
Charting Coordination Needs in Large-Scale Agile Organisations with
Boundary Objects and Methodological Islands

Downloaded from: https://research.chalmers.se, 2025-06-18 03:05 UTC

Citation for the original published paper (version of record):
Kasauli, R., Wohlrab, R., Knauss, E. et al (2020). Charting Coordination Needs in Large-Scale Agile
Organisations with Boundary Objects and
Methodological Islands. Proceedings - 2020 IEEE/ACM International Conference on Software and
System Processes, ICSSP 2020: 51-60. http://dx.doi.org/10.1145/3379177.3388897

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

Charting Coordination Needs in Large-Scale Agile Organisations
with Boundary Objects and Methodological Islands

Rashidah Kasauli
Chalmers | University of Gothenburg

Gothenburg, Sweden

Makerere University, Uganda

rashida@chalmers.se

Rebekka Wohlrab
Chalmers | University of Gothenburg

Systemite AB

Gothenburg, Sweden

wohlrab@chalmers.se

Eric Knauss
Chalmers | University of Gothenburg

Gothenburg, Sweden

eric.knauss@cse.gu.se

Jan-Philipp Steghöfer
Chalmers | University of Gothenburg

Gothenburg, Sweden

jan-philipp.steghofer@cse.gu.se

Jennifer Horkoff
Chalmers | University of Gothenburg

Gothenburg, Sweden

jenho@chalmers.se

Salome Maro
Chalmers | University of Gothenburg

Gothenburg, Sweden

salome.maro@cse.gu.se

ABSTRACT

Large-scale system development companies are increasingly adopt-

ing agile methods. While this adoption may improve lead-times,

such companies need to balance two trade-offs: (i) the need to have

a uniform, consistent development method on system level with

the need for specialised methods for teams in different disciplines

(e.g., hardware, software, mechanics, sales, support); (ii) the need

for comprehensive documentation on system level with the need to

have lightweight documentation enabling iterative and agile work.

With specialised methods for teams, isolated teams work within

larger ecosystems of plan-driven culture, i.e., teams become agile

“islands”. At the boundaries, these teams share knowledge which

needs to be managed well for a correct system to be developed.

While it is useful to support diverse and specialised methods, it is

important to understand which islands are repeatedly encountered,

the reasons or factors triggering their existence, and how best to

handle coordination between them. Based on a multiple case study,

this work presents a catalogue of islands and the boundary objects

between them. We believe this work will be beneficial to practi-

tioners aiming to understand their ecosystems and researchers ad-

dressing communication and coordination challenges in large-scale

development.

CCS CONCEPTS

• Software and its engineering → Agile software develop-

ment;Collaboration in software development;Documentation;

• General and reference→ Empirical studies;

KEYWORDS

large-scale systems development, boundary objects, coordination

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSSP ’20, October 10–11, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7512-2/20/05. . . $15.00
https://doi.org/10.1145/3379177.3388897

ACM Reference Format:

Rashidah Kasauli, Rebekka Wohlrab, Eric Knauss, Jan-Philipp Steghöfer,

Jennifer Horkoff, and Salome Maro. 2020. Charting Coordination Needs in

Large-Scale Agile Organisations with Boundary Objects andMethodological

Islands. In International Conference on Software and System Processes (ICSSP

’20), October 10–11, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3379177.3388897

1 INTRODUCTION

Large-scale systems engineering companies are typically made

of many teams that work together, commonly with plan-driven

methods, to contribute to one product. With the recent digitisation

trends, many such companies have adopted agile methods to help

them address the ever-changing market needs and the growing

competition [21, 28]. Given the challenges of introducing agility to

large system companies [19], most adoptions start with the software

development teams at the lower level in the companies [30]. These

teams in turn tailor the agile methods to their contexts [7], thus

creating companies that have pockets of agile teams within a larger

ecosystem of plan-driven culture, also identified as “agile islands in

a waterfall” [13].

As the combination of agile with traditional plan-driven devel-

opment methods become reality [27], knowledge management and

coordination challenges arise [28]. Inter-team coordination and

knowledge sharing are key items on the research agenda on large-

scale agile development [9]. Teams using varying methods and prac-

tices need to communicate to deliver the correct product. Artefacts

shared at their boundaries, referred to as boundary objects, offer

potential solutions to these knowledge and coordination challenges.

Boundary objects have been proposed to help manage coordination

between agile teams [32]. They can create a common understand-

ing across sites, without compromising each team’s identity, and

are therefore useful when establishing coordination mechanisms

across team boundaries.

To this effect, and as a first step towards alleviating the coordi-

nation challenge, this study set out to understand and document

the agile islands together with the boundary objects that are con-

stantly encountered in large-scale systems development. Through

an exploratory study with four large-scale system engineering com-

panies, based on a focus group and two workshops, we explore the

following research questions:

51

2020 IEEE/ACM International Conference on Software and System Processes (ICSSP)

RQ.1:Which agile islands are repeatedly encountered in large-scale

agile contexts? To understand how best to address the coordination

issue, we uncover the different islands that are encountered in the

companies.

RQ.2:Which boundary objects are repeatedly encountered in large-

scale agile contexts? To understand how best they can coordinate

and manage, we document the boundary objects that are shared

between islands.

Interestingly, we find that not all islands reported are indeed

agile islands within a non-agile context. Significant distance can

also occur between two agile teams and even the distance between

two non-agile teams can have an impact on large-scale agile system

development. In addition, we find concrete methodological islands,

but also more abstract forces (or: drivers) that can contribute to the

emergence of islands.

In answering our research questions, we provide a catalogue of

methodological islands that are frequently relevant when introduc-

ing agility at scale, as well as the boundary objects between them.

We believe that this study will benefit both researchers and practi-

tioners who want to gain insights into inter-team coordination in

large-scale development.

This paper is organised as follows: Section 2 presents the back-

ground to our study. In Section 3, we describe the methods we used

to answer our questions and gives the details of the workshops and

focus group. Section 4 presents our findings to RQ.1 and Section 5

describes the findings related to RQ.2. We discuss our findings and

conclude the study in Section 6.

2 BACKGROUND

Agile methods with the promise of continuous delivery of quality

software have changed the way software is developed since the

launch of the agile manifesto in 2001 [3]. Originally meant for small

co-located teams, agile methods are being adopted in large-scale

systems development organisations [20]. Existing studies on agile

adoption in large-scale systems show that companies successfully

adopt these methods [19, 23] even though challenges remain, espe-

cially those related to coordination and mixed processes between

different teams [9, 24]. This section gives the background of agile

islands and boundary objects presented in this study.

2.1 Agile Islands

Many large-scale system engineering companies have not fully

adopted agile methods since they are not fully applicable in their

domains. Empirical researchers have recommended tailoring agile

methods to the contexts of the specific organisation [19]. This

means that organisations have to carefully choose practices that

complement their values, culture, and norms [22]. Research on agile

methods tailoring has covered diverse areas includingmethods used

to tailor [7] and also the rationales and implications of tailoring

[12]. Still, to satisfy the need to complement agile methods with

traditional methods, many companies are using hybrid methods in

their development process [27].

Hybrid methods typically combine agile and plan-driven prac-

tices in software development [14]. Existing research on this topic

has confirmed that this is the trend in many organisations today

[15, 27]. Studies have explored the challenges faced in such envi-

ronments [16, 28] and others have gone a step ahead to propose

solutions [17]. Tell et al. [26] have studied how different practices

are combined to devise hybrid processes in an attempt to under-

stand how to systematically construct synergies.

It should be noted that in large-scale organisations in practice,

combinations start with the software development teams using agile

methods while the rest of the organisation works with traditional

methods [30]. This leaves teams as “agile islands” in a waterfall

environment [13], also defined as pockets of agile within larger

ecosystems with plan-driven culture.

Vijayasarathy and Butler reason that the choice of method used

in the teams is associated with characteristics of the organisation,

project, and team size [29]. This offers an explanation for the exis-

tence of agile islands, that differ from the surrounding organization,

e.g., in terms of artefacts, iteration length, and delivery schedule.

Bjarnason et al. refer to such differences as different forms of dis-

tances, for instance, geographical, organizational, or cognitive dis-

tance, distance related to artefacts (e.g., semantic distance), and

distance related to activities (e.g., temporal distance) [4]. Such dis-

tances makes it more difficult to coordinate between islands or

between the non-agile part of the organisation and the agile is-

lands.

2.2 Boundary Objects

Boundary objects are a sociological concept introduced by Star and

Griesemer [25] who studied how a shared understanding between

interdisciplinary stakeholders can be established. We refer to their

definition of boundary objects as “objects which are both plastic

enough to adapt to local needs and the constraints of the several

parties employing them, yet robust enough to maintain a common

identity across sites” [25]. In the context of agile development, the

“parties [...] across sites” are individuals with potentially different

backgrounds and disciplines, typically forming organisational units

(e.g., teams or departments). These groups can flexibly interpret

a boundary object and tailor it to their needs, while the group’s

identity and existing practices can be preserved [1]. While bound-

ary objects originate from the field of sociology, they have also

been studied in agile development contexts (e.g., [5, 35]). In these

contexts, boundary objects are artefacts (e.g., design specifications

or user stories) that create a common understanding between agile

teams [5].

In large-scale agile systems engineering, boundary objects are

used between individuals from several sub-disciplines of systems

engineering, who refer to concepts with different terminologies and

are often located at different geographic locations [32]. The groups

using boundary objects need to be understood to enable knowledge

management and inter-team coordination in an organisation. Some

organisational groups might be agile islands, working in different

ways than others parts of an organisation.

3 RESEARCH METHOD

Due to the exploratory nature of our research questions, we decided

to conduct a multiple exploratory case study [34]. We collected

data in a staged process, using a focus group with participants from

several companies as a starting point and refining our data with

52

Table 1: Descriptions of participating companies

Focus Group

Company A Develops telecommunications products. Hardware development is largely decoupled from the software development.

New hardware becomes available with a regular, but low frequency. Thus, the software development sets the pace of

system development, which can be seen as continuous and agile, in that it embraces agile values as much as possible.

Company B Develops mechanical products, both for consumer markets and for industrial development and manufacturing. Their

system development is decomposed into several system elements. Software development is mostly confined to two

of these elements, both of which are characterised by agile methods and practices such as Scrum and Continuous

Integration.

Company C Is an automotive OEM whose agile methods have been successfully applied to in-house development of software

components. There is a desire to scale up these fast-paced approaches from developing software components to

developing complete functions, thus including agile development of hardware and mechatronics.

Company D Is a manufacturing company that develops high-tech products for the medical domain. Agile principles and practices are

considered on all levels, yet must be carefully considered due to regulatory requirements and the very large scale of the

development effort. The software development is to a good extent independent from hardware development cycles.

First Workshop (Company B)

13 practitioners Systems engineers, project managers, test specialists, digital transformation managers, and business developers.

Second Workshop (Company A)

3 practitioners Scrum master, architect, systems engineer

in-depth workshops at two of the companies. Table 1 presents short

descriptions of the participating companies. We report on our data

collection, the way we analysed the information, as well as the

threats to validity in the following.

3.1 Focus Group

We base the findings of this study on a focus group in which we

discussed agile islands and the boundary objects that connect them

with four practitioners, one from each of the four participating

companies. Three of those practitioners had prepared presentations

based on our instructions to help us explore the following issues:

(i) in terms of inventory, what knowledge is required on the island

and what knowledge actually exists; (ii) in terms of infrastructure,

what knowledge needs to be shared and what knowledge is actually

shared; and (iii) in terms of process, how to facilitate learning,

retrieving, capturing and applying knowledge.

The practitioners have high-level technical roles in the organ-

isation (system architect, tooling and process specialist) and are

thus accustomed to working with different islands within the or-

ganisation. They have also been working in these companies for

several years and thus have a good grasp of the processes and the or-

ganisational structure. All four companies are large-scale systems

engineering organisations with a predominantly agile software

development approach and global distribution of developers.

The three presentations identified boundary objects commonly

encountered in practice together with teams that use them. They

provided a foundation for identifying common boundary objects

and islands and were the starting point for discussions about the

commonalities and differences between the organisations.

This information was collected by the researchers with exten-

sive notes. One of the researchers also prepared an overview image

of the boundary objects and the islands they connect and applied

a rough clustering while the workshop was ongoing. This figure

was continuously augmented with new insights during the presen-

tations and updated during the discussion. At the conclusion of

the focus group, the figure was presented and practitioners could

comment on whether it represented their understanding.

3.2 Individual Company Workshops

As a follow-up of the focus group, we conducted individual work-

shops of approximately three hours each with two of the companies

that participated in the initial data collection. The workshops were

conducted onsite at the companies and aimed to analyze concrete

agile islands and boundary objects based on the inventory from

the focus group. Two researchers were involved in each of the

workshops and acted as moderators and facilitators. We prepared

a workshop instrument (https://rebrand.ly/workshop_BOMI) to

introduce the topic and guide through the workshops.

The workshops started with an introduction to boundary objects

and agile islands and a statement of the goals. The participants were

then asked to individually brainstorm the boundary objects and

agile islands they encounter in their work. All input was recorded

on post-it notes. Agile islands were then discussed and roughly

organized on a wall. Once a picture of the relevant islands emerged,

participants then located boundary objects between the identified

islands creating a map. This map was then discussed and the prac-

titioners reflected on the implications of the islands and how the

boundary objects are currently being managed.

The first company workshop attracted a total of 13 practition-

ers who represented a number of roles: systems engineers, project

managers, test specialists, digital transformation managers, and

business developers. Representatives from the company first pre-

sented their current development process and the transformation

53

that they are undergoing. Afterwards, the two researchers intro-

duced agile islands and boundary objects and defined the purpose

of the workshop. We then followed the procedure outlined above.

However, after the collection of islands and boundary objects and

the initial discussion of the map, we focused on a specific bound-

ary object (“Product Requirement Specification”) that was deemed

highly critical by the practitioners. This provided additional insights

into differences of governance processes within the organisation

as well as the impact of organisational cultures in different parts of

the company.

At the second workshop, three company participants attended,

having the roles of Scrum master, architect, and systems engineer.

The workshop procedure outlined above was followed, starting

with an introduction of the concepts and goals, and ending with

reflections on the implications of the findings. The focus lay on

Interface Descriptions, Product Backlog, and Customer Service

Requests, and collected relevant characteristics for them.

In each workshop, two researchers took detailed notes of what

was being said as well as pictures of the post-it notes. Directly

after the meeting, reflections were written down to allow for easier

analysis.

3.3 Data Analysis

All collected data was discussed between the researchers in groups.

We used coding [18] to identify common themes in the agile islands

and boundary objects we collected and structure the information in

our transcripts and notes, as well as in the documents we collected

from the practitioners. Discussions continued until an agreement

about the codes was reached within the group of researchers. All

findings were then member checked [8] with the practitioners from

whom the data was collected. The final results of these efforts pro-

vide the answers to the research questions outlined in Section 1

and are presented in the following. We collected the majority of

our boundary objects and islands in the focus group. The follow-

up company workshops confirmed the existence of many of these

islands and boundary objects, adding only a few new elements, in-

creasing our confidence in our findings as per this set of companies.

We demonstrate this process by including our initial overview after

the focus group (Fig. 1), a sample picture from the whiteboard after

brainstorming with Company A (Fig. 2), and a mindmap with the

first draft of results reported in this paper (Fig. 3). In Figure 3, it can

be seen that our initial findings were classified as boundary objects

and islands, as well as “technological drivers", “process drivers",

and “organisational drivers". These findings were refined in several

steps to arrive at the final results reported in this paper.

3.4 Threats to Validity

We addressed threats to internal validity by including a number of

practitioners in our workshops whenever possible and by allowing

them to discuss their different perspectives on the data we collected.

This increases our confidence that the data which forms the foun-

dation of our study corresponds to the reality at the organisations

that participated in it. The positive outcome of member checking

our results further compounds this.

In terms of external validity, we do not claim that our findings in

terms of the concrete methodological islands and boundary objects

Figure 1: Initial overview from focus group

Figure 2: Brainstorming in second workshop (Company A)

we found are complete. By analysing data gathered from different

companies with different characteristics, however, we believe that

we have sketched out a framework that can be extended in the

future and were able to identify relevant categories that are appli-

cable in other contexts. It is our intention to extend the catalogue

presented here and create a conceptual model of Boundary Objects

and Methodological Islands (BOMI) with higher generalisability in

the future.

Tomitigate threats to construct validity, we began each workshop

with presentations explaining the concept of boundary objects and

provided examples to help understanding. The focus group targeted

high-level experts from the respective companies. As reflected in

their presentations, these experts understood the concepts well.

Also, questions were asked and clarifications made throughout the

workshops. Thus, all of our data collection tools focused on im-

proving the understanding of the constructs under investigation,

i.e., boundary objects and methodological islands. Evaluation ap-

prehension or experimenter expectancies are potential threats to

construct validity. Peer debriefing helped us to critically reflect on

these potential factors and the impact on our findings. To address

reliability, we combine a focus group with individual workshops at

54

Figure 3: First draft of results of Drivers, Islands and Boundary Objects

companies and combine the data collected in both to derive overall

findings.

4 FREQUENTLY ENCOUNTERED AGILE
ISLANDS (RQ.1)

In this section, we present our findings with respect to RQ.1 (Which

agile islands are repeatedly encountered in large-scale agile contexts?).

Overall, the discussion of agile islands resonated very well with

our industry participants, both in cross-company workshops and

in focus groups with individual companies. When analysing the

collected data, we found a wide spectrum of relevant islands that

we had to organize and categorize. This led us to two observations:

(i) not all islands that were mentioned are in fact agile islands. Thus,

there can be significant distance between two agile teams and even

the distance between two non-agile teams can have an impact on

large-scale agile system development. For this reason, we started

to refer to the islands as methodological islands. (ii) not all islands

mentioned were on the same level of abstraction. While some (e.g.,

individual teams) are very concrete, others (e.g., “software vs physi-

cal components”) are not very concrete agile islands, but can be seen

as contextual factors that cause islands to emerge. We therefore

started to refer to the latter as drivers of methodological islands.

We first start to describe concrete methodological islands, before

we also share the abstracted drivers.

4.1 Methodological Islands

The islands derived occur on different levels in the organisations.

In Table 2 we give an overview of levels and typical examples of

islands.

4.1.1 Groups of teams. Two of our participants’ companies im-

plemented the Scaled Agile Framework (SAFe). SAFe suggests the

use of Agile Release Trains, i.e., of a team of agile teams that to-

gether develop and deliver a solution. Value streams exist on the

highest level of SAFe. Within each value stream, there are multiple

release trains. In one of the participating companies, there are about

50 release trains with 5 to 12 teams in total. Internally, these agile

release trains require synchronisation and coordination, but exter-

nally, they can be perceived as a black box. These release trains

develop different (sub-)systems that have interfaces with each other.

When several release trains depend on each other, their differences

in methodology become an obstacle. Officially, departments are not

mentioned anymore in the SAFe-related documentation, but have

traditionally existed in the companies. Release trains are orthogonal

organisations to the former departmental structures and can span

several departments in the company.

Product development typically spans several departments in an

organisation. These departments, for example, marketing, hardware

development, embedded system development, come from different

contexts and thus different ways of working. As it was not yet clear

how hardware can work in an agile way or if they even should,

the hardware teams for instance maintained plan-driven methods

and yet they have to interface with software teams that are already

adopting agile methods. Hardware and software departments work

using different timelines. It is also common for globally distributed

companies to have departments spanning different locations that

could spur different methods within the department due to the

difference in cultures. Each department can have several teams with

a common goal of contributing to a single component or feature of

the product.

55

Table 2: Examples of Methodologicical Islands on different

levels.

Groups of teams

Groups of agile

teams

Agile release trains or scrum-of-scum clusters may

differ in methods.

Departments Different methods and practices for SW development

have emerged in different departments of large sys-

tem companies (e.g., infotainment, powertrain in au-

tomotive)

Disciplines Systems engineering needs to combine several disci-

plines, including hardware, mechanics, and software

of different types, each with their own set of methods

and practices.

Individual teams

Component

teams

If teams are related to architectural components, they

may favour different methods and practices.

Integration

teams

Complex products may require dedicated support

for continuous integration, provided by specialized

testing and framework support teams. Their methods

may differ significantly from other teams.

Organizations

Suppliers If an OEM aims for continuous integration, they may

require suppliers to continuously deliver SW com-

ponents. Naturally, methods and practices differ be-

tween customer and supplier and between suppliers.

Consultants Systems engineering companies may rely on consul-

tants to help developing software components. These

may again bring a different set of methods and prac-

tices.

Regulators Agile system development of regulated systems needs

to take into account methods and practices of regula-

tors. These may differ between domains and particu-

lar regulators.

4.1.2 Teams (individual teams). Within an organisation, differ-

ent teams can follow different agile approaches or even work in an

agile waywhile the rest of the organisation follows a plan-driven ap-

proach. Teams in such large companies handle different parts of the

architecture of the product. This means that each team works with

different requirements and thus could use different approaches to

get to the solution. Participants mentioned, for instance, continuous

Integration framework teams, integration testing teams, Web GUI

teams, and software teams. All of these teams may contribute to the

same product, but since the nature of their tasks differs significantly,

they often tailor development processes to their needs. This leads

to a set of methodological islands throughout the organization.

4.1.3 Organizations. Companiesworkwith suppliers, customers

and regulators all of which come with different ways of work-

ing from that of the corresponding company. The suppliers pro-

vide some components while others are developed in-house. When

teams within an organisation rely on external suppliers for compo-

nents, the supplier is often working in a waterfall way. For instance,

contracts between both companies often imply a plan-driven ap-

proach since purchasing is based on clearly defined functionality

to be delivered at a certain point in time. Regulators also rely on

standards that do not explicitly specify the methods to use in de-

velopment, but come with checkpoints that relate mostly to the

plan-driven methods of working. This mismatch of the actual meth-

ods used versus the ’unknown’ expectations becomes a hindrance

in development.

4.2 Drivers of Methodological Islands

The methodological islands are triggered by certain factors that we

derived upon analysis. We summarize these in Table 3 and describe

them below.

Table 3: Different types of drivers for methodological is-

lands.

Business-related Economic function, Characteristics of market or

value-chain, global distribution

Process-related Mixture of development methods (SAFe, V-Model,

Scrum, Kanban, LSD); focus on projects or prod-

ucts

Technology-related Architectural decomposition, systems disciplines,

platform and product-line strategy, time-scale of

commitment

4.2.1 Business-related drivers. Based on their history and busi-

ness domain, companies have specialized organisational charts that

describe the departments, e.g., for marketing, development, veri-

fication. These departments handle different parts of the product

that in most cases imply varying needs for development methods.

For instance, the sales department as opposed to development de-

partments, have different needs and thus different ways of working.

This difference, in turn sparks the need to adopt the agile prac-

tices to the context of the specific department, causing islands of

methodology, for example, manifesting in different choices with

respect to forming cross-functional component or feature teams.

Such business drivers can be the result of a particular culture in a

market or value-chain. How is the relationship between customers

and suppliers characterised in terms of contracts, time-lines, trust,

and interaction? To what extent are customers willing or able to

assess and give feedback on frequent deliveries? Is it possible to

take end-user opinions into account and to what extent do they

matter? All these aspects contribute to the mix of methods and how

the other stakeholders are going to work to get the product they

need.

Some of our participant companies are distributed over several

countries and in some cases different areas in the same country. De-

velopers of software or hardware do not work in the same buildings

and are separated by location, time zones and culture. This separa-

tion in the end creates teams that have defined different methods

of doing the same thing.

4.2.2 Process-related drivers. While teams exist in the organ-

isation and have varying needs, the organisation in the end has

to have one backbone process that defines the company. It is not

uncommon that different teams within the same organisation use

different flavours of agile methods. Apart from process customisa-

tion for each individual team, it is possible that some teams use a

method such as SAFe while others employ Scrum, Kanban, XP, or

56

a form of lean development. These differences introduce islands

where roles, artefacts, and schedules are difficult to coordinate.

A major driver of this category relates to whether a company

mainly works based on projects, or whether significant work flows

in the continuous development of a platform. While projects are

adding features to a solution and are thus short-term, platforms are

planned for the long-term. Platforms need to be more stable since

other projects depend on them and changes in the platform can

have a major impact on the depending projects. Thus, the particular

setup of a company can create islands between different projects,

or between customer projects and platform development.

4.2.3 Technology drivers. Complex systems are often developed

by different teams that are responsible for individual parts of the

architecture. That means that these teams not only address different

sets of requirements, but also apply different technologies in their

solutions. Teams working on software and on physical components

work according to different timelines and according to different

cultures. Hardware development often assumes stable requirements

and development of a full solution, instead of development of slices

of functionality and rapid response to changes.

Many companies with complex product lines, e.g., in the automo-

tive domain, produce platforms as the foundation of their products.

Platforms are often generational, i.e., they are used for a certain

period of time before they are replaced by the next generation.

Each platform has a unique technical solution and is usually not

compatible with previous ones. At the same time, different teams

working on different platform generations also often use different

generation of processes.

The time scale of commitment is another technology-related

driver. Agile methods usually imply short-term commitment in

individual sprints. That means that requirements can change from

sprint to sprint to react to a changing market situation or newly

discovered opportunities. On the other hand, manymethods require

a longer-term commitment. Platforms, e.g., that are used by many

other projects and thus need to be stable might be better served

using a plan-driven approach and to constitute “waterfall islands”

within the organisation.

5 BOUNDARY OBJECTS IN LARGE-SCALE
AGILE (RQ.2)

In this section, we answer RQ2: Which boundary objects are repeat-

edly encountered in large-scale agile contexts?

Table 4 shows our findings for RQ2. Each row represents a type

of boundary object with a description of how it facilitates coor-

dination between islands. In total, 19 types of boundary objects

were identified. We categorized them in different themes: Task,

technology, regulation and standards, product description, process,

planning boundary objects, and trace links. We refer to the descrip-

tions of the boundary objects in Table 4 and briefly summarize the

categories in the following.

Task boundary objects relate to tasks in the development effort

in which boundary objects facilitate the creation of a common

understanding across team borders. Concretely, these tasks are

concerned with identifying development activities by creating a

backlog and specifying requirements to define the functionality to

be developed. Typical examples are user stories and other backlog

items as well as related comments stored in issue trackers.

Technology boundary objects are concerned with technological

aspects of the (software) system to be developed, including a sys-

tem’s capabilities, tests, or architecture boundary objects. These

boundary objects are commonly used between different islands and

mostly by technical stakeholders.

Regulation and standards boundary objects are used to ensure

that the company complies with regulations and standards. In our

case companies, it relates mostly to safety standards, as with the

safety assurance case. These regulations and standards are typically

relevant across island borders and a common understanding of

these concerns is required.

Product description boundary objects relate to the product as it

will be sold to the customer. While the respective documentation is

mostly created for customers, it can also be leveraged internally, for

instance, to create a shared understanding of variability concerns

or other technical aspects.

Process boundary objects are concerned with documentation re-

garding processes or frameworks. In two of our case companies,

SAFe is used and tailored to each company’s needs. The created doc-

umentation can help to get a shared understanding of the processes

and roles.

Planning boundary objects relate to contracts, roadmaps, plans,

or budgets that are created before development. These boundary

objects are commonly used between non-technical stakeholders

like managers, but can also be relevant for development teams.

Trace links are a special category, as they represent the rela-

tionships between artefacts. Trace links typically have types that

determine how other artefacts relate to each other. They can also

serve as boundary objects between different methodological islands,

capturing a mutual agreement about relatedness of other boundary

objects.

6 DISCUSSION AND CONCLUSION

In this paper, we presented methodological islands and boundary

objects related to large-scale systems development collected from

two workshops and a focus group with four large organisations.

We present a summary of our findings in Figure 4. As the first step

towards addressing the coordination challenge in transforming

organisations, we believe that this study adds significant value both

to research and to other organisations customising agile. We discuss

our main findings and implications of our work in this section.

6.1 Methodological Islands

We discuss RQ.1 (Which agile islands are repeatedly encountered in

large-scale agile contexts?) in this section.

Our findings show that when embracing agile in large-scale sys-

tem development, certain types ofmethodological islands frequently

appear on the level of individual teams, groups of teams, or full or-

ganisations. Although not particular to large-scale, West et al. [30]

found that water-scrum-fall is becoming a reality for most organi-

sations, a claim confirmed by Theocharis et al. [27]. While terming

them hybrid methods, Kuhrmann et al. [14] find that such hybrid

approaches are not limited to traditional and agile development

but also allow combinations of different agile methods since agile

57

Table 4: Identified boundary objects and their categories.

Task Boundary Objects

Backlog item Backlog items, e.g., from a product backlog, can be representations of high-level requirements and are used by individual

islands to define their own, local backlog items for their product or team backlogs.

(User) story A user story is an upfront feature description focused on customer value. Backlog items can be formulated as user stories

to clarify the value provided by delivering a piece of functionality.

Feature, function description, or

high-level requirements

A set of high-level requirements can be represented by a feature or function description. These requirements need to be

further broken down to allow individual islands to work on them.

Requirements on interfaces Different parts of a software architecture are connected by interfaces. The requirements for these interfaces define

contracts between teams. For instance, timing requirements on an interface need to be adhered to by all islands using this

interface.

Technology Boundary Objects

Capabilities A description of the capabilities provided by the system gives a high-level overview of the functionality. It allows individual

teams to identify relevant reusable assets and required interfaces.

Automated tests Integration, acceptance, and non-functional tests can be shared between islands to avoid regressions, ensure customer

value is jointly achieved, and to document the functionality provided in the system.

API / Interface The description of the interfaces between different parts of the solutions allow to modularise the development and different

islands to reuse existing assets.

Reference architecture A high-level description of the architecture both allows different islands to identify where a feature should be located and

ensures that new additions to the solution follow the common guidelines of the organisation.

Regulation and Standards Boundary Objects

Standards Safety standards such as ISO 26262, DO-178B, or IEC 62304, prescribe development practices and artefacts.

Regulations Regulations take the role of standards and prescribe certain practices or artefacts (e.g., in the telecommunications domain).

Safety assurance case Safety standards prescribe the creation of white box or black box safety assurance cases that describe how a product

addresses risks during its operation. These cases can be used by different islands to understand the risks involved in the

system and to develop common strategies to avoid them or deal with them.

Product Description Boundary Objects

Variability model The features of a product and the constraints between them (e.g., which ones are mutually exclusive or incompatible) can

be used by different islands to understand the interaction between their solutions and the rest of the product line.

Technical documentation for

customer

Outwards-facing documentation can also be used internally to gain a common understanding of how different parts of a

system are related.

Process Boundary Objects

SAFe documentation The Scaled Agile Framework (SAFe) has found widespread adoption in large development organisations. It provides

detailed documentation and support for its adoption. This documentation can, together with a description of how SAFe

was adapted, act as a boundary object between islands using SAFe and other parts of the organisation not using SAFe.

Planning Boundary Objects

Contracts The interactions between parts of an organisation and the suppliers are often defined by contracts. Contracts can also

bind an island within an organisation to external constraints. In any case, the content of the contract will define the scope

or the time and resources the island has at its disposal.

Roadmaps The long-term evolution of a product is often defined by one or several roadmaps. These boundary objects also link different

products that co-evolve to each other. Therefore, they are used to coordinate between islands within an organisation.

Short-term plans The development of individual features or smaller parts of a product is often bound to a shorter-term plan that is connected

to the overall, long-term plan. As such, the scope of a short-term plan is also limited to a smaller number of islands.

Resource budgets When developing systems in which software runs on dedicated hardware, individual islands need to work with a resource

budget that determines how much computing power, memory, or bandwidth their specific functionality can consume.

Trace links Artefacts created during development need to be connected to each other using trace links. They clarify the relationship

between artefacts and enable change impact analysis and collaboration between the islands that created the artefacts.

is also not implemented as is. Tell et al. [26] go a step further and

identify the agile methods and how they are combined in practice

to form hybrid methods. Our findings on methodological islands

confirm their findings as well as recognising that such combina-

tions differ within the same organisation, causing methodological

islands. Such islands are characterised by their relative distance in

terms of methods and practices as well as culture and mindset.

In addition to the methodological islands, we found that cer-

tain drivers (business-, process-, and technology-related) can in-

troduce such distance and lead to the formation of methodological

islands. This finding concurs, to some extent, with the finding by

58

Process TechnologyBusiness

Task

ProcessPlanning Trace links

Standardization/Regulation

Product description

Technology

Teams

Groups of teams

Organisations

Methodological islands Boundary objects

Drivers

Figure 4: Summary of findings: Certain drivers introduce distance, which in turn frequently introducesmethodological islands

on different levels. Boundary objects of various types can be crucial to bridge between islands and support effective agile

system development at scale.

Vijayasarathy and Butler [29] who found specific organisational,

project and team characteristics had an effect on the choice of

methodology. While we can confirm several of those characteris-

tics, we come from the perspective of islands and classify the drivers

as business-related, technology-related and process-related. Team

characteristics could play a role but for the islands context, these are

overtaken by e.g., the nature of (sub-)systems that different teams

may be developing and thus we relate that driver to technology.

6.2 Boundary Objects

In this section, we discuss the findings of RQ2: Which boundary

objects are repeatedly encountered in large-scale agile contexts?

In order to successfully introduce agile methods and to deliver a

full product or system, we found that effectively bridging between

such islands is crucial. We believe that it is beneficial to think about

artefacts that support such bridging as boundary objects and provide

in this paper an inventory of frequently encountered boundary ob-

jects. Many of the identified boundary objects have been confirmed

by related studies. In an analysis of boundary objects in distributed

agile teams including developers and user-centered design special-

ists, Blomkvist et al. identified the following boundary objects: (1)

Personas, (2) Scenarios, (3) Effect maps, (4) Sketches, (5) Design

Specifications, (6) Prototypes, (7) Evaluation summaries, and (8)

User stories [5].

Our findings include a System Wiki boundary object, identified

by company A. Similarly, Yang et al. [33] name the use of a wiki as

a boundary object for requirements engineering. The accessibility

and ability to simultaneously access and create information make

wikis a suitable form for a boundary object.

In an analysis of boundary-spanning activities with a focus on

requirements engineering practices for product families, exam-

ples boundary objects included traceability documentation, process

models, vocabularies, user stories, product/process repositories, XP

practices, feature models, the product backlog, the sprint backlog,

and product prototypes [11].

In the area of requirements engineering, another study has fo-

cused on classification schemes as boundary objects, allowing stake-

holders to categorise requirements in different ways (main users,

functional vs. non-functional, level of abstraction) [10]. In fact, stan-

dardised forms and classification schemes have been examined in

the context of boundary objects since their initial definition [6, 25].

The regulation and standards boundary objects that we identified

in this study relate to this category. Moreover, process boundary

objects potentially include classification schemes, for instance, by

defining requirements information models that determine how

stakeholders should work with requirements-related concerns and

how they should be categorised [31].

Focusing on software development, project management doc-

uments and specifications have also been identified as boundary

objects [2]. Thus our findings confirm many existing objects, and

create a more integrated, industry-driven view of such objects in a

large-scale agile context.

6.3 Implications for practitioners

We found our inventory of methodological islands and related

boundary objects useful when discussing potential process im-

provements with companies. Already the focus group and company

workshops showed that this facilitates a useful mindset, where

artefacts are discussed as a means to satisfy coordination needs

between methodological islands. By making the islands explicit and

by discussing their particular context, mindset, and preference with

respect to methods and practices, we believe that such boundary

objects can be established in a better way than if they would emerge

in an unplanned way, e.g., by re-using non-agile artefacts. Future

work should investigate if this can be used constructively, when

defining or improving processes, methods, and tools.

59

6.4 Implications for research

Similarly, we hope that charting the landscape of methodological is-

lands and boundary objects in large-scale agile system development

will create a useful model to scope and prioritize future research.

Future research could refine the classifications in our inventory and

provide a suitable conceptual model or taxonomy. We are currently

working with our participating companies to derive possible recom-

mendations and best practices for boundary objects based on their

properties. In addition, a quantitative study could provide addi-

tional information on which boundary objects and methodological

islands are most frequent.

ACKNOWLEDGMENTS

This work is partially funded by Software Center, Project #27 “RE for

Large-Scale Agile System Development” www.software-center.se

and the Sida/BRIGHT project 317 under the Makerere-Sida bilateral

research programme 2015-2020. We thank our industry partners

for their enthusiasm and support.

REFERENCES
[1] Ralf Abraham. 2013. Enterprise Architecture Artifacts as Boundary Objects

- A Framework of Properties. In Proceedings of the 21st European Conference
on Information Systems (ECIS 2013). Association for Information Systems, AIS
Electronic Library (AISeL), 120.

[2] Michael Barrett and Eivor Oborn. 2010. Boundary object use in cross-cultural
software development teams. Human Relations 63, 8 (2010), 1199–1221.

[3] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cun-
ningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron
Jeffries, Jon Kern, Brian Marick, Robert C Martin, Steve Mellor, Ken Schwaber, Jeff
Sutherland, and Dave Thomas. 2001. Manifesto for Agile Software Development.
(2001).

[4] Elizabeth Bjarnason and Helen Sharp. 2017. The role of distances in requirements
communication: a case study. Requirements Engineering 22, 1 (01 Mar 2017),
1–26.

[5] Johan Kaj Blomkvist, Johan Persson, and Johan Åberg. 2015. Communication
through Boundary Objects in Distributed Agile Teams. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems (CHI’15). ACM,
New York, NY, USA, 1875–1884.

[6] Geoffrey C. Bowker and Susan Leigh Star. 1999. Sorting things out: Classification
and its consequences. MIT Press, Cambridge, Mass.

[7] Amadeu Silveira Campanelli and Fernando Silva Parreiras. 2015. Agile methods
tailoring — A systematic literature review. Journal of Systems and Software 110
(2015), 85–100.

[8] Ronnie Edson de Souza Santos, Fabio Queda Bueno da Silva, and Cleyton
Vanut Cordeiro de Magalhaes. 2017. Member checking in software engineering
research: lessons learned from an industrial case study. In ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE,
Toronto, ON, Canada, 187–192.

[9] Torgeir Dingsøyr, Nils Brede Moe, Tor Erlend Fægri, and Eva Amdahl Seim. 2018.
Exploring software development at the very large-scale: a revelatory case study
and research agenda for agile method adaptation. Empirical Software Engineering
23, 1 (01 Feb 2018), 490–520.

[10] Morten Hertzum. 2004. Small-scale classification schemes: A field study of
requirements engineering. Computer Supported Cooperative Work (CSCW) 13, 1
(2004), 35–61.

[11] Radhika Jain, Lan Cao, Kannan Mohan, and Balasubramaniam Ramesh. 2014. Sit-
uated Boundary Spanning: An Empirical Investigation of Requirements Engineer-
ing Practices in Product Family Development. ACM Transactions on Management
Information Systems 5, 3 (dec 2014), 1–29.

[12] Georg Kalus and Marco Kuhrmann. 2013. Criteria for Software Process Tailoring:
A Systematic Review. In Proceedings of the 2013 International Conference on
Software and System Process (ICSSP 2013). Association for Computing Machinery,
New York, NY, USA, 171–180.

[13] R. Kasauli, G. Liebel, E. Knauss, S. Gopakumar, and B. Kanagwa. 2017. Require-
ments Engineering Challenges in Large-Scale Agile System Development. In
Proceedings of the 25th International Requirements Engineering Conference (RE).
IEEE, Lisbon, Portugal, 352–361.

[14] Marco Kuhrmann, Philipp Diebold, Jürgen Münch, Paolo Tell, Vahid Garousi,
Michael Felderer, Kitija Trektere, Fergal McCaffery, Oliver Linssen, Eckhart
Hanser, and et al. 2017. Hybrid Software and System Development in Practice:

Waterfall, Scrum, and Beyond. In Proceedings of the 2017 International Confer-
ence on Software and System Process (ICSSP 2017). Association for Computing
Machinery, New York, NY, USA, 30–39.

[15] Marco Kuhrmann, Philipp Diebold, Jürgen Münch, Paolo Tell, Kitija Trektere, Fer-
gal McCaffery, Garousi Vahid, Michael Felderer, Oliver Linssen, Eckhart Hanser,
and Christian Prause. 2019. Hybrid Software Development Approaches in Prac-
tice: A European Perspective. IEEE Software 36, 4 (July 2019), 20–31.

[16] Rob J Kusters, Youri van de Leur, Werner GMM Rutten, and Jos JM Trienekens.
2017. When Agile Meets Waterfall - Investigating Risks and Problems on the
Interface between Agile and Traditional Software Development in a Hybrid
Development Organization.. In Proceedings of the 19th International Conference
on Enterprise Information Systems, Vol. 2. SCITEPRESS-Science and Technology
Publications, Lda., Porto, Portugal, 271–278.

[17] Kati Kuusinen, Peggy Gregory, Helen Sharp, and Leonor Barroca. 2016. Strategies
for Doing Agile in a Non-Agile Environment. In Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM ’16). Association for Computing Machinery, New York, NY, USA, Article
5, 6 pages.

[18] Pranee Liamputtong. 2009. Qualitative data analysis: conceptual and practical
considerations. Health Promotion Journal of Australia 20, 2 (2009), 133–139.

[19] Mikael Lindvall, Dirk Muthig, Aldo Dagnino, Christina Wallin, Michael Stup-
perich, David Kiefer, John May, and Tuomo Kahkonen. 2004. Agile software
development in large organizations. Computer 37, 12 (2004), 26–34.

[20] Maria Paasivaara, Benjamin Behm, Casper Lassenius, and Minna Hallikainen.
2018. Large-scale agile transformation at Ericsson: a case study. Empirical
Software Engineering 23, 5 (2018), 2550–2596.

[21] Joakim Pernstål, AnaMagazinius, and TonyGorschek. 2012. A study investigating
challenges in the interface between product development and manufacturing in
the development of software-intensive automotive systems. IJSEKE 22, 07 (2012),
965–1004.

[22] Asif Qumer and Brian Henderson-Sellers. 2008. A framework to support the
evaluation, adoption and improvement of agile methods in practice. Journal of
Systems and Software 81, 11 (2008), 1899–1919.

[23] Outi Salo and Pekka Abrahamsson. 2008. Agile methods in European embedded
software development organisations: a survey on the actual use and usefulness
of Extreme Programming and Scrum. IET software 2, 1 (2008), 58–64.

[24] Alexander Scheerer, Tobias Hildenbrand, and Thomas Kude. 2014. Coordination
in large-scale agile software development: A multiteam systems perspective. In
47th Hawaii international conference on system sciences. IEEE, Waikoloa, HI, USA,
4780–4788.

[25] Susan Leigh Star and James R. Griesemer. 1989. Institutional Ecology, ‘Transla-
tions’ and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum
of Vertebrate Zoology, 1907-39. Social Studies of Science 19, 3 (1989), 387–420.

[26] Paolo Tell, Jil Klünder, Steffen Küpper, David Raffo, Stephen G. MacDonell, Jürgen
Münch, Dietmar Pfahl, Oliver Linssen, and Marco Kuhrmann. 2019. What Are
Hybrid Development Methods Made of? An Evidence-Based Characterization.
In Proceedings of the International Conference on Software and System Processes
(ICSSP âĂŹ19). IEEE Press, Montreal, Quebec, Canada, 105–114.

[27] Georgios Theocharis, Marco Kuhrmann, Jürgen Münch, and Philipp Diebold.
2015. Is water-scrum-fall reality? on the use of agile and traditional development
practices. In Product-Focused Software Process Improvement (PROFES). Springer
International Publishing, Cham, 149–166.

[28] Guus Van Waardenburg and Hans Van Vliet. 2013. When agile meets the enter-
prise. Information and Software Technology 55, 12 (2013), 2154–2171.

[29] L. R. Vijayasarathy and C. W. Butler. 2016. Choice of Software Development
Methodologies: Do Organizational, Project, and Team Characteristics Matter?
IEEE Software 33, 5 (Sep. 2016), 86–94.

[30] DaveWest, Mike Gilpin, Tom Grant, and Alissa Anderson. 2011. Water-scrum-fall
is the reality of agile for most organizations today. Forrester Research 26 (2011),
17.

[31] Rebekka Wohlrab, Eric Knauss, and Patrizio Pelliccione. 2020. Why and how
to balance alignment and diversity of requirements engineering practices in
automotive. Journal of Systems and Software 162 (2020), 110516.

[32] Rebekka Wohlrab, Patrizio Pelliccione, Eric Knauss, and Mats Larsson. 2019.
Boundary objects and their use in agile systems engineering. Journal of Software:
Evolution and Process 31, 5 (2019), e2166.

[33] Da Yang, Di Wu, Supannika Koolmanojwong, A Winsor Brown, and Barry W
Boehm. 2008. Wikiwinwin: A wiki based system for collaborative requirements
negotiation. In Proceedings of the 41st Annual Hawaii International Conference on
System Sciences. IEEE, Waikoloa, HI, USA, 24–24.

[34] Robert K. Yin. 2008. Case Study Research: Design and Methods (Applied Social
Research Methods) (4 ed.). Sage Publications, Thousand Oaks.

[35] Anna Zaitsev, Barney Tan, and Uri Gal. 2016. Collaboration amidst volatility: The
evolving nature of boundary objects in agile software development. In Proceedings
of the 24th European Conference on Information Systems. AIS, Istanbul, Turkey,
16.

60

