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Abstract—End-to-end data-driven machine learning (ML) of
multiple-input multiple-output (MIMO) systems has been shown
to have the potential of exceeding the performance of engi-
neered MIMO transceivers, without any a priori knowledge of
communication-theoretic principles. In this work, we aim to
understand to what extent and for which scenarios this claim
holds true when comparing with fair benchmarks. We study
closed-loop MIMO, open-loop MIMO, and multi-user MIMO
(MU-MIMO) and show that the gains of ML-based communica-
tion in the former two cases can be to a large extent ascribed
to implicitly learned geometric shaping and bit and power
allocation, not to learning new spatial encoders. For MU-MIMO,
we demonstrate the feasibility of a novel method with centralized
learning and decentralized executing, outperforming conventional
zero-forcing. For each scenario, we provide explicit descriptions
as well as open-source implementations of the selected neural-
network architectures.

I. INTRODUCTION

The ever-growing demand for higher data rates has led
to the rapid development of wireless communication sys-
tems. One of the most important developments is multiple-
input multiple-output (MIMO) transmission [1], where infor-
mation across multiple antenna elements is encoded using
spatial-multiplexing or spatial-diversity schemes such that the
throughput or reliability of communication can be improved in
various channel conditions. Conventional MIMO communica-
tion systems are generally divided into closed-loop and open-
loop. In open-loop systems, channel state information (CSI)
is only available at the receiver, while in closed-loop systems,
the transmitter also has access to CSI (either through explicit
feedback or via channel reciprocity). Various algorithms have
been proposed for both open-loop and closed-loop systems,
including maximum-likelihood detection, zero-forcing (ZF)
precoding, minimum mean-square-error (MMSE) equalization,
space-time block coding, and singular value decomposition
(SVD) with waterfilling [2, Chapter 11].

Recent years have witnessed a resurgence of interest in
machine-learning (ML) techniques for communication sys-
tems, where most works have focused on supervised ML for
a specific functional block such as modulation recognition
[3], blind MIMO detection [4], MIMO channel estimation

This work was supported by the Knut and Alice Wallenberg Founda-
tion, grant No. 2018.0090, and the Swedish Research Council under grant
No. 2018-0370. The work of C. Häger was supported by the European
Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant No. 749798.

[5], and channel decoding [6]. These ML-based methods
have led to algorithms that either perform better or exhibit
lower complexity than model-based algorithms. In contrast to
focusing on a specific functional block, end-to-end learning
has been proposed to optimize the transmitter and receiver
jointly [7]. The workhorse of end-to-end learning is the
autoencoder (AE), which employs two deep neural networks
(NNs) to encode and decode messages into a learned latent
representation which passes through a physical communication
channel. This method has been successfully applied to a wide
variety of channels, including, e.g., linear wireless [8], and
nonlinear optical [9]. In cases where no channel model is
available, a surrogate channel can first be learned [10] or
the transmitter can be designed as a reinforcement learning
(RL) agent [11], which can operate even with limited reward
feedback [12].

For MIMO communication, there has been limited treatment
of AEs. To the best of our knowledge, the only directly
related works are [13], [14]. In [13], open-loop and closed-
loop MIMO was studied, leading to better performance than
the selected benchmark methods. In the extension [14], finite
quantization of the CSI was considered, which was demon-
strated to improve performance in some conditions. While
[13], [14] have shown promising performance of ML-based
MIMO communication, the proposed AEs were trained under
some nonstandard assumptions, specifically in terms of CSI
availability at the receiver and power normalization at the
transmitter, as explained below.

In this paper, we build on the approach proposed in [13],
[14], with the aim to better understand what performance can
be achieved by ML-based MIMO solutions under realistic
training assumptions, how and why they outperform standard
benchmarks, and what limitations are imposed by NN archi-
tectures. Our main contributions in this work are as follows:

• We revisit the MIMO systems in [13], [14] and evaluate
the AEs under more standard training assumptions. In
particular, while CSI in [13], [14] was assumed to be
estimated at the receiver, it was not actually used as a
receiver input. Also, power normalization was applied
after the channel-matrix multiplication (cf. [14, Eqs. (2),
(3)]), which cannot be done in practical systems. By
contrast, our AEs always use the CSI as an additional
receiver input and power normalization is performed
prior to the channel. Moreover, reproducible open-source
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implementations of our AEs are also provided.
• We then explain some of the performance gains obtained

by the trained AEs through the selection of improved
baseline schemes compared to [13], [14]. In particular, for
open-loop MIMO, we show that performance gains can
be partially attributed to an implicit geometric shaping
of the underlying signal constellation. For closed-loop
MIMO, we use an SVD-based benchmark similar to [13],
[14], but augment it through additional bit and power
allocation. This partially closes the performance gap to
the AE, indicating that the ML-based solution learns to
implement similar functionalities in a data-driven fashion.

• Lastly, we consider a multi-user MIMO (MU-MIMO)
scenario, where a single multi-antenna transmitter sends
information to multiple single-antenna users.1 For such
a system, we extend the training methodology in [14] to
account for the joint loss function of all users and show
that the resulting ML-based system achieves better per-
formance compared to the considered baseline approach
of applying transmitter ZF.

Notation

We will use the following notations: [a, b]M is the M–fold
Cartesian product of the [a, b]–interval. CN (x;µ,Σ) denotes
the distribution of a proper complex Gaussian random vector
with mean µ, covariance matrix Σ, evaluated in x (x may
be omitted to represent the entire distribution). A matrix X
is converted to a vector by stacking the columns, denoted by
vec(X).

II. BACKGROUND AND BASELINE SCHEMES

In this section, we describe the open-loop MIMO, closed-
loop MIMO, and MU-MIMO systems under consideration and
provide the benchmark transmitter and receiver algorithms.
The channel at discrete time k is denoted by Hk ∈ CNR×NT

for NR receive and NT transmit antennas. The channel is
drawn from a stationary distribution hk = vec(Hk) ∼ p(h)
and is assumed to be block fading with duration NB ≥ NT .
The transmitter can send sequences of messages belonging to
a set M = {1, 2, . . . ,M}. The transmission rate is assumed to
be fixed and forward error correcting coding is not considered.
An average transmit power of PT is assumed.

A. Open-loop MIMO

In open-loop systems, CSI is available at the receiver but not
at the transmitter. Conventional transmit approaches include
space-time block codes (STBCs), which are described next.

The transmitter generates L messages, maps each to a com-
plex data symbol sk,l and then encodes sk = [sk,1, . . . , sk,L]

T

using a STBC with rate L/NB ≤ 1. The resulting NB coded
vectors of length NT are Xk = [xk,1, . . . ,xk,NB

], with the
property that XH

k Xk = PT IP . If each of the L complex
data symbols corresponds to log2(M) bits (i.e., one message),
then the total bit rate is r = L log2(M)/NB . In this paper,

1This scenario was suggested as a possible extension in [14, Sec. V].

we restrict ourselves to the Alamouti code [15] (see also [14,
Fig. 6]), where NB = 2, L = 2, with r = log2(M).

The receiver observes

Yk = HkXk +Nk, (1)

where vec(Nk) ∼ CN (0, N0INRNB
) is i.i.d. Gaussian noise.

The receiver then applies maximum-likelihood detection to
Yk = [yk,1, . . . ,yk,P ], which can be achieved through
low-complexity linear processing [16]. Other (less complex)
receiver approaches for open-loop MIMO include ZF and
MMSE detection, which are not considered here.

B. Closed-loop MIMO

In closed-loop MIMO systems, the CSI is estimated at the
receiver side, and then fed back to the transmitter. The most
common approach is SVD-based MIMO, which we describe
next.

The block fading duration is irrelevant, but should be
long enough to allow feedback and use of the CSI Hk.
The CSI is known to both transmitter and receiver, allowing
both to compute the SVD Hk = UkΣkV

H
k , where Σk =

diag[σk,1, . . . , σk,RH
], σk,1 ≥ σk,2 ≥ · · · ≥ σk,RH

> 0,
in which RH is the rank of Hk. Correspondingly, Uk ∈
CNR×RH and Vk ∈ CNT×RH are truncated unitary matrices.

For each singular value σk,i, the transmitter chooses a
constellation Ωi from a set of available constellations as well
as a transmit power PT,i ≥ 0. This selection can be based on
the total message error rate according to

maximize
Ωi,PT,i

∏RH

i=1(1− Pe(Ωi, γi)) (2a)

s.t.
∏RH

i=1|Ωk,i| = M, (2b)∑RH

i=1PT,i ≤ PT , (2c)

γi =
σ2
k,iPT,i

N0
, (2d)

where Pe(Ω, γ) is the symbol error probability of constellation
Ω under the specific receive SNR γ. Hence, the rate is
fixed to r = log2(M). The corresponding symbol vector
sk = [sk,0, sk,1, · · · , sk,RH

]T is precoded by Vk, so that
xk = Vksk, where E{∥xk∥2} ≤ PT , is sent over the channel.

The receiver observes yk = Hkxk + nk and applies a
combiner UH

k , leading to the observation

ŷk = UH
k HkVksk +UH

k nk = Σksk +UHnk (3)

where UHnk has the same distribution as nk. Maximum like-
lihood recovery of the transmitted messages is straightforward,
since Σk is a diagonal matrix.

C. MU-MIMO

We consider a downlink MU-MIMO system where there are
a transmitter with NT antennas and NR receivers each with
one antenna, where NT ≥ NR. To eliminate the interference
among different users, various algorithms including linear and
non-linear precoding have been proposed. In this paper, we
consider a linear precoding scheme referred to as transmitter
ZF, which we describe next.
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Similar to the closed-loop MIMO case, the block fading
duration is irrelevant, but should be long enough to allow
feedback and use of the CSI. The local CSI hT

k,i ∈ C1×NT , i =
1, . . . , NR is estimated at each user and fed back to the
transmitter. Thus, the transmitter has knowledge of the full
CSI Hk = [hk,1, . . . ,hk,NR

]T, while each receiver only has
access to the local CSI.

The transmitter encodes NR messages sk =
[sk,1, · · · , sk,NR

]T with the pseudo-inverse of the channel
matrix H†

k, so that xk = αH†
ksk is sent over the channel,

where H†
k = HH

k (HkH
H
k )

−1 and α is set to ensure that
E{∥xk∥2} ≤ PT . If each of the messages corresponds to
log2(M) bits, the sum-rate of the system is r = NR log2(M).

Each user i observes yk,i = hT
k,ixk + nk,i = αsk,i +

nk,i, from which sk,i can be recovered with low-complexity
maximum-likelihood detection.

III. AUTOENCODERS FOR MIMO SYSTEMS

In this section, we first describe the idea behind AE-
based communication for a single-input single-output system.
We then describe the AE implementation for the open-loop,
closed-loop, and MU-MIMO systems. For all scenarios, the
transmitters are denoted by fτ (·) and the receivers by fρ(·).

A. AE-based Communication Systems

AE-based end-to-end learning was proposed in [7]. For a
single-input single-output system, the transceiver is imple-
mented by a pair of multi-layer NNs fτ : M → C and
fρ : C → [0, 1]M , where τ and ρ are the transmitter and
receiver parameters.

1) Transmitter: Given a message mk ∈ M, the transmitter
generates xk = fτ (mk), where an average power constraint
E{|xk|2} ≤ PT is enforced by a normalization layer. The
message mk is assumed to be encoded to an M–dimensional
“one-hot” vector lk ∈ {0, 1}M , where the m–th element is 1
and all the others are 0.

2) Receiver: The complex symbol xk is sent over the
channel, and the receiver processes the received symbol yk
by first generating an M -dimensional probability vector qk =
fρ(yk), where the components of qk can be interpreted as
the estimated posterior probabilities of the messages. Finally,
the transmitted message is estimated according to m̂k =
argmaxm[qk]m, where [x]m returns the m-th element of x.

3) End-to-end learning: To optimize the transmitter and
receiver parameters, it is important to have a suitable opti-
mization criterion. Due to the fact that optimization relies on
the empirical computation of gradients, a criterion like symbol
error rate (SER) Pr{m̂k ̸= mk} cannot be used directly.
Instead, a commonly used criterion is the categorical cross-
entropy loss function (JCE) defined by

JCE(τ, ρ) = −Emk,yk
{log[fρ(yk)]mk

}, (4)

where the dependence of JCE(τ, ρ) on τ is implicit through
the distribution of the channel output yk, which is a function
of the channel input fτ (mk). In practice, JCE is usually
approximated via Monte-Carlo estimation according to ĴCE =

fτ

Hk

fρ qk

Nk

Y k
mk ∈ M

L
Xk ∈ CNT×NB

Fig. 1: Open-loop MIMO channel AE, where the transmitter learns a rate
L/NB code without CSI, while the receiver learns a decoder in the presence
of CSI. The channel is drawn i.i.d. from the underlying distribution.

1
BS

∑BS

i=1{log[fρ(yk)]mk
}, where Bs is the batch size. And

optimization of the NNs can be performed by minimizing ĴCE
through the widely used Adam optimizer [17].

B. Open-loop MIMO AE

For an open-loop MIMO system with CSI available to
the receiver, the AE implementation is visualized in Fig. 1.
The transmitter fτ : ML → CNT×NB maps L consecutive
messages mk = (m1, . . . ,mL) ∈ ML into NB coded vectors
according to

Xk = [xk,1, . . . ,xk,NB
] = fτ (mk), (5)

where xk,p, p = 1, . . . , NB , is a column vector of
length NT . An average power constraint according to∑NB

p=1 E{∥xk,p∥2} ≤ NBPT is enforced. Inside fτ (·), an
encoding of mk to an ML-dimensional one-hot vector is used.

The receiver fρ : CNR×NB×CNR×NT → [0, 1]M
L

observes
Yk = [yk,1, · · ·yk,NB

] as in (1) and generates a probability
vector qk ∈ [0, 1]M

L

according to

qk = fρ(Yk,Hk), (6)

in which the CSI Hk is concatenated to the observations Yk

and then provided to the receiver.2 Finally, the transmitted
message is estimated as m̂k = argmaxm[qk]m.

Note that while the transmitter does not have access to
instantaneous CSI in the learning process, it can obtain
knowledge of the CSI distribution p(h), i.e., statistical CSI.

C. Closed-loop MIMO AE

In the closed-loop MIMO system, CSI is known to both
transmitter and receiver. The AE is implemented as shown in
Fig. 2. To provide the transmitter with CSI, the transmitter is
of the form fτ : M×CNR×NT → CNT×1, yielding complex
vectors xk = fτ (mk,Hk) in which the transmitter is provided
with the message mk as well as the CSI Hk. A one-hot
encoding is used with vectors of length M and a normalization
layer ensures E{∥xk∥2} ≤ PT

The receiver fρ : CNR×1 × CNR×NT → [0, 1]M ob-
serves yk = Hkxk + nk, and similar to the open-loop
MIMO case, the transmitted message is estimated as m̂k =
argmaxm[qk]m, where qk = fρ(yk,Hk) is a probability
vector obtained in the same way as in (6).

2The CSI is first converted into a real-valued vector of length 2NRNT ,
and then concatenated to the observations, which are also converted into a
real-valued vector.
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fτ

Hk

fρ
qkmk ∈ M

yk

nk

xk ∈ CNT

Fig. 2: Closed-loop MIMO AE, in which both transmitter and receiver have
access to CSI.

fτ
yk,i fρ,i qk,i

h
T
k,i

h
T
k,1

h
T
k,NR

nk,i

xk ∈ CNTmk ∈ M
NR

Fig. 3: MU-MIMO AE, in which the transmitter encodes messages for the
individual users, based on full CSI, while each user observes only a local
measurement and local CSI.

D. MU-MIMO AE

For a MU-MIMO system, each receiver only has access to
the local CSI, while the transmitter has knowledge of the full
CSI. The AE implementation is visualized in Fig. 3.

The transmitter fτ : MNR × CNR×NT → CNT×1 maps
individual messages mk,i ∈ M for each user i = 1, · · · , NR

to NT complex symbols. With mk = [mk,1, · · · ,mk,NR
]T,

xk = fτ (mk,Hk) (7)

where an average power constraint E{∥xk∥2} ≤ PT is
enforced. One-hot encoding of mk to a vector of length MNR

is applied.
The NR receivers are implemented by NR NNs, each with

different parameters, of the form fτ,i : C × CNT → [0, 1]M .
Each user i observes yk,i = hT

k,isk + nk,i and generates a
probability vector qk,i ∈ [0, 1]M according to

qk,i = fρ,i(yk,i,hk,i), (8)

in which the receiver is provided with its observation yk,i as
well as the local CSI hk,i. Then, the transmitted message for
the i–th user is estimated as mk,i = argmaxm[qk,i]m.

In order to train the MU-MIMO AE, the cross-entropy loss
function defined in (4) cannot be used directly, as we now
have several receivers that need to be optimized. Instead, we
apply a joint loss function

JCE(τ, ρ1, · · · , ρNR
) = (9)

−
NR∑
i=1

Emk,i,yk,i,hk,i

{
log[fρi

(yk,i)]mk,i

}
,

which can again be optimized using the Adam optimizer.

IV. NUMERICAL RESULTS

In this section, we provide simulation results for the open-
loop, closed-loop, and MU-MIMO systems.3 For all 3 cases,

3The complete source code to reproduce all results in this paper is available
at https://github.com/JSChalmers/DeepLearning MIMO.git

TABLE I: Neural-network parameters for (i) closed-loop, (ii) open-loop, and
(iii) MU-MIMO systems

transmitter fτ receiver fρ

layer input hidden output input hidden output

(i)
# of layers - 3 - - 3 -

# of neurons M 64 8 12 512 M
act. function - ReLU linear - ReLU softmax

(ii)
# of layers - 2 - - 3 -

# of neurons M + 8 256 8 16 2048 M
act. function - ReLU linear - ReLU softmax

(iii)
# of layers - 3 - - 3 -

# of neurons M + 8 512 8 6 256 M
act. function - ReLU linear - ReLU softmax

the channel model is assumed to be Rayleigh fading, i.e.,
p(h) = CN (h;0, INRNT

), and the system performance is
measured in terms of SER as a function of the average signal-
to-noise ratio (SNR), defined as SNR = PT /N0.

A. NN Architectures and Training Procedure

All AEs are implemented as multi-layer fully-connected
NNs, where the ReLU function is chosen as the activation
function. Detailed NN parameters are summarized in Table I,
where the shown parameters for the open-loop case are only
used for M = 4. For M = 16, the number of hidden layers
for both the transmitter and receiver NNs is increased to 5.
All AEs are trained by using the Adam optimizer [17] with a
learning rate 0.001 and batch size 2048.

B. Open-loop MIMO

We use the parameters NT = 2, NR = 1, NB = 2, L = 2,
and M ∈ {4, 16}. The training is performed at SNR = 15 dB
for M = 4 and SNR = 18 dB for M = 16 over 3 200 000
random channel realizations.

Fig. 4 shows the achieved SER results over a range of
SNRs. As a reference, the performance of the baseline scheme
described in Sec. II-A is also shown. For M = 4, the AE
achieves very similar performance to the baseline scheme,
indicating that the combination of a QPSK constellation and
Alamouti STBC is near-optimal in this case. For M = 16, the
AE outperforms the baseline scheme significantly at high SNR
when standard 16-QAM is used as the signal constellation. In
order to improve the baseline, we also used a geometrically-
shaped signal constellation for M = 16, which was obtained
by training a standard single-input single-output AE (see
Sec. III-A) over an AWGN channel at SNR = 12 dB. When
this geometrically-shaped constellation is used instead, the
baseline scheme has essentially the same performance as the
AE-based approach, indicating that the AE learns to perform
a joint optimization over the signal constellation and STBC.

Fig. 5 visualizes the learned transmitted symbols for M =
4. Particularly, the constellation points for 4 out of ML =
16 individual messages are highlighted by different markers.
From these plots, one can observe that the learned constellation
follows a very similar pattern as the Alamouti scheme, in the
sense that the symbols in subplot 1 are symmetric with respect
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Fig. 4: SER of the open-loop MIMO AE and the baseline scheme consisting of
standard M -QAM signal constellations, an Alamouti STBC, and a maximum-
likelihood receiver. The improved baseline for M = 16 uses a geometrically-
shaped signal constellation.
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Fig. 5: Learned transmitted symbols of the open-loop MIMO AE for M = 4.
(a) first antenna at time p = 1, (b) second antenna at p = 1, (c) first antenna
at p = 2 and (d) second antenna at p = 2. Constellation points for 4 out of
16 messages are highlighted with colored markers.

to subplot 4 along the x-axis, while subplot 2 is symmetric
with respect to subplot 3 along the y-axis.

C. Closed-loop MIMO

We use the parameters NT = 2, NR = 2, and M = 16,
corresponding to rate r = 4. Training is performed at a fixed
SNR = 15 dB over 40 960 000 random channel realizations.
Different from the open-loop case, we notice that a lot more
data samples are required for converging to a good solution.

As a baseline, we simulate the performance of the SVD-
based approach, in which the 2 × 2 MIMO channel is par-
allelized into two sub-channels. We first consider the same
baseline as in [14], where equal power is used at each antenna,
and both streams use QPSK modulation. However, depending

0 5 10 15 20

10−5

10−4

10−3

10−2
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100

SNR (dB)
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m

b
o
l
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r
ra
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SVD w/ QPSK

SVD w/ bit and power allocation

Autoencoder

Fig. 6: SER of the closed-loop MIMO AE for M = 16 and the baseline
scheme consisting of a QPSK constellation, SVD-based signal processing,
and a maximum-likelihood receiver. The improved baseline uses bit and power
allocation assuming BPSK, QPSK, 8-QAM, and 16-QAM constellations.

on the channel realization, the two individual sub-channels
will have different link quality, and bit and power allocation
is usually used to improve the overall system performance.
To that end, an improved baseline scheme was simulated by
solving (2) using exhaustive search assuming that the set of
available signal constellations is BPSK, QPSK, 8–QAM, and
16–QAM. Fig. 6 shows the achieved SER for both the AE
implementation as well as the two SVD-based approaches.
While the AE achieves better performance than the SVD-
based approach including bit and power allocation, we believe
that the baseline could be further improved by changing the
available set of signal constellations. These results indicate that
for a fixed targeted transmission rate, the closed-loop MIMO
AE learns to implicitly perform a combination of constellation
shaping, bit allocation, and power allocation jointly.

D. MU-MIMO

We use the parameters NT = 2, NR = 2, and M = 16,
corresponding to a sum rate r = 4. Training is performed
at a fixed SNR = 15 dB over 6 400 000 channel realization.
Compared to the previous two cases, there are now three
different NNs, one corresponding to the transmitter and two
to the individual users, where the same network architecture
is used for both users.

Fig. 7 shows the achieved SER results for the MU-MIMO
AE as well the performance of baseline approach with trans-
mitter ZF described in Sec. II-C. It can be seen that the
AE-based MU-MIMO scheme achieves significantly better
performance than the ZF-based approach, indicating that for
independently operating receivers, the AE can learn novel
encodings. Further improving the baseline scheme for the MU-
MIMO case is part of ongoing research.

E. Training Complexity

Fig. 8 visualizes the evolution of training loss as a func-
tion of the number of gradient updates. Surprisingly, for the
MU-MIMO case, even though the training process does not
appear to have fully converged yet, the AE still outperforms
the standard transmitter ZF approach quite significantly. We
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transmitter, and a maximum-likelihood receiver.
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believe that more training data or gradient updates can lead to
even better performance.

V. CONCLUSION

In this work, we have evaluated several AE-based MIMO
communication systems, in order to quantify gains with respect
to fair benchmarks. The systems under consideration were
open-loop MIMO, closed-loop MIMO and MU-MIMO, for
which the AE provides optimized mappings from messages to
transmit vectors, as well as optimized detectors. For open-loop
and closed-loop MIMO, we have shown that the gains of the
AE compared to the baselines can be partially attributed to
geometric constellation shaping and optimized bit and power
allocation. For MU-MIMO, we proposed a novel decentralized
AE structure that is demonstrated to outperform ZF precoding.
For each of these systems, we have provided open-source
implementations.

Nevertheless, there are several important limitations of
MIMO AEs, which deserve further study:

• Training complexity: The AE requires a very large
amount of training data, with large batch sizes, in order
to converge to a good solution. Smart selection of specific
channel realizations can improve convergence speed.

• Scalability: With more transmit and receive antennas or
more users, the complexity scaling of the NN (e.g., in
terms of layers) is currently unknown and the employed

one-hot encoding scheme causes input and output sizes
to grow exponentially with number of antennas and
rate. Alternative embeddings [18] or multi-hot sparse
categorical cross entropy could help alleviate the latter
issue. Both these issues affect training convergence (due
to more trainable parameters) and runtime computational
complexity.

• Rate adaptation: The considered AEs have a fixed data
rate, which limits possibilities for rate adaptation. New
NN architectures are needed to provide rate-adaptive
transmission.
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