MultiRobotHardwareSupport. Below we show the details
on the respective language concepts.
MissionSpecificationParadigm.. One of the core distinguishing characteris-
tics is the kind of mission specification paradigm supported by the languages,
which determines how missions are executed. We found three major kinds:
imperative paradigm (28), and reactive paradigm (3). The former two are
relatively low-level; none of our environments supports goal-based paradigm.

In imperative execution, the mission runs in the order of sequence of the
tasks specified, which is the common paradigm for most of the environments
in our study. In contrast, Aseba features a reactive paradigm in which events,
which act as triggers are matched with corresponding actions. See Fig. 3.11
for an example. In some of the imperative environments, such as PICAXE,
reactive aspects are also realized, where the robot can be instructed to respond
to sensor data during mission execution.
ControlFlow.. 29 languages offer several kinds of control-flow statements.
Typical examples of conditionals we found are if-do, if, if-else, and switch.
Loops are also common (27), represented by statements such as do- while,
while, forever, repeat while, repeat count, and repeat until. The
latter two are shown for LEGO Mindstorms EV3 in Fig. 3.12 (repeat count)
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and in RobotC (repeat until). Finally, execution interrupts are provided (20),
such as for loops with loop interrupt in LEGO Mindstorms EV3 and stop
all in Tello Edu App, and for general execution using wait (time/event) in
Makeblock 5.

Multi-threading controls are also found in TRIK Studio (fork, join, and
kill thread), in LEGO Mindstorms EV3 for running tasks simultaneously
(sequence plug exit) and in Robot Mesh Studio, for example in blockly,
start block creates a thread, sleep for x seconds forces a thread to yield.
See feature Multithreading below for more information.
Modularity.. The majority of the environments (17/30) offer modularization con-
cepts to structure larger missions. We found functions, which are graphically
represented using dedicated blocks, in the environments called functions or
procedures, or modules. Each function gets input parameters and (often) return
values. This represents a relatively basic, but pragmatic modularity mechanism,
which the non-technical end-users of the environments can utilize. Environ-
ments with modularity features include: Metabot, Ardublockly, Open Roberta,
Choregraphe, Sphero, Robot Mesh Studio, Metabot, Makeblock 5, Ozoblockly,
and Turtlebot3-blockly, which create mission modules using functions and
function calls. Choregraphe implements robot behaviors as boxes, which are
connected in a flow chart to form a mission. LEGO Mindstorms EV3 imports
blocks from external environments that are compatible with LEGO Mindstorms
EV3. TRIK Studio implements subprograms, functions, and module with sym-
bolic icon of what these components do; however, these program modules do
not have information on return values and scoping information. PICAXE imple-
ments procedures of particular concepts, which then can be invoked and used.
DataTypes.. The environment’s main languages offer dedicated data types for
variables or functions, comprising primitive (25) and compound (25) types.
Only FLYAQ, MissionLab, TiViPE, and TRIK Studio do not have exclusive
variable data types. The primitive types we found include: integer, decimal,
character, float, number, and Boolean. Compound types include string, arrays,
table, and lists. Not surprisingly, we also found domain-specific types, such
as sound in Ozoblockly, degrees in Tello Edu App, and color in Sphero. The
environment LEGO Mindstorms EV3 calls the Boolean type logic, apparently
also for enhancing comprehension by end-users. In Aseba, state is a type,
which is essentially an enum (e.g., a state variable temperature can take the
values off, low, medium or high).
FunctionLibrary.. Almost all of the languages come with function libraries
that offer typical arithmetic and logic (23), and string operations (10) on data,
but also complex algorithms (10) used to process data. Essentially, we found
full range of functions one would expect, including logical operators (e.g.,
conjunction, disjunction, negation), mathematics functions for trigonometric
calculations, rounding, aggregation, and so on. String operations include
create, append, build string, length, substring, while list operations include
find, sublist, isEmpty, join, and so on.
Actions.. Every language provides statements representing actions. These
are activities that robots execute to achieve a given task. Some are reactions to
events, while others are activities that are imperatively specified in the mission.

The first distinguishing characteristic we found is the action type, as shown
in Fig. 3.13 and Table A.2. Specifically, actions can be of type:
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• Instantaneous action (14), which is executed immediately and only once,
such as take photo in FLYAQ.

• Continuous action (14), which executes immediately for an infinite
amount of time or a fixed time, for instance, “random eyes duration
ms” in Open Roberta changes the NAO robot’s eye colors for a specified
duration in milliseconds, or initiated and stopped by events, e.g. user
interaction. Another example is follow line in LEGO Mindstorms EV3
and Sphero, or record a video in FLYAQ.

• Delayed action (19), which starts after a delay, which can be due to an
event or specified time to wait

Most environments support instantaneous actions. The others typically re-
quire some notion of time and timer manipulation, where we found different re-
alizations. In LEGO Mindstorms EV3 the block “get value ms timer” is used as a
sensor to read the current time for another block, while the block “reset timer” is
used to reset the internal timer to zero. Similar time constructs also exist in other
environment, such as the blocks “wait time” and “elapsed time” in Ardublockly,
the statements “set roll time” in seconds as a variable, “time elapsed”, “get
current time”, “set timeout”, “set time interval” in Sphero, and finally the state-
ments “set timer (seconds)”, “timer”, “wait (seconds)” in VEX Coding Studio.

Then, the environments typically realize concrete actions as dedicated
language concepts, which sometimes result in relatively large languages. We
further classified the actions into: actuation, communication, and movement
actions as explained below.

Actuation (28). This refers to device/actuator-related activities, such as
grasp an object, motor movements, or play audio. More examples include
get button code, play tones, sound, stop motors, clear encoder, angular servo,
turn on LED, detection with video camera, line detector, video streaming
enabling, beep note, buzzer, display, status light, object observation, taping,
face status (smile, frown), among others. This illustrates that the languages can
become relatively large when (as for most languages) no library mechanism is
provided.

CommunicationActions. This includes interacting with humans (8) or other
agents(13). Communication with humans can be of the form: text, video or
audio. Non-human agents can be categorized as tuple space, publish-subscribe
or message passing. Tuple space is a shared space where shared data items
are kept for access to entities entitled to access them. In publish-subscribe the
publishers create messages regardless of receivers, while subscribers receive
messages they have subscribed to. Communication examples include infrared
messages exchanged among robots in Edison software, LEGO Mindstorms
EV3, and Open Roberta, and Bluetooth messages exchanged among robots in
LEGO Mindstorms EV3. In MissionLab, robots can share information about
target goal position and map of the environment among each other directly or
through broadcasts. Sphero, VEX Coding Studio, Makeblock 5, and Tello Edu
App broadcast message between robots. FLYAQ supports synchronization
and communication messaging among drones at run time. TRIK Studio
supports sending messages to other robots. For what concerns human and
central system to robot communications, examples are hand-clap and touch



56 CHAPTER 3. PAPER B

in Aseba, and Enchanting, send text, send number, send command, receive
character, send character, send, and receive message in Tello Edu App, speak
short phrase in Code Lab, say text in TRIK Studio, TiViPE from the robot to
the environment. In Choregraphe, a robot can share text with humans. In
Arcbotics’ SparkiDuino, humans interact with robot through beep, status led
colors, infrared remote code and PICAXE communicates through infrared
messages. Eleven of the 30 environments do not offer any communication
language constructs.

MovementActions. Languages offer concepts that specify how a robot
moves from one location to another. Such concepts are either absolute, e.g.
“map coordinates”, or relative, e.g. direction, distance or travel time.

Few of the environments support absolute movement actions, such as
goto (coordinates) in FLYAQ, MissionLab, and Makeblock 5; moveto (coordi-
nates), movefast (coordinates, duration) in TiViPE; roll (angle, speed, time),
spin (angle, time in seconds) in Sphero; drive (distance) in Code Lab. For
relative movements we mention go/move/drive/turn/fly (forward/backward/
left/right/room) as seen in most of the environments.
EventSupport.. 24 of our languages provide event support, which concerns
the languages’ abilities to handle events like creating event handlers; the types
of events that can be recognized; and the mechanisms of synchronizing events
to subsequent actions. For instance, in VEX Coding Studio, the common
language constructs for event support identified include: when (event), when
(event) do, wait for (event), wait until (event), wait (event), on (event), capture
(event), move until (event), broadcast and wait (event). MissionLab has even
more domain-specific events, such as AtGoal or AtEndOfHall. The events are
sensory data that trigger the next robot action. However, in the environments
Arcbotics’ SparkiDuino, TiViPE, MiniBloq, Turtlebot3-blockly, and RobotC,
we did not recognize event support in their languages.
ReadSensor.. All of the considered environments provide dedicated concepts
for reading sensor data. These are used to record data through sensor readings.
The sensor concepts identified are shown in Fig. 3.14 with summary of sensor
usage in Table 3.5. We classified the sensors into: tactile sensors, wheelMotor
sensors, heading sensors, and other measurements. Tactile sensors measure
by direct contact e.g., touch sensor, fingerprint sensor, infrared, line detector,
brick button, light (on/off detection, intensity), and distance proximity sensors
(ultrasonic, sonar, infrared proximity sensor, obstacle/object detector, distance
sensor).

Movement sensors measure the actual robot movement via, as we identified,
a motor rotation sensor, a gear potentiometer, a magnetometer, an accelerometer
or a rotation detector. Heading sensors guide direction and orientation of the
mobile robot e.g., gyro, vision/seeing sensors and compass sensor. The gesture
sensors measure body gestures such as speech recognizer, face detector, and
marks sensor (color). Other sensors which were not readily classified include:
GPS module, energy meter (reads battery energy), temperature/thermometer,
barometer, sound detector, encoder, timer, power meter6 (watts), and analog
sensor.
ExceptionHandling.. We identified exception handling constructs in Open

6e.g., https://www.generationrobots.com/en/401216-mesureur-de-puissance-pour-nxt.
html
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Roberta, Choregraphe, MissionLab, PROMISE, and Code Lab environments,
particularly in their textual languages but not their primary, visual DSLs. More
specifically, Open Roberta exploits the Python exception handler. Choregraphe
exploits the try/catch block for all errors in its C++ software development kit
(SDK), and the try/catch block for face detection error in its Python SDK. Code
Lab offers support for exception handling for very specific error (e.g., action
error, animations not loaded, cannot place objects on this, connection aborted).
FileAccess.. Eight of our visual languages provide concepts for file access.
For example, LEGO Mindstorms EV3 provides blocks for reading and writing
data to the local storage, and to close or delete a file. Such files can record, for
instance, ambient light measurements taken at given time intervals.
Multithreading.. Eleven of our environments provide support for concurrency.
Multithreading allows users to do several activities without waiting for one
activity to end, improving the performance of executions. In Robot Mesh
Studio, using the blockly editor, the start block creates a thread, sleep for
x seconds forces the thread to yield, start autonomous creates a thread that
runs the autonomous mode of the robot, and start driver creates a thread that
runs a driver. Recall that Robot Mesh Studio also supports various textual
general-purpose languages (cf. Table 3.3), where the typical multi-threading
concepts can be used. For instance, in Python concepts like sys.run in thread(f),
sys.thread id(), sys.sleep(t) are offered. In C++, thread (void (*callback)(void)),
get id(), join(), interrupt(), yield(), sleep for(unit32 t time ms), lock(), try lock(),
unlock() are used. TRIK Studio offers fork, join, kill thread, and send message
to thread. Furthermore, LEGO Mindstorms EV3 offers dedicated blocks for
creating parallel tasks, as well as Makecode and RobotC. TiViPE offers splitSCIS
to split and run modules in parallel. MissionLab supports Cthread, which is a
lightweight process threads package that operates under Unix-style operating
systems. Also PICAXE supports multi-tasking with operations such as restart,
resume, and suspend.
MultiRobotHardwareSupport.. Eleven of our environments support more
than one robot hardware platform. Missions in these environments are
specified for a particular robot hardware, making it impossible for hardware-
independent missions. However, in Sphero, there are some missions which
are compatible with more than one robot, though we did not observe a
single mission that runs in all the Sphero robot varieties. The aspect of robot
independent missions therefore remains a dream to be achieved by roboticists
and language engineers.

By traversing through the selected environments, it is evident that, most of
the environments have common features, other environments present peculiar
features, specific to a given aspect of either robotics domain or end-user
domains.

3.6 Discussion

In this section we discuss the practical implications of the findings, intelligence,
and collaborative multi-robots.
The practical implications.. The practical implications of the findings of our
study are:
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• As we observed, most of the languages are targeting toy robots used
mainly for teaching. If we want to use these languages in domains like
agriculture, healthcare, etc., there is the need of extending the visual
programming concepts beyond toy robots.

• The research community and language tool developers have a benchmark
to better develop future tools by using the feature space explored by this
survey.

Intelligence.. Robot system intelligence is characterised by its ability to
automatically act without human intervention. This can be triggered by events
from the environment as captured by sensors, timed executions or learning
from past experience. The feature model presents concepts such as event
support in Fig. 3.10, delayed action type in Fig. 3.13 and reading sensor data
in Fig. 3.14 and Table 3.5, which can facilitate intelligence in the robot systems.
In TiViPE and choregraphe, the NAO robot senses soundata and intelligently
determines the direction the sound. Picture frames are captured by NAO
robot at intervals to determine a moving object by the NAO robot. NAO
robot tracks known people by comparing all people in a video with known
people, hence automatically identifying unknown people. In Open Roberta
and Choregraphe, NAO robot recognizes predefined words and phrases in
different languages. Data from vision sensor in VEX Coding Studio robots can
be used to track up to seven individual colours at once, analyse objects for
advanced tracking and path planning.
Collaborative multi-robots.. Environment such as FLYAQ, PROMISE and
MissionLab support collaborative mission specification. FLYAQ [36] provides
for specification of missions for multiple drones. The end-user explicitly
sequences the tasks for each robot, with location details, hence avoiding
collisions. Some of the mission primitive used include: Takeoff, Goto(location),
DoPhot, Land. Since distribution of tasks to drones is done manually, there are
no language concepts to express multi-robot mission specifications as shown
in Fig. 3.6. Garcı́a in PROMISE [161] proposes visual mission specification
environment for multi-robots, however the decomposition of the mission to
local missions for each robot is also done manually. The parallel operator
— parallelOp takes robots as inputs and assigns a robot to each branch (each
child) We therefore observe that multi-robot mission specification and task
distribution is not trivial.
Mission Composition. This feature explores classification of mission com-
ponents. We classify the mission composition into two subfeatures, i.e. Hori-
zontalCompositionMechanism and Vertical Composition7. HorizontalCompo-
sitionMechanism involves task level decomposition. For instance, in Aseba,
actions and events in the visual programming language are horizontal mission
components. To specify a task, user matches events to related actions in
event-action paring e.g., Detect object – set top color red as shown in Fig. 3.11.
In Open Roberta, horizontal decomposition can be conceived from how the
language concepts are categorized, for instance, actions, sensor, control, logic,
math, text, color, and variables. Vertical Composition can be viewed from

7https://robmosys.eu/wiki/general_principles:separation_of_levels_and_separation_of_

concerns
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robotic behavior coordination abstraction levels such as, (i) Patrolling (mis-
sion); (ii) steering task (move repeatedly) or sensing task (task); and (iii) drive
forward or detect object/line (skill). In the vertical hierarchy, mission is the
most abstract while skill is at the lower level of abstraction closer to the robot
hardware.
Beyond Language-Based Mission Specification.. Gorostiza et al. [162] propose
a natural programming environment in which robot skills are accessed verbally
to interact with end-users. The environment uses dialog system to extract
actions and conditions to create a sequence function chart. The challenge with
this approach is, the end-user cannot add new dialogue constructs for new
tasks, making the languages inflexible.

Miguel Campusano et al. [163] in their work on “live robot programming”
implement a language that supports live feedback. This language helps
end-users in rapid creation and variation of robot behavior at run-time. This
approach however does not provide end-user with domain constructs to
simplify the programming effort during mission specification.

Finally, Doherty et al [108] propose a framework and architecture for the
automated specification, generation, and execution of missions for multiple
drones that collaborate with humans. The focus of the study is on how the
language can clearly and concisely specify and generate missions, but not on
how the language is easy for end-users.

3.7 Practical Implications of our Findings

To evaluate the results of the survey, we define one usage scenario for each of
our end-users: a teacher, a robotic manufacturer, and a language engineer.

3.7.1 End-User—Teacher

A teacher has to instruct a robot development course to students with limited
background on programming languages. The teacher has to select the robotic
mission specification environment to be used in her course. The choice is
based on the following requirements:

[a] Simulation support — The robotic mission specification environment shall
provide simulation support for simulating the mission execution and
support for deploying the mission on the actual physical robots;

[b] Language control flows —The robotic mission specification environment
shall provide support for specifying sequences of tasks repeated until a
certain condition holds (loop statements) and executing alternative tasks
depending on some conditions (conditional statements);

[c] Actions — The robotic mission specification environment shall allow
users to specify movement actions and the use of the speakers of a robot
to provide audio messages;

[d] Run-time environment — The robotic mission specification environment
shall be executable both on a web interface (for quick mission prototype)
and as a stand-alone application.
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Within this scenario, to select the mission specification environment to be
used in her course, the teacher uses the results of this survey as follows:

[a] Simulation support — The teacher consults the results presented in Ta-
ble A.1 and checks for the environments that provide simulation support.
Among these environments, Aseba, FLYAQ, Makecode, Metabot, PI-
CAXE, Robot Mesh Studio, MissionLab, Open Roberta, RobotC, and
TRIK Studio are providing simulation support, and can be used within
the course;

[b] Language control flows — The teacher consults the results presented in
Table A.2 checks for the environments that provide loop and conditional
statements. Among these environments, 26 of the 30 environments are
providing loop and conditional statements, and can be used within the
course;

[c] Actions — The teacher consults the results presented in Table 3.13 and
checks for the environments that provide support for the specification
of movement actions and the use of the speakers of a robot to provide
audio messages. All the environments offer movement actions since this
survey covered mobile robots. MissionLab, Code Lab, Open Roberta,
and TiViPE provide audio messaging feature, which can be used within
the course;

[d] Run-time environment — The teacher consults the results presented
in Table 3.2 and checks for environments that provide both the web
interface and can be executed as stand-alone applications. Among these
environments, Open Roberta, FLYAQ, Robot Mesh Studio and Sphero
provide these features, and can be used within the course.

Based on the results of all these steps, the teacher finally selects Open Roberta
as mission specification environment to be used during the course. Indeed,
this environment meets all of the teacher’s requirements.

3.7.2 End-user — Robot Manufacturers

Robotic engineering has become flexible since most engineers do ensemble
of existing parts. It is handy for such engineer to check environments with
the features that the robot should have. For instance, a robot manufacturer is
interested in creating a new robot, which can move on land, recognize objects
and sound within the environment. The purpose of the robot is to aid in
learning programming and research.

The robot manufacturer has the following requirements to be fulfilled:

[a] Robot mobility requirements e.g., motor, steering — The robot manufacturer
needs to know the existing movement features in mobile robots for
benchmarking;

[b] Sensor requirements e.g., proximity, vision, sound — There is need to know
which sensors exist with language constructs;
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[c] Robot action requirements e.g., movement actions, instantaneous actions relative
actions and actuations — There is need to know which robot actions a new
robot can execute.

The robot manufacturer can be guided as follows:

[a] Mobile robots — Table 3.2 contains list of mobile robot such as VEX
robots, PICAXE, LEGO robots. By further profiling the manufacturer
specifications of such robots a robot manufacturer can takes informed
decision on what mobility features he/she can incorporate in the new
robot.

[b] Sensor requirements — A rich collection of sensor constructs for capturing
data from the environment are shown in Fig. 3.14, and usage of sensors by
the environments is summarised in Table 3.5. The environments having
particular sensors can be obtained from the appendix – ”List of URL
for each of the environments” For instance VEX robots use proximity
sensors, vision sensor, accelerometer sensor and motor sensor

[c] robot actions — Fig. 3.13, and Table A.2 can guide the manufacturer to
analyse variety of action, which the robot can execute. Actions such as
movement, instantaneous actions, relative actions, delayed actions and
actuations can be performed by VEX robots.

The robot manufacturer can use VEX robotics. For instance VEX robots
are open and can be programmed by a number of environments such as VEX
Coding Studio, EasyC, Robot Mesh Studio and RobotC. It is therefore wise for
a robot manufacturer to make a new robot using VEX products since the new
robot can be programmed using a number of environments hence attracting
more users.

3.7.3 End-user — Language Developer

A language engineer wants to develop a language that supports mission
specification. The new language will target children younger than seven
years. The language developer wants to understand the features provided by
similar languages to determine which languages are providing features that
are relevant for this class of users. The language developer has the following
requirements:

[a] Editing mode — The language should provide projectional editing mode,
which guides on next step to take while editing.

[b] Notation — The robotic mission specification environment shall provide
a visual language based on blocks and connections since users can barely
read and write;

[c] Simulation support — The robotic mission specification environment shall
provide simulation support to allow children to play and simulate the
behavior of the robots when executing different missions;

[d] Language control flows — Choice of control flow from available options
such as loops, conditional and interrupts is also required
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[e] Actions — The engineer wants to provide children the possibility to
specify complex movement actions, such as making the robot dancing.
Furthermore, children should be allowed to communicate with the
robots.

[f] Run-time environment — The language developers aim at developing a
mission specification environment that is executable as a stand-alone
application.

Within this scenario, the language developer uses the results of this survey as
follows:

[a] Editing mode — the engineer considers languages with projectional editing
modes. Table A.1 shows that all the environments offer projectional
editing mode except TiViPE.

[b] Notation — Section 3.4 provides various syntax for each or the en-
vironments to guide a suitable one e.g. block-based, graph-based,
flowchart-based or map-based. Block-based environments such as Ar-
cbotics’ SparkiDuino, Ardublockly, Aseba, BlocklyPro, Edison software
and LEGO Mindstorms EV3 fit the user requirement. All environments
which support blockbased syntax can be found Table 3.2.

[c] Simulation support — The language engineer consults the results pre-
sented in Table A.1 and checks for the environments that provide simu-
lation support. Among these environments, Aseba, FLYAQ, Makecode,
Metabot, PICAXE, Robot Mesh Studio, MissionLab, Open Roberta,
RobotC, PROMISE, and TRIK Studio are providing simulation support.

[d] Language control flows — Table A.1 can guide on the available control
flow concepts that exist and the environments which already have them.
All environments offer loop control flows except Choregraphe, FLYAQ,
and MissionLab. 21 of the 30 environments also offer conditional control
flows such as if, if-else and selection, while 21 of the environments offer
interrupt controls. TRIK Studio provides multithreading fork control
flow support.

[e] Actions — Language concepts summarized in Table A.2 and the read
sensors described in Table 3.5 can help the language engineer to identify
the language concepts required to develop the actions that need to
be incorporated in the new language. All the environments support
movement actions, for communication with agents; language engineers
can explore environments such as Arcbotics’ SparkiDuino, BlocklyPro,
Edison software, FLYAQ, LEGO Mindstorms EV3, Makeblock 5, Sphero,
and Tello Edu App.

[f] Run-time environment — Using Table 3.2, the engineer can determine
features of stand-alone environments. Most of the environments offer
support for stand-alone installations except Edison software, Makecode,
Marty software, Metabot, Ozoblockly, and Scratch Ev3.
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3.8 Threats to Validity

Internal Validity.. The manual process of collecting and classifying the features
is subject to biases. We mitigated this effect by distributing environments
among the authors to collect features and allow one author to verify the features
collected by another, followed by discussions to reconcile any differences on
views. This made the data collection rigorous and thorough. Secondly, the
Google search engine returns different results to different people on the same
search due to personalized search behavior customized by Google. Therefore,
if anyone else did the same search, the results would not necessarily be the
same. This has been resolved by relying on multiple sources of data as well as
searching for robots and then try to identify any environment they are shipped
with, and by snowballing. Another threat is the fact that the total number of
results returned is greater than the actual number. For instance, our search
result returned 774,000 results, but when we scanned all the results, the last
page only reported 373. However, this is not a limitation since we used different
sources of information and, as can be seen in Table 3.1, all the results from
Google search were also captured by other data sources, including authors’
experience, list of mobile robots, snowballing, and alternative environments
for the robots, with exception of BlocklyPro.
External Validity.. Extracting the features using independent data collection
based on documentation available in public domain is a thread to external
validity. Contacting the developers of the tool would have provided more
information and allowed to detect more features. However, this has been
countered by the fact that the considered environments are significantly
different among each other. As these tools try to cover user needs from different
angles, features that are hard to identify in one type of environment are usually
key and easily identifiable features in a different environment. Secondly, there
is diversity in phrases and terms used to describe mission specification. Since
we observed that different authors refer to mission specification by using
different terminologies, we constructed a search string comprising of a number
of phrases as seen in (cf. Sect. 3.3.1).

3.9 Related Work

Bravo et al. [117] review intuitive robot programming environments for ed-
ucation. They categorize their languages into textual, visual, and tangible.
However, they do not discuss individual language features that facilitate
end-user programming, as we do.

Biggs et al. [17] survey robot programming systems, which they classify
into manual and automatic. The manual systems require users to specify
missions, while the automatic ones control robots based on their interactions
with the environment, indicating that such missions are specified on a higher
level, for instance, by declaring the mission goals instead of the concrete
movements. However, the survey did not discuss language features that
enhance robot programming by novice programmers.

Ray et al. [164] survey user expectancies from robots. They find that, at
the personal level, users expect support with household daily tasks, security,
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entertainment, and company (child, animal, or elderly care). More than half
of them expect robots providing such services to be in the market soon. These
findings imply raising mission specification to higher levels of expressiveness
closer to the end-user domains.

Abdelfetah Hentout et al. [59] survey development environments for
robotics. They identify frameworks for programming robotic system, but not
targeting mission specification.

Jost et al. [90] in their review of 10 visual programming environments for
educational robots, discuss advantages of visual over textual environments,
in order to present eh Open Roberta project. They do not analyze any of the
existing environments to the extent we do.

Luckcuck et al.’s survey [14] identifies challenges, formalisms, and for-
mal methods for specifying and verifying autonomous robot missions. For
instance, it covers KLAIM, a formal language used to capture properties about
distributed systems. The survey has little to do with the features to support
end-user programming or features expected to support visual specification.

Nordmann et al.’s [13, 165] survey on DSLs for robotics identifies a large
number of languages. Surprisingly, none of the languages supports mission
specification, which makes their work distinct from our study. Specifically,
the survey covers aspects of environmental features and constraints, which
are expressed using formalisms such as LTL, OWL, and (E)BNF. Scenario
definitions are made using formalisms such as ANTLR grammars, (E)BNF,
UML/MOF, LTL, or Ecore. These formalisms are suitable for robotic and
software engineers, but not novice end-users. This gap also motivates our study.

3.10 Conclusion

Mobile robot systems have become general purpose in terms of the number
of actuators and tasks which they can execute. As such, it is not realistic
having these robots hard-coded at manufacturing time. It is also unrealistic
to keep relying on robotic and software engineers to always be the ones
to program the robots. With increasing presence of robots in aspects of
everyday life, more research is being done to enable end-users to program and
specify missions for robots. While evaluating issues for visual programming
languages, Menzies [166] argues that visual environments motivate students
as they lessen the burden of memorizing a lot of syntax in textual languages
such as C++ and Java. However, at the best of our knowledge, there is no
organized literature on related features in such environments and languages.

In our survey, we have studied the language design space of 23 specification
environments and extracted mandatory and optional features, which these
environments offer to support end-user programming of robots in aspects of
everyday life. We present this as a feature model and further analyze how
the environments differ from each other. In summary, we found many typical
constructs (e.g., control-flow statements) from general-purpose languages,
provided using visual syntax. In addition to the primary visual DSLs supported
by the environments, many – often general-purpose languages – provide
alternative textual syntax to complement the visual DSLs when they are not
expressive enough. While all these visual languages come with a projectional
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editor, we also found environments that they provide a textual notation
projected right next to the visual one. The majority of our environments also
use the Blockly or Scratch library, both of which have significantly eased the
development of visual syntax.

We also identified some challenges to be addressed by the next generation
of languages:

• Actions are often very concrete and every action has its own language
concept; on one side this is unavoidable, on the other side it would be
beneficial to find a way to categorize or organize the various possible
actions in groups so to facilitate their definition, management, and
treatment.

• The language concepts for actions found in the environments are basic,
and, consequently, they cannot sufficiently express what end-users, such
as farmers and nurses, can use. It is important that more vibrant library
of controllers to specify behaviors with well-defined semantics are built
to facilitate real-life mission specifications for end-users.

• In general, the languages we surveyed have a rather low-level of abstrac-
tion. In most of the cases the mission specifier is required to model in
detail the behavior that the robots should perform to achieve the mission.
This has some disadvantages:

– (i) it is error-prone and the mission specifier should know details
about the language concepts used, which are not standard and in
most cases biased to the robotics domain;

– (ii) it is difficult to estimate the partial satisfaction of the mission
that is needed when re-planning is required by some changes in the
execution environment or in the mission specification itself; and

– (iii) it requires knowledge and expertise potential end-users will not
necessarily have. Goal-based and declarative mission specification
languages look more promising and attractive.

As future work, we plan to study the syntax of these languages in more
detail, aiming to understand what are the best ways of presenting the mission-
specification concepts our surveyed languages are offering. A possible route is
to assess the syntax with respect to Moody’s notational design principles [167].
Furthermore, a user study can validate the need for certain features as well
as recover needs not realized so far. Especially eliciting user experiences with
different kinds of decomposition mechanisms for missions would be valuable
to inform the design of future mission-specification languages. We also plan
to establish how the mission-specification languages are used and perceived,
for instance, what concepts are used frequently, and in what combination. We
hope to eventually build the next generation of languages upon these empirical
results, also lifting the language to higher levels, perhaps offering different
language profiles.
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1 #define PROGRAM NAME ”NEPOprog”
2 #define WHEEL DIAMETER 5.6
3 #define TRACK WIDTH 18.0
4 #include <ev3.h>
5 #include <math.h>
6 #include <list>
7 #include ”NEPODefs.h”
8 int main () {
9 NEPOInitEV3();

10 NEPOSetAllSensors(NULL, NULL, EV3Color, NULL);
11 while ( true ) {
12 if ( ReadEV3ColorSensor(IN 3) == White ) {
13 SteerDriveForDistance(OUT C, OUT B, Speed(100), Speed(30), 1);
14 } else {
15 SteerDriveForDistance(OUT C, OUT B, Speed(30), Speed(100), 1);
16 }

17 }

18 NEPOFreeEV3();
19 return 0;
20 }

Listing 3.1: Target C code generated from the mission in Fig. 3.1

Figure 3.5: A text-based mission for line tracing specified in Python within the
environment Edison software (from [129])
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Table 3.2: Subject environments and their characteristics

Environment Syntax Runtime envi-
ronment Mobile robots supported User domain

Arcbotics’
SparkiDuino
1.8.7.1 [122]

Block-based, text-
based Desktop Sparki Education

Ardublockly 2.4.220
[123, 124] Block-based Desktop Spartan Education

Aseba 3 [92, 93] Block-based, text-
based Desktop Thymio II Education

BlocklyPro 1.1.1.455
[125] Block-based Desktop ActivityBot, Scribbler 3

Robot Education

Choregraphe 2.1 [87,
88, 126] Graph-based Desktop NAO, Romeo Education

Code Lab [127] Block-based, text-
based

Desktop,
mobile-app COZMO Education

EasyC 5 [128] flowchart-based Desktop VEX EDR & VEX IQ Education
Edison software [129,
130]

Block-based, text-
based Web Edison robot Education

Enchanting 0.2.4.3
[131, 132] Block-based Desktop LEGO Mindstorms NXT Education

FLYAQ [34–36] Custom map-
based Desktop, web Parrot AR drone Education, re-

search
LEGO Mindstorms
EV3 1.3.1 [94, 95]

Block-based, text-
based

Desktop,
mobile-app LEGO Mindstorms EV3 Education

Makeblock 5 [133,
134]

Block-based, text-
based Desktop, web Codey rocky, mbot, Airblock Education

Makecode 1.0.11
[135] Block-based Web LEGO Mindstorms EV3 Education

Marty software 3.0
[136]

Block-based, text-
based Web Marty Education

Metabot [137, 138] Block-based Web Metabot Education
Ozoblockly [139,140] Block-based Web Bit, Evo Education

PICAXE 6 [70, 71]
Block-based,
flowchart-based,
text-based

Desktop,
mobile-app PICAXE 20X2 Microbot Education

Robot Mesh Studio
2.0.0.6 [67]

Block-based,
flowchart-based,
text-based

Desktop,
web, VEX IQ, VEX EDR, VEX V5 Education

Scratch Ev3 [141,142] Block-based Web LEGO Mindstorms EV3,
WeDo 2.0 Education

Sphero 5.2.0 [143,144] Block-based, text-
based

Desktop, web,
mobile-app

Sphero Bolt, Spark+, Sphero
Mini Education

Tello Edu App
1.1.2.23 [145, 146] Block-based Mobile-app Tello drone Education

TiViPE 2.1.3 [147,148] Graph-based Desktop NAO Education, re-
search

Turtlebot3-blockly
[149, 150] Block-based Desktop TurtleBot3 Education, re-

search
VEX Coding Studio
18.08.2010.100 [68,69]

Block-based, text-
based Desktop VEX IQ, VEX EDR Education, re-

search
MiniBloq 0.83 [151,
152] Block-based Desktop DuinoBot, Sparki Education

MissionLab 7.0 [83,
96] Graph-based Desktop

ATRV-jr, Urban robot,
Amigobot, Pioneer AT,
Nomad 150,and 200

Education, re-
search

Open Roberta 3.0.3
[89–91] Block-based Desktop, web

Micro:bit, LEGO Mind-
storms EV3 and NXT, NAO,
WeDo, BoB3, Nepo4Aduino,
Bot’n Roll, calliope mini

Education

RobotC 4 [65, 66] Block-based, text-
based Desktop

VEX IQ, VEX CORTEX,
LEGO Mindstorms EV3 and
NXT

Education

TRIK Studio 3.2.0
[153, 154]

Graph-based, text-
based Desktop LEGO Mindstorms EV3 and

NXT Education

PROMISE [8] Graph-based, text-
based Desktop TIAGo, ITA, Turtlebot2 Research
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NF1 

NF2 

RT 

home 

PGT 

Figure 3.6: A patrolling mission in FLYAQ, where a drone follows a street,
repeatedly takes photos (at specified distances), and avoids no-fly zones. NF1
and NF2 are no-fly zones, RT is road task to follow a street while PGT is photo
grid task indicating where photos can be taken. (from [11])

Figure 3.7: Overview of the features (133 features in total)
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Figure 3.8: Visual and textual syntax side-by-side in EasyC’s projectional editor
(from [128]).

Figure 3.9: General language characteristics identified
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Table 3.3: Kinds of notation supported by the environments – the visual
notations belong to the primary DSLs of the environments; the textual notations
are additional languages supported

notation environment

Visual

Block-Based

Arcbotics’ SparkiDuino, Ardublockly, Aseba, BlocklyPro,
Code Lab, Edison software, Enchanting, LEGO Mind-
storms EV3, Makeblock 5, Makecode, Marty software,
Metabot, Ozoblockly, PICAXE, Robot Mesh Studio,
Scratch Ev3, Sphero, Tello Edu App, Turtlebot3-blockly,
VEX Coding Studio, MiniBloq, Open Roberta, RobotC

Flowchart-
based EasyC, PICAXE, Robot Mesh Studio (flowol)

Graph-
Based

Choregraphe, MissionLab, TRIK Studio, TiViPE,
PROMISE

Map-based FLYAQ
Textual

C/C++
Arcbotics’ SparkiDuino, Makeblock 5, Robot Mesh Stu-
dio, VEX Coding Studio, RobotC, TRIK Studio

Python Code Lab, Edison software, LEGO Mindstorms EV3,
Marty software, Robot Mesh Studio, TRIK Studio

JavaScript Marty software, PICAXE, Sphero, TRIK Studio
Basic PICAXE

Textual DSL Aseba (custom event-based language), PROMISE (textual
behavior-tree language)
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Table 3.4: Target general-purpose language when code is generated by the
environment

target lan-
guage environment

C/C++
RobotC, BlocklyPro, Robot Mesh Studio, Arcbotics’
SparkiDuino, Open Roberta, TRIK Studio, Choregraphe,
EasyC, MiniBloq, TiViPE

Java Open Roberta, Enchanting, Scratch Ev3, VEX Coding Studio

Java Script Open Roberta, Makecode, Ozoblockly, Sphero, TRIK Studio,
Choregraphe

Python
Open Roberta, Turtlebot3-blockly, Robot Mesh Studio, Tello
Edu App, Makeblock 5, Marty software, TRIK Studio, Chore-
graphe, Edison software

Others

Ardublockly (Arduino code), Metabot (assembly code),
TRIK Studio (F#, PascalABC, NXT OSEK C), Choregraphe
(Matlab), PICAXE (Basic), FLYAQ (QBL), Aseba (VPL to
Aseba event scripting language AESL), PROMISE (PROMISE
intermediate language)

Table 3.5: Sensory data abstraction usage by specification environments

Usage
instances

No. of
sensors Sensors and frequency of usage

1 — 5 20

Analog (1), gesture detection (1), magnetomenter (2),
power-watts (2), encoder (2), vision-seeing (2), gear
potentiometer (3), barometer (1), finger print scanner
(3), GPS module (3), proximity-sonar (3), rotation
detector (3), energy meter (5), brick button (3), motor
rotation sensor (3), face detector (1), mark sensor (1),
speech recognizer (3), compass (3), timer (5).

6 — 10 10
Line-detector (7), proximity-distance (10), accelerom-
eter (10), sound (10), proximity-ultrasonic (9), color
(9), infrared (10), touch (9), light (9), thermometer(8).

11 — 15 1 Gyro-orientation (13).
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Figure 3.10: Language Concepts

Figure 3.11: An example of Aseba’s block-based syntax for its language VPL—
an event-based language consisting of event-action pairs. Here, when an object
is detected (event), the top color (action) is set to red.
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Figure 3.12: Program control flow example in LEGO Mindstorms EV3: The
robot says ”Hello” once, then “Go” six times, then “Bravo” once.

Figure 3.13: Actions
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Figure 3.14: Sensors with language constructs for reading data
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Abstract

The use of robots is gaining considerable traction in several domains, since
they are capable of assisting and replacing humans for everyday tasks. To
harvest the full potential of robots, it must be possible to define missions for
robots that are domain-specific, resilient, and collaborative. Currently, robot
vendors provide low-level APIs to program such missions, making mission
definition a task-specific and error-prone activity. There is a need for quick
definition of new missions, by users that lack programming expertise, such as
farmers and emergency workers. In this paper, we extend the existing FLYAQ
platform to support the high-level specification of adaptive and highly-resilient
missions. We present an extensible specification language that allows users
to declaratively specify domain-specific constraints as properties of missions,
thus complementing the existing FLYAQ mission language. This permits to
move at runtime, the actual generation of low-level operations to satisfy the
declaratively specified mission. We show how this specification language can
be automatically generated from a domain-specific FLYAQ mission language
by using the generative ProMoBox approach. Next, we show how mission
goals are achieved taking mission properties into account, and how missions
may change due to unexpected circumstances.

Keywords: Domain-Specific Languages, Robotics, Model-Driven Engineering,
Resilient Systems, Cyber-Physical Systems.
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4.1 Introduction

The use of multirobot systems in civilian missions requires high variability
due to the diversity of domains [168, 169]. Moreover, robotic systems are
defined through a craftsmanship instead of established engineering processes.
Programming missions for robots requires high knowledge of robotic program-
ming and robot mechatronics. While domain users are experts in their domains
(e.g., emergency, commercial and agriculture) they are not trained to program
missions for multirobot execution in their domains using the low-level APIs
provided by robot vendors. Not much has been done to enable domain experts
to easily use robots to execute missions in the respective domains.

To address this problem, Di Ruscio et al. introduced FLYAQ [11,36]. FLYAQ
is a platform designed to enable non-expert domain users to program missions
for a team of multicopters. The platform has been then generalized to different
types of robots in [35, 168]. The platform is extensible, so that domain-specific
robots and missions can be defined. Unfortunately, this platform can only
define missions at design time. This is unrealistic since most missions will be
faced by unforeseeable and emergent situations during mission execution, and,
consequently, robots should be resilient to these unforeseeable and emergent
situations. For example, one robot may malfunction calling for re-planning
so that another robot can take the roles this robot was executing. This need
for run-time adaptation is clearly described in the Robotics Multi-Annual
Roadmap 2020 [169]. In this context, the document describes the degree in
which models can be used in robotics in three steps ( [169] § Section 5.2). Step
1 assumes that models are used to define missions by people at design time.
Step 2 requires robots to use models at run-time to interact and explain what
they are doing. Step 3 means that robots adapt and improve models to redefine
what they are doing based on artificial intelligence.

The FLYAQ platform uses models according to step 1. In this line of
research, we intend to improve FLYAQ to support self-adaptive robots at the
mission level, thus achieving step 3. This means that robots can change their
behaviour to successfully carry out missions under unforeseen circumstances.
We achieve this by introducing a declarative language for describing mission
goals and constraints. In this research we exclusively focus on the high-level
strategic, domain-specific, collaborative aspects of self-adaptation. To this
end, we specify mission objectives in a declarative way, as properties, using
a language we call the Mission Specification Language (MSL). We present
a technique that allows the generation of such a MSL for a specific FLYAQ
extension (e.g., emergency, commercial, agriculture). As MSL is declarative, it
does not specify how the mission is planned for a team of robots, but instead
specifies what goals must be achieved and what constraints cannot be violated.
This way, missions become fully specified only at run-time and they can be
re-planned at run-time.

Paper structure: Section 4.2 discusses the background of this research.
Section 4.3 introduces the property specification language. Section 4.4 evaluates
the approach by showing an implementation of the property specification
language. Section 4.5 discusses related work. Section 4.6 concludes the paper
with opportunities for future works.
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Figure 4.1: The family of FLYAQ DSMLs (adapted from [35]).

4.2 Background

In this section, we briefly explain domain-specific modelling, and the FLYAQ
platform, on which we build our research.

4.2.1 Domain Specific Modelling

In Domain-Specific Modelling (DSM) [170], a methodology in model-driven
software engineering, the general goal is to provide means for domain users
to model systems in their problem domain. Model-driven techniques such
as metamodelling and model transformation enable the creation of Domain-
Specific Modelling Languages (DSMLs). These DSMLs can be used by domain
experts, to specify, for example, missions for a team of robots. Current DSM
techniques allow domain users to model at the domain level and simulate,
optimise, and transform the model to other formalisms, synthesise code,
generate documentation, etc.

4.2.2 FLYAQ platform

The FLYAQ platform [11, 36, 168] employs domain-specific modelling to take
care of the various domains involved in mission definition and specification.
The approach proposes a family of DSMLs for the specification of missions of
multirobot systems (MMRSs), as shown in Figure 4.1:

• Monitoring Mission Language (MML): this DSML consists of the context
layer and mission layer. This DSML is meant to be used by domain
users, to model missions. Missions are represented in the mission layer
as sequences of tasks on a map, as shown in Figure 4.2. The context layer
provides additional constrains over the mission area, such as obstacles
and no-fly zones;
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Figure 4.2: A screenshot of the FLYAQ tool (from [11]).

• Robot Language (RL): using this DSML, types of robots or individual
robots can be defined by a robot engineer, mapping out their capabilities
and characteristics;

• Behaviour Language (BL): this language allows the definition of sequen-
tial atomic movements and actions of each robot that are used to instruct
the individual robots. The BL serves as the low-level language, to which
high-level missions defined in MML can be transformed automatically
using the MML2BL transformation. This transformation takes care of
low-level planning, such as path finding, covering areas, etc. while
achieving the high-level goals. Code can be easily generated from the
generated BL models, and then it can be uploaded to the individual
robots.

Mission goals, robot characteristics, and actions should be customised to
the application domains. Therefore, extensions can be defined on MML, RL
and BL, as shown in Figure 4.1. In case of MML, extensions may define a
task to “scan an area by taking pictures”. Example extensions to RL may
include domain-specific notions like “number of propellers”, “launch type”
(horizontal or vertical takeoff), “maximum altitude”, etc. BL may be extended
with movements like “take off” and “land”, and a “go to strategy” (move first
over the horizontal or vertical axis, or move diagonally?), “take a picture”,
“start recording a video”, etc.

For example, it is possible to define extensions in FLYAQ to allow flying
robots to take pictures of areas. Using this extension, one can specify missions
to e.g., survey an area where a public event is being held. Another example is
in the domain of agriculture. One multicopter is able to detect pests by taking
pictures and using image recognition techniques. If a pest is detected, another
multicopter that is able to spray insecticide must spray the infected plants. It
should only spray plants that are infected. We use these examples throughout
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Figure 4.3: Overview of the approach as an extension of the FLYAQ platform.

the paper.
Despite its extension mechanism, FLYAQ does not support (a) advanced

temporal constraints (other than order, fork or join) over various tasks or robots
in MML, e.g., a certain task can only start if another robot is surveying the
task area (for safety reasons), or video recording can only start after clearance
(for privacy reasons); and (b) run-time adaptation of a mission due to some
information at run-time, e.g., taking pictures of areas where high temperature
was detected by another robot, or reacting to a loss of signal of a robot. The
research presented in this paper addresses these shortcomings.

4.3 Mission Specification Language

Our approach extends the FLYAQ platform as shown in Figure 4.3. The
mission layer of MML is annotated, and as a consequence a Mission Specification
Language (MSL) can be generated automatically from MML and a Property
Template to better match the platform extensions of MML. MSL extends MML
with language constructs to define temporal properties for robot missions. Our
approach ensures that, when an extension is defined as done in FLYAQ, no
additional effort is required to generate MSL.

4.3.1 Mission Specification Language
The mission specification language (MSL) is intended to specify properties
of a mission that allows users to define temporal mission constraints in a
highly declarative way. This complements MML, where areas are selected, and
specific tasks, obstacles and no-fly zones are plotted on the map. MSL replaces
the order, fork and join of MML, supporting more expressive constraints.
We use a number of temporal patterns, taken from Dwyer et al. [171] and
Autili et al. [172], as a basis for the Property Template from which MSL is
generated. According to this work, properties consist of a temporal pattern in a
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scope, over some propositions P, Q, R and S (i.e., occurrences of something, e.g.,
spraying, entering an area, etc.). Temporal patterns can be absence (something
should never occur), universality (something should always occur), existence
(something should eventually occur), bounded existence (something should
occur at most n times), precedence (an occurrence of P must be preceded by
an occurrence of Q), or response (an occurrence of P must be followed by an
occurrence of Q). Scopes can be globally, after the occurrence of R, before the
occurrence of S, between occurrences of R and S, or after an occurrence of R
until an occurrence of S (after until).

The declarative constraint specification shields the user from the actual
planning. For example, if pests are detected, the corresponding areas are
sprayed. This is an example of a response pattern with global scope. The
user may use a precedence pattern to say that a pest needs to be detected at a
location before this point is sprayed. This constraint can be met in a number
of equally valid ways. A first option would be that one robot first detects all
locations, then returns to the base where its data is downloaded and locations
of infected plants are uploaded to a second robot, who goes out to spray the
infected plants. A second option would be that two robots perform the task
in parallel: one robot sends coordinates of detected pests to the other robot,
which only sprays infected points. The second robot may follow a preplanned
path, or may plan its path at run-time, according to the received coordinates.
Collisions may occur, or may be avoided by flying at different altitudes. A
third option would be that multiple robots detect pests, and multiple robots
spray. If robots can adapt their mission at run-time, this may involve advanced
scheduling, employing run-time monitors [173]. This shows that a declarative
language can be supported by very simple to very advanced algorithms. The
goal of MSL is that the domain user is shielded from such advanced planning
algorithms.

To further illustrate MSL, we give some more examples of properties.

• Between entering and exiting an area, a robot can never exceed a given
altitude. According to Dwyer et al. [171], this is an absence pattern with
between scope. Note that this between scope may be more intuitively
expressed as “during” or “while”.

• Between receiving a “stop” message and a “start” message, pictures
cannot be taken.

• A robot can only start its activity if another robot is in a given position to
monitor this activity.

4.3.2 Run-time Adaptation of Multirobot Missions
In its current state, the MML platform generates robot missions at design time.
This means that robot missions cannot be adapted at run-time. We intend
to support the run-time recalculation of BL models (i.e., robot commands)
from a declarative mission description; this is needed in case information at
run-time prompts the robots to change the mission. Our approach is applicable
to various implementation techniques: for example, the mission recalculation
may be achieved by the robot or by the ground station, and may be specified
off-line or at run-time, or a mix of these.
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Figure 4.4: The annotated class diagram of the MML mission layer (context
layer remains unchanged and is not shown).

In order to allow run-time information in a mission specification in MSL,
we altered the existing MML mission layer from [168], as shown in Figure 4.4.
We have changed the metamodel in several ways:

• We have extracted a Shape class (and Polygon, Point, Line subclasses)
from the original PolygonTask, LineTask, and PointTask. In particular,
the new Polygon class serves now as superclass of Area in the context
layer of MML in [35]. This new Shape class will allow users to specify
new shapes on the map that may trigger rules like: do not record within
a specific area.

• The meaning of Task has been extended. At mission specification time,
a task may be addressed by multiple robots. After mission generation,
tasks are split up into multiple concrete tasks, each for one robot.

• TaskDependency has been removed from MML and its functionality will
be subsumed by the specification language.

• We added run-time language constructs (annotated with rt), so that
specifications can be defined in terms of the current state of the mission in
terms of tasks and position. We added the following run-time information
in terms of tasks:

– currentTask: the task a robot is currently working on;

– coveredTasks: the concrete tasks that are planned for a robot;

– todoTasks: the concrete tasks that a robot still needs to perform;

– finishedTasks: the concrete tasks that a robot has done;
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– performingAction: the action (defined in the task) a robot is currently
performing. It may be none if e.g., the robot is moving and the
action is instantaneous (e.g., taking a picture).

We added the following run-time information in terms of position:

– currentPosition: the current position of a robot;

– coveredPoints: the points of a concrete task that are defined by the
cover function;

– todoPoints: the points of a concrete task that still need to be visited;

– finishedPoints: the points of a concrete task that have been visited;

– in: the shapes the robot is currently in.

As is usual in FLYAQ, extensions can be defined for specific application
domains, as shown in Figure 4.3. Note that for brevity, we do not show the
MML context layer and RL (which can be extended in its own right).

4.3.3 Generation of the Property Specification Language
As shown in Figure 4.3, a domain-specific MSL can be generated from the
annotated MML (as shown in Figure 4.3), with defined extensions (e.g., to
enable detection of pests in an area, and spraying certain plants). This means
that extensions have to be defined only once, and can be used for specifying
missions in the original MML as well as in MSL. The metamodel of MSL, which
results from the language generation process without an extension, is shown
in Figure 4.5. It consists of three parts:

• Mission layer: the upper part (unshaded) represents our variant to the
original MML mission layer, which allows the user to define missions
at design-time like in the original MML. For example, “pictures should
be taken in an area, with a distance of x from each other”. Additionally,
shapes can be defined, that can be used in MSL properties. In case of an
MML extension, extensions will also appear in this part.

• Temporal pattern layer: the middle part (shaded) represents the temporal
patterns, which allow the user to define temporal constraints based on
the patterns by Dwyer et al. [171]. For example, “after R happens, P
must be followed by Q”.

• Proposition layer: the bottom part (unshaded) represents the language
fragment to define propositions P, Q, R, and S of temporal patterns.
More specifically, it allows the user to specify a condition on the state of
a mission (i.e., a structural pattern). For example, “a robot is in a specific
area”, or “a task is completed”. In case of an MML extension, pattern
versions of extensions will also appear in this part.

With MSL, a mission can be specified by plotting an area on the map, and
defining a DetectPest and Spray task in this area, using the MSL mission layer,
which is extended with language concepts from agriculture. With the MSL
temporal pattern and MSL proposition layer, a property can be specified that
states that detecting a pest at a location must result in spraying that location.
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Figure 4.5: The generated metamodel of MSL without extensions.
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The MSL metamodel of Figure 4.5 is generated fully automatically from
an annotated (and possibly extended) MML metamodel (Figure 4.4) and the
generic property template (shaded part of Figure 4.5). Why do we need to
automatically generate an MSL metamodel? Please note that, if there was no
generative approach, each of the domain-specific language constructs (e.g.,
spraying a pest, maximum altitude of a robot, etc.) would have had to be
modelled a second time in MSL. With our approach, the extension mechanisms
of FLYAQ can be reused as described in [168], and a domain-specific MSL is
generated without any additional effort.

We use techniques from the ProMoBox framework [174, 175] to achieve
this. First, the MSL mission layer is generated by taking the annotated
MML metamodel and removing all run-time language constructs, which are
annotated with rt, thus creating the unshaded upper part of Figure 4.5. Next,
the property template is merged into this model by adding an association
called specification from Mission to Specification. Finally, the annotated MML
metamodel is taken for a second time, and the run-time language constructs are
kept (by removing the annotation). This time, the metamodel is converted into
a structural pattern language by using the RAMification process [176]: relaxing
all lower multiplicities, making all abstract classes concrete, and changing
all attribute types to Condition, as can be seen in the proposition layer of
Figure 4.5. This RAMified metamodel is merged into MSL by generating
inheritance links from all top-level classes to PropertyElement.

4.3.4 Transforming MSL to BL
Transforming MSL to BL (see MSL2BL in Figure 4.3) can be done according
to several stategies. Given the tight relation between MSL and MML, the
transformation algorithms of MML2BL [11] (i.e., path finding, covering areas)
can be reused. Moreover, various implementation strategies as mentioned
in Section 4.3.1 can be covered by MSL2BL: mission recalculation may be
achieved by a mix of the robot or the ground station, off-line or at run-time.
These strategies may requiring enhancement of BL to e.g., explicitly support
data communication or monitoring. As this paper focuses on the definition
and generation of MSL, this is left as future work.

4.4 Evaluation: Implementation of MSL as Textual
DSL

In this section, we evaluate the MSL by introducing an implementation as a
textual language in Xtext [177], and show how missions can be expressed in
this language.

4.4.1 A Concrete Syntax for MSL

According to what described in [172], temporal properties (the shaded part of
Figure 4.5) might be profitably described using a structured English grammar.
For instance, we can devise a textual syntax for the MSL proposition layer
(the bottom part of Figure 4.5), where each of the associations can form a
subsentence with the two attached instances. For example, “a Robot currently on
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Figure 4.6: Screenshot of the MSL in Xtext.

a GeoCoordinate” denotes the presence of an instance of Robot and an instance
of GeoCoordinate, with a currentPosition link in between. More intricate,
“a Robot r currently on a GeoCoordinate with latitude lower than 100” denotes
additional conditions on the robot, etc. A structured English grammar to
represent a subsentence for one association is defined as follows (id, Label,
Value, Attribute, Class, Association are terminals):

Proposition ::= Proposition (and also Proposition)+

| Proposition (or Proposition)+

| Proposition (implies Proposition)+ | AtomicProposition

AtomicProposition ::= Expression [Association Expression]

Expression ::= Instance [InstanceCondition]

InstanceCondition ::= with (ValueCondition | BooleanCondition (and ValueCondition | BooleanCondition)*)

ValueCondition ::= {Attribute} (as | less than | greater than) {Value}

BooleanCondition ::= [not] {Attribute}

Instance ::= {id} | {Label} | a {Class} [{Label}]

Association ::= (that is a task of | that is a team of | that is in | [currently] doing | that has scheduled

| that has planned in the future | that has finished | [currently] performing | in | [currently] on | with

as home | with task area | which visits | which will visit in the future | which has visited | with points |

with initial position | which references | {Association})

The above grammar is combined with the grammar for temporal properties
presented in [172] so that temporal properties can be described in standard
LTL or CTL. This might enable the use of model checking approaches, like
UPPAAL1. With this grammar, temporal patterns involving multiple links can
be expressed with AndPatterns. MML extensions can be used by instantiating
classes defined by the extension. This is illustrated below in the examples.

Our current implementation in Xtext includes variable name resolution,
parse error visualisation, auto-completion and syntax highlighting2. A screen-
shot of the MSL editor is shown in Figure 4.6. Since both the FLYAQ platform
and MSL are implemented on top of the Ecore platform, they can be easily

1http://www.uppaal.org/
2An implementation of this grammar can be found at

http://msdl.cs.mcgill.ca/people/bart/flyaq/flyaq.html.
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Figure 4.7: The MML extension.

merged at the EMF layer [178].

4.4.2 Examples of MSL

This section presents examples of temporal properties defined in MSL, while
illustrating the relation between the grammar presented above and the MSL
metamodel presented in Figure 4.5. For these examples, we define a MML
extension in the agricultural domain as shown in Figure 4.7, with:

• DetectPest: scanning for a pest in an area and in case of detection, send
some coordinates;

• Spray: spraying pesticides at a point;

• ReceiveCoordinates: receiving coordinates where a pest has been de-
tected, with the “at” association referring to the received coordinates.

Note that, after generation of MSL, these additional language constructs
will occur twice in MSL, namely in the MSL mission layer and in the MSL
proposition layer.

The example of Figure 4.8 (top) shows the abstract syntax of the MSL
property “a robot only sprays at a location if it has received these coordinates
to spray at that location” as an object diagram. The Specification consists of a
Precedence pattern. The left AtomicPattern states the condition Q, saying that
a ReceiveCoordinates task is executed at a coordinate p. Note how the “at”
association is used. The right AtomicPattern P describes a robot r, spraying
at aforementioned point p. Note that the coveredPoints link is superfluous,
because if the robot is currently performing an action of a task, it must be
inside the task area. In structured English grammar, the temporal specification
is as follows (leaving out the superfluous quantification and coveredPoints
link): “Globally, if a SprayRobot r performing a Spray and r on a Coordinate p, then
it must have been the case that a ReceiveCoordinates at p beforehand”. Note how
“at” is automatically resolved to an instance of the “at” association.

The example of Figure 4.8 (bottom left) represents “in a certain area, a robot
can never exceed a given altitude”. Note that the Area class (now a subclass of
Polygon) is part of the MML context layer and is not shown in Figure 4.5. In
structured English grammar, the temporal specification is as follows: “Globally,
it is never the case that a Robot r in an Area with name as “lowflyzone” and also r on
a GeoCoordinate with altitude more than 20”.

The example of Figure 4.8 (botton right) represents “a robot can only
perform a certain task if another robot is at a certain position”. In structured
English grammar, the temporal specification is as follows: “Globally, it is always
the case that a Robot performing a Task implies a Robot on a RelativeCoordinate with
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Figure 4.8: Three examples of temporal specifications as instances of MSL.

x as 100 and y as 200 and z as 10”. Note that, since spatial constraints are at the
very core of FLYAQ, it is interesting to introduce syntactic sugar for a robot
being at a coordinate, e.g., by allowing syntax like “a robot on (100, 200, 10)”.

4.5 Related Work
In this section, we present related works on run-time adaptation of multirobot
missions. There are several works that focus on robotics and self-adaptation,
like [179–181]. For the sake of space in this section we focus on related works
in run-time adaptation of (robot) missions, with a focus on MDE approaches.
While most of the mission specification tools (e.g., [83]) and the FLYAQ
platform [35,36] provide for specification of multirobot missions at design time,
there is need to have specification and recalculation of missions at run-time
for missions executed under uncertain environments.

In an effort to leverage run-time adaptation for UAV based systems, the
work in [18] uses an ensemble concept to aggregate teams collaborating in
a mission at run-time. This platform focuses on the aggregation of agents
but on not the high-level expressiveness of the mission properties. Using
run-time models for automatic reorganization of multirobot system, the work
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in [182] focuses more on techniques for task distribution based on the goals
and organisation of the teams, but not how goals are expressed so that
adaptation at run-time is made easy. In [183] robots adapt models at run time,
but configurations are made by an expert programmer, not domain experts
declaratively. The work in [184] focuses on the behavioural model and how it
auto-validates at run-time, yet we employ a generative approach. The work
in [185] focuses on design-time to run-time explication of models, however this
work does not really deal with adaptation triggered by run-time uncertainties.
The work in [186] proposes an approach that uses models at design-time and
run-time for collaboration. The proposed approach is specific to a particular
domain without a clear path to adapt it for working in other domains.

4.6 Conclusion and Future Work
In this paper, we extended the FLYAQ platform with MSL, a highly declarative
language that allows users to describe robot missions with temporal properties
as constraints. The declarative nature of MSL allows run-time adaptation of
these missions in case of unforeseen circumstances. We showed how MSL
can be automatically tailored with domain-specific extensions by a generative
approach. Additionally we presented a structured English grammar for MSL.

Future work will mainly focus on the mapping from MSL to BL (a language
for describing individual robot movements and actions), allowing run-time
adaptation and exploring different execution strategies. We intend to model
communication between robots and/or the ground station explicitly in BL to
achieve this. Furthermore, we are planning to incorporate real-time constraints
in missions. Moreover, since our approach for enabling run-time adaptation of
missions is model-driven and relies on code generation, we intend to analyse
the feasibility of generating code in real-time.
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T. Berger, “A Chrestomathy of DSL Implementations,” in 10th ACM
SIGPLAN International Conference on Software Language Engineering (SLE),
2017.



BIBLIOGRAPHY 93

[47] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. Kats,
E. Visser, G. Wachsmuth et al., DSL engineering: Designing, implementing
and using domain-specific languages. dslbook. org, 2013.

[48] A. G. Kleppe, Software language engineering: creating domain-specific
languages using metamodels. Addison-Wesley, 2009.

[49] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empirical
assessment of mde in industry,” in ICSE, 2011, pp. 471–480, http://doi.
acm.org/10.1145/1985793.1985858.

[50] T. Stahl and M. Völter, Model-Driven Software Development. Wiley, 2005.

[51] B. Selic, “The pragmatics of model-driven development,” IEEE Software,
vol. 20, no. 5, pp. 19–25, 2003, http://csdl.computer.org/comp/mags/so/
2003/05/s5019abs.htm.
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[57] M. Klotzbücher and H. Bruyninckx, “Coordinating robotic tasks and
systems with rfsm statecharts,” 2012.

[58] B. S. Krishna, J. Oviya, S. Gowri, and M. Varshini, “Cloud robotics in
industry using Raspberry Pi,” in 2016 Second International Conference on
Science Technology Engineering and Management (ICONSTEM). IEEE,
2016, pp. 543–547.

[59] A. Hentout, A. Maoudj, and B. Bouzouia, “A survey of development
frameworks for robotics,” in 2016 8th International Conference on Modelling,
Identification and Control (ICMIC), Nov 2016, pp. 67–72.

[60] J. Kramer and M. Scheutz, “Development environments for autonomous
mobile robots: A survey,” Autonomous Robots, vol. 22, no. 2, pp. 101–132,
jan 2007.



94 BIBLIOGRAPHY

[61] M. Tamre, R. Hudjakov, D. Shvarts, A. Polder, M. Hiiemaa, and M. Ju-
urma, “Implementation of integrated wireless network and MatLab
system to control autonomous mobile robot,” International Journal of
Innovative Technology and Interdisciplinary Sciences, vol. 1, no. 1, pp. 18–25,
2018.

[62] M. Kouzehgar, Y. K. Tamilselvam, M. V. Heredia, and M. R. Elara, “Self-
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Appendix A

Appendix - Paper B

Table A.1 shows an overview of features in the specification environments.Table A.2
reports the features related to language concepts.
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Specification environments
MultiLanguageSupport x x x x x x X x x x X x x x x X X x X X x x x X x x x X x x 8
Editor Modes

Projectional X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 30
Parser-based x X x x x X X x x x X X x x x X X x X X x x x X x x x X x X 12

Semantic services
Error Marking X X X x x x X x x x x x x x x x X x x x x x x X x x x x x X 7
Quick fixes x x x X x x X x x x x x x x x X x x x X x x x x x X x x x x 5
Reference resolution x x x x x x x x x x x x x x x x x x x x x x x x X x x x x X 2
Live translation x X x x x X x x x x x x x x x x x x x x x x x x x x x x x x 2

Syntactic services
Visual highlighting X X X x X X X X x X X X X X X X X X X X X x X X X x X X X X 26
Syntactic completion x x x X x x x x x x x x x x x X X x x x x x x X x X x x X X 7
Auto formatting X x x x x x x x x x x x x x x X X x X x x x x X x x x x x x 5

Simulation
Single Robot x X x x x x x x X x x X x X x X X x x x x x x x x X X X X x 10
Multi-robot x x x x x x x x X x x x x x x x x x x x x x x x x x x x x X 2

Runtime specification1 x x x X x X x x x x x x x x x x x x x X x x X x x x x x x x 4
Debugging x X x X x x x x x x x x x x x X X x x x x x x X x x X X X x 8
Mission deployment2

Run time redeployment x x x x x x x x x x x x x x x x x x x X x x X x x x x x x x 2
Over the air x x x X X x x x x X x x x X X x x X x x X x X x x x x x X X 10
Via cable X X X X x X X X x X X X X X x X X x X x X X X X X x X X X x 23

Language characteristics
Language concepts3

Notation
Block-based X X X x X x X X x X X X X X X X X X X X X x X X X x X X x X 24
Flowchart-based x x x x x X x x x x x x x x x X X x x x x x x x x x x x x x 3
Graph-based x x x X x x x x x x x x x x x x x x x x x X x x x X x x X x 4
Text-based x X x x X x X x x X X x X x x X X x X X x x x X x x x X X X 14
Custom map-based x x x x x x x x X x x x x x x x x x x x x x x x x x x x x x 1

Semantics
Compiled X X X X x X X X X x X X X X X X X X X X X X X X X X X X X X 28
Interpreted x x x x X x x x x X x x x x x x x x x x x x x x x x x x x x 2

Language Paradigm
DSL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 30
GPL support x x x x x x X x x x X x X x x x X x X X x x x X x x x X X x 9

Extensibility
Scripting support X X X X x X X x x x x X x x x x x x X x x x X x X x X X x x 12
Add language concept X X x x x X x X X X X x x x X x x X x x X X x x x X X X X X 16

Table A.1: Feature matrix for specification environment features and general language characteristics
1 All environments support design time specification 2 No environment supports run time interference. 3 Language concepts in Table A.2
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General concepts
Control flow

Conditionals X X X X X X X X x X X X X X X X X X X X X X X X X X X X X X 29
Loops X X X x X X X X x X X X X X X X X X X X X X X X X x X X X X 27
Interrupts x x X X x X X x x X X X X X X x X X x X x X x X x X X X x X 20
Multithreading forks x x x x x x x x x x x x x x x x x x x x x x x x x x x x X x 1

Modularity-modules1 X x X X x x x x X X X x x X X X X x x X x X X X x X X x X x 17
Variable Data types

Primitive X X X X X X X X x X X X X X X X X X X X x x X X X x X X X x 25
Compound X X X X X X X X x X X X X X X X X x X X X x X X X x X X X x 25

Mission Specification paradigms
Reactive Control x X x x x x x x x x x x x x x x x x x x x x x x x x x X x X 3
Imperative X x X X X X X X X X X X X X X X X X X X X X X X X x X X X X 28

Function Library
Arithmetic functions X x X X x X X X x X X X X X X X X X X X x X X X X x X X x x 23
String operations x x X x x x x x x x X X X x X X X X x x x x x x X x X x x x 10
Complex algorithms x X x x x x x x x x x x x x x x x x x x x x x x X x x x X x 3

Multithreading X x X X x X X x x X X X X x x X X x x x x x x x x x x X x x 11
Multirobot Hardware Support x x X X x X x x x x X x x x x x x X x X x x x x X X X x X X 11
File access

Read/write x x x X x x x x x X x x x x x X x x X x x x X x x X x X X x 8
Open/close x x x X x x x x x X x x x x x x x x X x x X x x x X x X x x 6

ReadSensor3

Event support X X X X X X X X X X X X X X X X X X x X X x x X x X X x X X 25
Exception Handling x x x X X x x x x x x x x x x x x x x x x x x x x X X x x X 5
Actions
Communication actions

With Human x x x X X x x X x x x x x x x x x x X x x X x x x X X x x x 7
With Agent x x X x x x X x X X X x x x x x x x X X X x x X x X X x X X 13

Movement
Absolute x x x x X x x x x x X x x x X X X x x X X X x X x X x x x X 11
Relative X X X X X X X X X X X X X X X X X X X X X x X X X X X X X x 28

Action type
Instantaneous X x X x x x x X X X x X x x X x x X X x x X X x x X x X x X 14
Continuous x X X X x x X X X X x x x x x x x x X x X X x x x X x X X X 14
Delayed X X X X x x X X x X X x X X X X X x x X X x X X X x X x x x 19

Actuation4 X X X x X X X X X X X X X x X X X X X X X X X X X X X X X X 28

Table A.2: Feature matrix for language concepts
1 Modules comprise of functions and components. 2 Details of ReadSensor in Table 3.5 3 Details of actuation in Fig. 3.13
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A.1 Subject Environment Descriptions

This section provides a high-level textual description of the environments
identified. In Table 3.2, for each environment we report: (i) the version we
considered; (ii) whether the environment is designed for desktop computers,
mobile devices or is web-based; (iii) the mobile robot that is supported and its
manufacturer.
Arcbotics’ SparkiDuino. [122] provides a Blockly-based programming en-
vironment for a robot called Sparki—a wheeled educational robot kit for
teaching programming. The robot relies on a specific Arduino board, and the
environment uses Arduino-specific software for uploading the mission to the
robot.
Type of language: Block-based and text-based.
Ardublockly. [123, 124] is a Blockly-based environment supporting an educa-
tional, wheeled robot called Spartan [123, 124, 161], manufactured by Modern
Robotics, Inc. Spartan also relies on an Arduino board, and the environment
is described as compatible with multiple other Arduino-based robots.
Type of language: Block-based.
Aseba. [92, 93] is a collection of environments with the same languages, but
different syntaxes and, therefore, editors: VPL-based (Visual programming
language) [187], Blockly-based, Scratch-based, and text based for programming
an educational, wheeled robot called Thymio. VPL provides icons of events
and corresponding actions as building blocks.
Type of language: Block-based and text-based.
BlocklyPro. is a Blockly- and web-based environment for specifying missions
for the wheeled educational robots ActivityBot robot and Scribbler robot [125].
Type of language: Block-based.
Choregraphe. [87, 88, 126] is a desktop-based environment that allows users
to create animations, behaviors and dialogues for the NAO humanoid robot—
meant for experimentation and research, as shown in Fig. A.1. Choregraphe
allows to test these missions on a simulated NAO robot or directly on a real
NAO.
Type of language: Graph-based.
Code Lab. provides two variants of a Scratch-based environment: Sandbox
for novice programmers and Constructor for intermediate programmers, both
to specify missions for a wheeled educational robot called Cozmo [127].
Type of language: Block-based and text-based.
EasyC. [128] is an environment with a flow-chart-like visual language for
programming the educational robot kits (Lego-Mindstorms-like) VEX EDR
and VEX IQ, used for building wheeled or stationary robots. For advanced
programmers, a C-like textual syntax is also available.
Type of language: Flowchart-based.
Edison software. [129, 130] is an environment for the educational wheeled
robots Edison V1.0 and V2.0. The environment provides a language with two
visual notations—one based on a custom block-based syntax and one based
on Scratch. It also offers Python for advanced programmers.
Type of language: Block-based and text-based.
Enchanting. is a Scratch-based environment for programming the educational
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Figure A.1: The environment Choregraphe for the robot NAO

and toy robot Lego Mindstorms NXT [131, 132]—a kit like the VEX robots
above (EasyC). Its successor, EV3, is supported by LEGO Mindstorms EV3
and Scratch Ev3, explained shortly.
Type of language: Block-based.
LEGO Mindstorms EV3. [94, 95] is an environment for the educational and
toy robot with the same name. It provides a visual language with blocks
connected to form a control flow (see also Fig. 3.12 in Sect. 3.5.3).
Type of language: Block-based and text-based.
Makeblock 5. is a Scratch-based environment for programming the educa-
tional, wheeled robots micro:bit and makeblock [133, 188]. Beyond Scratch, it
also offers Python for advanced programmers.
Type of language: Block-based and text-based.
Makecode. provides an online visual editor for programming the (typically
wheeled) Lego EV3 robot [135]. JavaScript code is generated from the visual
program, which can be downloaded to the computer to which the EV3 robot is
connected. The environment also provides a simulator, and it can also be used
for other robots, such as micro:bit.
Type of language: Block-based.
Marty software. [136] is a Scratch-based environment specifically created for
the humanoid educational robot marty. A screenshot of the Scratch-based
visual language is shown in Fig. A.3. The environment also offers a customized
Python language called martypy.
Type of language: Block-based and text-based.
Metabot. is web-based environment relying on Blockly, to create missions
for the 4-legged robot Metabot v1 and v2 [137, 138]. Figure A.2 shows a
mission demonstrating the use of loop control structure with a corresponding
assembler code generated [137, 138].
Type of language: Block-based.
Ozoblockly. [139, 140] is a Blockly-based environment particularly for the
educational, wheeled robot ozobot. The language and its visual syntax
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Figure A.2: Example of Metabot’s visual notation (left), together with generated
assembler code (right) from [137]

offer five levels of complexity, ranging from icon-based blocks to advanced
programming constructs, which offer low-level control functions and advanced
programming features.
Type of language: Block-based.
PICAXE. [70, 71] is an environment for educational wheeled robots based on
PICAXE microcontrollers, such as the PICAXE 20X2 microbot. The environ-
ment offers a language with syntaxes based on Blockly and a flowchart-like
syntax, but it also comes with a Basic-style language with a textual syntax.
Type of language: Block-based, Flowchart-based, and text-based.
Robot Mesh Studio. [67] is used for programming the wheeled educational
robots from VEX Robotics, such as the VEX V5, IQ, and EDR. It offers two
languages: one with a flow-chart-like syntax (Flowol), and one based on
Blockly. It also support C++ and Python for advanced programmers. The
studio can be run online or on a Windows computer.
Type of language: Block-based, Flowchart-based, and text-based.
Scratch Ev3. [141] is the original Scratch from MIT, but tailored to support the
educational robot kit Lego Mindstorms EV3. To this end, it offers dedicated
language constructs for the EV3. Notably, a study has shown learning-related
benefits of this Scratch-based environment over the original LEGO Mindstorms
EV3 environment (see above) [142].
Type of language: Block-based.
Sphero. is an environment for programming the spherical educational robots
Sphero BOLT, SPRK+, and Sphero Mini [143, 144], which have a derivative
resembling Star Wars’ BB8 robot that was sold by the respective company
under a license agreement. The language’s visual syntax is based on Scratch,
while JavaScript is also offered as a language with textual syntax.
Type of language: Block-based and text-based.
Tello Edu App. [145,146] is a Scratch-based environment that generates Python
code for the educational drone Tello. It is essentially Scratch extended with a
library that adds Tello-specific blocks (mainly drone flight controls).
Type of language: Block-based.
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Figure A.3: The mission specification environment Marty software

TiViPE. [189] is a research environment for programming robots that provides
support to wrap any program code modules (e.g., functions) of the supported
programming language as nodes in a graph, with edges representing control
and data-flows. The environment incorporates the API for the humanoid robot
NAO, as demonstrated by Lourens et al [147].
Type of language: Graph-based.
Turtlebot3-blockly. [149,150] is a Blockly-based environment for programming
the experimental robot turtlebot (essentially a Roomba without vacuum
cleaning facilities, extensible with various sensors). It generates Python code
for the turtlebot.
Type of language: Block-based.
VEX Coding Studio. [68, 69] is the robot vendor’s environment for program-
ming the educational robot kits VEX EDR and VEX IQ (like EasyC). The
language has a Scratch-based syntax (VEXcode Blocks) and a text-based syntax
(VEXcode Text).
Type of language: Block-based and text-based.
FLYAQ. [34–36] is an experimental (research) environment to specify missions
of drones, specifically the Parrot AR Drone2.0, while not being restricted to a
drone model. It allows to specify missions and their parameters (e.g., flight
locations), on a live map. It generates flight plans from a stack of languages,
such as the monitoring mission language (which provides the user interface),
to a behavioral language and a robot configuration language.
Type of language: Custom, map-based.
MiniBloq. [151, 152] is an environment that can be used to program Arduino-
board-based robots, such as the wheeled robot Sparki. Its language provides a
custom syntax with relatively large icon-based blocks.
Type of language: Block-based.
MissionLab. [83, 96] is a research environment enabling mission specification
through a state-machine-based visual language. Missions can be executed on
a simulator or on the following wheeled robots used for smaller commercial
applications: ATRV-Jr, Urban Robot, AmigoBot, Pioneer AT, and Nomad 150
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& 200.
Type of language: Graph-based.
Open Roberta. [89–91] is a web-based, educational, and Blockly-based envi-
ronment for programming a variety of robots: Lego Mindstorms EV3 amd
NXT, Calliope mini, micro:bit, Bot’n Roll, NAO, and BOB3. It can either be run
on the cloud or installed on a local server. The environment generates Code in
Python, Java, Javascript, and C/C++ depending on the target robot.
Type of language: Block-based.
RobotC. [65, 66] is an educational environment providing a language that
tries to be close to natural language, mainly through more natural language
keywords and expressions (e.g., “Understood==True”). It allows programming
the VEX, LEGO Mindstorms EV3 and NXT, and other Arduino-based robots.
Type of language: Block-based and text-based.
TRIK Studio. [153, 154] is an educational tree-based environment in which
blocks connected to the chart are symbols of functions the block does. The
studio provides an interactive simulation mode and supports multiple robot
types, such as the drone Geoscan Pioneer and the wheeled robot kits LEGO
Mindstorms EV3 and NXT.
Type of language: Graph-based and text-based.
PROMISE. [8] provides a graphical and a textual syntax for mission speci-
fication for multi-robot applications. The environment1 allows the seamless
integration and usage of both syntaxes to specify different aspects of the same
mission. The language provides a list of operators—which are inspired by
the behavior trees’ operators [190]—that can be composed to encode complex
missions. These operators are interconnected following a behavior tree style
and notation. The language relies upon a catalog of patterns based on tem-
poral logics, which encodes recurrent robotics missions from literature [1].
PROMISE automatically generates and forwards the missions to be achieved
by the robotic application, decomposing the overall specification into robot-
specific missions. PROMISE is intended to be robot-agnostic, so it could be
integrated with any robot. Type of language: Graph-based and text-based.

A.2 Additional Online Resources

Table A.3 provides links to online resources for the respective specification
environment resources

1https://github.com/SergioGarG/PROMISE_implementation
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Table A.3: Links to respective specification environment resources

Environment URL Link

Arcbotics’
SparkiDuino http://arcbotics.com/lessons/sparki/

Ardublockly https://ardublockly.embeddedlog.com/ , https:

//modernroboticsinc.com/product-category/spartan/

Aseba https://www.thymio.org/en:star

BlocklyPro http://blockly.parallax.com/blockly/editor/blocklyc.

jsp?project=27294#

Choregraphe http://doc.aldebaran.com/1-14/software/installing.html

Code Lab https://anki.com/en-us/cozmo/create-with-cozmo/

constructor/create.html

EasyC https://www.vexrobotics.com/easyc-v5.html

Edison software https://meetedison.com/robot-programming-software/

Enchanting http://enchanting.robotclub.ab.ca/tiki-index.php

FLYAQ http://www.flyaq.it/

LEGO Mindstorms
EV3

https://www.lego.com/en-us/mindstorms/downloads, https:
//education.lego.com/en-us/downloads/mindstorms-ev3/

software#MicroPython

Makeblock 5 https://www.makeblock.com/software

Makecode https://makecode.mindstorms.com/#editor

Marty software http://martytherobot.com/users/using-marty/program/

scratch/getting-started-with-scratch/

Metabot http://blocks.metabot.fr/#

Ozoblockly https://ozoblockly.com/editor?lang=en&robot=evo&mode=5

PICAXE http://www.picaxe.com/software

Robot Mesh Studio http://docs.robotmesh.com/ide-project-page

Scratch Ev3 https://scratch.mit.edu/projects/editor/?tutorial=ev3

Sphero https://www.sphero.com/education/

Tello Edu App https://play.google.com/store/apps/details?id=com.

wistron.telloeduIN

TiViPE https://www.tivipe.com/2016/08/30/merging-modules/

#more-461

Turtlebot3-blockly https://turtlebot-3-blockly-wiki.readthedocs.io/en/

latest/

VEX Coding Studio https://www.vexrobotics.com/vexedr/products/

programming

MiniBloq http://blog.minibloq.org/p/documentation.html

MissionLab www.cc.gatech.edu/aimosaic/robot-lab/research/

MissionLab/

Open Roberta https://lab.open-roberta.org/

RobotC http://www.robotc.net/graphical/

TRIK Studio http://www.trikset.com/products/trik-studio#download

PROMISE https://github.com/SergioGarG/PROMISE_implementation


