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I. Hajnsek, G. Parrella, A. Marino, T. Eltoft, M. Necsoiu, L. Eriksson,
and M. Watanabe

Abstract

Synthetic aperture radar (SAR) provides large coverage
and high resolution, and it has been proven to be sensitive
to both surface and near-surface features related to accu-
mulation, ablation, and metamorphism of snow and firn.
Exploiting this sensitivity, SAR polarimetry and polari-
metric interferometry found application to land ice for
instance for the estimation of wave extinction (which
relates to sub surface ice volume structure) and for the
estimation of snow water equivalent (which relates to
snow density and depth). After presenting these
applications, the Chapter proceeds by reviewing
applications of SAR polarimetry to sea ice for the classifi-
cation of different ice types, the estimation of thickness,
and the characterisation of its surface. Finally, an applica-
tion to the characterisation of permafrost regions is

considered. For each application, the used (model-based)
decomposition and polarimetric parameters are critically
described, and real data results from relevant airborne
campaigns and space borne acquisitions are reported.

4.1 Introduction

Over the last 30 years, the use of air- and space borne remote
sensing has revolutionised glaciology through dramatic
improvements in the scale and in the temporal and spatial
resolutions of cryospheric observations. Remote sensing
offers the possibility to cover large areas quickly and often
at a low cost compared to more traditional methods. Many
types of remote sensing can be useful for glacier studies
including aerial photography and space borne sensors
operating in the visible spectrum, gravimetry, passive micro-
wave technology, and radar including satellite altimetry,
scatterometry, and other active imaging systems.

However, the greatest advance has been the successful
implementation of synthetic aperture radar (SAR). Over ice-
and snow-covered terrain, SAR has been proven to be sensi-
tive to both surface and near-surface features related to accu-
mulation, ablation, and metamorphism of snow and firn
(material in the intermediate stage between snow and ice).

Land Ice In the last decade, the coherent combination of
both interferometric and polarimetric observations has
established PolInSAR as a viable technique for the extraction
of geophysical parameters. However, the use of PolInSAR
over glaciers to date is restricted to a small number of air-
borne studies due to the complexity of glacier environments
and the inherent difficulties in validation. Temporal
decorrelation and the limited polarimetric modes of space-
borne sensors limited the role of space-borne SAR data.

Nevertheless, the high spatial and temporal resolution and
the (sensitive) observation space provide a considerable
potential in PolSAR and PolInSAR applications over land ice.
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Land Ice – Snow Characterisation For land ice, the main
issue today is the characterisation of the snow layer at the
surface and the underlying ice volume. The snow layer can be
characterised by means of two main parameters, the snow
depth and density, which can be jointly measured through the
snow water equivalent. Polarimetry can help to isolate the
scattering contribution of the snow volume from the one of
the underlying ground and with this it allows to establish a
relation with the snow water equivalent.

Land Ice – Ice Extinction Another important parameter is
the ice extinction that provides information about the ice vol-
ume structure and is, therefore, also an important indicator for
changes in the ice volume. Themain sensitivity is concentrated
in the first 10–20mof depth of the ice volume. The introduction
of polarimetry in combination with interferometry represented
a breakthrough for the retrieval of ice extinction.

Sea Ice The ice coverage of oceans plays a sensitive role in
the interaction between the atmosphere and the water surface,
while, at the same time, it affects sea traffic and human
activities. In the northern hemisphere, significant economic
components drive the need to study sea ice, in addition to the
scientific reasons, while climatological and environmental
aspects predominate the need for knowledge about the ice
situation in the southern hemisphere.

Themain interest lies in the information about sea ice extent,
movement, and conditions. The formation of sea ice depends
on a variety of environmental factors like temperature, wind,
current, and water salinity. At the same time, sea ice undergoes
a seasonal cycle and has several distinct stages of development.
Polarisation diversity has shown to increase the information
content of SAR imagery significantly and the benefits for sea
ice monitoring have been recognised early; despite this, the
amount of polarimetric SAR data of sea ice available today
remains limited. Most of the research work in this domain has
been based on airborne SAR data and later on images from
ALOS-PALSAR and RADARSAT-2. Many of the early stud-
ies based on polarimetric SAR focused on the physics of
scattering from sea ice and the resulting polarimetric signatures
of ice types. Major investigations were made for sea ice-type
classification using different algorithms.

Sea Ice – Classification The most used approach for sea ice
characterisation is based on image segmentation algorithms
applied on single, dual, or fully polarimetric SAR data. With
the introduction of RADARSAT-2, fully polarimetric SAR
images have been used on a wider basis in classification
procedures improving segmentation performance of different
ice types.

Sea Ice – Thickness For thin sea ice thickness is a sensitive
parameter affecting the heat exchange between atmosphere
and ocean. There is an increasing interest to better understand
and quantify this relation within the climate system as well as
to monitor and to model its state. During the last two decades,
the sensitivity of active microwave sensors and their potential
for thin sea ice thickness retrieval was intensively
investigated, both empirically and theoretically. A simplified
scattering solution for the rough surface case of polarised
backscattering of thin sea ice has been established. In addi-
tion, a theoretical base for the relation of co-polarised polari-
metric coefficients (co-pol ratio and phase difference,
complex correlation coefficient) – being independent of sur-
face roughness – to the thickness of thin sea ice was devel-
oped in L- and X-band.

Sea Ice – Surface Characterisation Sea ice surface rough-
ness is another important parameter together with sea ice
thickness for the thermodynamic exchange between atmo-
sphere and ocean. Although not yet fully understood and
quantified, sea ice surface roughness is used as an input
parameter for weather prediction modelling. Several works
consider surface roughness algorithms for bare surface
applications, but only few studies investigate their use on
sea ice surfaces. However, with fully polarimetric airborne
sensors, first data sets were acquired to test and develop this
application.

There are two main parties interested into cryosphere
applications for either ecosystem change research or indus-
trial interest (see Table 4.1). The main motivation is to infer
the measured snow and ice parameters into ecosystem change
models and use them as an input for climate change model
predictions or have a commercial interest as for example
securing continuous ship traffic roads.

Table 4.1 Polarimetric SAR applications in cryosphere: use and motivation

(End) users Application(s) Interest/motivation

Authorities/agencies research Snow characterisation Justification of subsidies and fraud detection, acreage

Retreat of glaciers Control in regions suffering droughts or with scarce water resources

Sea ice characterisation Economic and market predictions, price regulations, etc.

Commercial Sea ice extend, movement, condition Ship traffic road mapping
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4.2 Land Ice Extinction Estimation Using
PolInSAR

4.2.1 Introduction, Motivation, and Literature
Review

Monitoring glaciers and ice sheets is a primary task to under-
stand and quantify climate change. Mass balance is the most
important descriptor of the health of a glacier and is the final
objective of nearly all glacier monitoring studies. It expresses
the total mass change of a glacier in 1 year and is computed
by the algebraic sum of accumulation (all processes by which
material is added to a glacier) and ablation (all processes by
which snow or ice is lost from a glacier). Hence, mass
balance is an important indicator of a glacier’s likely
response to climate change. There are several reasons why
direct observations of mass balance are either impractical or
too inaccurate to be of value, in which case it may be useful to
measure a proxy variable that is qualitatively or quantita-
tively related to mass balance or to a change in mass balance.
The two main existing approaches are to monitor or track
changes in the extent of the various glacier facies
(characterised by differing degrees of summer melt) and to
make repeated observations of changes in the areal extent and
terminus position of a glacier over time. Areal extent is still
today best measured with optical imagery, although radar
imagery has shown significant promise for facies
classification.

Because dry snow is relatively transparent at microwave
frequencies, end-of-summer conditions are preserved in win-
ter SAR images and the different melting and freezing
patterns of the various zones result in distinct radar backscat-
ter properties. SAR imagery has been used to help delineate
facies boundaries, although interpretation can be difficult as
variations in backscatter are also caused by changes in the
surface dielectric properties, roughness, and topography. The
additional information provided by PolInSAR can help elim-
inate this ambiguity by separating surface and volume
contributions and thus lead to a more accurate
characterisation of melt extent. PolInSAR-derived glacier
properties such as facies boundaries and the presence of
melt features could thus be used as proxy indicators of
changes in glacier mass balance and regional climate. Both
facies and melt structures are related to the electromagnetic
ice extinction through a variation of vertical density.

The estimation of a parameter such as extinction is of high
relevance for glaciologists since it contains information on
the density and internal structure of the ice:

• It is useful for characterising regions of greater or lesser
volume scatter (Hoen 2001), and in turn increasing the
accuracy of facies delineation and classification.

• It provides a better understanding of glacier dynamics,
monitoring the extent of the various melt zones (facies)
and mass balance fluctuations that may be occurring in the
Polar Regions as a result of climatic changes (Davis and
Poznyak 1993).

• Extinction also has implications on the accuracy of
existing radar products, as knowledge of its temporal and
spatial variability could help in correcting InSAR (Dall
2007) and radar altimeter-derived elevation maps which
suffer from an extinction-dependent penetration bias
(Jezek et al. 1994).

Despite the significant progress in determining the spatial
extent of glaciers, in mapping surface features and in deter-
mining surface elevation, large uncertainties remain in
estimating reliable glacier accumulation rates, ice thickness,
subsurface structures and discharge rates. Consequently,
even today it is challenging to grasp the structure of the ice
volume with SAR remote sensing methods.

The first SAR images, taken in 1978 by Seasat (L-band),
revealed the potential of SAR for identifying surface and
subsurface features and in classifying the glacier zones
(Bindschadler et al. 1987; Rott 1984). A significant step
forward was done with the introduction of experimental
fully polarimetric SAR systems. PolSAR data over alpine
glaciers were provided by the SIR-C (1994) at C- and
L-band (Mätzler et al. 1984).

SAR interferometry has been widely applied to measure
glacier topography and displacements at accuracies of
centimetres to metres (Dowdeswell et al. 1999; Massonnet
and Feigl 1998; Mohr and Madsen 1996; Joughin et al.
1998). Preliminary investigations into the relation between
interferometric coherence and the rate of extinction of the
radar signal in ice were conducted in (Hoen 2001; Hoen and
Zebker 2000) in which the ice was modelled as a homoge-
neous, lossy, and infinite scattering volume. However, polar-
imetric effects were not included in the coherence model.

The use of PolInSAR over glaciers is restricted to a small
number of airborne studies (Dall et al. 2003, 2004; Stebler
et al. 2005) due to temporal decorrelation and to the limited
polarimetric modes of space-borne sensors, as well as to the
complexity of glacier environments and to difficulties in
validation. In (Stebler et al. 2005), the authors describe
PolInSAR signatures at L- and P-band over an alpine glacier,
although no model is suggested to explain polarisation
dependencies in the backscatter and interferometric coher-
ence. PolInSAR coherences at L-band over Greenland are
presented in (Dall et al. 2003), and several models are con-
sidered in (Dall et al. 2004), although no physically model
consistent with observed coherence magnitude and phase was
found. Given the high resolution and multiple observables
offered by PolInSAR on a pixel-by-pixel basis, there is

4 Cryosphere Applications 181



considerable potential for its use in glaciological applications
if a model relating observables to ice properties could be
found.

In the recent literature, great attention has been given to
model-based decomposition techniques. One of the first
model-based polarimetric decomposition for ice was proposed
in (Sharma et al. 2011). The main scattering contributions were
assumed to come from a shallow snow-ice interface, the under-
lying possibly oriented ice volume (of dipole-shaped particles)
and an oriented sastrugi field at the surface.

4.2.2 Methodology

The ice extinction estimation method used for this application
was proposed in (Sharma 2010) and can be seen as made of
two parts: model-based polarimetric decomposition and
PolInSAR inversion procedure. The principal objective of
the polarimetric decomposition is to break down the total
scattering within one resolution cell into a sum of elementary
scattering contributions and to associate a physical mecha-
nism to each component. The advantage of the model-based
approach is that it is based on the physics of radar scattering;
hence the interpretation of its results is relatively straightfor-
ward (Van Zyl et al. 2008).

The considered decomposition technique assumes, in a
more general case, that the total backscattering consists of
three components: surface, volume, and oriented sastrugi
field. Assuming that the mentioned contributions are uncor-
related, the combined covariance matrix is the sum of the
three individual matrices plus a diagonal noise matrix N:

Ctot ¼ Cg þ Cv þ Cs þ N ð4:1Þ

where Cg, Cv, and Cs indicate the covariance matrices of the
surface, volume, and sastrugi contribution, respectively.

The surface scattering is postulated to originate from a
slightly rough snow-ice interface and modelled using the
first-order Small Perturbation Model (SPM). The overlying
dry snow layer is assumed to be transparent at long wave-
length (L- and P-band) and only responsible for refraction of
the incident wave.

The ice volume component is believed to be due to a
dominant scattering mechanism related to ice crystals or ice
inclusions (ice pipes and lenses). Consequently, the ice mass
is modelled as an infinite homogeneous volume of identically
shaped and sized scatterers. For simplicity, the scatterers are
assumed to be thin randomly oriented dipoles. Transmission
and propagation effects are also introduced to model a more
realistic scenario.

A third relevant scattering contribution is expected to
originate from a shallow oriented sastrugi field. This consists
of streamlined snow dunes formed by wind erosion and
deposition on the snow surface. It is generally oriented paral-
lel to the main wind direction, and its size ranges from one to
a few metres. An oriented sastrugi field is then modelled as an
oriented volume of dipoles where all scatterers are contained
in the plane of the air-snow interface.

The importance of possible multiple scattering
mechanisms has been investigated by analysing circular
ratio values (RR/RL and LL/RL) observed in the dataset
selected for this showcase. The available L-band and
P-band acquisitions show low circular ratio, with values
ranging between 0.2 and 0.4. Only in some cases at L-band,
it reaches values higher than 1.0 in the extreme far range
region. This general behaviour can be interpreted as an indi-
cator of the low importance of multiple scattering, which was
consequently neglected in the model.

Decomposition results are used to estimate surface-to-
volume ratios μ (where the surface contribution includes the
sastrugi component) for each available polarimetric channel
in order to isolate the volume backscattering contribution.

In a second step, the outcome of the polarimetric decom-
position is used as input in an interferometric coherence
model, which is finally inverted to retrieve ice extinction for
each polarimetric channel. In detail, surface-to-volume ratios
are employed to estimate the volumetric coherence γVol from
the total InSAR coherence γ of the corresponding channel
using the following relations:

γ ¼ ejϕγSNRγrangeγz ð4:2Þ

γz ¼
γVol keð Þ þ μ

1þ μ
ð4:3Þ

where ϕ is a topographic phase term, γSNR is the coherence
term due to SNR decorrelation, γrange represents the coher-
ence due to range spectral decorrelation, and γz the term
dependent only on the vertical distribution of the scatterers.
In (4.3), μ is the estimated surface-to-volume ratio, and
γVol(ke) the volume decorrelation expressed as function of
the extinction coefficient ke to be estimated. In order to
account for the propagation within the ice volume, the verti-
cal wavenumber kz has been modified by considering the
dielectric constant of ice.

The range spectral decorrelation (γrange) and SNR
decorrelation (γSNR) can be separately estimated according
to (Hoen and Zebker 2000; Zebker and Villasenor 1992),
respectively. At this point, the extinction coefficient can be
inverted from γVol for each polarisation and baseline.
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4.2.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on land ice extinc-
tion estimation are summarised in Table 4.2 and further
described in the Appendix.

As shown in Fig. 4.1, surface-to-volume scattering ratios
estimated by means of the polarimetric decomposition are
used in combination with PolInSAR coherences and the
infinite-uniform-volume-underground model to determine
the ice extinction coefficient. The PolInSAR inversion proce-
dure is separately applied to each polarimetric channel. A

spatial averaging window of 100 effective looks is used to
compute interferometric coherences, corresponding to an
approximately square window of 20 � 20 m in ground
range – azimuth geometry. Results from multiple baselines
are combined by eliminating solutions from extremely small
baselines (which have no interferometric sensitivity) and
from longer baselines more susceptible to insufficiencies in
modelling. Results are then averaged from the remaining
valid baselines on a pixel-by-pixel basis. For brevity, results
of polarimetric decomposition and extinctions inversion are
shown in the following only for ascending acquisitions for
the Summit test site. Figures 4.2 and 4.3 show the

Table 4.2 Test sites and corresponding radar and validation data selected for the generation of showcases on land ice extinction estimation

Application/product Test site – Radar data Reference data

Land ice extinction estimation Summit, Austfonna, Svalbard GPR profiles, meteorological data, snow pit

Etonbreen, Austfonna, Svalbard

ICESAR 2007, E-SAR, L-/P-band full-pol

Fig. 4.1 Workflow for extinction
inversion using PolInSAR
observables (Sharma 2010)
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Fig. 4.2 Decomposed power contributions from L-band ascending acquisitions of March 2007, for the Summit test site. From left to right, surface,
volume, and oriented sastrugi contributions are shown

Fig. 4.3 Decomposed power contributions from P-band ascending acquisitions of March 2007, for the Summit test site. From left to right, surface,
volume and oriented sastrugi contributions are reported



decomposed powers for the surface, volume, and sastrugi
contributions at L- and P-band, respectively, for the Summit
test site. As expected, the surface contribution is generally
higher in the near range, due to the steeper incidence angle,
while it decreases for higher incidence angle at both
frequencies. Interestingly, the estimated volume power is
rather different at L- and P-band. In the first case, Fig. 4.2
shows a quite homogeneous image, with slight increase from
the near to the far range, consistent with the behaviour of the
surface component described above. Figure 4.3 depicts a
rather different scenario for P-band as the volume component
varies more within the scene. Areas characterised by higher
volume contribution might be related to the presence of
abundant melt features (ice pipes, lenses) located deeper in
the firn layer, that can only be detected at P-band due to the
enhanced penetration capability. Finally, decomposed sas-
trugi powers point out a stronger influence on L-band
measurements than at P-band, confirming that longer
wavelengths are more sensitive to the underlying ice volume.

A first validation of the estimated extinction values has
been carried out by comparison with published laboratory
experiments on pure ice from (Tiuri et al. 1984; Ulaby et al.
1986a; Dowdeswell and Drewry 2004; Warren and Brandt

2008). These studies report absorption extinction coefficients
of 0.02 to 0.09 dB/m at L- and P-band for temperatures
ranging from �8 to �5 �C, with L-band extinctions slightly
larger than P-band values. Extinctions derived at L-band
from glacier ice samples include one study from the
dry-zone of Antarctica yielding 0.29 dB/m at 1.5 GHz and
0.04 dB/m at 0.9 GHz (Holmlund et al. 2000) and a second
study from the Canadian Arctic quoting a value of 0.05 dB/m
at 1.3 GHz (Uratsuka et al. 1996). At P-band an extinction
rate of 0.03 dB/m was derived from GPR data in the percola-
tion zone of central Greenland (Paden et al. 2007). Compar-
ing these values to the experimentally derived results from
the firn zone at Summit (see Fig. 4.4), the averaged L-band
results from the Pol- InSAR model of around 0.1 dB/m are
reasonable when compared to (Holmlund et al. 2000), falling
between the extinctions derived for 0.9 and 1.5 GHz. The
L-band extinctions at Summit are somewhat higher than that
quoted in (Uratsuka et al. 1996), although the glacier faces
for (Uratsuka et al. 1996) is unknown, such that it may
correspond to relatively pure ice such as in the ablation or
superimposed ice zones without ice inclusions to introduce
scattering loss. At P-band, there are higher extinctions
(>0.15 dB/m) in areas of concentrated potential melt

Fig. 4.4 Inverted extinctions ke [dB/m] for HH (left), VV (middle), and HV (right) polarisations, from ascending L-band acquisitions of March
2007 over Summit
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structures at Summit, but background values are approxi-
mately 0.05 dB/m in Fig. 4.5 for the co-polarisations, in
rough agreement with (Paden et al. 2007). At Etonbreen in
the superimposed ice zone, extinctions at both L-band and
P-band are lower than at Summit, with values close to
0.05 dB/m at L-band and 0.04 dB/m at P-band for the
co-polarisations.

Only a relative comparison between the GPR and SAR
data is possible, because of the differences in frequency,
depth of integration (only around 10 m for the GPR data
compared to the much deeper SAR penetration depths
inverted from the estimated extinctions), and most signifi-
cantly, differences in acquisition geometry. In fact, the GPR
is nadir-looking and thus has a strong surface reflection
component compared with the SAR side-looking backscatter.
Nevertheless, a relative comparison of GPR backscattering
coefficients with the SAR data was carried out in (Sharma
2010) to verify whether the volume scattering seen by the
GPR is related to that from the inverted extinctions. How-
ever, better agreements were observed between inverted
extinctions and GPR backscatter at L-band. This could indi-
cate that the polarimetric decomposition was able to remove
the surface contribution from the SAR data. At P-band, a
worse agreement was found, probably because of the SAR’s
deeper penetrations, well below the range of the GPR data.

4.2.4 Comparison with Single/Dual
Polarisation Data

For this application, a comparison with a dual-polarimetric
case is not possible. As seen in Sect. 4.2.2, the employed
methodology is based on a polarimetric-decomposition tech-
nique for which fully polarimetric SAR data are needed.
Moreover, the complexity of the scattering mechanisms
involved in an ice scenario still represents a very limiting
factor for the development of further electromagnetic models.
Consequently, there is still a lack of studies addressing ice
extinction by means of SAR, and the adopted methodology
represents one of the very few published works in this field.

4.2.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application,
and Conclusions

The potential of SAR for ice extinction retrieval is due to its
capability to penetrate into the ice masses for several tens of
metres at long wavelengths. In addition, the typical side-
looking acquisition geometry of SAR sensors avoids strong
echoes from glaciers surface like in the case of GPR, and the
total backscatter results to be more related to the ice volume

Fig. 4.5 Inverted extinctions ke [dB/m] for HH (left), VV (middle) and HV (right) polarisations, from ascending P-band acquisitions of March 2007
over Summit
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structure. In this sense, polarimetry has a crucial role in the
understanding of the scattering mechanisms involved in this
kind of scenario, and polarimetric model-based decomposi-
tion techniques are actually a very powerful tool to model and
interpret SAR signatures. The advantage of model-based
approaches is that they are based on the physics of the radar
scattering and the characteristics of the investigated scenario;
hence their interpretation turns very straightforward.

4.3 Snow Water Equivalent Retrieval

4.3.1 Introduction, Motivation, and Literature
Review

Snow is a basic reservoir of water and a significant part of the
Earth’s population relies on seasonal snow-packs and glacier
for their water supply (Barnett et al. 2005). Snow also
represents a critical component of the global water cycle
and climate system. Consequently, the global warming
could have a severe impact on several aspects of our society.
For this reason, spatially distributed information on snow
accumulation rate, glaciers mass balance, lake ice, and sea
ice are strongly required. In fact they became essential for the
development of large-scale hydrological and climate models,
in order to better understand the on-going changes and to
predict future climate dynamics. In this sense, satellite
missions are capable to provide global and systematic
observations also over the Polar Regions, where the extreme
climate makes in situ studies very challenging. For snow
cover monitoring, snow water equivalent (SWE) is the pri-
mary parameter to estimate. SWE can be defined in units of
kg/m2 as the product of snow depth and density, or in units of
m by normalising it to the water density (ρwater ¼ 1 kg/m3).

Microwave remote sensing overcomes several limiting
factors, like weather and sun illumination dependence, affect-
ing optical and infrared techniques. Its potential in monitor-
ing snow cover properties is related to retrieval of the electro-
magnetic properties (e.g. dielectric constant) of snow. In the
microwave range, snow exhibits well-defined spectral and
polarimetric signatures related to its special dielectric
proprieties which, in turn, depend on the micro- and macro-
scopic structure and geometry of the snowpack (Maetzler
1998). These characteristics make SAR suitable for studying
and monitoring snow cover.

Due to the high penetration capability of microwaves (for
frequencies up to X-band) and low attenuation of dry snow, a
snowpack behaves as a quasi-transparent medium. In this
case, the major scattering source is the snow/ground interface
(Shi et al. 1993). Hence, X-band or higher frequency
(e.g. Ku-band) SAR sensors are needed for snow depth
measurement and snowpack characterisation because of

their higher sensitivity (shorter wavelength) to the snowpack
structure (Shi and Dozier 1993). Considering a typical snow
cover scenario, several parameters influence the measured
backscattering. The most significant include snow density
and depth, grain size distribution, wetness, and their variation
along depth as well as snow surface roughness underlying
soil conditions (permittivity, roughness, and topography).

First investigations concerning snow parameter estimation
by means of SAR have been addressed with single frequency
and single polarisation (both VV and HH) data mainly due to
the restricted operation modes of early airborne and space
borne SAR sensors (Guneriussen et al. 2001; Shi and Dozier
1995, 2000a, b). Several methods have been developed for
snow cover mapping using multi-temporal SAR data. Time
series C-band SAR data have been used to estimate SWE of a
snow cover in the Appalachian Mountains in Southern Que-
bec (Bernier and Fortin 1998). The study revealed that the
scattering from a shallow snow layer (SWE < 20 cm) is
undetectable at C-band.

Several experiments have been conducted by using multi-
frequency (L-, C-, and X-band) and multi-polarisation radar
backscatter data from the Shuttle Imaging Radar-C (SIR-C)
mission to estimate snow density, depth, and particle size
(Shi and Dozier 2000a, b). The retrieval approach was based
on a physical model and provided reasonable estimates of
SWE, validated with in situ measurements. Nevertheless, the
estimation uncertainty remained large, probably due to the
already mentioned smaller sensitivity of low frequencies to
SWE than higher microwave frequencies. Recent modelling
approaches indicate that combined observations at X- and
Ku-bands are more suitable for remote sensing of SWE (Shi
2006). In this sense, the dual-frequency COld REgions
Hydrology High-resolution Observatory (CoReH2O) Candi-
date Mission was selected from the European Space Agency
(ESA) for feasibility studies in the frame of the Earth
Explorer Programme (European Space Agency 2008). The
CoReH2O SWE retrieval procedure is based on the inversion
of a two-layer (snow-over-ground) radiative transfer model,
using measured dual polarisation (VV and VH) backscatter-
ing as input together with some a priori information
(European Space Agency 2008). This procedure is specifi-
cally developed for open areas under the assumption of a dry
snow cover.

In the last years, the availability of fully polarimetric
space-borne X-band data (e.g. from TerraSAR-X) made pos-
sible first investigations on the potential of polarimetry in
estimating snow cover properties from space. For this, a first
polarimetric decomposition technique for a snow-cover sce-
nario was proposed in (Pisciottano et al. 2011) to discrimi-
nate the scattering contribution of the snow-pack from the
underlying ground, in order to extract the snow layers
characteristics independently from the ground conditions.
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4.3.2 Methodology

The SWE estimation procedure developed for this applica-
tion is based on a two-step procedure. In the first stage, the
polarimetric decomposition proposed in (Pisciottano et al.
2011) is applied on fully polarimetric data acquired at X-
and C-band to separate volume and ground scattering contri-
bution, then an entropy-based criterion is used to mask out
vegetated areas. As second step, the decomposed VV and VH
backscattered power components are used in the place of the
respective backscattering coefficient as input for the
CoReH2O inversion algorithm. For this, the original estima-
tion procedure has been adapted to the single-frequency case
(X- or C-band) considering only the modelling of the snow-
volume backscattering. Some a priori information (from
ground measurements) is also needed (e.g. snow density
and temperature) as input for the estimation procedure.

The main advantage of using polarimetric decomposition
for this application is the possibility to work with the only
snow-volume scattering component. In this way, the SWE
inversion is not depending on the ground layer conditions
(dielectric constant, soil moisture, and roughness) anymore
and the modelling of a ground scattering component becomes
unnecessary. Consequently, the number of a-priori informa-
tion needed for the inversion algorithm is considerably
reduced.

4.3.2.1 Polarimetric Decomposition
for Snow-Covered Areas

The polarimetric decomposition proposed in (Pisciottano
et al. 2011) is used for the developed SWE retrieval proce-
dure over open areas. It consists in a two-component decom-
position, derived as adaptation of the model proposed in
(Freeman 2007), originally developed for a volume of vege-
tation covering the ground. In the case of a snow cover
scenario, the volume scattering component is attributable to
the snow cover, acting as a volume of particles (snow grains),
whereas the surface-like scattering contribution is due to the
underlying ground. Both volume and ground component can
be modelled by means of their respective coherency matrices.

The snow layer is assumed to be a volume of uniformly
distributed and randomly oriented particles. An additional
parameter is the shape factor ρ, ranging from ρ ¼ 1/3 for
the case of dipoles to ρ ¼ 1 for spheres. Intermediate values
of ρ indicate spheroidal particles (Nghiem et al. 1992). Under
this assumption, the volume coherency matrix can be
expressed as (Hajnsek et al. 2007):

Tv ¼ f v

1þ ρ 0 0

0 1� ρ 0

0 0 1� ρ

2
64

3
75 ð4:4Þ

where fv corresponds to the intensity of the volume scattering
component.

The surface scattering component is modelled according
to the Bragg model and its coherency matrix results to be:

Ts ¼ f s

1 β� 0

β βj j2 0

0 0 0

2
64

3
75 ð4:5Þ

where fs is the intensity of the surface scattering component
and β is defined as:

β ¼ Rh � Rv

Rh þ Rv
ð4:6Þ

with Rh and Rv representing the Bragg scattering coefficients
for horizontally and vertically polarised wave, respectively.

The power contribution of the two components to the total
backscattered power Ptot can now be written as:

Ps ¼ f s 1þ βj j2
� �

ð4:7Þ

Pv ¼ f v 3� ρð Þ ð4:8Þ

corresponding to the trace of the associated coherency matri-
ces. Using the transformation from coherency to covariance
matrix (Hajnsek 2001) the VV and VH power contribution of
the volume scattering component can be derived and written
as:

PVV
v ¼ f v ð4:9Þ

PVH
v ¼ f v

1� ρ
2

ð4:10Þ

The quantities fv and ρ can be estimated from the coher-
ency matrix of the real data as suggested in (Pisciottano et al.
2011).

4.3.2.2 Snow Water Equivalent Retrieval
Algorithm

The original SWE inversion procedure proposed in
(European Space Agency 2008) for the CoReH2O candidate
mission is based on a dual frequency (X- and Ku-band) and
dual polarisation approach and is developed for dry snow
cover in open areas. The core of the procedure is a two-layer
Dense Medium Radiative Transfer (DMRT) backscatter
model. It relates the physical properties of the snow layer
and the underlying ground to the SAR backscattering in the
VV and VH polarisations. In particular, the snow volume is
modelled as a layer of uniformly distributed spherical
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particles (snow grains), which have same size. Under this
hypothesis, the volume backscatter contribution can be writ-
ten as (Rott et al. 2008; Ulaby et al. 1984):

σvpq ϑtð Þ ¼ T2
pq ϑtð Þ

� ωpq

2
1� exp �2

keSWE
ρs cos ϑtð Þ

� �� �
cos ϑtð Þ

� �
ð4:11Þ

where Tpq is the transmission coefficient at the air-snow
interface; p and q the transmitted and received polarisation,
respectively; and ϑt the transmitted angle through the snow-
pack. The snow parameters involved are the density ρs, the
extinction coefficient ke, the scattering albedo ω, and
the SWE.

The entire estimation algorithm can be split in two steps.
First, VV and VH backscatter coefficients are simulated
using the DMRT model, together with a set of a priori
information and initialisation values of the parameters to
estimate: SWE and grain size. Successively, a constrained
optimisation method is applied pixel by pixel to iteratively
match the simulated X- and Ku-band VV/VH backscatter
coefficients to the measured values. The input values of
SWE and grain size ensuring the reached optimum condition
are finally assumed as estimates.

As already mentioned, this procedure is strongly depen-
dent on the required a priori information about the ground
and snowpack conditions. This kind of information are usu-
ally obtained through in situ measurements which are rather
expensive, time-consuming, and can be conducted only on
very small scale. Consequently, the dependency on a priori
information represents a strong limitation when deriving
SWE maps (and not single-point values) over a certain area.

In this sense, the modified SWE inversion procedure
based on polarimetric decomposition results to be much
more robust since the dependency on most of the a priori
information is eliminated. First, the CoReH2O algorithm has

been adapted for a single-frequency case (X- or C-band).
Then, the capability of the polarimetric decomposition to
isolate the snow volume scattering component allows to
focus the DMRT modelling on the only volume component.
In fact, assuming that the volume backscattering is uncorre-
lated to the underlying ground layer (no second order scatter-
ing considered), there is no need to know soil conditions.
This represents a significant simplification of the entire pro-
cedure since the ground contribution strongly influences the
total backscattering. In addition, the sensitivity analysis of the
CoReH2O DMRTmodel to the snow properties performed in
(Pisciottano et al. 2011) showed that the backscattering con-
tribution from the snow layer is mainly influenced by SWE
and grain size, and only slightly dependent on other
parameters, like snow temperature and density. This means
that the latter two quantities need to be known for a rigorous
SWE inversion, whereas a slightly rougher estimate can be
obtained by assuming fixed values of snow temperature and
density over the processed SAR scene. The scheme in
Fig. 4.6 shows the working flow-line of the proposed SWE
estimation procedure. The final products are SWE maps with
a spatial resolution of about 20 � 20 m in the case of
TerraSAR-X data and 40 � 40 m for RADARSAT-2.

4.3.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on snow water
equivalent retrieval are summarised in Table 4.3 and further
described in the Appendix.

The SWE estimation procedure described before has been
applied over different subsets of the available TerraSAR-X
and RADARSAT-2 dataset. A validation could be carried out
only over the small areas where the ground measurements
took place. For brevity, the focus is on test site of
Sodankylae. In particular, the results shown in the following
are obtained in correspondence of the Intensive Observation

Fig. 4.6 Scheme of the SWE
estimation procedure based on
polarimetric decomposition and
modified CoReH2O algorithm

4 Cryosphere Applications 189



Area (IOA), where continuous SWE measurements are avail-
able for the same period of the SAR acquisitions.

The three TerraSAR-X acquisitions available for this test
site were acquired on the 11th and 22nd of April and the 3rd
of May 2010. In these dates, point measurements of SWE in
the IOA reported values of 205 mm, 191 mm, and 164 mm,
respectively. The corresponding retrieved values obtained
from the inversion procedure, using snow density and tem-
perature measurements as a priori information, are shown in
Fig. 4.7, where a validation is also performed by comparison
with the respective measured values of SWE. As clearly
shown in Fig. 4.8, for the acquisition of April, the SWE
inversion performs very well; estimated values of 211 mm
and 193 mm correspond to measured values of 205 mm and
191 mm, respectively. These results definitely satisfy the
accuracy requirement established for the CoReH2O mission.
For the case of May, the worse performance can be due to the
raising of air temperature reported in the ground
measurements for that period. This may have led to a change
in the snow-pack structure, moving away from the validity
hypothesis of the used DMRT model. For the case of
RADARSAT-2, preliminary results (see Fig. 4.9) seem to
confirm the conclusions of (Bernier and Fortin 1998) since

Fig. 4.7 The image on the left shows the entropy-based mask for open
areas obtained from the TerraSAR-X acquisition of the 11.04.2010 over
Sodankylae. The red box indicates the subset including the IOA where a

demonstration of SWE estimation has been performed (image on the
right). SWE values are retrieved over a 60 � 60 pixels subset and range
from 0 mm (black) to 240 mm (red)

Table 4.3 Test sites and corresponding radar and validation data selected for the generation of showcases on snow water equivalent retrieval

Application/product Test site – Radar data Reference data

Snow water equivalent
retrieval

Sodankylae, Finland Ground measurements (CASIX
experiment)3 TerraSAR-X quad-pol scenes (2010), 8 RADARSAT-2 quad-pol scenes

(2011–2012)

Churchill, Canada

3 TerraSAR-X quad-pol scenes (2010) 5 RADARSAT-2 quad-pol scenes
(2011–12)

Fig. 4.8 Validation of estimated SWE over the IOA of the Sodankylae
test site using the three TerraSAR-X acquisitions. Blue, green, and red
symbols are referred to the dates of 11-04-2010, 22-04-2010 and 03-05-
2010, respectively
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almost no sensitivity can be observed along time in presence
of the shallow snow cover (SWE always lower than 20 cm)
reported for Sodankylae.

4.3.4 Comparison with Single/Dual
Polarisation Data

Some comparisons have been carried out between the
employed methodology, based on fully polarimetric data,
and the original CoReH2O dual polarimetric retrieval proce-
dure. Preliminary results show that the procedure based on
polarimetric decomposition is more robust than the dual-pol
procedure, especially when tested over different ground
conditions (bare soil, swamp). This is attributable to the
capability of the polarimetric-decomposition to extract the
volume scattering component quite efficiently over different
kinds of ground, while the efficiency of DRTM model for the
ground scattering proposed in the dual-pol approach is
severely compromised when soil condition are not known
(Pisciottano et al. 2011). Nevertheless, these results have to
be confirmed by further investigations.

4.3.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

The importance of polarimetry in this kind of applications is
well established, as already discussed in the literature review.
Single polarisation studies have shown a very limited poten-
tial and were mainly employed for snow cover mapping. The

introduction of polarimetry, even if with a dual-pol configu-
ration, allowed deeper investigations about the scattering
mechanisms and their relative contributions to the total scat-
tering. They also contributed significantly for the develop-
ment of more detailed physical models. Nevertheless, as
observed for the case of the CoReH2O SWE inversion, a
dual polarisation approach requires a significant a priori
knowledge to be able to estimate snow properties
(e.g. SWE, grain size, etc.). The introduction of fully polari-
metric data makes possible the development of decomposi-
tion techniques for snow cover scenarios and has the big
potential to reduce (almost eliminate) the need of any a priori
information about the investigated test site.

4.4 Sea Ice Characterisation

4.4.1 Sea Ice Observation
with Quad-Polarimetric SAR

4.4.1.1 Introduction, Motivation, and Literature
Review

The observation of sea ice is a major topic in remote sensing
due to the difficulty of performing frequent in situ
expeditions (Elachi and Van Zyl 2006; Gareth Rees 2006;
Jackson and Apel 2004). Monitoring of sea ice is important
for many environmental issues (Sandven et al. 2006). First of
all, it is a sensitive climate indicator, and it plays an important
role in global climate systems. It restricts the exchange of
heat and chemical constituents between ocean and atmo-
sphere acting as an insulator. Moreover, it influences the
global climate system with effects related to its elevated

Fig. 4.9 Time series of measured SWE (blue), snow depth (orange), and inverted SWE (green) using RADARSAT-2 data for the Sodankylae IOA
test site
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albedo, reducing the amount of solar radiation absorbed at the
Earth’s surface. On the other hand, sea ice affects oceanic
circulation directly by the rejection of salt to the underlying
ocean during ice growth, which is responsible for deep water
formation. Besides these, the possibility and safety of navi-
gation in Polar Regions is severely influenced by the pres-
ence of sea ice.

Microwave sensors and synthetic aperture radar (SAR) are
very valuable for monitoring sea ice since they can acquire
information in absence of solar illumination (i.e. during Polar
nights) and with almost any weather conditions
(Franceschetti and Lanari 1999). Unfortunately, the descrip-
tion of the backscattering behaviour of sea ice is particularly
challenging. For this reason, many scientists moved towards
systems able to increase the amount of information acquired.
In this context, polarimetry plays a key role, because it is able
to enhance dramatically the discrimination capability of the
observed target, solving many ambiguities revealed in single
polarisation images (Cloude 2009; Lee and Pottier 2009; Van
Zyl 2011). Specifically, sea ice could be modelled as a
layered media showing several interfaces: air-snow, snow-
ice, and (eventually) ice-water (Elachi and Van Zyl 2006;
Jackson and Apel 2004; Drinkwater et al. 1992; Nghiem et al.
1995a, b; Ulaby et al. 1986b).

An introduction to polarimetry is provided in the first
chapters of this book. In this section we only concentrate on
the polarimetric models introduced to characterise sea ice.
Several models were proposed to predict the polarimetric
behaviour of sea ice (Nghiem et al. 1995a, b; Ulaby et al.
1986b; Carlström 1997; Tjuatja et al. 1992). A thorough
description of them is outside the purpose of this Section.

4.4.1.1.1 Polarimetric Models
To understand the backscattering from ice, it is important to
know the physical differences between different ice types.
Here, only a very short inventory is reported and the reader is
redirected to the World Meteorological Organization (WMO)
Sea Ice Nomenclature document for further details. Follow-
ing its formation, the ice can be defined new ice (frazil ice,
grease ice, slush and shuga), nilas (below 10 cm thick),
young ice (10–30 cm thick), first year ice (30 cm to 2 m
thick), and old or multi-year ice (that has survived at least one
melting season). The floating structures are generally called
floes (that can have extensions from few metres to several
kilometres). Another structure commonly seen during ice
formation is pancakes (generally smaller than 3 m) that may
present raised rims and draft. With deformed ice, it is
designed ice that suffered deformations due to pressure or
melting. Some classical structures are ridges and hummocks.
Another interesting feature of sea ice areas are leads, which
are openings (cracks) in the ice tens of metres large and up to
several kilometres long. Each of the ice formations or
features will have a characteristic scattering behaviour.

Sea ice is generally modelled as a multi-layer medium:

1. The first interface is between air and snow cover (Tjuatja
et al. 1992; Beaven et al. 1995). The behaviour of this first
layer is strongly dependent on the dielectric properties of
the snow, which are dependent on factors as water content
and temperature. If the dielectric constant is small enough
(i.e. dry and cold conditions), this interface will not scatter
much, and the snow will be transparent to the electromag-
netic wave. It is important to keep in mind that in some
conditions as during snow melting this layer can mask
completely the underneath ice.

2. The second interface is snow-ice. The behaviour of this
interface depends on the difference in dielectric constants
between snow and ice (Nghiem et al. 1995a, b; Ulaby et al.
1986b). If the ice is highly saline, its dielectric constant is
quite high, and the most of the backscattering will come
from the surface. On the other hand, if the ice is less saline,
the electromagnetic wave can penetrate, and a consistent
volume scattering will be observed (Beaven et al. 1995).
Another important factor in the balance of surface and
volume scattering is the surface roughness. As a role of
thumb, higher roughness (compared with the wavelength)
will provide higher backscattering (Ulaby et al. 1986b).
The Bragg model is generally exploited to characterise the
surface scattering, but when the roughness is very large,
an extended version of the model should be used (Cloude
2009).

3. Ice volume: Characterising the backscattering of the ice
volume is particularly challenging due to the large
differences showed by ice types (strongly depending on
their formation process). From experiments and
modelling, it appears that the backscattering mainly
comes from brine inclusions which represent small
discontinuities in the volume. Polarimetry is expected to
be useful to acquire some insight on the typology of ice,
since it is sensitive to particles anisotropy and orientation
(Nghiem et al. 1995a, b; Ulaby et al. 1986b).

Besides a simple layered structure, ice generally presents a
large variety of deformation features due to the action of sea
and wind that compress and crack floes (Carlström 1997;
Isleifson et al. 2009; Onstott et al. 1998). Ridges, hummocks,
and areas with broken ice are generally (but not necessarily)
bright in the SAR images. This makes possible, in some
instances, the identification of floes edges (Dierking and
Dall 2007). Polarimetry combined with heterogeneity analy-
sis may play a role in detecting such features, since their
polarimetric behaviour is expected to be different from the
one of homogeneous floes.

Another feature observable under some circumstances is
the frost flowers. They form in calm and windless conditions
when the atmosphere temperature is much lower than the one
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of the ice (Isleifson et al. 2010). They may present a very
large backscattering which may be eventually misinterpreted
by some models.

4.4.1.1.2 Validating Models and Experiments
Many experiments were carried out in order to test the polari-
metric models. Some of them consider laboratory conditions,
where all the parameters are under control and can be accu-
rately monitored. A famous series of experiments were the
CORRELEX (Nghiem et al. 1995b; Beaven et al. 1995).
Although in a lab it is possible to control accurately the
experiment, there may be problems in replicating some
of the characteristics of sea ice formations that are only
achievable in the field. For instance, the mechanical effect
of waves is central in ice formation. One experiment that
tried to capture this characteristic is presented in Onstott
et al. (1998).

Another way to test models is to use a scatterometer and
collect data over actual sea ice (Nghiem et al. 1995b;
Isleifson et al. 2009; Dierking 1999; Geldsetzer et al. 2007;
Kern et al. 2006; Partington et al. 2010). Clearly this
approach may lack control compared to a lab experiment,
and it is generally limited to a reduced number of ice types;
however, it is often preferred to lab experiments because it is
able to picture more realistic scenarios.

4.4.1.2 Methodology
In this section the employed methodologies and polarimetric
observables are briefly listed. Details about them can be
found in the introductory chapters, here only the applicability
to sea ice observation is examined.

4.4.1.2.1 Co-polarisation Ratio
This is defined as the averaged intensities of VV over HH
polarisations. In the literature, many authors have used this
observable (Geldsetzer et al. 2007; Kern et al. 2006;
Drinkwater et al. 1990; Geldsetzer and Yackel 2009; Kwok
et al. 1991) for several reasons. (1) To detect open water and
leads: it is a useful discriminator between Bragg and volume
scattering (Geldsetzer and Yackel 2009). A complication is
when water in very calm conditions has a very low signal-to-
noise ratio (SNR), which makes the two Co-Polarisations
more similar. (2) To analyse volume scattering: due to
particles anisotropy, it is sometimes observed that the volume
can have HH power higher than VV (Geldsetzer et al. 2007).
(3) Ice thickness: the balance of surface and volume scatter-
ing in sea ice is ruled by dielectric constant and roughness.
When these two are high, the sea ice behaves more as a
surface; otherwise a volume is observed (Kern et al. 2006).
Interestingly, the dielectric constant is strongly dependent on
the ice salinity, and the latter exhibits some dependency on
ice thickness (thicker ice is less saline due to expulsion and

washing up during melting seasons). Therefore, thicker ice
should have a lower ratio, and several attempts were made to
find a regression curve to extract thickness from this ratio
(Kim et al. 2012; Wakabayashi et al. 2004).

4.4.1.2.2 Cross-Polarisation Ratio (or Depolarisation
Ratio)

This is the ratio between a cross-pol and a co-pol channel
(Kim et al. 2012; Thomsen et al. 1998). This can be extended
using the sum of cross-polarisations over the sum of
co-polarisations (Geldsetzer et al. 2007). It is mainly
employed to:

1. Detect open water: water is expected to have low Cross-
Polarisation backscattering.

2. Ice thickness: for similar reasoning like the
Co-Polarisations Ratio (Kim et al. 2012).

4.4.1.2.3 Co-polarisation Coherence
Many authors exploited the coherence between the two
co-polarisations γCo for sea ice monitoring (Nghiem et al.
1995b; Isleifson et al. 2009; Geldsetzer et al. 2007;
Drinkwater et al. 1990; Kwok et al. 1991; Israelsson and
Askne 1991), for the following reason. Analysing surface
and volume scattering, both magnitude and phase provide
information regarding the scattering process. For instance, a
zero phase difference with small standard deviation is an
indicator of surface scattering. Regarding volume scattering,
isotropic (spherical or randomly oriented) particles provide
again zero phase difference but with a standard deviation
generally larger compared to surfaces. Finally, different
phase behaviours can be observed depending on the particles
anisotropy and orientation (Nghiem et al. 1995a, b; Ulaby
et al. 1986b).

4.4.1.2.4 Circular Polarisation Coherence
This observable is very sensitive to: (1) surface roughness
(Wakabayashi et al. 2004), using the magnitude; (2) orienta-
tion of the observed targets (Lee et al. 2000, 2002), using the
phase. In the case of ice floes, a large scale surface variation
can introduce a large phase standard deviation (Wakabayashi
et al. 2004). Moreover, target (i.e. particles or surface
features) orientation can be analysed and it can be used to
solve misclassification with volume scattering.

4.4.1.2.5 Cross-Polarisation Coherence
In some situations (especially in melting conditions), the
cross-polarisation backscattering from ice is particularly
low; consequently, the signal-to-noise ratio, SNR, (defined
as the ratio between averaged intensity of signal over inten-
sity of noise) is low. This coherence can be used to check the
reliability of cross-channel measurements over dark areas.
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4.4.1.2.6 Cloude-Pottier Decomposition
Several examples can be found where the Cloude-Pottier
decomposition is employed for sea ice observation, and
they are mainly related to (1) classification and (2) features
extraction (Wakabayashi et al. 2004; Scheuchl et al. 2002,
2003a; Wesche and Dierking 2012).

4.4.1.2.7 Noise Estimation/Mitigation
Every time a coherence is estimated, it is important to under-
stand whether it represents a physical decorrelation effect or
not. Quad-polarimetry allows a very powerful methodology
for estimating the value of the noise floor (Cloude 2009).
Thermal noise decorrelation can be easily estimated based on
the SNR of the specific channels (e.g. the two
co-polarisations). Also some noise mitigation procedure can
be exploited (Cloude 2009).

4.4.1.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on sea ice observa-
tion are summarised in Table 4.4 and further described in the
Appendix.

In this Section the results obtained using polarimetric
observables are presented. For the sake of brevity, only few
observables will be displayed. Figure 4.10 presents the
Storfjord dataset, while Fig. 4.11 shows the Barents Sea
dataset. In all the images, the horizontal axis is azimuth and
the vertical is range (near range at the bottom and far range at
the top of the image). The average (filtering) used considers a
boxcar of 7 � 28 pixels. Such window should provide an
equivalent number of looks of around 86. Moreover, only for
visualisation purposes, the images consider the multi-look of
4 pixels in azimuth, which makes the pixels on the ground

Table 4.4 Test sites and corresponding radar and validation data selected for the generation of showcases on sea ice observation

Application/product Test site – Radar data Reference data

Sea ice observation Fram strait, Storfjord, Barents Sea (Svalbard) No ground measurement available

E-SAR L-band

Fig. 4.10 Polarimetric analysis of L-band ICESAR data: Storfjord (16.03.2007). RGB Pauli composite image (Red, |HH � VV|2; Green, |2HV|2;
Blue, |HH + VV|2); intensity of cross-polarisation; phase of circular-polarisations coherence
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Fig. 4.11 Polarimetric analysis of L-band ICESAR data: Barents Sea (18.03.2007). RGB Pauli composite image (Red, |HH�VV|2; Green, |2HV|2;
Blue, |HH + VV|2); co-polarisations ratio; magnitude of co-polarisations coherence; magnitude of cross-polarisations coherence
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more squared (please note, this depends on the range location
in the image).

Results can be interpreted as follows:

1. Pauli RGB: It can be noticed that the simple visualisation
of the Pauli RGB image can help significantly to distin-
guish between different sea ice types. Interestingly, it
appears that the colour of the images is bluer in the near
range (bottom: around 26� of incidence angle) than in far
range (top: about 65� of incidence angle). This is in line
with many models that predict a stronger surface contri-
bution for small incidence angles and a larger volume
contribution for larger incidence angles (Nghiem et al.
1995b; Carlström 1997; Tjuatja et al. 1992).

2. Phase of circular-polarisation: in Fig. 4.10, a green
(i.e. HV) bright area is visible. Strong backscattering in
the cross-channel is often associated with volume scatter-
ing (e.g. multiyear ice, MYI). However there is no MYI in
the scene. Only by analysing this phase it is possible to
understand that the strong cross return is due to orientation
effects (i.e. it is not MYI). The reason of such orientation
is not completely known; nevertheless the correction
allowed solving this ambiguity.

3. Co-polarisation ratio: This observable is very powerful to
highlight areas of open water (Geldsetzer and Yackel
2009). In Fig. 4.11, the bright areas correspond to open
water (this was validated with a photograph captured
during the flight pass).

4. Co-polarisation coherence: This is used to discriminate
between different kind of scattering mechanisms and vol-
ume types. Figure 4.11 represents an example where the
magnitude of this observable can be used to discriminate
between floes. Additionally, some studies described cor-
relation between this observable and ice thickness
(Nghiem et al. 1995b).

5. Cross-polarisations coherence: From Fig. 4.11, it can be
seen that some floes present a low value (i.e. low SNR),
and therefore care has to be given when the cross-
polarisation is used to retrieve parameters over such areas.

4.4.1.4 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Few conclusions could be drawn on the benefits of using
polarimetric data for sea ice observation.

1. Higher discrimination: The use of four images instead of
one enhances the capability to characterise the scattering
process. For instance, the co-polarisation ratio can be used
to detect open water, and the co-polarisations coherence
tells about the scattering mechanism. If our interest is
focused on detecting ice features as ridges or hummocks,

then the depolarisation ratio or the Cloude-Pottier decom-
position can be useful.

2. Avoiding misclassification (correction for orientation
angle): Another powerful methodology only possible
with quad-pol data is the correction for orientations of
observed targets. The latter can produce misclassification
(in this case with multi-year ice).

3. Noise estimation/mitigation: With quad-pol data, it is pos-
sible to estimate locally the noise floor and understand
where the measurements are less reliable due to noise (and
therefore they should not be used for quantitative
analysis).

As a final remark, from the literature it seems that
polarisation has a valuable role in sea ice observation (even
if just with dual-polarimetric data). It is generally quite
agreed that at least a dual-polarimetric mode is necessary in
order to understand the behaviour of different kinds of sea
ice. In some instances, the refrain in exploiting polarimetric
modes is the impossibility to acquire very large swaths
(as ScanSAR images) that in many sea ice applications are
needed to cover vast areas in short time. Fortunately, many of
the new generations of satellites will be able to acquire
polarimetric data with wide swaths.

4.4.2 Sea Ice Segmentation and Classification
from Fully Polarimetric SAR Imaging

4.4.2.1 Introduction, Motivation and Literature
Review

SAR images of sea ice reveal large variability in appearance
as function of imaging geometry (incidence angle,
polarisation, frequency), physical properties (surface rough-
ness, ice type, and other surface properties), and meteorolog-
ical conditions. Wave propagation effects, such as
attenuation, emission, and scattering, are strongly affected
by physical properties like salinity, temperature, snow
cover, wetness, volume structure, and surface roughness
(Kong 1986). As a result, the physical structure of sea ice
leads to radar signatures that may enable image segmentation
and ice type classification.

Sea ice is in general divided into two major categories,
first-year ice (FY) and multi-year ice (MY). MY ice has
survived at least one summer melt and is discriminated
from FY-ice on the basis of properties such as deformation
(roughness, surface topography), thickness, salinity, and
snow cover (Nghiem et al. 1995a). The extent of deformation
is exploited when trying to discriminate ice types. The most
commonly referred sea ice types are level ice, rafted ice,
ridged ice, rubble fields, and hummocked ice. Level ice is
ice with a relatively flat surface, which has not been deformed
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to any extent. Rafted ice arises when ice sheets collide and
override one another; it occurs usually on new and FY-ice.
Pressure processes cause the ice to pile up both above and
below the surface. A ridge is the result of such processes and
can be described as a long line of piled up, cracked ice.
Repeated ridging causes rubble fields. Leads are open water
channels in areas of predominantly sea ice. In addition, there
exist several ice types representing young and thin sea ice.

The emergence of dual- and fully polarimetric space-
borne SAR systems gives prospects for enhancement of the
amount of information about sea ice that can be obtained
from satellite-borne sensors.

The goal of this note is to present an example of the
improvements gained in characterisation of sea ice by
utilising polarimetric observations instead of just single-
polarisation SARs. We will here focus on how polarimetry
may improve segmentation and classification.

From previous studies of multi-polarisation measurements
of sea ice, the knowledge status can currently be summarised
as follows:

• Polarimetry is promising for the identification of the early
stages of new (thin) ice formation and the discrimination
of ice and open water (Dierking et al. 2003).

• The role of phase in polarimetric classification is unclear.
• The optimal frequency for polarimetric classification

remains unclear and varies with application and region
(Dierking et al. 2004). Overall, L-band appears to be more
effective for full polarimetric ice classification than
C-band.

• Multi-frequency is superior to single-frequency polarime-
try. This would require improved methods for data inte-
gration and data fusion processing.

Full polarimetric SAR observations allow for the decom-
position of radar signals into the contributions from the
various scattering mechanisms. Even if it is generally
known that scattering from sea ice is dominated by surface
scattering, the backscattered signals may include
contributions from several mechanisms. The relative
contributions of rough surface scattering, specular
reflections, volume scattering, and multiple scattering pro-
cesses depend on thickness, degree of deformation, size of
deformed structures, amount of snow on the ice, salinity, and
compactness of the ice fragments (Dierking et al. 1997).

Several polarimetric parameters have been evaluated for
first year sea ice discrimination in C-band RADARSAT-

2 data in (Gill and Yackel 2012), and the authors obtained a
classification accuracy greater than 90%. Extracting polari-
metric information from sea ice scenes was the main subject
of (Eltoft et al. 2012), and it was noted that the multitude of
decomposition parameters are yet to be fully evaluated for
sea ice discrimination.

4.4.2.2 Methodology
The workflow for retrieval of sea ice information undertaken in
this Section includes two major steps. The first step is an
unsupervised segmentation of the image, which subdivides it
into a given number of segments based on variations in statisti-
cal and polarimetric properties. This step is followed by a
polarimetric analysis, where the objective is to infer the polari-
metric properties of each image segment. These properties may
be interpreted in terms of physical characteristics, which may
help label the segments into ice types.

The PolSAR image is segmented using a mixture of
Gaussian models for the global probability density function
(pdf). We assume reciprocity, and the segmentation algo-
rithm uses the following 6 parameters generated from the
general (3 � 3) C-matrix, as described in (Doulgeris and
Eltoft 2010; Doulgeris 2013). These 6 parameters are geo-
metric brightness, co-polarisation ratio, cross-polarisation
ratio, co-polarisation, correlation magnitude, and
co-polarisation correlation angle. The six features are
nonlinearly transformed such that the marginal pdfs have a
Gaussian-like appearance at the peaks. We then model the
global pdf as a multivariate Gaussian mixture distribution and
segment the image into a given number of unlabeled
segments using the expectation maximisation algorithm, as
described in (Doulgeris and Eltoft 2010). The proper number
of classes is currently manually estimated based on optical
images, the Pauli image, the sea ice observation log, and the
segmentation results obtained with different number of
classes.

4.4.2.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on sea ice segmen-
tation and classification are summarised in Table 4.5.

The smoothed, geocoded segmentation result is shown in
Fig. 4.12. The image has been segmented into five classes.
Sea ice experts interpreted the segmentation result aided by
thickness measurements, optical photos, and the Pauli image.
According to their interpretation, the yellow class is thin ice
or open water; the red class is young, thin first year ice with

Table 4.5 Test sites and corresponding radar and validation data selected for the generation of showcases on sea ice segmentation and classification

Application/product Test site – Radar data Reference data

Sea ice segmentation and
classification

Arctic Sea, north of
Svalbard

Ice thickness measurements (EM-bird), optical photos, roughness
measurements

RADARSAT-2, April
2012
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snow cover and some deformation; the blue, brown, and cyan
classes are various stages of first year ice.

Figure 4.13 displays the thickness estimates along the
helicopter track. As can be noted, the thickness varies
between 0 and 6–7 m. Below the thickness curve, we have
plotted the image segments along the flight track. By com-
paring the thickness and the coloured segments, we can
conclude that the yellow class certainly corresponds to thin,
new frozen ice, or open leads. We also see strong fluctuations
in thickness in some classes, indicating deformed ice. We
note that the cyan class seems to have the least thickness
variations, indicating that this is a smooth ice type. This
observation is in agreement with the fact that this class has
very low backscatter. However, this class consists of rela-
tively thick ice, around 1.5 m according to the EM-bird
estimates.

4.4.2.4 Comparison with Single/Dual
Polarisation Data

As illustrated in Fig. 4.14, radar polarimetry will in general
increase the dimension of the feature space and enable
retrieval of more information from a scene. Whereas single
polarisation SAR images basically allow for image

Fig. 4.12 Image segmented by the automated segmentation algorithm
into five classes
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Fig. 4.13 Thickness estimates from EM-bird measurements. The colour segments at the bottom corresponds to the segments along the flight track

Fig. 4.14 The added feature
space dimension by radar
polarimetry
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processing type analysis, polarimetry will allow for both
polarimetric analysis, to infer scattering information, as well
as the use of advanced multivariate statistical methods. With
respect of the current application showcase, we note that a
single polarisation image will be restricted to only two
parameters, the multi-looked intensity and a measure of
non-Gaussianity. Polarimetry allows for much more, and it
is a subject for future research to optimise the feature selec-
tion. From our experience, polarimetry will result in more
detailed segmentation.

4.4.2.5 Discussion on the Role of Polarisation,
on the Maturity of the Application
and Conclusions

This Section has presented the result of segmenting a
RADARSAT-2 PolSAR scene of Arctic sea ice, collected
north of Svalbard in the Spring 2011. The scene shows
various stages of first year ice, plus leads, some open, and
some refrozen. The data set also comprised in situ data such
as EM-bird thickness measurements, and optical photos
along the helicopter tracks covered by the SAR image.

The analysis shows that the feature set consisting of six
statistical and polarimetric parameters has discrimination
power and enables segmentation of this sea ice scene into
five proper segments. Some of these can be identified as
distinct ice types. The added information associated with
full polarimetry allows for a more detailed segmentation of
the scene, as well as providing scattering mechanism infor-
mation, which may subsequently help labelling the segments
into ice types.

4.4.3 Antarctic Sea Ice Thickness Using Sea Ice
Surface Measurements
and TerraSAR-X Data

4.4.3.1 Introduction, Motivation and Literature
Review

Sea ice thickness data is critical to the long-term assessment
of climate change in the Polar Regions. The validation of sea
ice remote sensing products in Antarctica has been compli-
cated by remote location, limited extent, and infrequency of
direct measurements. Estimates of sea ice thickness are par-
ticularly important in the Antarctic due to the limited
opportunities for direct physical measurements, even when
access is available.

Research objectives described in this Section are:

• Obtain spatially and temporally coincident icemeasurements
and TerraSAR-X (TSX) satellite measurements of Antarctic
sea ice floes in the Bellingshausen Sea, an area that has
undergone significant change.

• Examine polarimetric descriptors derived from TSX
related to sea ice and snow characteristics for sea ice floes.

• Assess statistical relationships between surface elevation,
snow depth, freeboard, ice thickness, and roughness with
the ultimate goal of classifying sea ice types and calculat-
ing sea ice thickness from active radar returns.

This research benefited from direct collaboration with the
British Antarctic Survey (BAS), Scottish Association of
Marine Science (SAMS), and other international participants
in obtaining in situ sea ice measurements during the IceBell
field campaign in November 2010. The results of these
efforts were used to derive sea ice and snow cover thickness
relationships in the Antarctic which ultimately could improve
satellite remote sensing products, allowing improved long
term monitoring of the ice mass balance in the Antarctic sea
ice zone.

Both passive and active microwave remote sensing have
provided useful information on the extent and area of sea ice
in both Polar Regions and their trends of change over approx-
imately 30 years. Techniques for monitoring ice thickness
from space have used altimetry measurements from lasers
and the buoyancy of the snow and ice relative to local sea
level reference (Zwally et al. 2008; Yi et al. 2011; Kurtz et al.
2009; Kurtz and Markus 2012). An alternate approach uses
empirical relationships developed from in situ field data to
derive ice thickness from snow freeboard (Xie et al. 2011).

Previous studies of the potential of polarimetric SAR data
for sea ice monitoring and characterisation have concentrated
on thin-ice due to limited data available (Scheuchl et al.
2004) which resulted in part from a lack of coincident surface
measurements with SAR acquisitions. Attempts to obtain
thin-ice thickness from airborne radar imagery have been
made using full polarimetric data acquired by JPL’s AIRSAR
(Nghiem et al. 1995a; Rignot and Van Zyl 1992; Rignot and
Drinkwater 1994; Kwok et al. 1995; Winebrenner et al.
1995), Danish EMISAR (Thomsen et al. 1998; Dierking
et al. 2004; Skriver and Pedersen 1995), Canadian Convair-
580 SAR (Livingstone et al. 1996; Scheuchl et al. 2003b),
German HELISCAT (Kern et al. 2006), and Japanese PiSAR
(Wakabayashi et al. 2004; Matsuoka et al. 2002; Nakamura
et al. 2005). Fully polarimetric spaceborne SAR data were
first acquired over sea ice in 1994 by the SIR-C mission, with
first results reported by Eriksson et al. (1998). Other results
based on high-resolution polarimetric data were reported
using ALOS-PALSAR (e.g. Wakabayashi and Sakai 2010),
RADARSAT-2 (e.g. Kim et al. 2012), and TerraSAR-X
(e.g. Kim et al. 2012; Busche et al. 2009).

Scheuchl et al. (2005) indicate that swath widths for fully
polarimetric modes are limited and will not provide sufficient
coverage for operational sea ice monitoring. This research
allowed for multiple acquisitions of X-band dual-polarisation

4 Cryosphere Applications 199



SAR for tracking distinct ice floes, in conditions of rapid
drift, typically over 100 m/h, with 80% success. The pro-
posed ice-thickness method improved on existing techniques
showing high potential in operational sea ice monitoring.

4.4.3.2 Methodology
Radar backscatters are affected by thick snow cover (volume
scattering), snow wetness, presence of ice layers, age (grain
size/shape), and sea water flooding at the snow-ice interface.
Due to differences in structure and composition, different
types of sea ice have different polarimetric scattering
behaviours. The unique coherent dual-polarimetric X-band
capability of TSX imagery was used to emphasise the volume
scattering through the parameters derived from entropy/alpha
decomposition developed by Cloude and Pottier (1997). This
method does not depend on the assumption of a particular
underlying statistical distribution and is free from the physi-
cal constraints imposed by multivariate models (Singh et al.
2010).

While the conceptual theory of target decomposition was
developed for quad-pol radar backscatter, it can also be
applied to dual-polarised data (Cloude 2007). To derive the
polarimetric decomposition parameters, we first generated
the covariance matrix C2 of the images and then applied a
(9 � 9 kernel) refined Lee Filter (Lee 1981) to eliminate
speckle but preserve the edge sharpness. A target decompo-
sition technique was performed to derive the mean Alpha
angle (α ) and Entropy (H ). The Shannon Entropy (SE),
characterised as the sum of intensity, degrees of polarisation,
and the intrinsic degrees of coherence, was based on the
method described by Morio et al. (2007). Correlation
between SE estimates of the sea ice floe derived from TSX
data acquired on November 27 and field-based surface eleva-
tion, snow depth, and freeboard was performed to discrimi-
nate the freeboard condition. For ice thickness calculation,
we segregated sea ice and snow cover into generalised classes
as they may impact the buoyancy model employed but not
necessarily to discriminate between all the ice conditions
present at that time. The sea ice thickness algorithm was
based on empirical equations presented in (Xie et al. 2011)
and 4 classes (i.e. deep slush layer, shallow slush layer, ice
block with little snow cover, and snow cover with positive
freeboard) based on the physical measurements of surface
elevation, snow depth, and ice freeboard (Lewis et al. 2013).
Finally, co-registration was performed on TSX imagery
acquired on Nov. 27, Dec. 01, and Dec. 13. The

co-registration could not be performed using floe boundaries,
as these are dynamic and change rapidly, so ice blocks with
very high SE values within the floe provided the tie points in
the co-registration process. The root mean square (RMS)
error in the co-registration of these images was less than
2 pixels (i.e. <10 m).

4.4.3.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on sea ice thickness
are summarised in Table 4.6.

4.4.3.3.1 2D Eigenvector Analysis
The results of the entropy-alpha decomposition applied to a
TSX image acquired on December 1, 2010, are shown in
Fig. 4.15. Areas of low entropy commonly have a single
dominant mechanism for radar backscatter as compared to
areas of high entropy where multiple scattering mechanisms
contribute. The alpha angle, derived from eigenvectors of the
decomposition, is indicative of the average or dominant scat-
tering mechanism. The majority of the alpha angle values are
near 45�, suggesting that the scattering mechanism is mainly
volume scattering. The extreme degrees of randomness over
the open water portions of the image, which also show
increased alpha angle values, are indicative of a low signal-
to-noise ratio.

4.4.3.3.2 Sea Ice Classification and Ice Thickness
Estimates

Several data sources defined classes of SE from the Nov.
27 TSX data (coincident with the IceBell field surveys of
Floe 6). These sources included the alpha channel image of
entropy-alpha decomposition, the conventional HH, and VV
backscattering coefficients image, and the reflectivity ratio
image corresponding to the ratio between HH and VV
intensities. The range of SE was important in identifying
areas of negative and positive freeboard where different
buoyancy models were applied in sea ice thickness calcula-
tion. Figure 4.16 shows the range of SE classes as applied to
the IceBell survey grid for Floe 6 for the three TSX images of
the time series. A decrease in SE values over time is observed
within the boundaries of the survey grid area. The declining
SE relates to changing distribution of SE classes over time,
thus implying that additional areas of sea water flooding
(slush) were present later in the season. The ice bottom
calculated from our SE-based model follows the trend of

Table 4.6 Test sites and corresponding radar and validation data selected for the generation of showcases on sea ice thickness

Application/
product Test site – Radar data Reference data

Sea ice
thickness

Bellingshausen Sea Surface and snow depth surveys, electromagnetic induction thickness surveys, drilled hole
thickness profiles, terrestrial scanning LiDAR surveys, airborne scanning LiDAR surveys, and
ground penetrating radar surveys on sea ice floes.

TerraSAR-X dual-pol
Nov.2010-Jan. 2011
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Fig. 4.15 The average Alpha angle, Entropy, and computed SE for the
TSX image acquired on Dec 01, 2010. Higher SE is apparent in smaller
broken floes and areas of brash ice (red) with interspersed areas of open

water (dark blue). After Dec 13, the Floe 6 broke with the IMBs
separated on different pieces (after Necsoiu et al. 2011; Lewis and
Necsoiu 2011)

Fig. 4.16 Time series and distribution of SE for the 100 m � 100 m grid survey area shown by SE class. Notice the absence of ice block class
4 present on the floe but not within the grid boundaries (this class is present elsewhere on Floe 6)
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the EM-31 derived ice bottom much more closely than the
simple buoyancy model used in other studies (Fig. 4.17).

4.4.3.4 Discussion on the Role of Polarisation,
on the Maturity of the Application
and Conclusions

Based on preliminary results, TSX dual-pol HHVV data have
the potential to derive sea ice type, snow and ice thickness,
and surface roughness features. Regarding sea ice
interpretations, it is crucial that a detailed and direct survey
of ice characteristics is performed on the sea ice floes. Essen-
tial in monitoring sea ice characteristics is the capability,
provided by location of the drifting buoys, to follow sampled
floes with high-resolution, narrow-swath satellite data
acquisitions during the months following surface sampling.
IMB sensors, with their capability to track changing surface
conditions through temperature and other measurements,
such as snow depth and flooding, are also essential to provide
field calibration over an extended period. The methodology
presented here marks an advance towards an integrated sea
ice algorithm based on surface sea ice measurements (includ-
ing IMBs) and TSX imagery; however, more study of polari-
metric descriptors and detailed analysis of field
measurements will be needed to increase the information
content and to validate this approach.

4.4.3.5 Acknowledgements
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4.4.4 Polarimetric SAR for Classification of Sea
Ice in the Baltic Sea

4.4.4.1 Introduction, Motivation, and Literature
Review

The Baltic Sea is a semi-enclosed brackish sea in Northern
Europe. The average ice season extends from December into
May and reaches a maximum ice extent of approximately
150,000 km2. The region is steadily busy with shipping
traffic for which the ice conditions are of great importance.
Conditions where wind drives the ice, causing it to form
ridges or pressing it against the shoreline or entrances to
harbours, are of particular concern as such regions are diffi-
cult to break into.

During 2007 to 2009, Chalmers University of Technology
and the Swedish Meteorological and Hydrological Institute
(SMHI) carried out the project “Improved sea ice monitoring
for the Baltic Sea” (Eriksson et al. 2010), with the goal to
evaluate the usefulness of new space-borne SAR instruments
for the purpose of operational sea ice monitoring. Within this
project, a number of SAR scenes were acquired in the north-
ern Baltic Sea. The images were evaluated, for instance, in
terms of how well different ice types could be separated, and

Fig. 4.17 A 2-D profile
comparison of snow and ice
surface elevations and ice bottom
derived from EMI measurements
with ice bottom calculated from
both standard buoyancy
relationships and the SE-based
model ice bottom (Lewis et al.
2013)
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how differences appear between single and dual polarisation
data and between different frequency bands. The Swedish Ice
Service at the SMHI participated in parts of the evaluation.

In the context of the above-mentioned project, fully polar-
imetric SAR data were ordered from two SAR satellite
systems: The Canadian RADARSAT-2 (RS2) which utilises
a C-band SAR and the Japanese Advanced Land Observing
Satellite (ALOS) which carried an L-band SAR.

Fully polarimetric SAR data were collected with the
NASA airborne AIRSAR system over sea ice in the Beaufort,
Bering, and Chukchi Seas already in 1988. These data have
been evaluated in several studies and results have been
presented by a number of authors, e.g. Drinkwater et al.
(1991), Ngheim et al. (1995b), and Weinbrenner et al.
(1995). These studies have mainly focused on the
possibilities to separate different ice types or determine sea
ice thickness. Various combinations of co-polar (HH or VV)
and cross-polar (HV or VH) backscatter values and ratios,
co-polar phase, or magnitude and phase of the complex
correlation between the backscatter components were
evaluated. Similar studies were later done on polarimetric
datasets collected at other locations with various airborne
SAR systems, e.g. Greenland Sea with EMISAR in 1995
(Thomsen et al. 1998), Sea of Okhotsk with PiSAR in 1999
(Wakabayashi et al. 2004) and during the SIR-C mission with
the Space Shuttle over the Weddell Sea in 1994 (Eriksson
et al. 1998). In a study of the improvement of sea ice classifi-
cation by means of radar polarimetry, which was published
by Dierking et al. in 2004 (Dierking et al. 2004), the authors
came to the conclusion that the goal of a robust, fully
automated sea ice classification scheme by means of polari-
metric SAR was not yet achieved.

The first satellite with a fully polarimetric SAR was
ALOS, which was launched in 2006. In the last
10–15 years it also became common to include various
decomposition methods in the analysis of polarimetric SAR
data of sea ice. These methods often make it possible to
identify how individual scattering mechanisms contribute to
the total received signal. Studies that have used these
methods for separation of sea ice types are, e.g., presented
by Wakabayashi et al. 2004, Scheuchl et al. 2002, and more
recently Gill and Yackel (2012), Doulgeris (2012), and
Dierking and Wesche (2013).

The most extensive comparison between ice type classifi-
cation accuracies for different combinations of polarimetric
parameters is the one presented by Gill and Yackel (2012).
Their evaluation for three ice types (smooth first year ice,
rough first year ice, and deformed first year ice) and open

water for polarimetric RS2 images indicate that no single
parameter discriminates significantly (>60%) between all
these ice types, but with a combination of three parameters,
an overall accuracy of up to 91% was achieved.

4.4.4.2 Methodology
In order to make a qualitative evaluation of the SAR images,
a field campaign was organised to collect field data. Flights
with helicopter were carried out from the Umeå Airport in
Sweden. Optical and thermal infrared photos were captured
by two cameras directed in the nadir direction. The optical
camera had a 114� diagonal angle of view, whereas the
infrared camera spanned 30�.

The fully polarimetric SAR images were studied using
H=A=α decomposition (Lee and Pottier 2009; Cloude and
Pottier 1997). First, we formed local estimates of the coher-
ency matrix and multi-looked to square pixel size (in ground-
range coordinates). The decomposition was performed with a
9 � 9 boxcar filter to minimise biases in the entropy and
anisotropy estimation. A polarimetric signature analysis was
carried out and was used to assess the credibility of the
employed segmentation.

4.4.4.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on sea ice classifica-
tion in the Baltic sea are summarised in Table 4.7.

We will demonstrate the results by using examples from
one RS2 image and one ALOS-PALSAR image.

Site A is located in image #7, at the border between the
fast ice and dense drift ice seen in Fig. 4.18. The fast ice was
rugged and covered by a snow layer between 0 and 45 cm
thick. The ice thickness was measured at one point to 110 cm.
The drift ice was densely packed and attached to the fast ice.
It had a level, glossy surface with a thin snow layer of less
than 2 cm thickness. The thickness of the drift ice was
measured at two locations, to 30 and 37 cm.

An H=A=α decomposition was made on the
RADARSAT-2 image. The result shows that both the fast
ice and the drift ice in this location are subject to low entropy
surface scattering. The alpha parameter is slightly lower over
the fast ice (~10� as compared to ~20�), thus being closer to
the geometrical optics limit. The entropy is lower over the
fast ice as well (0.2 as compared to 0.5), indicating more
random scattering from the drift ice. Specular reflection,
away from the radar, is presumed to occur on the flat surface
of the drift ice. The returned signal is instead dominated by
reflection from brine pockets and fractures in the uppermost

Table 4.7 Test sites and corresponding radar and validation data selected for the generation of showcases on sea ice classification in the Baltic sea

Application/product Test site – Radar data Reference data

Sea ice classification in the Baltic Sea Baltic Sea (Bay of Bothnia, Kvarken) Optical and thermal infrared photos

ALOS-PALSAR 2007, 2009

RADARSAT-2 2009
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layer of the low-saline ice, which then explains the higher
entropy and alpha values. The two ice types found in site A
are believed to be representative for a much larger area,
judging from the optical helicopter images. This is also in

agreement with the results from a classification, shown in
Fig. 4.19. The figure shows an unsupervised H=α classifica-
tion with eight classes, where the fast and drift ice are well
distinguished.

Fig. 4.18 Scene #7. Left: Optical photo taken from helicopter in the
nadir direction. The photo covers an area of 50 � 30 m and shows fast
ice to the left and dense drift ice to the right. Right: The alpha-parameter

from theH/A/α-decomposition. The scene covers an area of 24� 24 km.
Site A is marked with letter A and is also the location of the optical
photo. Arrows indicate North

Fig. 4.19 Scene #7. Wishart H/α classification where orange corresponds to fast ice, purple to drift ice, red to open water, and yellow to land areas

204 I. Hajnsek et al.



Figure 4.20 shows the alpha parameter obtained for scene
#10 along with the Wishart H/α classification. The scene
covers a diverse ice field with an ice concentration of approx-
imately 90%. It can be observed that volume scattering is
more common in the northern parts of the scene. The Wishart
H=α classification identifies four major classes of ice types
(blue, red, yellow, and orange). The red and orange classes
are characterised by low alpha and entropy values, clearly
acting as surface scatterers. The blue class is defined by alpha
values in the range between 40� and 50�, relating to volume
scattering, whereas the yellow class is similar but with
slightly more weight towards surface scattering. The optical
helicopter images reveal that these classes are mostly level
ice surfaces with no snow layer, whereas the red/yellow
classes consist of snow-covered or rough ice of densely
packed or consolidated floes.

4.4.4.4 Comparison with Single/Dual
Polarisation Data

Sea ice is fairly well studied with single and dual polarisation
data using L- and C-band SAR sensors. Fully polarimetric
data may be used to study in detail the scattering mechanisms
for different ice types or to improve sea ice classification for
the purpose of ice charting. An experienced ice analyst can
use dual polarisation data to map the ice conditions with high
precision, but for automated classification this remains diffi-
cult. With fully polarimetric data, the automated classifica-
tion will have an advantage because the many information
channels will make manual interpretation complex.

4.4.4.5 Discussion on the Role of Polarisation,
on the Maturity of Application
and Conclusions

SAR polarimetry has shown potential for sea ice classifica-
tion and segmentation. It is still in the early development

phase, not only because of the limited spatial coverage that is
insufficient for traditional operational sea ice charting
services but also due to the non-trivial task to accurately
relate classes with their respective ice type. The classifier
must either aim for a reliable segmentation into few classes
or for a detailed segmentation into many ice types with the
secondary task to label each class with its actual ice type.

4.4.4.6 Acknowledgements
Data from ALOS were provided by the European Space
Agency within the framework of the ALOS Data European
node category-1 proposal titled Improved sea ice monitoring
for the Baltic Sea (AOALO.3562). Data from RADARSAT-
2 were granted within the Canadian program for Science and
Operational Applications Research for RADARSAT-
2 (SOAR), project number 3924. The Umeå Marine Science
Centre in Norrbyn and Lapplandsflyg AB in Umeå are
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4.5 Investigation of Permafrost with Fully
Polarimetric Data

4.5.1 Introduction, Motivation, and Literature
Review

Satellite-borne synthetic aperture radar (SAR) data are useful
for estimating soil moisture and surface roughness over large
areas. However, few studies have been conducted using SAR
to examine permafrost areas, which have surfaces covered by
low vegetation, including areas with tussocks, mosses, and
low shrubs; whereas SAR data has been widely used to study
mineral soil surfaces. Knowledge of the moisture levels in
permafrost regions is important for monitoring the seasonal

Fig. 4.20 Scene #10. Left: The alpha-parameter from the H/A/α-decomposition. Right: Wishart H/α classification (green colour is land, other
colours sea ice). The scene covers an area of approximately 30 � 50 km (width � height)
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variability of the active layer, which is a seasonally unfrozen
layer that occurs in upper part of the permafrost. The North
Slope in Alaska has experienced significant changes in vege-
tation greenness over the past two decades (Goetz et al. 2005;
Verbyla 2008), and it has been suggested that variations in
soil moisture may be partly responsible for these changes.
Rignot and Way (1994) showed that freeze-thaw cycles in
high-latitude terrestrial ecosystems, which include perma-
frost regions, can be monitored using ERS-1 SAR data.
Several studies have examined surface soil moisture in fire-
disturbed forests in Alaska using C-band SAR data;
variations in soil moisture were detected by variations in
the backscattering coefficient (σ0) (Kasischke et al. 2007).

PALSAR was launched in 2006 onboard ALOS.
PALSAR was the first Earth observing satellite to carry a
full polarimetry mode, and it provides complete radar back-
scattering information on both the intensity and phase of the
signal. This is a significant advantage for deriving a complete
understanding of the factors controlling radar backscattering
in areas, especially those with complex scattering
mechanisms, such as low vegetation, for which the impact
would be expected to be minimal in the L-band. This is also
essential for deriving robust algorithms for estimating soil
moisture levels, as well as other parameters.

Here, we demonstrate how to analyse field measurement
data and L-band full polarimetry data. This Section is based
on (Watanabe et al. 2012).

4.5.2 Methodology

4.5.2.1 Single-Layer Model
Three parameters describe the primary factors affecting radar
scattering mechanisms: soil moisture (Mv) or dielectric con-
stant (ε), root mean square (RMS) height of the soil surface
(s), and correlation length (l ). The parameters s and l are
usually multiplied by the wave number k (k ¼ 2π/λ, where λ
is the radar wavelength) to give the derived parameters ks
and kl.

Several models have been suggested for estimating Mv
from SAR data. One of the popular models is the integral
equation method (IEM) (Fung 1994), which describes the
behaviour of σ0 for both the co-polarisation and cross-
polarisation terms. For cases where ks, kl < 1:2

ffiffiffi
ε

p
, the back-

scattering coefficient can be calculated using the following
analytical equation:

σ0qp ¼
k2

2
exp �2 kz � sð Þ2

h i

�
X1
n¼1

s2n Inqp

			 			2 W nð Þ �2kx,0ð Þ
n!
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where θ is the local incidence angle, kz¼ k cos θ, kx¼ k sin θ,
and

Inqp ¼ 2kzð Þn f qp exp �s2kz
2
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2
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where μ is the magnetic permeability, Rhh and Rvv are Fresnel
reflection coefficient, and p and q represent the polarisations
corresponding to h and v. W(n) is the Fourier transform of the
n-th power of the surface correlation function; the exponen-
tial, Gaussian, and 1.5-power forms of this function are well
known. Many curves observed in the field appear to follow an
exponential shape generated by the exponential correlation
function (Fung 1994), represented by

W nð Þ Kð Þ ¼ l
n

� �
1þ Kl

n

� �2
" #�1:5

: ð4:14Þ

Oh (2004) proposed a semi-empirical model in which
some parameters were tuned using ground-based

(GB) polarimetric scatterometers and AIRSAR data obtained
for various soil conditions. Three parameters are defined in
this model, and the following one is used in our analysis

σ0VH ¼ 0:1M0:7
v cos θð Þ2:2 1� exp �0:32 ksð Þ1:8

� �h i
ð4:15Þ

The applicable range of the model is less than 3�ks.

4.5.2.2 Two-Layer Model
The two-layer model was developed to describe more com-
plex ground phenomena, such as the presence of vegetation,
or snow on ice. Fung (1994) used four terms to represent the
co-polarisation surface and volume backscattering of the two
layers (see Fig. 4.21):
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σ0pp ¼ σ0s1pp þ σ0s2pp þ σ0vpp þ σ0vspp ð4:16Þ

where σ0s1pp describes surface scattering from layer 1 and is
represented by Eq. (4.12), and σ0s2pp describes surface scat-
tering from layer 2 and is represented by

σ0s2pp ¼ T1t θ, θtð ÞTt1 θt, θð Þ exp �2τ
cos θt

� �

� cos θ
cos θt

σ0spp θtð Þ ð4:17Þ

where T1t and Tt1 are the transmissivity from layer 1 to 2 and
from layer 2 to 1, respectively, τ is the optical depth, and
σ0spp is the surface scattering at layer 2, represented by
Eq. (4.12). σ0vpp describes the volume scattering in layer
1 and is represented by

σ0vpp ¼ 0:5aT1tTt1 cos θ 1� exp
�2τ
cos θt

� �� �
Ppp cos θt,� cos θt; πð Þ

ð4:18Þ

where a is the albedo and Ppp is element pp of the phase
matrix. A Rayleigh phase matrix is assumed, and
Phh ¼ Pvv ¼ 1.5. The fourth term, σ0vspp, describes
interactions between volume scattering in layer 1 and surface
scattering from layer 2. This term is very small and is negli-
gible in most cases.

In the case of cross-polarisation, Eq. (4.15) of the Oh
model is used to describe the backscattering from layer
1. Additionally, Eq. (4.16) can be modified to describe the

backscattering from layer 2 by inserting Eq. (4.16) for σ0spp,
which is represented by

σ0qp ¼ σ0 Oh modelð Þ
s1pq

þ T1t θ, θtð ÞTt1 θt, θð Þ exp �2τ
cos θt

� �

� cos θ
cos θt

σ0 Oh modelð Þ
s2qp θtð Þ: ð4:19Þ

4.5.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on permafrost
characterisation are summarised in Table 4.8.

PALSAR data acquired for the test sites (Arctic National
Wildlife Refuge (ANWR), Alaska, USA) were used in this
analysis. Full polarimetry mode (HH, HV, VH, and VV) data
was acquired on July 29, 2007, and July 31, 2008, in
descending orbit. Dual polarisation mode (HH and HV)
data was observed on August 17, 2007, 2 weeks after the
observation of full polarimetry data for the test sites in
ascending orbit. The off-nadir angle was 21.5� for the full
polarimetry mode and 34.3� for the dual polarisation mode.
The position of the field test sites and the physical
characteristics are summarised in Table 4.8. The test sites
are in the coastal tundra ecosystem of the Alaskan Arctic
coastal plain. Trees were absent because of the high-latitude
location (70�N). HH and VV polarisation was dominant in
the permafrost area. This means that surface backscattering
was dominant. Strong radar reflections were observed for
very wet areas along the small stream, and high moisture
values were observed in this area (A-5 and A-6). Field
observations were conducted at 6 sites in 2007 (A-1 to A-6)
and 4 sites in 2008 (A-1 to A-3 and A-7). Tussocks and
polygons, which are structures typical of permafrost, were
observed in many tussocks in our test sites was 3 to 10 cm in
diameter. On a larger scale, thermal contraction cracks form
polygonal (mainly tetragonal) nets that cover extensive areas
of arctic and subarctic regions; the polygons typically range
in size from 15 to 40 m.

Fig. 4.21 An illustration of the terms in the 2-layer scattering model

Table 4.8 Test sites and corresponding radar and validation data
selected for the generation of showcases on permafrost characterisation

Application/
product Test site – Radar data

Reference
data

Permafrost
characterisation

Arctic National Wildlife Refuge
(ANWR), Alaska, USA

ALOS-PALSAR

4 Cryosphere Applications 207



4.5.3.1 Data Processing
Parameters derived from the PALSAR data and field experi-
ment are summarised in Table 4.9. We used PALSAR data
processed by the Earth Observation Center of the Japan
Aerospace Exploration Agency (JAXA) and calculated the
backscattering coefficient (σ0) for each polarisation. We
measured ks and kl using a needle profilometer; the
profilometer was 1-m long for the measurements, which is
10 times longer than the typical 10-cm correlation length at
our test sites.

The 2-cm interval of needles on the profilometer was
sufficiently small to have an insignificant effect on the mea-
surement results. The surface correlation functions measured
for our test sites matched well with the exponential form
represented by Eq. (4.14).

The vertical cross section of the soil at site A-1 is
presented in Fig. 4.22. This is a typical permafrost structure,
and the soil moisture for the organic layer was measured
using time-domain reflectometry (TDR-type sensor;
TRIME-FM2) in 2007 and frequency-domain reflectometry
(FDR-type sensor; Decagon) in 2008. The length of the
probes was 15 cm. These systems directly measured the ε
value, and ε was converted to soil moisture using the Topp
equation (Topp et al. 1980),

εr ¼ 3:03þ 9:3Mv þ 146M2
v � 76:7M3

v ð4:20Þ

The system only displays the moisture value. The value of
the dielectric constant originally measured by the device was
determined using this relation. The soil moisture of the
sphagnum moss layer was measured for several points in
site A-1 and had a value of 10.6%.

4.5.3.2 Comparing PALSAR Data with Single-Layer
Models

The observed σ0 values were compared with those estimated
using the IEM/Oh model, which included the Mv (organic
layer) and surface parameters measured in the field. The σ0co-
pol values were 5 to 7 dB lower than those calculated by the
IEM model, while the σ0VH values were moderately matched
to values calculated using the Oh model.

Next, we calculated the σ0 value assuming a 10% soil
moisture value (sphagnum moss layer). The σ0co-pol values

Table 4.9 Parameters derived from field measurements and from the satellite data

Site Lat/Lon

Parameters from field data collection and PalSAR

NotesYear Mv ks kl σ0HH σ0VH σ0VV
A-1 �143.66 2007 34.7 0.82 2.8 �9.3 �20.5 �9.6 Covered with polygons well-developed tussocks

69.72 2008 25.2 �10.2 �22.0 �12.2

A-2 �143.63 2007 39.8 0.68 2.0 �10.2 �22.4 �10.2 No polygonal structures observed

69.72 2008 46.6 �11.1 �24.1 �9.9

A-3 �143.61 2007 41.6 0.44 3.4 �11.0 �22.8 �11.0 No polygonal structures observed

69.72 2008 38.8 �10.4 �24.6 �11.6

A-4 �143.62 2007 47.7 0.71 3.1 �10.1 �22.2 �11.2 Numerous shrub patches

69.71 No polygonal structures observed

Well-developed tussocks

A-5 �143.63 2007 63.8 0.70 2.5 �9.0 �21.3 �9.3 Covered with polygons

69.71 Well-developed tussocks

A-6 �143.64 2007 78.9 1.13 3.2 �8.8 �19.3 �8.8 No polygonal structures observed

Well-developed tussocks69.71

Very wet

A-7 �143.60 2009 29.2 0.48 5.6 �13.5 �25.3 �10.0

69.72

Mv measured in inorganic layer

Fig. 4.22 Vertical cross section of the soil at site A-1
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were well matched to the IEM model, while the σ0VH values
were 3 to 6 dB less than those in the Oh model. There is no
single-layer model that simultaneously accounts for the
σ0co-pol and σ0cross-pol observed with PALSAR.

4.5.3.3 Comparing PALSAR Data with Two-Layer
Models

The 2-layer model (sphagnum moss, layer 1; organic layer,
layer 2) was used to calculate σ0 at the A-1 site, where a data
logger was deployed to monitor moisture levels. Albedo and
optical depth values were changed from 0.1 to 1, and σ0 was
calculated from the two-layer model; these results were com-
pared with PALSAR data taken with off-nadir angles of 21.5�

and 34.3�. As the sphagnummoss layer may smoothen surface
roughness, a value of half the surface roughness was adopted
for ks in layer 1; kl was estimated from its correlation with ks.

Several combinations of albedo and optical depth values
yielded σ0 discrepancies of <2 dB between PALSAR data
and the results of the 2-layer model. One of the best results is
presented in Fig. 4.23, which was obtained using the
parameters listed in Table 4.10. The σ0 values derived from
the PALSAR data are plotted as squares for the full
polarisation mode (off-nadir angle of 21.5�; incidence angle
of 24�) and as circles for the dual polarisation mode (off-nadir
angle of 34.3�; incidence angle of 38�). In this case, the
2-layer model for both co-polarisation and cross-polarisation
fit the data to within 1 dB. In the case of co-polarisation with
an incident angle of 24�, surface scattering from layer 1 was
dominant with smaller contributions expected from layer
2 and from volume scattering. In the case of cross-
polarisation, scattering from layer 2 was dominant, and scat-
tering from layer 1 (soil moisture of 10%) was negligible.

The entropy (H) and α were also calculated from the full
polarimetry data. The α angle ranged from 13.5� to 23.6�, and
H ranged from 0.28 to 0.47. These values are categorised as

Zone 9 in the H/α classification scheme, which represents
low entropy scattering processes such as surface scattering.
The entropy values observed at Ulaanbaatar were 0.14, and
smaller than those observed in ANWR, although the sites
have almost the same surface parameters and Mv. A larger
entropy value indicates the complexity of the scattering
mechanism; therefore, the two-layer scattering model for
ANWR may generate a large entropy value.

4.5.4 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

The simultaneous collection of field data and ALOS-PALSAR
fully polarimetric observations was performed in Alaska, USA
(2007 and 2008). The ground surface in Alaska is covered by
an active layer of permafrost consisting of a few to 10 cm of
sphagnum moss layer and deeper organic and mineral layers.

From the analysis of field data and PALSAR data, we
compiled the following results:

• The σ0co-pol values obtained in Alaska were 5 to 7 dB
lower than those predicted by the IEM model.

• Unlike σ0co-pol values, σ
0
VH values estimated from the Oh

model are moderately well matched to those derived from
the PALSAR data.

Fig. 4.23 σ0 derived from the two-layer model is plotted against incidence angle. (Left panel) Co-polarisation. (Right panel) Cross-polarisation.
PALSAR data are represented by squares (July 29, 2007, observations) and circles (August 17, 2007, observations)

Table 4.10 Parameters for the two-layer model

Parameters Layer 1 Layer 2

Mv 10% (ε ¼ 5.3) 34.7% (ε ¼ 20.6)

ks 0.41 0.82

kl 3.88 2.75

Albedo (a) 0.1

Optical depth (τ) 0.5

Frequency 1.27 GHz
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• Vertical depth dependency of moisture levels was
observed in the field data from permafrost regions. Mois-
ture levels of the sphagnum layer, located above the
organic layer, were estimated to be about 10%, while
moisture levels of the underlying organic and mineral
layers were 25% to 79%, respectively.

From these observations, we concluded that the sphagnum
moss layer plays an important role in radar backscattering
processes in permafrost regions and is a main contributor to
the σ0co-pol backscattering component; the underlying organic
and mineral layers, on the other hand, contribute to the σ0cross-
pol component. A two-layer model, which was applied to one
of the test sites in Alaska, provided a good prediction of
σ0 values derived from PALSAR data obtained with
off-nadir angles of 21.5� and 34.3�, for both co-polarisation
and cross-polarisation results.

Full polarimetry data describe the complete radar back-
scattering from a target, and it is essential for understanding
the scattering mechanism from the target. If full polarimetry
data is not used, it is difficult to conclude whether the
two-layer model is necessary for the description of σ0 in the
permafrost region.
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