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Abstract—Tracking the nonlinear behavior of an RF power
amplifier (PA) is challenging. To tackle this problem, we build
a connection between residual learning and the PA nonlinear-
ity, and propose a novel residual neural network structure,
referred to as the residual real-valued time-delay neural network
(R2TDNN). Instead of learning the whole behavior of the PA, the
R2TDNN focuses on learning its nonlinear behavior by adding
identity shortcut connections between the input and output layer.
In particular, we apply the R2TDNN to digital predistortion
and measure experimental results on a real PA. Compared with
neural networks recently proposed by Liu et al. and Wang et
al., the R2TDNN achieves the best linearization performance in
terms of normalized mean square error and adjacent channel
power ratio with less or similar computational complexity.
Furthermore, the R2TDNN exhibits significantly faster training
speed and lower training error.

I. INTRODUCTION

Fifth generation (5G) wireless systems pose significant
challenges to the performance of the radio frequency (RF)
power amplifier (PA) [1]. High-frequency and high-bandwidth
signals suffer severe distortions from the nonlinear behavior
of the PA, which increases the need for highly linear PAs.
Meanwhile, the increasing number of antennas and base-
stations require a large number of PAs, which greatly increases
the stress on power consumption, so the power efficiency of
the PAs is also crucial.

In practice, the linearity and efficiency of the PA becomes
a trade-off when both need to be satisfied. This trade-off
has triggered intensive research over the past decades [2]–
[4]. These works aim to preserve the PA linearity at the high
output power region by using digital predistortion (DPD), a
well-known technique to compensate for the PA nonlinearity.
DPD performs an inverse nonlinear operation before the PA.
This inverse operation can be represented by a parametric
model, whose accuracy determines the DPD performance.
Conventionally, Volterra series based models [2], such as
memory polynomial (MP) [3] and generalized memory poly-
nomial (GMP) [4], have been widely used for DPD because
of their high accuracy. In these models, the behavior of the
PA is represented by a set of Volterra kernels with different
nonlinear orders where each kernel also considers memory
effects, i.e., past inputs that influence the current output. These
memory effects are due to the frequency-dependent behavior
of the PA [5]. However, the performance of Volterra-based
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models is limited for severely nonlinear PAs even if high-
order kernels are used because of the high estimation error
for high-order kernels [6].

In contrast to model-based DPD approaches, deep learning
techniques such as neural networks (NNs) have recently been
proposed for DPD [7]–[14]. Among them, the multilayer
perceptron (MLP) is the most commonly chosen type of NNs
for DPD [9]–[14] because of the simple implementation and
training algorithm. Based on the MLP, [9] proposed a real-
valued time-delay neural network (RVTDNN) that separates
the complex-valued signal into real in-phase and quadrature
components to use a simple real-valued training algorithm.
Furthermore, to consider memory effects of the PA, the input
layer of the RVTDNN is fed by both the current instantaneous
input and the inputs at previous time instants. To improve
the performance of the RVTDNN, many variants have been
studied [10]–[12], which add more components to the input
layer, such as previous samples of the output signal [10],
future samples of the input signal [11], or envelope terms (e.g.,
amplitude) of the input signal [12]. However, while these addi-
tional components have been shown to improve performance,
they also significantly increase the network complexity, which
pushes more pressure on the power consumption of DPD.
[14] considered a different approach to connect the input and
output layer by a linear bypass, which makes the NN focus
on the nonlinear relation. However, this approach is infeasible
for a memory input, which limits its performance on PAs with
memory. Moreover, the performance comparison between NN
with and without shortcuts for DPD is not discussed in [14].

In this paper, we build a connection between residual learn-
ing and the PA. We then propose a residual NN, referred to
as residual real-valued time-delay neural network (R2TDNN)
to learn the nonlinear behavior of the PA. Unlike RVTDNN [9]
and its variants [10]–[12] that learn the PA linear and non-
linear behaviors jointly, the proposed R2TDNN learn them
separately. Specifically, the PA nonlinear behavior is learned
by its inner layers, and the linear behavior is added at the
end of the inner layers using identity shortcuts between the
input and output layer. The identity shortcuts introduce no new
parameters as well as negligible computational complexity
(one element-wise addition). Unlike [14], which excludes
memory inputs, the R2TDNN considers memory inputs by
applying identity shortcuts between two neurons of the current
instantaneous input-output, which also solve the dimension
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Fig. 1: Behavior relation between DPD and the PA. The power gain of the
PA is normalized for simplicity. To compensate the PA nonlinear behavior f
before the saturation point, DPD performs an inverse operation g.

difference between the input and output layer. We apply the
proposed R2TDNN to DPD. Experimental results on a real PA
show that the proposed R2TDNN for DPD achieves a better
linearization performance as well as a faster training rate than
the RVTDNN in [9] and a variant of it in [12] with similar
computational complexity.

II. SYSTEM MODEL

A. PA behavior and DPD

The PA behaves as a nonlinear system that exhibits static
nonlinearity and memory effects. The latter is more obvious
in a wideband scenario because of the frequency-dependent
gain and phase shift between the input and output signal [15].
Memory effects are exhibited in the time domain, which
means that the PA output at any time instant is a function of
the current instantaneous input and previous inputs. To take
into account memory effects, we consider the PA as a function
f : RL → R with input and output signals x(n) and y(n) for
n ∈ Z, and input memory length L. The input-output relation
of the PA can be expressed as

y(n) = f(x(n− L), . . . , x(n)). (1)

Meanwhile, the DPD is viewed as a function g: RL1+L2 → R,
with delayed and advanced memory length L1 and L2, and
input signal u(n) for n ∈ Z, given by

x(n) = g(u(n− L1), . . . , u(n+ L2)). (2)

As shown in Fig. 1, DPD is placed before the PA so as to
cancel the distortion introduced by the PA. Assuming an ideal
DPD cancellation, i.e., the DPD perfectly compensates for the
distortion introduced by the PA, we then have the ideal input-
output relation of the DPD–PA system by substituting (2) into
(1), with un−L = [u(n− L− L1), . . . , u(n− L+ L2)]

T,

y(n) = f(g(un−L), . . . , g(un)) = u(n). (3)

In this case, the cascaded DPD–PA system is distortion-free.
However, an ideal DPD cancellation is infeasible in practice

because of the saturation region and other non-deterministic
factors such as noise. To minimize the distortion at the output
of the PA, various behavioral models explore deterministic
functions to approximate g so as to make the DPD–PA system
as linear as possible. Let ĝ denote the approximated DPD
function, which turns the distortion-free output u(n) in (3) to
a biased PA output û(n),

y(n) = f(ĝ(un−L), . . . , ĝ(un)) = û(n). (4)

To reduce the output bias, a highly accurate model of g is
crucial.

B. Generalized Memory Polynomial (GMP)

A popular form of a nonlinear, causal, and finite-memory
system (e.g., the PA) is described by the Volterra series
because of good precision. To ease the high complexity of
Volterra series, many simplified Volterra models have been
investigated in the literature [2]–[4]. In particular, the GMP [4]
behavioral model has been shown to outperform many other
models in terms of accuracy versus complexity [16].

Assuming a GMP model with memory depth M , nonlinear
order P , cross-term length G, and input signal xin(n) at
time n, the output of the GMP at time n, ŷout(n), gives an
estimation of the actual output yout(n) as [4]

ŷout(n) =
P−1∑
p=0

M∑
m=0

apmxin(n−m)|xin(n−m)|p

+
P−1∑
p=1

M∑
m=0

G∑
g=1

(bpmgxin(n−m)|xin(n−m− g)|p

+ cpmgxin(n−m)|xin(n−m+ g)|p)
(5)

where apm, bpmg , and cpmg are complex-valued coefficients.
Assuming a total number of coefficients J and total number
of input samples N , all coefficients can be collected into a
J × 1 vector w. Each element of w corresponds to a N ×
1 signal, e.g., coefficient a32 corresponds to the N samples
signal xin(n−2)|xin(n−2)|3. Therefore, we can collect these
N ×1 input signals into the N ×J matrix X in. Then, (5) can
be rewritten in matrix form as

ŷout = X inw. (6)

To solve for w, the least squares algorithm is commonly
used by minimizing the mean squared error (MSE) between
the estimation ŷout and the observation yout, which gives a
solution for w,

w = (XH
inX in)

−1XH
inyout, (7)

where H denotes Hermitian.
In a real-time scenario, the running complexity of DPD

substantially restricts the system. Assuming G < M + 1,
reference [16] computes the running complexity of GMP,
CGMP, for each input sample in terms of the number of floating
point operations (FLOPs),

CGMP =8

(
(M + 1)(P + 2PG)− G(G+ 1)

2
(P − 1)

)
+ 10 + 2P + 2(P − 1)G+ 2Pmin(G,M).

(8)

C. Inverse Structure to identify DPD coefficients

Before a behavioral model (e.g., the GMP model) is used to
represent the DPD function g, we need to identify its coeffi-
cients. Since the DPD optimal output signal x(n) is unknown,
we cannot directly identify coefficients of a model using u(n)
and x(n). Alternatively, we can use an inverse structure, the
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indirect learning architecture (ILA) [2], to indirectly identify
DPD parameters. First, an inverse PA model (also known as
post-distorter) is identified using the PA output signal y(n)
as the input and the PA input signal u(n) as the output. Once
the the post-distorter is identified, its coefficients are copied to
to an identical model (known as pre-distorter) which is then
used as the DPD function g.

Although the learned post-distorter is not an optimal solu-
tion, ILA is still the most used identification method because
of simple implementation and good performance. In this
paper, we consider the ILA to identify the parameters of a
DPD model.

III. PROPOSED RESIDUAL REAL-VALUED TIME-DELAY

NEURAL NETWORK

In this section we build a connection between the residual
learning and the PA behavior, and then propose a residual NN
to learn the nonlinear behavior of the PA.

A. Residual learning on the PA

The PA behavior consists of a linear and a nonlinear
component. If we extract the linear relation, the input-output
relation of the PA (1) can be rewritten as

y(n) = x(n) + f(x(n− L), . . . , x(n))− x(n)︸ ︷︷ ︸
=h(x(n−L),...,x(n))

.
(9)

Here, let us refer to f(x(n − L), . . . , x(n)) as the original
function to be learned by the NN, and the last two terms
on the right-hand side of (9), i.e., f(x(n − L), . . . , x(n)) −
x(n), as the residual function, which is denoted by h(x(n−
L), . . . , x(n)).

In the field of image recognition, learning a residual func-
tion has been shown to be more effective than learning its
corresponding original function [17]. Therefore, we hypothe-
size that learning the nonlinear behavior of the PA is easier
than learning the whole behavior. We then propose a residual
learning NN to learn the PA behavior, referred to as R2TDNN.
Unlike the RVTDNN [9] and its variants [10]–[12] that learn
the whole input-output relation of the PA jointly, i.e., learn
the original function f(x(n − L), . . . , x(n)), the proposed
R2TDNN learns it separately as in (9). In particular, the
residual function h(x(n−L), . . . , x(n)), i.e., the PA nonlinear
behavior, is learned by inner layers, and x(n), i.e., the PA
linear behavior, is then added to the output of the inner
layers by using shortcut connections between input and output
layers. Specifically, we adopt the identity shortcut, which
performs an identity mapping between connected layers and
introduces no extra parameters. The details of the identity
shortcut in the R2TDNN are described in the next subsection.

B. Architecture

The architecture of the R2TDNN is shown in Fig. 2. Based
on the MLP, the R2TDNN consists of K layers. The number
of neurons of layer k is denoted by Dk. The input vector of
layer k is denoted by zk ∈ RDk−1 , which is also the output
of layer k − 1. We denote the weight matrix and bias vector
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Fig. 2: Architecture of the proposed R2TDNN. Fed by the real in-phase and
quadrature components of the input signal, xI

in and xQ
in, the R2TDNN gives

the I and Q output signal estimations ŷI
out and ŷQ

out.

of layer k by W k ∈ RDk×Dk−1 and bk ∈ RDk , respectively.
We consider a real-valued MLP, so the complex-valued input
signal xin(n) = xI

in(n)+jxQ
in(n) at time instant n is separated

into real in-phase and quadrature components, xI
in(n) and

xQ
in(n), respectively. To learn memory effects of the PA, the

input signal of the first layer is formed by tapped delay lines,
where each delay operator z−1 yields one time instant delay,
e.g., xI

in(n) to xI
in(n − 1). We consider memory length M1

and M2 for the I and Q input components, respectively. Thus,
the input signal of the first layer at time instant n is given by

z1(n) = [xI
in(n), x

I
in(n− 1), ..., xI

in(n−M1),

xQ
in(n), x

Q
in(n− 1), ..., xQ

in(n−M2)],
(10)

which yields (M1 +M2 + 2) number of neurons for the first
layer. When M1 = M2 = 0, the network neglects memory.

The layer k − 1 and k are fully connected as

zk+1 = σ(W kzk + bk), (11)

where σ is the activation function. The output of the last
layer is a 2 × 1 vector which corresponds to the in-phase
and quadrature output signal estimations ŷI

out(n) and ŷQ
out(n)

of the actual complex-valued output signal yout(n). To output
a full range of values, the output layer is considered as a
linear layer with no activation function. More importantly,
we add the identity shortcut between the input and output
layers. Unlike other shortcuts that fully connect two layers,
as in [17], here the identity shortcut connection is performed
between neurons. Only the two neurons fed by the current time
instant input signal, i.e., xI

in(n) and xQ
in(n), are connected to
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the output neurons. Therefore, the output of layer K can be
written as

[ŷI
out(n), ŷ

Q
out(n)] = [xI

in(n), x
Q
in(n)] +WKzK + bK . (12)

Note that the last two terms on the right hand side of (12)
represents the residual function h in (9), whereas the identity
shortcut accounts for the linear part.

C. Computation Complexity

The identity shortcut connection introduces no new parame-
ters to the NN, and only two element-wise additions are added
to the running complexity. All multiplications and additions
are performed between real values, which accounts for one
FLOP according to [16, Table I].

The number of FLOPs needed for the R2TDNN is

CR2TDNN = 2
K−1∑
k=1

DkDk+1 + 2, (13)

where the first term is the number of FLOPs for multiplica-
tion and addition operations, and the 2 is for two addition
operations contributed by the two identity shortcuts.

D. R2TDNN on DPD

The parameters of the R2TDNN can be learned through the
back-propagation algorithm by minimizing the MSE between
the prediction ŷout(n) and observation yout(n),

(W ∗, b∗) = arg min
W ,b

E[(yout(n)− ŷout(n))
2], (14)

where E[·] denotes the expectation. Specifically, when the
R2TDNN is used as DPD, its parameters can be identified
using the ILA, where the PA output y(n) and input x(n) are
fed to the R2TDNN as input xin and output yout, respectively.

IV. EXPERIMENTAL RESULTS

We give experimental results of applying different behav-
ioral models to DPD on a real PA.

A. Evaluation Metrics and Measurement Setup

1) Evaluation Metrics: To evaluate the performance of
DPD, the distortion level of the PA output signal is generally
measured by the normalized mean square error (NMSE)
between the PA output signal y(n) (with gain normalization)
and DPD input signal u(n), and the adjacent channel power
ratio (ACPR) of y(n).

The NMSE is defined as

NMSE =

∑
n
|y(n)− u(n)|2∑
n
|u(n)|2

. (15)

Although the NMSE measures the all-band distortion, it can
be used to represent the in-band distortion as the power of
out-of-band distortion is negligible compared to the in-band
distortion.
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Fig. 3: Block diagram of the measurement setup. The RF WebLab is remotely
accessed by the MATLAB which transmits and receives the pre-distorted and
measured signals, respectively.

The ACPR measures the ratio of the out-of-band leakage
to the in-band power, and is defined as

ACPR =

∫
adj. |Y (f)|2df∫
ch. |Y (f)|2df

, (16)

where Y (f) denotes the Fourier transform of the PA output
signal. The integration in the numerator and denominator are
done over the adjacent channel (the lower or upper one with
a larger leakage) and the main channel, respectively.

2) Measurement Setup: The experimental setup is based on
the RF WebLab1 [18]. Fig. 3 illustrates how it interacts with
the hardware and digital signal processing (DSP) algorithms,
e.g., DPD. In RF WebLab, a vector signal transceiver (VST)
(PXIe-5646R VST) transmitter generates analog signals based
on the digital signal from MATLAB. Signals are then sent to
the Gallium Nitride PA DUT (Cree CGH40006-TB) driven
by a 40 dB linear driver. Then, after a 30 dB attenuator, the
VST receiver obtains the PA output signals, and eventually
measurements are sent back to the MATLAB.

We then apply the proposed R2TDNN, GMP [4],
RVTDNN [9], and augmented real-valued time-delay neural
network (ARVTDNN) [12] to DPD with the RF WebLab
setup. The learning architecture for all DPD models is
the ILA [2] because of simple implementation. To identify
DPD coefficients, GMP adopts the least squares algorithm,
while RVTDNN, ARVTDNN, and R2TDNN use the back-
propagation algorithm with the MSE loss function. We choose
Adam [19] as the optimizer with a mini-batch size of 256 and
a learning rate of 0.001. The activation function is the leaky
rectified linear unit (ReLU) with a slope of 0.01 for a negative
input.

The input signal u(n) is an orthogonal frequency division
multiplexing (OFDM) signal with length 106, sampling rate
200 MHz, and signal bandwidth 10 MHz. We consider a 50
Ω PA load impedance. The measured saturation point and
measurement noise variance of the PA are 24.1 V (≈ 37.6
dBm) and 0.0033, respectively. To test the DPD performance
on the PA nonlinear region, we consider an average output
power of the PA output signal of 25.36 dBm, where the
corresponding theoretical minimum NMSE is −40.17 dB

1RF WebLab is a PA measurement setup that can be remotely accessed at
www.dpdcompetition.com
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Fig. 4: NMSE as a function of the number of FLOPs. M1 = M2 = 3. The
markers for RVTDNN [9], [12], and R2TDNN correspond to different Dk .
The markers for GMP correspond to different values of P , M , and G. The
lower bound represents the theoretical minimum NMSE that can be achieved
for this PA at an average output power 25.36 dBm.
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Fig. 5: ACPR as a function of the number of FLOPs. M1 = M2 = 3.
The markers for RVTDNN [9], ARVTDNN [12], and R2TDNN correspond
to different Dk . The markers for GMP correspond to different values of P ,
M , and G. The lower bound simulation represents the simulated minimum
ACPR that can be achieved for this PA at an average output power 25.36
dBm.

according to [20, Eq. (10)], and the simulated minimum ACPR
is −50.1 dBc.2

B. Results

1) Performance versus Complexity: Fig. 4 and Fig. 5 show
the NMSE results versus the total number of FLOPs for the
GMP [4], RVTDNN [9], ARVTDNN [12], and the proposed
R2TDNN. For the RVTDNN and R2TDNN, we consider two
scenarios with one and three hidden layers, i.e., K ∈ {3, 5}.
We also plot the results of the ARVTDNN [12] for K = 5,
where we consider three augmented envelop terms of the

2The simulated minimum ACPR represents the ACPR of the ideal linear
PA output signal.

TABLE I: NMSE and ACPR results of the RVTDNN [9], ARVTDNN [12],
and R2TDNN for the convergence in Fig. 6. K = 5, D2 = D3 = D4 = 9.

Num. FLOPs NMSE [dB] ACPR [dBc]
RVTDNN [9] 504 −31.5 −40.0
ARVTDNN [12] 720 −31.3 −39.5
R2TDNN 506 −33.7 −42.5

0 10 20 30 40 50 60 70 80 90 100
10−5

10−4

10−3

Epoch

M
S
E

K = 5, RVTDNN [9] Training

K = 5, ARVTDNN [12] Training
K = 5, R2TDNN Training

(a) Training

0 10 20 30 40 50 60 70 80 90 100
10−5

10−4

10−3

Epoch
M

S
E

K = 5, RVTDNN [9] Validation

K = 5, ARVTDNN [12] Validation
K = 5, R2TDNN Validation

(b) Validation

Fig. 6: Training and validation errors during the training process of the
RVTDNN [9], ARVTDNN [12], and proposed R2TDNN. K = 5 and
D2 = D3 = D4 = 9.

signal (amplitude and its square and cube) [12, Tab. II] at the
input layer. A proper number of memory length is related to
the PA characteristics and input signal bandwidth, and here we
choose identical input memory M1 = M2 = 3 for RVTDNN,
ARVTDNN, and R2TDNN. Meanwhile, they use the same
number of neurons for each hidden layer. The number of
FLOPs increases as the number of neurons for each hidden
layer increases. For the GMP (blue circle markers), we select
the best results with respect to the number of FLOPs based
on an exhaustive search of different values of P , M , and G.

Although the GMP model achieves better NMSE for a
number of FLOPs < 500, the performance flattens around
−33.41 dB. The proposed R2TDNN allows to reach lower
NMSE (down to −38.0 dB) for a number of FLOPs > 500,
i.e., the R2TDNN yields more accurate compensation—it can
find a better inverse behavior of the PA. Note that the NMSE
gap between the R2TDNN and the lower bound may be due to
the limitation of the ILA and some stochastic noise, e.g., phase
noise. The ACPR results in Fig. 5 illustrate similar advantages
of the R2TDNN over the GMP for a number of FLOPs > 600.

For comparison, we also plot the performance of the
RVTDNN in [9] and ARVTDNN in [12] for K ∈ {3, 5}.
We note that the ARVTDNN requires a number of FLOPs
> 3000 to improve the performance of RVTDNN. However,
the proposed R2TDNN achieves lower NMSE and ACPR with
respect to the RVTDNN and ARVTDNN for a similar number
of FLOPs. The gain is more considerable for K = 5 and a
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number of neurons per hidden layer between 5 and 12.
2) Convergence speed comparison: To further compare the

RVTDNN [9], ARVTDNN [12], and R2TDNN, we plot the
training and validation errors during the training procedure in
Fig. 6. Based on the same parameter setup in Section IV-B1,
we select K = 5 and D2 = D3 = D4 = 9. The corresponding
number of FLOPs, NMSE, and ACPR are given in Table I.
Compared to the RVTDNN and ARVTDNN, the R2TDNN
exhibits significantly faster training convergence rate, and
eventually achieves lower training and validation errors. This
verifies the effectiveness of the proposed residual learning on
DPD.

V. CONCLUSION

We applied residual learning to facilitate the learning prob-
lem of the PA behavior, and proposed a novel NN-based PA
behavioral model, named R2TDNN. By adding shortcuts be-
tween the input and output layer, the proposed R2TDNN focus
on learning the PA nonlinear behavior instead of learning its
whole behavior. We applied different behavioral models to
DPD and evaluated the performance on a real PA. Results
show that the proposed R2TDNN achieves lower NMSE
and ACPR than the RVTDNN and ARVTDNN previously
proposed in the literature with less or similar computational
complexity. Furthermore, it has a faster training convergence
rate during the training procedure.
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