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Abstract—Establishing high-rate vehicle-to-vehicle (V2V) links
with narrow beamwidth is challenging due to the varying network
topology. A too narrow beam may miss the intended receiver,
while a too broad beam leads to SNR loss. We propose to
harness the high accuracy of radar detections to establish V2V
links. In particular, we develop a distributed method where each
vehicle associates local radar detections with GPS information
communicated by nearby vehicles. The method relies on the
transformation of relative to global coordinates, the definition of
a suitable metric, and solving an optimal assignment problem. We
demonstrate that the proposed approach avoids time-consuming
channel estimation and provides high SNR, under the condition
that reliable relative and absolute location information is present.

I. INTRODUCTION

Vehicles are expected to rely on wireless communication
for several functionalities, including safety-related applications
and traffic efficiency applications. Vehicle-to-vehicle (V2V)
communication is currently standardized in ITS-G5, relying on
WiFi-like protocols [1], [2]. Due to high mobility, intermittent
connectivity, and the need for reliably and timely data transfer,
as well as safety concerns, V2V communication is extremely
challenging [3]. Multi-antenna techniques (MIMO) can help
boost reliability, by providing a larger link budget through di-
rectional transmission [4]. However, this is only possible when
channel state information (CSI) is known at the transmitter [5].
As obtaining such CSI entails additional overhead, directional
transmissions are generally not considered and instead omni-
directional approaches are preferred. As a replacement for
CSI, context information can be utilized, in particular location
information [6]. For instance, the use of location information
for directional beamforming was proposed in [7]. Both in-
band and out-of-band location information have been consid-
ered [8], [9]. Among the sensors that can provide location
information, we mention radar and GPS, which are viewed as
key enablers for V2V applications. Radar provides relative sit-
uational awareness, where backscattered signals are processed
to construct a map [10]. Absolute situational awareness is
provided by GPS, where signals acquired from satellites and
ground stations are used to determine the 3D position of the
vehicle on earth. Accuracy for automotive radar varies from 1
cm to 1 m, and for GPS from 10 cm (for RTK GPS) to 10 m
(for stand-alone GPS).
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Figure 1. Scenario: the ego vehicle has unknown location and heading. It
detects objects using a radar in its local frame of reference. Our goal is to
determine which object corresponds to the intended receiver and then direct
a narrow beam towards that receiver.

Recently, as terrestrial communication systems have started
to operate in bands traditionally reserved for radar, there has
been a growing interest in the convergence of communication
and sensing [11], [12], where communication signals at high
carrier frequencies are used for sensing the environment [13],
[14] or where radar signals are used for communicating
information [15], [16]. Automotive radar, which uses a large
bandwidth at high carrier frequencies is an ideal technology for
joint communication and sensing. It is then natural to identify
and exploit synergies between the radar and communication
functionalities.

In this paper, we propose radar-aided communication for
V2V communication, develop a method for exploiting radar
detections to steer highly directional communication signals.
The method involves transforming radar detections to a global
reference frame and then associating these transformed detec-
tions to vehicles. We analyze the impact of different accuracies
of GPS and radar detections as well as different distance
metrics between detected objects and vehicles. Our results
indicate that radar-aware communication can increase link
quality, but only when GPS is sufficiently accurate.978-1-7281-8942-0/20/$31.00 c©2020 IEEE



Notation: We denote a multi-variate Gaussian density in
variable x with mean µ and covariance Σ by N (x;µ,Σ).
We define the 2D rotation matrix

R(φ) =

[
cosφ − sinφ
sinφ cosφ

]
. (1)

Writing [x]k returns the k-th entry of the vector x.

II. RELATED WORK

The use of radar signals for improving communication has
been studied in [17]–[22]. In [17], a BS equipped with a
radar and communication sub-system (operating at different
frequencies) is considered, where it is verified that the radar
and communication channels share the same dominant paths.
The paths detected by the radar are then used for direc-
tional data transmission. In [18], a similar problem to [17]
is considered, but with radar and communication operating
over the same band, but using separate waveforms. The radar
recovers the angle of arrival (AoA) and angle of departure
(AoD) of each path after which beamforming is designed
towards those directions. In [19], 801.11ad communication
at 60 GHz is considered, where a BS router is configured
to send and receive radar signals. This allows determination
of vehicle range and velocity, within a certain beamwidth.
The communication uses these estimates to beamform for
maximum throughput. In [20], the radar at the BS is passive
and listens to the vehicle radars. The azimuth power spectrum
from the radar is then used for BS-to-vehicle communication.
A method to address the lack of synchronization between
vehicles and BS is proposed. In [21] an indoor mmWave
communication system is developed, where an access point
first senses the environment. Once the environment is mapped,
communication towards a specific user in a certain location
is performed based on predicted propagation paths (including
reflected paths). Finally, in [22] a scenario similar to [17] is
considered, but with a single joint communication and radar
device. No downlink pilots are needed. A tracking algorithm
predicts the vehicles’ states and utilizes these predictions to
perform power allocation for both communication and sensing.
Among the above works, only [22] considers the unknown data
association between radar detections and vehicles. None of the
above works develop solution for the V2V scenario.

III. SYSTEM MODEL

A. Problem Statement

The system under consideration is visualized in Fig. 1, com-
prising vehicles and objects. Our focus is on the ego vehicle
in yellow. We consider a scenario with multiple vehicles
and objects distributed uniformly over an area observed at a
snapshot in time, where motion models or road geometry are
already subsumed in the available observation models from
Section III-C.

Our aim is to offer a solution for the initial access problem,
i.e., determining an optimal beam size and beam direction
for high-rate data communication towards a specific set of
vehicles, where local inherent radar measurements are used.

This radar-aided approach replaces the need for channel
estimation, which becomes expensive and time-consuming
in a dynamically changing vehicular environment. Moreover,
with the introduction of ADAS and AD systems vehicles are
expected to be equipped with radars that surround a vehicle.
Hence, it becomes natural to use the already existing radar
positioning capability in a distributed manner for initial access.

Our focus is not on delay- or safety-critical information
exchange, since GPS is susceptible to jamming and spoof-
ing and the initial access might be affected by attackers.
However, authentication-type measures are possible over the
formed high-rate beam. Hence, we are targeting either non-
safety-critical applications or safety-critical applications which
are not delay-critical, such cooperative vehicular positioning
through sensor raw-data sharing.

B. Geometric Model

We consider an environment with multiple vehicles with
state in global coordinates of vehicle i denoted by si =
[xT
i ,v

T
i , φi]

T, where xi is the 2D position, vi is the 2D
velocity, and φi is the heading (measured w.r.t. the front
bumper, see Fig. 1). In addition to the vehicles, there are
objects in the environment with states gk (in global coor-
dinates), comprising position and velocity. As object have
no identifier, we will denote the state of an object seen by
vehicle i as gi,k = [xT

i,k,v
T
i,k]T. Both vehicles and objects are

modeled as point targets, with vehicle locations coinciding the
radar equipment locations. Finally, we will consider a short
transmission interval so that we can ignore mobility during
the communication.

C. Observation Model

Each vehicle is equipped with a GPS device, which provides
the density p(si) = N (si; s̄i,Si) in a global reference frame.
Each vehicle also has a front-looking radar, which provides a
set of Ni detection objects within the field of view. Each object
k has an associated existence probability ρi,k ∈ [0, 1] [23] and
spatial density p(opolar

i,k |si) = N (opolar
i,k ; ōpolar

i,k ,Spolar
i,k ) in the ve-

hicle’s local frame of reference. Here, opolar
i,k = [ri,k, θi,j , vi,k]T

comprises distance ri,k = ‖xi − xi,k‖, AoA θik (measured
from the local x-axis), and radial velocity. We assume Spolar

i,k

to be a diagonal matrix with measurement variances in range,
AoA, and radial velocity.

D. Communication Models

Each vehicle is equipped with two separate communication
systems. First of all a standard low rate system (e.g., 4G or
ITS-G5 [2]) that provides GPS information from neighboring
vehicles. The set of neighbors is denoted by Ni. The avail-
ability of such a system is reasonable, as all modern vehicles
are equipped with such communication transceivers to support
a variety of services. While such a low-rate communication
link for sharing GPS data introduces a latency, which results
with outdated GPS data of other vehicles, this can be compen-
sated by increasing the other vehicle’s GPS covariance after



reception, based on the received information and the latency
between transmission and processing.

Secondly, each radar unit can serve as a directional commu-
nication transceiver [24], [25]. The direction of beamforming
and the azimuth beamwidth can be controlled to achieve high
SNR. The goal of vehicle i is to determine (θbeam

ij ,W beam
ij ) in

azimuth, in order to communicate with a neighboring vehicle
j ∈ Ni, without explicit channel estimation, in order to
maximize the SNR1 [19]

SNRij = (2){
Pt

N0W
4πλ2

‖xi−xj‖2
4π2

W beam
ij,elW

beam
ij

|θij − θbeam
ij | ≤W beam

ij

0 else,

where θij is the direction of vehicle j in the frame of reference
of vehicle i, W beam

ij,el is a fixed beamwidth in elevation, Pt is
the V2V transmit power, W is the V2V bandwidth, λ is the
wavelength at the V2V carrier frequency, and N0 is the noise
power spectral density.

IV. V2V LINK ESTABLISHMENT APPROACHES

In this section, we propose two methods to determine
(θbeam
ij ,W beam

ij ) based on location information: one based only
on the communicated GPS data, and the second one based on
the radar data.

A. GPS-aided Communication

In the frame of reference of vehicle i, the location of vehicle
j is xij = R(−φi)(xj − xi). We thus find that

θij = arcsin
[− sinφi cosφi]

T(xj − xi)

‖xj − xi‖
. (3)

In order to compute the distribution of θij , we use a par-
ticle approach. We first generate samples [s

(p)
i s

(p)
j ]

Np

p=1 ∼
p(si)p(sj) and then evaluate θ(p)ij by computing (3) for each
particle. Then,

θbeam
ij = E{θij} ≈

1

Np

Np∑
p=1

θ
(p)
ij (4)

and

W beam
ij = α

√√√√ 1

Np − 1

Np∑
p=1

(θ
(p)
ij − θbeam

ij )2, (5)

where α > 1 is a constant to ensure that the beam covers the
intended receiver.

1Note that we do evaluate report data rates, as we only deal with the initial
access problem.

B. Radar-aided Communication

The proposed process involves three steps: (i) determining
the distribution of gi,k based on the radar measurements and
vehicle i’s GPS information; (ii) associating the vehicles to
the objects, and (iii) computing the optimal beams.

Remark (On the use of velocity information). Since vehicle i
only has access to radial velocity measurements of the detected
object, the distribution of gi,k will have unbounded uncertainty
in the velocity component. This is due to the lack of knowledge
of the object’s tangential velocity component. For that reason,
we will drop the velocity from now on. The use of velocity
information is possible when we consider explicit cooperation
between multiple vehicles, as then the tangential component
is also available and radial velocities between two mutually
observable vehicles are identical. Such cooperation is out of
the scope of the current work.

1) Coordinate Transformation: Our focus is on object k,
detected by vehicle i. We first transform the object into Carte-
sian coordinates. If we denote the radial and AoA variances
from Spolar

i,k by σ2
r,i and σ2

b,i, respectively, then the object
location in Cartesian coordinates oi,k = [xii,k, y

i
i,k]T, in the

vehicle frame of reference is p(oi,k|si) = N (oi,k; ōi,k,Si,k),
where ōi,k = [x̄ii,k, ȳ

i
i,k]T, in which

x̄ii,k = r̄i,k cos θi,k (6)

ȳii,k = r̄i,k sin θi,k (7)

Si,k = RT(θik)diag([σ2
r,i, r̄

2
i,kσ

2
b,i])R(θik). (8)

These relations follow from geometry. Then gik =
R(φi)oi,k + xi, where all variables are random. The distribu-
tion of gik can be approximated as gik ∼ N (gi,k; ḡik,Γik),
where ḡik = R(φ̄i)ōi,k + x̄i,k and

Γik = Fi,k

[
Si 0
0 Sik

]
FT
i,k, (9)

in which Fi,k is the Jacobian. Since ∇φi
gik = R(−φi)oi,k,

∇xigik = I2 and ∇oi,k
gik = R(φi),

Fi,k =
[

I2 R(−φ̄i)ōi,k R(φ̄i)
]
. (10)

2) Data Association: We now associate the objects k
detected by vehicle i, transformed in the global coordinate
system with the GPS data from the other vehicles j. In order
to perform such an association, we introduce a similarity
measure Djk ≥ 0 between object k (detected by vehicle i)
and vehicle j ∈ Ni. These have densities p(gi,k) and p(sj),
respectively. Recall that object also have a corresponding
existence probability ρi,k. We propose to use the Kullback-
Leibler divergence (KLD), elaborated in the Appendix. Using



this metric, we formulate an optimal assignment2 problem

min
X

∑
j∈Ni

Ni∑
k=1

xjkDjk (11a)

s.t. xjk ∈ {0, 1} (11b)∑
j∈Ni

xjk ≤ 1,∀k (11c)

Ni∑
k=1

xjk = 1,∀j. (11d)

After solving the data association problem with the Kuhn-
Munkres algorithm [27], we have determined k∗(j), i.e., the
best matching object to vehicle j.

3) Optimal Beams: The optimal beams are then easily
found as

θbeam
ij = arcsin

(
[ōi,k∗(j)]2

‖ōi,k∗(j)‖2

)
(12)

W beam
ij = α

√
fTi,k,jSi,k∗(j)fi,k,j (13)

in which fi,k,j is again a Jacobian, fi,k,j = ∇oik∗(j)
θij , so that

fTi,k,jSi,k∗(j)fi,k,j =
1

‖ōi,k∗(j)‖2
eT
i,k,jSi,k∗(j)ei,k,j , (14)

where ei,k,j is a unit length vector, orthogonal to ōi,k∗(j).

V. RESULTS

A. Simulation Setting

We consider an environment of size 50 m by 50 m in front
of the ego vehicle. A total of 100 Monte Carlo simulations are
run to obtain the results with the parameters summarized in
Table I. The number of antenna elements are left unspecified,
with the understanding that the implementation optimal beams
in (4)–(5) and (12)–(13) depend on the array size, number of
elements, and architecture (digital, analog or hybrid).

B. Discussion

We first evaluate the impact of GPS uncertainty. We set
[Si]1:2,1:2 = σ2

GPSI2 and vary the value of σGPS. The result
in terms of average SNR (averaged over all links and over all
Monte Carlo simulations) and average beamwidth are shown in
Fig. 2. We compare three approaches: the GPS-aided method
from Section IV-A, the radar-aided method from Section IV-B,
with and without perfect data association. We observe that
for low GPS variance, we achieve high average SNR, due
to low beamwidth. With increasing GPS errors, beamwidth
necessarily becomes larger, leading to SNR penalties. The
radar-aided approach with perfect data association (DA) is
not affected by the GPS variance, as it depends only on
the radar performance, leading to high average SNR. Finally,
with data association according to (11), high SNR is only
achievable for low GPS variance. This is because in that case
the objects, when transformed to global coordinates, remain
well separated, leading to easy data association. When the

2Alternatively, soft data associations can be considered [26].

Table I
DEFAULT SIMULATION PARAMETERS.

Parameter Value

V2V bandwidth (W ) 100 MHz
Carrier frequency (fc) 28 GHz
V2V transmit power 0.1 mW
Thermal noise temperature T0 290 K
Receiver’s noise figure 1
Range standard dev. σr 0.3 m
Bearing standard dev. σb 0.5◦
GPS heading standard dev. σφ 0.57◦
Number of particles Np 500
Beamwidth parameter α 4
Number of objects Ni 20
Number of vehicles 20
Object existence prob. ρ 1.0

GPS errors increase, data association errors occur (see below).
These errors have limited impact on the beamwidth (since
even under incorrect data association, beams can be narrow),
but severely degrades the SNR. A drop of about 10 dB in
average SNR is observed. We have also explored alternative
distance metrics to the KLD, including Euclidean distance
and Riemannian distance, but observed little performance
difference.

The performance difference is explained in Fig. 3, showing
the data association performance as a function of σGPS. After
about 1 meter standard deviation, about 10 % of the associa-
tions are incorrect. After about 10 meter standard deviation, all
the associations are incorrect. Hence, the selected beams will
be narrow but point towards an incorrect directions. Note that
these results are obtained for randomly distributed vehicles
and objects, where the spatial separation in between might be
lower compared to realistic road geometries. When vehicles
are further apart than the GPS standard deviation, then the
proposed method can deal with large GPS errors. Fig. 3
also includes an investigation of KLD performance for object
existence probabilities (ρi,k) of 0.5, whereas the vehicle exis-
tence probabilities are 1. Although the data association error
decreases marginally for lower object existence probabilities,
the effect on beamwidth and SNR turns out to be negligible.

Finally, Fig. 4 shows the impact of the beamwidth parameter
α on the average SNR and beamwidth. Unsurprisingly, larger
α leads to broader beams, with the GPS-aided beams being
about one order of magnitude wider than the radar-aided
beams. The performance of the data association has no impact
on the average beamwidth in this case. On the other hand, we
see interesting behavior in the SNR: the GPS-aided approach
generates too narrow beams for α < 2, leading to zero
SNR. For increasing α, beams cover the intended receiver, but
SNR degrades as beams become wider. For the radar-aided
approach, too small α leads to low SNR as the beams are
unable to hit most of the intended receivers. Around α = 2
leads to optimal performance, with beams narrow enough to
have high gains, but wide enough to illuminate the intended
receiver. Increasing α beyond 2 leads to SNR reductions.

We have also investigated the performance sensitivity to the
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Figure 2. Performance comparison of GPS-aided and radar-aided V2V
communication in terms of average SNR and average beamwidth, as a function
of GPS standard deviation.
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Figure 3. Probability of data association error for the scenario with 20 vehicles
and 20 objects for changing GPS error standard deviation.

number of objects and the number of vehicles and found that
the performance is reduced with increased number of vehicles.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a method for radar-aided communication,
which leverages the high accuracy of radar detections to form
narrow beams towards intended receivers. To associate radar
detections with receivers, we rely on GPS information from
those receivers, communicated via an out-of-band technology.
We adopt a simplified formulation by treating this problem in
the context of localization rather than tracking, by focusing on
a single snapshot. The method shows good performance when
GPS errors are small with respect to the vehicle separation.

Possible extensions include more realistic models for radar
performance, as well as extended object models; extending the
model with velocities (to improve the data association) but this
needs higher-level cooperation; consider soft data association
(e.g., using belief propagation). In addition, a fair comparison
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Figure 4. Performance comparison of GPS-aided and radar-aided V2V
communication in terms of average SNR and average beamwidth, as a function
of the beamwidth parameter α.

with existing initial access methods should be conducted,
accounting for practical array structures.
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APPENDIX
SIMILARITY MEASURE

Given two Bernoulli set densities f(X ) and g(Y), with ex-
istence probabilities ρf and ρg and spatial Gaussian densities
pf (x) = N (x;µf ,σf ) and pg(y) = N (y;µf ,σf ). The KLD
is then defined as

D(f‖g) =

∫
f(X ) log

f(X )

g(X )
δX (15)

= f(∅) log
f(∅)
g(∅)

+

∫
f({x}) log

f({x})
g({x})

dx (16)

= D(ρf‖ρq) + ρfD(pf‖pg). (17)

where D(ρf‖ρq) is the KLD between two Bernoulli distribu-
tions, i.e.,

D(ρf‖ρg) = (1− ρf ) log
(1− ρf )

(1− ρg)
+ ρf log

ρf
ρg
, (18)

and D(pf‖pg) is the conventional KLD between two Gaussian
densities, i.e.,

D(pf‖pg) =
1

2
tr
(
Σ−1g Σf

)
+

1

2
log

(
det Σg

det Σf

)
(19)

+
1

2
∆TΣ−1g ∆− dim/2.

where ∆ = µg −µf and dim is the dimension of the random
variable.



In case one of the variables is not a set, we can simply set
the corresponding existence probability to 1.
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