THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Distributed Coded Caching with Application to

Content Delivery in Wireless Networks

JESPER PEDERSEN

CHALMERS

UNIVERSITY OF TECHNOLOGY

Communication Systems Group
Department of Electrical Engineering
Chalmers University of Technology
Goteborg, Sweden, 2021



Distributed Coded Caching with Application to
Content Delivery in Wireless Networks

JESPER PEDERSEN

Copyright (©) 2021 JESPER PEDERSEN, except where
otherwise stated. All rights reserved.

ISBN 978-91-7905-475-5

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 4942

ISSN 0346-718X

This thesis has been prepared using WTEX and PGF/TikZ.

Communication Systems Group
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Goteborg, Sweden

Phone: +46 (0)31 772 1000
www.chalmers.se

Printed by Chalmers Reproservice
Goteborg, Sweden, April 2021



To Lisa, Charlie, and Frans.






Abstract

The amount of content downloaded to mobile devices, mainly driven by the
demand for video content, threatens to completely congest wireless networks
and the trend of ever increasing video traffic is expected to continue unabated
for many years. A promising solution to this problem is to store popular
content closer to end users, effectively trading expensive bandwidth resources
for affordable memory, a technique known as caching.

In this thesis, we study the use of erasure correcting codes (ECCs) to in-
crease the amount of data that can be downloaded directly from the caches
when content is cached in a distributed fashion across several base stations
(BSs) or mobile devices. When content is cached in mobile devices, users may
download coded packets directly from caching devices using device-to-device
communication and, if necessary, from the BS at a higher communication cost.
Devices moving out of range or turning off will cause a loss of cached content.
To restore the initial state of reliability in the network, data is transmitted to
available mobile devices in a process known as content repair. We compare
the amount of data transmitted in the network due to content download and
content repair using various ECCs when content is repaired at periodic times.
We analyze the performance when mobile devices enter the network with or
without usable cached content and show that increasing the time between
repairs, so called lazy repairs, can be beneficial. Furthermore, we analyze
content caching in mobile devices using maximum distance separable codes
for scenarios where the density of devices is high. We optimize the number of
mobile devices to involve in the caching of content and demonstrate the sig-
nificant gains that can be achieved in terms of data downloaded from caching
devices.

We proceed to analyze how to optimally manage cached content over time
when users request content according to a renewal process, i.e., a process with
memory. Specifically, we consider the distributed coded caching of content at
small BSs where coded packets may be evicted from the caches at periodic
times. We prove that the problem of maximizing the amount of data that users
can download from the caches is concave and that our problem formulation
is a generalization of the previously studied cases where content is cached in
a single cache and where content is not managed over time, so called static
caching. We show that optimizing caching policies can offer considerable gains
in the amount of data that can be downloaded from the caches, especially



when the request process is bursty. Conversely, we prove that static caching
is optimal for request processes without memory. Finally, we suggest a multi-
agent reinforcement learning approach to learn cache management policies for
spatially non-uniform renewal request processes. Our algorithm obtains cache
management policies, substantially increasing the amount of data that can be
downloaded from the caches.

Keywords: Caching, content delivery networks, device-to-device communi-
cation, erasure correcting codes, machine learning, optimization, time-to-live.
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CHAPTER 1

Introduction

Everywhere around us there are people using smartphones, perhaps watching
the latest viral video on TikTok or Instagram, or perhaps listening to music
or a podcast. Due to the proliferation of social media such as Facebook,
YouTube, TikTok, and Instagram, streaming on-demand media providers like
Netflix, Disney+, and HBO, and music/podcast platforms such as Spotify
and Apple Music, the amount of content downloaded to smart devices in
wireless networks is rapidly increasing [1]. We have grown accustomed to
having access to these services wherever we are, whenever we want to, without
significant latency or delays. It is also envisioned, with the rollout of the fifth
generation (5G) cellular networks, that entirely new services, e.g., augmented
or virtual reality, will be made available [2], which will increase the amount
of downloaded data even more. As shown in Fig. 1.1, the amount of data
downloaded to mobile devices globally is expected to reach 68 exabyte (EB)
per month by the end of 2021 and to reach 226 EB per month by 2026, where
the majority of the mobile data is video content [3].

In the old days, video was broadcasted to end-users, e.g., the live evening
news transmission, where everyone would watch the transmission at the same
time. Today, the demand for content is highly asynchronous, i.e., users wish
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Figure 1.1: Past and expected global mobile data traffic per month.

to decide when they watch a particular video, not be restricted to watch at
a particular time, which completely rules out broadcasting [4]. At the same
time, requests for a few popular files are very frequent. Such file request
characteristics put immense pressure on already burdened wireless links [5].

Several ideas to mitigate the problem of congested wireless links have been
put forth, some of which are already included in the implementation of 5G
cellular networks. For example, a densification of base stations (BSs) has been
suggested with the deployment of so called small base stations (SBSs), where
each SBS serves a smaller number of mobile users [6]. Furthermore, tech-
niques to make new frequency spectrum available, so called millimeter wave
frequencies, are being proposed [7], Finally, massive multiple-input, multiple-
output (MIMO), i.e., drastically increasing the number of antennas, is envi-
sioned to radically increase the capacity of wireless links [7]. It has, however,
been contested whether these solutions alone will be enough to handle the
deluge of mobile data traffic expected in the future [5].

There is another resource that remains largely untapped and that promises
to alleviate the pressure on wireless links. The price of memory is, contrary to
the trend of mobile data traffic, experiencing a decreasing trend, see Fig. 1.2
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Figure 1.2: The price development of memory.

[8]. It has therefore been proposed to install hard drives at SBSs and utilize pe-
riods of low network traffic, e.g., during the night, to preallocate content that
is expected to be frequently requested at the next period of high network load,
e.g., the next day. Mobile devices can then download this content directly from
the SBSs, thus reducing pressure on the backhaul. Alternatively, by the same
argument of affordable and available memory resources, spare storage capacity
on mobile devices can be utilized [7]. Content can then be downloaded from
nearby caching devices using device-to-device (D2D) communication. Preal-
locating content closer to end users, effectively trading expensive bandwidth
resources for inexpensive memory units, is known as caching.

The term cache was originally used to describe fast memory with small
capacity in computer systems, where the memory would be used to provide
swift access to frequently used data [9]. The idea was later extended to the
internet where web pages would be replicated in a distributed fashion across
servers (caches) to reduce network bandwidth usage, access time, as well as
server congestion [9]. In the 1990s, internet traffic increased rapidly, which
put more stringent requirements on the caches and led to the development
of content distribution networks (CDNs) [9]. Recently, caching has also been
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considered for improving content delivery in wireless networks [7], [9].

Irrespective of whether content is cached at SBSs or on mobile devices, it
is expected that users will be in range of several SBSs, or encounter several
caching devices over time, which means that content can potentially be down-
loaded from several sources [10]. However, it is unlikely that all caches will
be accessible to the user requesting the content. Whenever a user can only
download data from a subset of the caches, it is important to make sure that
the requested content can be recovered from the downloaded data. If the con-
tent cannot be recovered, more data has to be downloaded over the backhaul.
To this end, the use of erasure correcting codes (ECCs) has been shown to
drastically reduce the amount of data that has to downloaded from the CDN
over expensive backhaul [10], [11].

In this thesis, we investigate how much of the content requested by mo-
bile users can be downloaded directly from caches located at SBSs or from
caching mobile users, thereby alleviating traffic over backhaul links. We an-
alyze what reductions in backhaul traffic can be achieved by using ECCs,
where we optimize the code parameters to yield the maximum possible back-
haul traffic reductions. When caching data on mobile devices and allowing
users to download requested data from caching devices using D2D commu-
nication, the effects of device mobility have to be taken into account. In
wireless networks exhibiting loss of data due to device mobility, the initial
state of reliability has to be restored to continue to offer data offloading from
servers, which is commonly referred to as data repair. We explore the tradeoff
between data transmitted in wireless networks due to content download and
content repair using various ECCs when repairs are carried out at periodic
times, so called lazy repairs. We then proceed to analyze more realistic device
mobility models, as well as user-centric communication protocols, and investi-
gate what backhaul traffic reductions can be achieved for highly dense mobile
device networks.

Due to how people interact socially, viral videos emerge and requests for
this content arrive in bursts. When the request for a video increases the
likelihood of another request in short succession, it is reasonable to cache
more of the files that were recently requested. For such request processes, we
explore ways to optimally manage cached content over time, when content is
encoded and cached in a distributed fashion across several SBSs in the wireless
network. We furthermore devise machine learning approaches to learn good



1.1 Thesis Organization

cache management policies without the need to know the file request statistics
or the SBS distribution.

1.1 Thesis Organization

This thesis is organized as a collection of papers. The first part of the thesis is
meant to introduce the models and tools used in the appended papers, which
are found in the second part of the thesis.

The remainder of the introductory part of the thesis is organized as follows.
In Chapter 2, we present the channel model that dictates how mobile devices
and BSs can communicate in the wireless network and that is used throughout
the thesis. Mobile device mobility models, relevant to Papers A and B, as well
as distributions of devices and SBSs, mainly relevant to Papers C and D, are
discussed. Several content request processes are presented. ECCs used for
encoding cached content are introduced in Chapter 3, together with various
cache replacement policies that dictate the management of cached content over
time. Chapter 4 provides the reader with some background on optimization
techniques that are used in Papers B and C. Finally, Chapter 5 provides an
introduction to the branch of machine learning (ML) known as reinforcement
learning (RL), the popular Q-learning algorithm, as well as policy gradient
methods, relevant to Paper D.

1.2 Notation

The introductory part of the thesis uses the following notation conventions. A
quantity proportional to another is denoted by o and the symbol £ indicates
a definition. We denote random variables (RVs) by capital letters, e.g., X
and their realization by small letters, e.g., . The symbol ~ indicates the
distribution of the random variable X, e.g., X ~ Exp()) indicates that X is
exponentially distributed with rate A\. The probability density function (PDF)
and cumulative distribution function (CDF) of RV X is denoted by fx(x) and
Fx(z) & Pr(X < x), respectively. The expected value of RV X is denoted by
E[X]. Furthermore, vectors are given in bold notation, e.g., , and sets are
denoted by calligraphic letters, e.g., B. Finally, Z denotes the set of integers.






CHAPTER 2

Wireless Network Models

A model is a mathematical construct to help analyze real-world phenomena.
The model can be very complex to accurately capture situations in practice or
less so to allow for a more tractable mathematical analysis. Usually, a trade-
off has to be struck between complexity and accuracy. In this chapter, we
describe the channel model used in the appended papers, dictating how the
entities of the wireless network, i.e., the mobile devices, SBSs, and the macro
base station (MBS), are allowed to connect and transmit data between them.
We introduce the distributions of the locations of BSs and mobile devices,
as well as several device mobility models. Finally, the user request processes
used in the papers are explained.

2.1 Channel Model

In this thesis, we consider a path loss channel model, which describes the
relationship between the transmitted and received signal power, P, and P;,
respectively, and communication range r as follows [12, Ch. 2]

P, o< P2, (2.1)
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We assume that communication can be carried out reliably, provided that the
received signal power is high enough. For a fixed transmitted signal power,
this corresponds to sufficiently small communication distances.

2.2 Base Station Distributions

When caching is performed at SBSs, we are concerned with how many SBSs,
caching a particular piece of content, are within communication range of the
user placing a request for that specific content. There are two popular models
for describing the placement of SBSs from which the distribution of SBSs
within communication range can be derived; uniformly random and grid-based
placement.

Poisson Point Process

Consider an area A where mobile users can download cached content from
SBSs within communication range r. The probability that an SBS is within
communication range of some reference user is given by [13, Ch. 2]
2
A ,r‘
= —. 2.2
P=7 (2.2)

For n SBSs, independently and uniformly distributed in the area, the distri-
bution of the number of SBSs within communication range, denoted by B, is
given by the binomial distribution

falo) = () - (2.3

with mean np [14, Ch. 2|, and the SBS placement forms a binomial point
process with intensity [13, Ch. 2]

(2.4)

NE

10
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o

(a) BSs distributed according to a  (b) Grid-based placement of BSs.

PPP model.

Figure 2.1: An illustration of commonly used BS (dots) distribution models with
communication range highlighted by opaque circles for some BSs.

When n tends to infinity and p tends to zero such that A\rr? is kept fixed, by
the Poisson limit theorem [14, Ch. 2], (2.3) tends to the Poisson distribution

()\7Tr2)b
b!

2

£ f(b) = e M, (2.5)

with mean A7r?, which describes a Poisson point process (PPP) in the plane
[13, Ch. 2]. BSs distributed according to a PPP model is shown in Fig. 2.1a.
See, e.g., [15], [16] for applications of the PPP model to the study of wireless
caching networks.

Grid-Based Model

An alternative to a random placement of SBSs is a deterministic placement,
e.g., SBSs placed on a grid (see Fig. 2.1b) [10], [11]. Analyzing an isolated
cell in this grid, the probability of the number of SBSs within communication
range of a mobile user placing a request for a particular file can be derived.
Finding the probability for a uniformly placed user is equivalent to finding
the fraction of the area covered by a number of SBSs for a 1 x 1 square. For
such a square area and r = 1/ V2, the probabilities are readily obtained by

11
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elementary geometry as follows,

f5(0) = f(3) = fp(4) =0
fs(2) =8(nr?/8 —1/8) =m/2 — 1,
fB(1)=1-fp(2)=2—-m/2.

Hence, the expected number of SBSs within range of a uniformly distributed
user is
E[B] = 7/2 ~ 1.57. (2.9)

For the case r = 1, the probabilities can be straightforwardly obtained by
integration,

fB(0) = fp(1) =0, (2.10)
1/2

fB(2) = / —V1—2?dr=4- ? — V3, (2.11)
0
V3/2

fB(4):4/ /\/1—x2—1dx:1+z—\/§7 (2.12)
1/2 2 3

fu(3)=1—f5(2) - fu(4) :2¢§+§—4, (2.13)

with the expected number
E[B] =7~ 3.14 (2.14)

of SBSs within range. Obtaining the probability of the number of SBSs within
communication range for other values of r may be handled analogously, or

via Monte Carlo simulation. The coverage regions for communication range
r=1/v/2 and r = 1 are shown in Fig. 2.2.

2.3 Device Mobility and Distributions

Mobile devices present in the wireless network are commonly assumed to be
spread randomly in space, especially in conjunction with randomly placed
SBSs as explained in Section 2.2 [10], [11]. There are, however, various models
used to capture the mobility of devices. The application of such models is
particularly interesting when spare memory capacity on the devices are used

12



2.8 Device Mobility and Distributions

(a) r=1/V2 (b) r=1

Figure 2.2: Coverage regions for the scenario where SBSs (dots) with communica-
tion range r are placed deterministically on a 1 x 1 grid.

to cache frequently requested content.

Birth-Death Process

The times between events are often modeled as exponentially distributed, e.g.,
packet arrivals to a network router, lightning strikes, or the birth of a giraffe in
a park, and the counting of the number of occurrences is a Poisson counting
process [14, Ch. 8. When we are also concerned with events reducing the
count in the system, e.g., customers leaving a store, packets forwarded from
the network router, or the giraff in the park sadly dying, this is commonly
referred to as a birth-death process [14, Ch. 9]. As the times between events
are assumed to be exponentially distributed, this process is Markovian, i.e., the
future is independent of the past [14, Ch. 9.4]. In the Markov nomenclature,
the count in the system is referred to as the state. For arrival and departure
rates denoted by \; and pu; for state ¢ = 0,1,2,..., respectively, the steady-
state distribution, i.e., the probability to be in a particular state m as time
passes to infinity for the Markov process is [14, Th. 9.4]

Tm = . (2.15)
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Chapter 2 Wireless Network Models

I

Figure 2.3: Mobile devices arriving to and departing from a cell at exponentially
distributed random times with rates A and p, respectively.

Recently, the Markov birth-death process was used to study the device mo-
bility in wireless networks [17].

Consider a cell in a wireless network where all devices in the cell can commu-
nicate using D2D communication. Assume that mobile devices arrive to the
cell at exponentially distributed inter-arrival times with constant rate A\; = A,
i.e., the PDF of the inter-arrivel times 7T is

fr(t) = Ae . (2.16)

Furthermore, assume that the devices stay in the cell for an exponentially
distributed time with rate p. The scenario with mobile devices arriving to
and departing from the cell is depicted in Fig. 2.3. If, at any given time, there
are ¢ mobile devices in the cell, the aggregate departure rate from the cell
is p; = ip, by the additive property of the Poisson process [18, Section 2.3].
This describes an M/M /oo queue, i.e., a system with Markovian arrivals and
departures, as well as infinitely many servers [14, Ch. 9.4]. Since

J
”ZHALZIZHZ

o0
j=11i=1 Jj=1z

T2 - i (A/.‘,‘)j =M, (2.17)

1 j=0 J:

and using (2.15), the steady-state distribution of the number of devices in the

cell is )
Tom = ﬂe_)‘/“, (2.18)
m)!
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2.8 Device Mobility and Distributions

which is recognized as the Poisson distribution (2.5).

Random Waypoint Model

Modeling device arrivals and departures to a cell in a wireless network as a
birth-death process does not offer any granularity in the position of mobile
devices within the cell. Furthermore, the model is not user-centric, i.e., dic-
tated by a channel model where devices can communicate with other mobile
devices within a specific communication range using D2D communication, as
explained in Section 2.1. Therefore, an alternative model capturing device
mobility is the random waypoint (RWP) model [19]. In this model, mobile
devices

1. are placed randomly in an area,
2. pause for a fixed time,
3. pick a uniformly distributed target at random, and

4. go in a straight line towards the target at a speed chosen uniformly at
random between a minimum and a maximum speed.

Once a device reaches its target, the process repeats from step 2 [19].

It has been shown that the spatial distribution of devices under the RWP
model in its steady state is not uniform, due to the boundaries of the area [20].
However, in order to simplify the analysis, various techniques can be used to
regain the uniform spatial distribution, e.g., consider a wrap-around, where
devices departing the area reemerge on the other side, continuing their path,
or wrapping the area around a sphere [21]. Mobile devices within communi-
cation range can download cached data using D2D communication. We refer
to the time when two devices are in range as the contact time. We assume
that the expected contact time is ! but that the distribution is unknown.
However, the inter-contact time between two devices, i.e., the time when the
two devices are out of communication range of each other, has been shown to
be exponentially distributed with rate A [22]. See Fig. 2.4 for an illustration of
the device mobility, the communication range, as well as the contact and inter-
contact time. Provided that the area A is much larger than the circular area
imposed by the communication range r, i.e., A > 72, and small differences
in minimum and maximum device transverse speeds, the inter-arrival time,
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" — t

contact time inter-contact time

Figure 2.4: An illustration of the device mobility, the communication range, as
well as the inter-contact time for two devices under the RWP model.

defined as the sum of the contact and inter-contact times, is approximately
exponentially distributed with rate A [23]. Hence, the number of mobile de-
vices within communication range in steady state describes an M /G /oo queue
(where G marks a generalized departure or contact time). Under the as-
sumptions of uniformly distributed devices in the area, the number of mobile
devices within range is characterized by the Poisson distribution (2.18) with
arrival and departure rates A and pu, respectively [24].

2.4 Content Request Processes

Zipf’s law is an empirical law that postulates that frequency and rank have an
inverse relationship. Although the law was initially used to describe the fre-
quency of words in relation to their rank in written text [25], the phenomenon
is also expressed elsewhere, e.g., the frequency of mathematical expressions
[26] and notes in music [27]. The law is also a widely accepted model to
capture the popularity of web content [28], e.g., video files on YouTube [29].
Zipf’s law states that, for a library of NN files, the probability that file i is
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requested is

1/ic
pi 2 /1 i=1,2,....N, a>0 (2.19)

s 1M
> 1/
j=1

where « is the skew parameter of the distribution [28]. Note that, for a = 0,
the Zipf distribution tends to the uniform distribution [14, Section 3.4].

Poisson Request Process

For exponentially distributed inter-request times, the number of requests in a
certain time period is a Poisson process, as previously described in Section 2.3.
Poisson processes have the appealing property that, if several processes are
merged, they form another Poisson process, where the rate is the sum of the
rates of the constituent processes [18, Section 2.3]. For example, assuming
that the number of requests for file 7 is described by a Poisson process with

rate

where w is the aggregate request rate, merging the requests over all files yields
another Poisson process with rate

N N
Zwi :pri =w. (2.21)
i=1 i=1

To see this, let X ~ Poisson(w;), Y ~ Poisson(ws), w = wy + wy, and Z =
X +Y. Then

f2(2) = Y fx(@)fr(z—a) (2.22)
— - w_f —w1 wy " —w2
— ; e e 2 x)!e (2.23)
_ e;_'w 3 (j) WiwiT" (2.24)
| = \x
_ O;—Te_”, (2.25)
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(a) (b)

Figure 2.5: The merging (a) and splitting (b) of Poisson processes yields new Pois-
son processes.

where we have used the Binomial theorem [14, Section 2.7] in the last equality.
Hence, Z ~ Poisson(w) as claimed. Similarly, assume that files are requested
according to a Poisson process with aggregate rate w and a particular request
is for file ¢ with probability p;, then file 7 is requested according to a Poisson
process with rate w; [18, Section 2.3]. Hence, the interpretation of p; as the
popularity of file ¢, translates proportionally to the request rate for the same
file. The merging and splitting of Poisson processes is illustrated in Fig. 2.5.
A positive random variable (RV) 7" is memoryless if [18, Section 2.2.1]

Pr(T'>t+z) =Pr(T > t)Pr(T > x), for all z,t > 0. (2.26)

If T is exponentially distributed with rate w, this holds, as

t+x
Pr(l'>t+z)=1- / we T dr = e w(tto) (2.27)
0
=e “e " = Pr(T > t)Pr(T > x), (2.28)

using (2.16). Conversely, an RV is memoryless only if it is exponential [18,
Section 2.2.1]. Using the fact that 7" is exponential, we have

Pr(I'>t+z | T >xz)=Pr(T >1), (2.29)

with the interpretation that, if 1" is the time until the next request for a file
and there is no request for a time x, the distribution of the remaining time is
the same as the original distribution, i.e., the process has no memory of what
has occurred previously [18, Section 2.2.1].
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2.4 Content Request Processes

Renewal Request Process

Renewal processes in general have memory and are used extensively to model
situations where the event rate is changing over time, e.g., the failure rate of
equipment should increase with its age or the mortality rate is higher among
infants and elders. Due to how we spread information about new content, e.g.,
a video clip going viral, a renewal process is a reasonable choice for modeling
requests for content [30]. For a renewal request process with inter-request
times T', the hazard function

fr(t)
h(t) & ———— 2.30
®) Pr(T > t) ( )
describes the probability to observe a request a time ¢ after the previous re-
quest [31, Section 2.5], and a decreasing hazard function models a bursty
request process. Weibull distributed inter-request times have been demon-

strated to accurately capture the requests for educational video content [30].
The PDF of a Weibull-distributed inter-request time 7" is

a—1
Jr(t) =7 (2) e~ (/0% (2.31)

where a and b are the shape and scale parameters of the distribution, respec-
tively. Using (2.30), the hazard function for this distribution is

W) =3 (%)a_l. (2.32)

We can see that, for a < 1, the hazard function is decreasing, i.e., this de-
scribes a bursty request process. Furthermore, for a = 1, T' is exponentially
distributed with rate 1/b and the hazard function is constant. Hence, the
Poisson request process is a special case of this particular renewal process.
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CHAPTER 3

Caching for Content Delivery

The idea behind caching is to estimate what content will be requested some
time in the future and focus memory resources toward caching this content to
minimize the amount of data that has to be fetched over congested backhaul
links. The caches can for example be replenished over night, when network
traffic is low, and users can download requested content directly from the
caches during the day, when traffic is high. This requires accurate estimates
of the file popularity profile as well as the request statistics (see Section 2.4).
Alternatively, data may be cached in a more dynamic manner where a request
for a file triggers it to be cached for a specific time, or in place of other content
that is evicted from the cache. Irrespective of what method is used, the goal
is that when users place a request for a file, the file is found and downloaded
from the caches, known as a cache hit. If the requested content is not found
in the caches, referred to as a cache miss, the data has to be fetched over the
congested backhaul. Furthermore, the file popularity profile may be varying
with time, i.e., the rate at which users request particular files may be time-
dependent, which can be modeled as a renewal process (see Section 2.4). When
faced with such scenarios, managing cached content over time can significantly
reduce the amount of data that has to be fetched over the backhaul [32].
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In wireless networks, users requesting files may be within communication
range of several caching SBSs (see Section 2.2), or come in contact with a
number of caching mobile devices (see Section 2.3). In this case, we can
consider caching content across SBSs or mobile devices. However, it is likely
that users can only download data from a subset of the caches, in which
case it is important to ascertain that the requested content can be recovered
from the downloaded data. If the requested content cannot be recovered,
additional data has to be downloaded over the backhaul. To this end, the use
of ECCs have been shown to drastically reduce the amount of data that has
to be fetched over the congested backhaul, both when content is cached in
a distributed fashion across several SBSs [10], [11], [33], or across a number
of mobile devices [4], [17], [34], [35]. In the following, we describe a range of
caching policies, dictating how to manage cached content over time, as well
as the various ECCs considered in the appended papers.

3.1 Cache Replacement Policies

Popular choices for dynamic cache management include various types of cache
replacement policies, e.g., least recently used (LRU), least frequently used
(LFU), and first in first out (FIFO). Due to the difficulty in analyzing these
caching policies [36], the more analytically tractable time-to-live (TTL) cache
eviction policy has been suggested. It has been shown that the TTL policy
has similar performance to LRU, LFU, and FIFO [37]-[40]. In this section,
we give a brief description of how these policies operate.

Least Recently Used

The LRU cache replacement policy caches content together with a time stamp
of when the content was cached. All requested content is cached until the cache
is full. Furthermore, a request for cached content resets the time stamp. If
there is a request for uncached content and the cache is full, the oldest cached
content, i.e., the least recently requested content, is evicted from the cache,
the recently requested content is cached, and the time stamp is reset. The
operation of the LRU policy is illustrated in Fig. 3.1a.
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e - -
C ) —m-.— - i
- _— - | t
(a) LRU (b) LFU (c) FIFO (d) TTL

Figure 3.1: The operation of the various cache replacement policies as requested
orange content is being cached. In (a)—(c), the red content is the
least recently requested, the green content is superseded by orange
in number of requests, and the blue content is cached first. In (d),
a request for orange content (marked with arrows) triggers it to be
cached for a predetermined time.

Least Frequently Used

For the LFU policy, a counter of the number of requests for a particular content
is maintained in the cache. Each request for a particular content increases its
counter value. Similar to LRU, all requested content is initially cached, until
the cache is full. If the number of requests for the recently requested content
surpasses the cached content with the smallest counter value, i.e., the least
frequently used content, this content is replaced. Fig. 3.1b shows how the
LFU policy works.

First In First OQut

The FIFO cache replacement policy simply tracks the order in which content
was cached. If there is a request for uncached content, this content replaces
the content first stored in the cache. We refer to Fig. 3.1c for an illustration
of the FIFO policy operation.

Time-To-Live

The TTL cache eviction policy works in a significantly different manner than
the LRU, LFU, and FIFO policies in that it is not a cache replacement that
precipitates content eviction. The system designer decides on a time during
which a particular content is to be cached a priori. A request for content
triggers it to be cached and the timer is reset. If there is another request for
the content before the expiration of the timer, the timer is simply reset. If the
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timer expires before there is another request, the content is evicted from the
cache (see Fig. 3.1d for an illustration). Whereas the LRU, LFU, and FIFO
policies adhere to a strict cache size constraint, a long-term average cache size
constraint is met for the T'TL policy, which is the main reason for its analytical
tractability. Although this could be seen as limiting the applicability of TTL
policies, it has been demonstrated that, for a reasonably large file library, the
instantaneous amount of used cache space does not deviate significantly from
the average [40].

3.2 Erasure Correcting Codes

The use of ECCs, or simply codes, have been shown to significantly increase
the amount of data that can be downloaded from the caches [10], [11]. In fact,
the distributed coded caching scenario, shown in Fig. 3.2a, bears striking simi-
larities with sending an encoded message over an unreliable (erasure) channel,
where some packets are not received, illustrated in Fig. 3.2b. Furthermore,
if cached data is lost due to, e.g., cache failure or caching devices departing
from the network or running out of battery, the initial state of reliability in
the caching network has to be restored, which is known as repair. The amount
of data transmitted in a caching network due to repairs is referred to as the
repair bandwidth and the number of caches involved in the repair is known as
the repair locality. Repairs can be carried out either immediately or with a de-
lay, known as lazy repairs, which can sometimes reduce the repair bandwidth
[41].

When encoding data of size s, e.g., a frequently requested video file, using
a code, it is first partitioned into k packets (or symbols) of size s/k, where k
is referred to as the code dimension. The k symbols are then encoded into n
symbols, also of size s/k, where n is the code length. We specify a code using
the dimension and length, i.e., we refer to it as an (n, k) code. The rate R of
the code is the ratio between the code dimension and length, i.e.,

R 2

3|

<1. (3.1)

An important parameter for a code is the Hamming distance, or simply dis-

1We use the same letter n to describe both the code length and the number of SBSs since
it is frequently the case that one coded symbol is stored per SBS.
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(a) Distributed coded caching  (b) Transmission where one packet is
where one SBS is out-of- erased by the channel.
range of the user requesting
the file.

Figure 3.2: A comparison between distributed coded caching and transmitting en-
coded data over an erasure channel. Both cases results in the loss of
one coded packet.

tance. For codewords «,® € C, where C is the set of all codewords, the dis-
tance, denoted by d(x, &), is defined as the number of positions that « and &
differ. Another metric, directly determining the erasure correcting capability
of the code, is the minimum distance [42, Sec. 3.1.3]

Ao = in  d(zx, ). 2

Since any two codewords differ in at least dyi, positions, the code can correct
up to
dmin —1 (33)

erasures. For a linear code, the Singleton bound states that [43]

doin <1 — K + 1. (3.4)

Maximum Distance Separable Codes

A maximum distance separable (MDS) code is optimal in the sense that it
attains the Singleton bound (3.4). Hence, using (3.3), the code can recover
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from any
dpin — 1 =n — k (3.5)

erasures and any k symbols suffice to recover the original data. Therefore,
the total amount of data retrieved to recover the file is k - s/k = s, the size of
the file. For MDS codes, when considering repairing a cached coded symbol,
e.g., when a caching device departs from the network, this is unfortunately
also the amount of data that has to be recovered and re-encoded to restore
the initial state of reliability in the network, i.e., the repair bandwidth is
s. Furthermore, the decoding complexity of MDS codes, e.g., Reed-Solomon
codes [44], increases drastically with the code length n [45]. A trivial example
of an MDS code is the (n, 1) repetition code.

Regenerating Codes

Addressing the poor performance of MDS codes in terms of repair bandwidth,
regenerating codes were proposed in [46]. These codes, based on network
coding principles, achieve the best trade-off between repair bandwidth and
amount of data stored in each cache, shown in Fig. 3.3. Codes achieving the
minimum occupied cache space, in fact the same cache memory occupancy
as an MDS code, are called minimum storage regenerating (MSR) codes and
codes attaining the minimum repair bandwidth are referred to as minimum
bandwidth regenerating (MBR) codes [46]. Both MSR and MBR codes are
able to reduce the repair bandwidth by increasing the repair locality which,
in turn, makes them vulnerable to multiple cache failures or caching device
departures [47]. Furthermore, a drawback of using MBR codes, although they
are very cfficient in terms of minimizing the repair bandwidth, is that they
increase the amount of data that has to be downloaded to recover a requested
file.

Locally Repairable Codes

Finally, a limitation of both MDS codes and regenerating codes is the large
repair locality, e.g., using MDS codes, k£ symbols have to be retrieved to per-
form repair. To address this issue, locally repairable codes divide a codeword
into repair groups, where the repair locality within each group is small [48].
Furthermore, the repair bandwidth is reduced as compared to that of MDS
codes. However, if there is more than a single erasure within a repair group,
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Figure 3.3: The repair bandwidth versus cache usage trade-off for regenerating
codes, assuming code length n = 90, 10 caches, code dimension k = 5,
file size s = 1, and repair locality 9. MDS codes achieve the point
(1,0.2), which is indicated by the arrow.
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the whole codeword has to be decoded and re-encoded, resulting in a repair
bandwidth larger than that for an MDS code.
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CHAPTER 4

Optimizing Content Allocations

When we are considering distributed coded caching in wireless networks, we
are concerned with allocating coded content to the caches to maximize the
amount of requested data that can be downloaded from the caches, i.e., is
offloaded from the backhaul link. Assume that we wish cache files from a file
library with N files, where, without loss of generality, we assume that cach
file is of size s = 1. Furthermore, assume that we may cache content in n
SBSs or mobile devices, each with limited cache size C'. In the following,
we will consider data cached at SBSs, although all results are equally valid
for the scenario of caching in mobile devices. Each file ¢ to be cached is
partitioned into k; packets and encoded into n coded packets using an ECC.
Specifically, we will consider encoding the files using an MDS code as an
illustrative example (see Section 3.2). Each SBS caches one (unique) coded
packet and hence cache an amount

l (4.1)
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of file .. Note that we modify the code dimension k; to vary the amount of
file i cached at each SBS. Using (3.1), the code rate for file 7 is

R; & —. (4.2)

Consequently, for fixed n, modifying the code rate R; controls the amount
of file 7 cached at each SBS. Due to the limited cache size C, we have the
following cache size constraint,

N
d ai<C (4.3)
=1

Recall that, for an MDS code, any k; coded packets suffice to decode file ¢
(see Section 3.2). Hence, it is necessary and sufficient that a user downloads
an amount

to recover file 7. A user requesting file i and within communication range of b
SBSs therefore downloads an amount

min{1, bx;}, (4.5)

from the caches, where the min{-, -} function arises due to (4.4). The average
amount of content downloaded from the SBSs is

N n
> pi Y wmin{l, bx;}, (4.6)
i=1  b=0

where 7, £ f(b) is the probability that a user is within communication range
of b SBSs (see Section 2.2) and p; is the probability that the user requests file i
(see Section 2.4). Maximizing the average amount of content downloaded from
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the caches corresponds to the following constrained optimization problem

N n
maximize Zpiz% min{1, bx; }, (4.7)
i=1  b=0
N
subject to sz < C, (4.8)
i=1
0 ! ! 1 , =1,2 N 4.9
xZE{,E,m,..., },Z— g Ly e eny . ()

Variations of this problem, recognized as the nonlinear resource allocation
problem [49], arise frequently in the analysis of distributed coded caching
networks (see, e.g., [10], [11]).

Integer Relaxation

The main difficulty in solving the problem (4.7)—(4.9) lies in the fact that z;
can only take on a discrete set of values, due to k; € Z. This is most commonly
addressed by simply relaxing (4.9) to

0<a;<1,i=1,2,...,N, (4.10)

in which case (4.7) yields an upper bound on the average amount of data
downloaded from the caches. By realizing that the sum of min functions is a
concave function [50, Section 3.2.1], the problem is efficiently solved using a
range of applicable numerical solvers.
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Epigraph Formulation

The problem (4.7), (4.8), and (4.10) can be simplified further. By making use
of the epigraph formulation [50, Section 3.1.7], an equivalent problem is

n

N
maximize Z Di Z Yoti b, (4.11)

Ti,tip ¢

=1 b=0
N

subject to sz < C, (4.12)
i=1
0<z;<1,i=12,...,N, (4.13)
ti,bS17i:1727"'7N7b:O717"'7’n’7 (414)
tip <br, i=1,2,...,N, b=0,1,...,n, (4.15)

which we identify as a linear program (LP). Although there is no analyti-
cal solution to LLPs in general, very efficient algorithms exists to solve such
problems numerically, e.g., the simplex method [51].

4.1 Mixed-Integer Linear Programs

Applying the epigraph formulation directly to the problem (4.7)—(4.9) yields
a mixed-integer linear program (MILP). Although such problems are known
to be NP-complete in general, algorithms exist, e.g., branch-and-bound (BB),
that frequently reduce the time required to solve MILPs as compared with
exhaustive search, despite the lack of guarantees for such performance.

Branch-and-Bound

The BB algorithm, invented in the 1960s [52], is a commonly used algorithm
to solve NP-hard optimization problems. The algorithm recursively splits
the search space into smaller spaces, called branches, thereby creating new
optimization problems. A feasible solution to the original problem is stored
and the best known solution is referred to as the incumbent. As a better
feasible solution is found, the incumbent is replaced. The algorithm attempts
to find bounds precluding the branch from containing the solution, e.g., an
upper bound on the objective function which is smaller than the incumbent
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14 o
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(a) ILP (b) P1 and P2

Figure 4.1: The BB algorithm applied to solve an ILP. The blue area indicates the
search space, red dots the feasible values for the ILP, and black lines
are level curves for the objective function. The orange and green points
show the incumbent from P1 and the solution to the ILP, respectively.

for a maximization problem. If such bounds can be found, the branch is cut.
The algorithm proceeds until there is a single remaining branch, whereby the
incumbent is returned as the solution to the optimization problem.

The BB algorithm is best illustrated through an example. Consider the
integer linear program (ILP)

maximize 2x1 + o (4.16)
1,15

subject to 2x1 + 11zo < 33, (4.17)

1021 + 3w < 35, (4.18)

x1, %9 € Z, (4.19)

shown in Fig. 4.1a. The integer relaxed version of the ILP, i.e., (4.16)—(4.18) is
optimal for (z1,x2) = (2.75,2.5). However, since this point clearly violates the
integer constraint, the problem is split (branched) into two new problems, one
for which x1 < 2 and one for which z; > 3. We refer to the first subproblem
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as P1,
maximize 2x1 + o (4.20)
T1,o
subject to 2x1 + 11ay < 33, (4.21)
21 < 2, (4.22)
r1, 20 > 0, (4.23)

maximized for (r1,x2) = (2,2.64), and the other as P2,

maximize 2x1 + T2 (4.24)
z1 @0

subject to 10z + 3z < 35, (4.25)

21 >3, (4.26)

25 >0, (4.27)

maximized for (z1,x2) = (3,1.67). The branching into problems P1 and P2 is
illustrated in Fig. 4.1b. P1 is branched into x5 < 2 (P11) and x5 > 3 (P12),
where P12 attains the value 3, stored as the incumbent, for (z1,z2) = (0, 3).
Since this is the best integer solution found, it is the new incumbent and a
lower bound on the optimal solution to the ILP. The subproblem P11 attains
the optimal value 6, the new incumbent, for the point (z1,z2) = (2,2) and the
branch P12 is cut. Continuing to branch P2 in a similar manner, it is readily
found that the point (x1,x2) = (3,1), attaining the optimal value of 7, is the
new incumbent. The P1 branch is cut as the value of the objective function is
upper bounded by 6. Hence, the solution related to P2 is the global optimum
as there are no subproblems left to solve. The branching process is illustrated
in Fig. 4.2.
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Figure 4.2: The BB algorithm for the example ILP. The suboptimal problems P11
and P12, and consequently P1, are cut, which is indicated by red
crosses. P2 is optimal which is highlighted by the green checkmark.
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CHAPTER D

Reinforcement Learning

ML can be broadly defined as the study of algorithms that improve through
experience. Together with supervised and unsupervised learning, RL is one
of the main approaches to ML. The idea behind RL is to map a situation, or
state, to an action in order to maximize a reward. The states, actions, and
rewards can be formally defined through a Markov decision process (MDP).

5.1 Markov Decision Process

An MDP is a mathematical framework used to model sequential decision mak-
ing. In this framework, we refer to the entity making the decisions as the
agent, which interacts with an environment at discrete times t = 0,1,2,.. ..
The environment provides a state representation S; € S to the agent and the
agent decides on an action A; € A, where S and A are the sets of states and
actions, also referred to as state and action space, respectively. In response
to the action, the environment responds with a new state S;;; € § and a
reward Ry € R, where R is the set of rewards. The agent decides on a new
action A;;1 € A and the process continues. An illustration of the interaction
between the agent and the environment is shown in Fig. 5.1. The dynamics
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Figure 5.1: An illustration of the interaction between the agent and the environ-
ment in the MDP framework.

of the MDP are defined by
p(s',r|s,a) £ Pr(Siy1 =8, Rey1 = 7|S; = 5, Ay = a) (5.1)
with state-transition probabilities

p(s'ls,a) = Zp(s',ﬂs,a). (5.2)

reR

The goal of the agent is to maximize long-term rewards. Specifically, the
agent strives to maximize the expected discounted return

oo

Z ’YZRt+e+1

£=0

E[G,] 2 E : (5.3)

where ~ is the discount rate. A policy w(a|s) is a mapping from a state s to
an action a, i.e.,

m(als) = Pr(A4; = alS; = s). (5.4)
For a policy 7, the value function
vr(s) 2 Er[Gy|S; = §] (5.5)

describes the expected discounted return that would be obtained if the agent
is in state s and follows policy 7 from that state. Similarly, the action-value
function

qr(a,s) 2 E[G)|A, = a,S, = s (5.6)
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is the expected discounted return when being in state s, taking action a, and
following policy 7 afterward. An optimal policy 7, provides at least as much
expected discounted return as other policies 7, for all states, i.e.,

Uy, (8) > ve(s), for all s € S. (5.7)
We define the optimal value and action-value functions by
v (8) = max v ($) (5.8)
and
q«(a, s) = max q-(a, s), (5.9)

respectively. The optimal value and action-value functions abide by a recursive
relationship, called the Bellman optimality equation. This relationship states
that, for an optimal value function

vi(s) = mgXIE [Rit1 + Yvs (Sex1) |Ar = a, S = s (5.10)
and for an optimal action-value function [53]
gx(s,a) = E |:Rt+1 +ymax g. (Si11,a’) |[A; = a, S; = s] : (5.11)

Using (5.10), an optimal policy 7, is readily obtained once the optimal value
function v, is known. Similarly, knowing the optimal action-value function g.
immediately gives an optimal policy using (5.11). Several algorithms exist to
find optimal policies, e.g., dynamic programming, Monte Carlo methods, and
temporal-difference (TD) learning [53]. Here, we will focus on a widely used
TD control algorithm known as Q-learning [54].

5.2 Q-Learning

Q-learning is a model-free, off-policy algorithm, i.e., it does not require a model
of the environment (model-free) and the learned (target) policy is separated
from the (behavior) policy used to take actions (off-policy). The reason for
maintaining two policies is that we are trying to learn the action-value func-
tion, conditioned on a subsequent optimal behavior, while we somehow have
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to find this optimal behavior, i.e., we have to explore the environment [53].
A popular implementation is the e-greedy method which dictates that, with
probability e, an action is chosen uniformly at random, and with probability
1 — ¢, the optimal action is chosen, i.e.,

arg max q(s, a). (5.12)

For the chosen action A, = a and observed next state S;11 = s’ with corre-
sponding reward R;y; = r, the Q-learning update rule is

q(s,a) «— q(s,a) + « [r + 7 max q(s’,a) — q(s, a)] , (5.13)

where a € (0,1] is the step size. The update rule bears striking similarities
with (5.11) without the expectation. Hence, the Q-learning update attempts
to modify the action-value function to come closer and closer to satisfying the
Bellman optimality equation. Indeed, ¢ converges to g, with probability 1
under sufficient exploration and small enough step size [53].

5.3 Policy Gradient Methods

For finite MDPs, i.e., the state and action spaces have a finite number of ele-
ments, the action-value function estimates q(s, a) can simply be maintained in
a table. If the state and/or action spaces are not finite, e.g., when the state or
action space, or both, are continuous, this is no longer possible. Furthermore,
the optimization

max q(s’,a) (5.14)

in (5.13) is too costly, considering that it would have to be computed for each
step the agent takes in the environment. Hence, we have to resort to other
methods. One solution to this problem is to consider learning a parameterized
policy

mo(als) £ Pr(A, = a|S; = 5,0, = 0), (5.15)

which is assumed to be differentiable in the parameter vector @ for all a € A
and s € S. If the performance is measured by some function J(@), a policy
gradient method is attempting to maximize the performance by modifying the
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vector 6 in the direction of the gradient, i.e., by gradient ascent
9t+1 = Bt + OéVJ(Bt) (516)

We can also parameterize a value function, e.g., the action-value function
q. Regardless whether we are trying to learn a value function or not, we will
refer to the method as policy gradient. However, more frequently, they are
called actor-critic methods where the actor describes the learned policy and
the critic is the learned value function [53].

Deep Deterministic Policy Gradient

A policy gradient method that is closely related to Q-learning is the deep
deterministic policy gradient algorithm, which can handle continuous state
and action spaces [55]. Using this algorithm, we assume a deterministic policy,
denoted by mg(s), where the parameter vector @ corresponds to a collection of
weights of a neural network (NN), referred to as the actor network. The goal
is to learn the vector @ such that the policy approximates well the optimal
action, i.e.,

7o (s) ~ argmax ¢(s, a). (5.17)

a

The deterministic policy hence outputs an action for a given state. Note that
this distinguishes from the policy in (5.15) which provides a probability dis-
tribution over actions. Furthermore, assuming that the action-value function
q(s,a) is differentiable in the continuous actions a, we can avoid the costly
operation (5.14) by using the approximation

m(?xq(s,a,) ~ q(s,mg(s)). (5.18)

The parameterized action-value function, denoted by g4(s, a), is obtained in a
similar fashion, where ¢ are the weights of a NN, known as the critic network.
The aim is to learn the vector ¢ such that

a¢(s,a) = q(s,a). (5.19)

Apart from the aforementioned networks, we maintain two additional NNs in
order to stabilize the algorithm; a target actor network with weights @ and a
target critic network with weights ¢.
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The action is
a=mg(s)+ e, (5.20)

where € is Gaussian distributed with zero mean and variance o2 and controls
the amount of exploration. The next state s’ and the reward r is observed and
the tuple (s,a,s’,r) is stored in a set M, referred to as the memory replay
buffer. The update of the action-value function is similar to the Q-learning
update (5.13). Specifically, the weights of the critic network are updated by
stochastic gradient descent
1 2

V¢® Z <q¢(s, a)—r— V44 (5’, Wé(S,))> , (5.21)

(s,a,s’,r)EB

where B is a set of tuples sampled randomly from M. Following (5.18), the
weights of the actor network are updated by gradient ascent

v9|—;’ S s (5 70(5))- (5.22)

seEB

Finally, the weights of the target networks are updated

¢ +— pp+(1-p)o, (5.23)
6« pb+(1—p)o, (5.24)

where p is a parameter close to 1.
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Summary

In this chapter, we outline the contributions and conclude the findings of the
appended papers. Furthermore, we give an outlook on possible future research
directions.

6.1 Contributions

In this thesis, we study the caching of content in wireless networks. Specifi-
cally, we assume that content is cached across SBSs and mobile devices in order
to minimize the amount of data that has to be downloaded over a congested
backhaul link. As users requesting content are assumed to access a subset
of the caches, we consider encoding the content using ECCs. In general, we
investigate the impacts on backhaul traffic of data loss due to caching devices
departing the wireless network and consequent data repair. We furthermore
evaluate the backhaul traffic reductions in highly dense D2D networks. Fi-
nally, we analyze how to optimally manage the distributed caching of coded
content over time. In the following, we summarize the contributions of the
papers that are appended in Part II of the thesis.
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Paper A

In this paper, we study the caching of coded content in mobile devices that
join and leave a cell in a wireless network according to a stochastic process.
Specifically, we assume that devices arrive and depart from the network ac-
cording to a Poisson birth-death process. We utilize spare memory capacity
on the mobile devices to cache coded packets of a frequently requested file.
Users in the network request the file according to a Poisson request process
and download coded packets from caching devices in the network using D2D
communication or from the BS, at the expense of a higher communication
cost. As caching devices depart the cell, we have to restore the initial state of
reliability in the network to be able to continue to serve users requesting the
file. The goal is to minimize the network load, defined as the weighted sum of
data transmitted from the BS and caching devices due to file downloads and
data repair. The main novelty of this work is the analysis of a scheme perform-
ing repairs at periodic times. Several erasure correcting codes are evaluated
to find the ones minimizing the network load, depending on the repair period.
We compare the network performance when devices arriving to the cell have
empty caches or carry coded packets, such that the devices can immediately
participate in the caching network. When mobile devices arriving to the cell
already cache coded packets, the network load is reduced compared to when
devices arrive with empty caches. Furthermore, we analyze the performance
as the BS and caching devices collaborate to deliver and repair content. We
show that coded caching can reduce the network load, depending on the repair
period. We demonstrate that MDS codes are optimal when repairs are not
considered, and regencrating codes can offer significant reductions in terms
of network load, provided that repairs are performed frequently enough. Fi-
nally, we show that non-instantaneous, so called lazy, repairs are sometimes
desirable.

Paper B

In Paper B, we extend Paper A by considering a more practical device mobility
and communication model, where the D2D communication is user-centric,
i.e., mobile devices within a certain distance can communicate. We prove
that, for an area without boundaries, the steady-state distribution of the
number of devices within communication range is well approximated by the
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Poisson distribution. The result is interesting because it provides an analytical
framework that is tractable, despite the assumption of more realistic mobility
and communication models. Furthermore, we consider a library of files with
different popularity, i.e., probability to be requested. As content repair is
not considered in this paper, we assume that content is encoded using MDS
codes, which was shown to minimize the communication cost for such scenarios
in Paper A. We reformulate the optimization of code rates to minimize the
communication cost into a form that is tractable for numerical solvers. We
study how to spread coded content in the wireless network, i.e., how many
devices should be involved in the caching of a particular file. We develop
bounds on the communication cost that facilitate the analysis of very large
and dense networks. Finally, we show that coded caching in mobile devices
offers significant gains as compared to uncoded or no caching.

Paper C

The request processes in Papers A and B were all assumed to be memoryless,
i.e., we assumed exponentially distributed inter-request times. In Paper C,
we lift this assumption and consider request processes with memory, i.e., we
model requests as a renewal process. For such request processes, we inves-
tigate how to manage coded content, cached in a distributed fashion across
SBSs, optimally over time. In particular, we build on the work by Goseling
and Simecone where fractions of files in a single cache may be evicted at pe-
riodic times, and generalize it to a distributed coded caching scenario. We
consider the network load, which we define as a weighted sum of data rates
due to content download and cache updates. We formulate an optimization
problem minimizing the network load, show that this problem is convex, and
demonstrate that our problem formulation is a generalization of the previously
studied single cache and static caching cases. We investigate what gains can
be expected, both with respect to optimally managed (but uncoded) caching,
as well as static caching. We furthermore analyze how the density of SBSs,
the burstiness of the request process, the frequency of cache updates, as well
as the update cost, impacts the network performance. Finally, we prove the
optimality of static caching under a Poisson request process and show that
the single cache case has a simple greedy solution.
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Paper D

In Paper C, we assumed perfect knowledge about the distribution of the inter-
request times for each file. Furthermore, the steady-state distribution of the
number SBSs within communication range of a user placing a request was as-
sumed to be perfectly known. In Paper D, we build on our previous work and
suggest an RL approach to optimize the content allocation and cache manage-
ment without any prior knowledge of request statistics or SBS distribution.
In order to investigate the network load reductions for a scenario where the
request process is heterogenous in space, we suggest a multi-agent reinforce-
ment learning (MARL) algorithm allowing each SBS to autonomously make
cache management decisions. We show that the reductions in network load
increase as the request process deviates from being spatially homogeneous.
The MARL approach furthermore allows us to evaluate the potential benefits
of updating content cached at SBSs individually, reducing the total amount
of data that have to be sent to the caches.

6.2 Conclusion

In summary, this thesis has thoroughly examined the significant reductions
in backhaul traffic offered by the caching of content across SBSs and mobile
devices using ECCs. When the repair problem is considered in D2D caching
networks, we conclude that the choice of ECC is of considerable importance
to minimize the backhaul traffic. The repair frequency must be fairly high
for the caching of content across mobile devices to bring any benefit over
downloading all the requested content over the backhaul, although the exact
frequency depends on the code and network parameters. If mobile devices
arrive to the wireless network with cached content, the requirements on the
repair frequency are less stringent. Interestingly, an infinite repair frequency,
i.e., instantaneous repairs, is not necessarily optimal. When considering the
number of mobile devices to involve in the caching of a particular (encoded)
file, we observe that as many devices as possible should be incorporated.
Requests for files arrive in bursts, an effect which is accurately captured by
a renewal request process with memory. For such request processes, the peri-
odic eviction of coded packets from the caches markedly reduces the amount
of data downloaded over the backhaul compared to when content is cached
statically. The backhaul traffic reductions become more significant with the in-
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creased burstiness of the request process. For homogeneous request processes,
it appears that synchronously updating the cached content is beneficial over
asynchronous updates. Conversely, asynchronous updates are necessary under
heterogenous request processes to minimize the backhaul traffic.

6.3 Future Work

In Paper C, we study the performance of cache management policies where
coded content may be evicted from the caches at periodic times. New requests
trigger content to be replenished, or updated, to the caches. This data re-
plenishment resembles the content repair studied in Paper A where the use of
particular ECCs can reduce the amount of data that have to be transmitted
to repair lost content. Such ECCs could hence be applied when caching coded
content according to the cache management policies from Paper C. It would
be very interesting to investigate to what extent this potential reduction in
update data traffic impacts the total network performance.

In order to study the distributed cache management from Paper C under
asynchronous cache updates, we devise an RL approach in Paper D. Although,
assuming a spatially heterogenous request process, our RL algorithm is able to
learn caching policies that significantly outperform caching policies obtained
using the optimization in Paper C assuming a homogenous request process and
known request statistics and SBS distribution, we remain uncertain about the
theoretical best performance that can be expected using such caching policies.
Therefore, it is worthwhile to pursue further analysis of coded distributed
caching policies under spatially heterogenous and bursty request processes to
characterize the performance that can be achieved or bounds thereof.

Finally, all our research has focused on the caching of bulky content, e.g.,
video files, which has been shown to be the main driver of wireless network
traffic. Video content is static in the sense that it is produced once and then
watched many times. How old it is does not matter, only its popularity and
how frequently it is requested. Although the trend of ever increasing wireless
traffic due to video is expected to continue for several years, new applications
begin to emerge where the freshness of the data is important. For example,
much of the training for speech recognition in virtual assistants like Apple’s
Siri or Amazon’s Alexa is performed at servers (i.e., the cloud) operated by
the companies. The configuration is cached at the user device and can be
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outdated as more recent configurations become available. Consequently, much
of our previous work could be revisited and analyzed using a metric like age

of information [56].
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