
On the modeling of pulp properties in CTMP processes

Downloaded from: https://research.chalmers.se, 2025-07-01 17:57 UTC

Citation for the original published paper (version of record):
Bengtsson, F., Karlström, A., Wik, T. (2021). On the modeling of pulp properties in CTMP
processes. Nordic Pulp and Paper Research Journal, 36(2): 234-248.
http://dx.doi.org/10.1515/npprj-2020-0084

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Nordic Pulp & Paper Research Journal 2021; aop

Mechanical pulping

Fredrik Bengtsson*, Anders Karlström and Torsten Wik

On the modeling of pulp properties in CTMP
processes
https://doi.org/10.1515/npprj-2020-0084
Received September 29, 2020; accepted December 26, 2020

Abstract: The goal of this paper is to model the pulp prop-
erties fiber length, shives width and freeness. This will be
done utilizing specific energy, flat zone inlet consistency
and the internal variables, consistencies and fiber resi-
dence times estimated from refining zone soft sensors. The
models are designed using more than 3600 hours of data
from a RGP82CD refiner. The pulp properties are sampled
using a measurement device positioned after the latency
chest. Such measurements are noisy and irregularly sam-
pled which opens for a number of challenges to overcome
in modeling procedures. In this paper it is shown that the
models for shives width and fiber length are capable of
predicting most of the major dynamics. However, for free-
ness no reliable linear models can be derived. When esti-
mating fiber length, the specific energy together with flat
zone inlet consistency, fiber residence times and the con-
sistency in the conical zone were the dominant inputs. For
shives width it was found that a similar set of inputs re-
sulted in the best models, except that the consistencies
during normal process conditions did not significantly in-
fluence shives width. Furthermore, fiber residence times
were shown to have considerably more pronounced im-
pact onfiber length comparedwith shiveswidth estimates.

Keywords: CTMP; fiber length; linear modelling; pulp
properties; shives.

Introduction

It is well-known that pulp properties are often difficult to
measure reliably in TMP- and CTMP-processes. This, to-
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gether with the fact that most commercial automatic mea-
surement devices have severalminutes longmeasurement
times (Hirn and Bauer 2006) and irregular sampling rate
has made implementation of automatic control of pulp
properties has been a challenge for many years.

As the measurement quality of these devices is ques-
tioned from a control engineering perspective, consider-
able benefits could be achieved ifmodels are implemented
to predict pulp properties based on process conditions
sampled before the latency chest. Such models are useful
for a number of reasons as they allow predictions which
guide operators to find proper operating conditions. For
controller design on pulp and paper refiners an under-
standing of the process is necessary (Blanco et al. 2009).
The approach in mechanical pulping processes, has been
that external variables, such as specific energy (i. e. the
ratio between motor load and production), dilution wa-
ter added to the refiners, plate gaps (disc clearance) etc.,
should be used for control and modelling of pulp and
handsheet properties (Strand 1996, Härkönen et al. 2000,
Sabourin et al. 2001, Härkönen et al. 2003, Strand and
Grace 2014, Nelsson 2016). However, when using exter-
nal variables as predictors, process non-linearities tend to
negatively affect the result. To cope with that, soft sen-
sors describing physical phenomena in the refining zone
have been developed during the last decade (Karlström
and Eriksson 2014a, 2014b, 2014c, 2014d). The soft sen-
sor’s outputs can be seen as estimates of internal vari-
ables (such as fiber residence time, consistency profile,
forces on bars, distributed defibration, thermodynamic
work etc.)which are difficult tomeasure directly in the pro-
cess. Typically, such soft sensors are non-linear but still
have become important for advancedprocess optimization
(Karlström and Hill 2017a, 2017b, 2017c, Bengtsson et al.
2020).

In this paper, a mix of external variables (such as spe-
cific energy and flat zone (FZ) inlet consistency) together
with internal variables (consistencies and fiber residence
times) will be used to design models for future use in con-
trol applications. While previous research has used spe-
cific energy tomodel pulp properties (Schwartz et al. 1996,
Luukkonen et al. 2012), research on modeling the influ-
ence of internal variables is limited.
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Figure 1: A schematic drawing of a CD refiner. The vertical flat zone
(FZ) is directly linked to the conical zone (CD) via an expanding
point. Plate gaps are represented by ΔCD and ΔFZ .

Among the numerous different pulp properties avail-
able, this paper will focus on predicting freeness, fiber
length and shives width.

The main focus will be to determine which inputs are
best suited for modeling the chosen pulp properties and
how extensive the times series should be to derive reliable
models of the refining process.

Two strategies for linear modelling are explored, one
is to use the entire data set to derive a static linear model
and the other is to use a recursive algorithm to derive dy-
namic model which is continuously updated over time
(Ljung 1999).

Materials and methods
The process data available is obtained from a full-scale
production line with a yearly production capacity of
about 250 000 tons CTMP-pulp. The main line refiner is a
RGP82CD refiner with three small 6 MW refiners (RLP54)
in parallel. The CD82-refiner consists of two serially linked
refining zones called the flat zone (FZ) and the conical
zone (CD) as shown in Figure 1. In each zone, sensor ar-
rays with eight temperature sensors have beenmounted to
measure the entire temperature profiles. The temperature
measurements can be seen as internal variables and from
these, variables such as the consistencies and fiber resi-
dence times of the different zones can be estimated (Karl-
ström and Eriksson 2014a, 2014b, 2014c, 2014d).

In this paper six model inputs are considered:
1. The specific energy.
2. The inlet consistency of the flat zone, which mainly

depends on the percentage of sawmill chips fed to the
refiner (high inlet consistency implies low amount of
sawmill chips).

Figure 2: A figure showing the output (shives width) demonstrating
the slow and time varying sampling rates.

3. The fiber residence times of each zone.
4. The consistency, when leaving each refining zone.

The pulp produced in the refiner is analyzed in a mea-
surement device positioned after the latency chests. The
device periodically samples and records the values of the
pulp properties (freeness, fiber length and shives width).
Shives width is measured as number of shives in a sam-
ple with a width greater than 150 µm. The sampling rate
is non-equidistant and considerably slower than the dy-
namics in the refiners. Therefore, it is normally not used
for control purposes.

The process variables (inputs) were taken during two
different periods, each around 1800 hours long (sampling
rate: 6 seconds) to get enough data for the training and
validation procedures. The process was running in normal
conditions during the time the measurements were taken,
i. e. no experiments were performed to deliberately excite
the inputs during the period.

Two controllers were used during the complete test
period. Firstly, the consistencies were controlled by ma-
nipulation of the dilution water feed rates in the flat zone
and the conical zone, according to specifications set by the
operators. Secondly the maximum temperature in the FZ
was controlled bymanipulating the production. These pa-
rameters were under automatic control for around 80% of
the test period, while manually adjusted for the remaining
20% of the time.

Data preprocessing
The outputs are measured using a measurement device
(PulpEye), with a sampling rate that is time varying and
considerably lower than the sampling rate of the inputs
(see Figure 2). To resolve this we take the mean value of
the inputs during the period of each output sample, which
gives one set of input values for each output value. This
seems a reasonable step to take as there is a latency chest
between the process and the output measurements, and
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the mixing in the latency chest can be seen to have an av-
eraging effect. Furthermore the latency chest will impose
an unknown and random delay (due to variations in the
volume stored in the latency chest). Further preprocess-
ing includes de-trending the data by removing the means
as well as removing measurements 3 standard deviations
from the mean as outliers (this removed around 3% of the
data, mainly extreme outliers believed to be due to mea-
surement equipment errors).

We explored the possibility of adding delays to the in-
put measurements to compensate for the delay from the
latency chest. However thiswas found to yield no improve-
ments, probably due to the fact that the slow sampling rate
of the outputs meant that the delay of the latency chest
could easily be less then the output sampling time.

Methods for pulp property modeling and
evaluation

Static linear regression model

The static linear regression model in this article is

ŷ = θx,

where ŷ ∈ R1×1 is the prediction of the output, x ∈ Rp×1 is
a vector of the predictors (inputs), and θ ∈ R1×p is a vector
of what is called the parameters. p is the number of pre-
dictors. The goal is to derive values of θ, such that from
measurements of x, one gets as accurate estimate of y as
possible.

The output and the predictors are grouped inmatrices
such that a data set of size N can be expressed as

Y =
[[[[[

[

y1
y2
...
yN

]]]]]

]

X =
[[[[[

[

xT1
xT2
...
xTN

]]]]]

]

where y1 corresponds to the first measurement of the out-
put, and x1 are the measurements of the predictors at this
time. Thereafter the parameters θ which best describe the
relationship between Y and X are derived. This relation-
ship can be assessed by examining the mean square er-
ror of the difference between predicted and measured out-
puts, i.e

N
∑
i=1(yi − θxi)2 = (YT − θXT )(Y − XθT ),

which is minimized by

θ = (XTX)−1XTY .

Static linear models have the advantage that they are
simple to derive and interpret. However, it is important to
note that they are not able to model the system dynamics.
Moreover the models will be of poor quality if the effect of
the predictors on the outputs is highly non-linear.

Dynamic models

An alternative to the staticmodels are dynamic or adaptive
models which change over time. These models have the
advantage that they can change to adjust to changing pro-
cess conditions. There are a few different variants of adap-
tive models and here we will examine a sliding window
adaptivemodel (Young 2011) inwhich data is discarded af-
ter a certain time, such that the models are based only on
the most recent data.

When implementing slidingwindow recursivemodels
there are two key properties. Firstly, the window length
which is a measure of the amount of data used to deter-
mine the models (so a window length of 1000 means that
the 1000 most recent data points are used to derive mod-
els). Secondly, the prediction horizon, which is a measure
of how long forward in timepredictions aremade. So apre-
diction horizon of 50 would mean that we are making pre-
dictions 50 samples (300 seconds) ahead.

A dynamic alternative to the static linearmodels is the
ARXmodel in which the output is predicted from a combi-
nation of past inputs and outputs, i. e.,

A(q)y(k) = B1(q)u1(k) + B2(q)u2(k)
+ ... + Bp(q)up(k) + e(k) (1)

where y(k) is the output at time k, e(k) describes the noise,
A(q) = 1+a1q−1 +a2q−2+...+anq−n, Bx = b1 +b2q−1 +bn+1q−n
and q is the shift operator (i. e. q−1y(k) = y(k − 1)). n is a
tuning parameter used to determine the size of the model.
By setting q = 1 in the above equation the DC-gain can be
calculated, which is the ARX models gain at low frequen-
cies, and is comparablewith the parameter vector from the
static linear model.

The ARX model can, unlike the static models, also re-
flect the dynamic behavior of the system. The ARX mod-
els can be derived in the same way as static linear regres-
sion models, by simply expanding the predictor matrix X
to also contain past input and output measurements.

Conventional implementation of ARX models in our
case is problematic as the output sampling rate is irregular
and slow. We cannot resolve this by simply averaging the
inputs over the period of each output sample, as was done
when implementing linear regression, as this would not
only mean that the sampling time would be time-varying
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but also result in a sampling rate too low to be able to en-
compass the dynamics of the refiner. Instead to solve this
weuse amethoddescribed in Sanchis andAlbertos (2002),
where the model is designed recursively and used to esti-
mate the output at each input sampling interval.

There are other more complex dynamic models such
as the ARMAX and Box-Jenkins models (Ljung 1999),
which include noise dynamics. However these utilize out-
putmeasurements to estimate thenoise terms and thus are
not appropriate in our casewith highly sparse outputmea-
surements.

Evaluation of models

When evaluating individual models the coefficient of de-
termination,

R2 = 1 − ∑(yi − ŷ)
2

∑(yi − ȳ)2
, (2)

will be used. Here ∑(yi − ŷ)2, represents the sum of the
squared residuals from the regression and ∑(yi − ȳ)2 the
sum of the squared differences from the mean of the de-
pendent variable while n is the number of observations
(Draper and Smith 1998). If the coefficient of determina-
tion is 1 a perfect fit is obtained, while an R2 below zero in-
dicates that the model is worse than a horizontal line (i. e.
the models predictions are very poor).

When designing models with multiple predictors
there is always a risk of multicollinearities, i. e. a linear in-
terdependency between the different predictors. This can
be a consequence of both poorly designed experiments,
where various predictors are not exited separately, and a
true physical link between the predictors, which is often
found in serially linked processes. To analyze and detect
multicollinearities the Variance Inflation Factors (VIF)will
be used in this paper (Belsley et al. 1980). VIF quantifies
how much the variance is inflated, that is

VIFk =
1

1 − R2k
, (3)

whereR2k is theR
2 value obtainedby regressing the kth pre-

dictor on the remaining predictors. A VIFk = 1 means that
there is no linear correlationbetween the kth predictor and
the other remaining predictor variables, i. e. the variances
in the estimated coefficients are not inflated. If VIF > 4,
a general rule is that further analysis should be performed,
while VIF > 10 indicates serious multicollinearities and a
need to find a modified set of predictors. However, in our
serially linkedprocesses in Figure 1, some collinearities oc-
cur naturally and further analysis should be considered
from a more holistic perspective.

Table 1: Variance inflated factors for the different predictors. C =
Consistency, R = fiber residence time, SPE = Specific energy, FZ =
flat zone, CD = Conical zone, In.CFZ = Inlet consistency of the flat
zone.

Variance inflation factors (VIF)

SPE C.FZ C.CD R.FZ R.CD In.CFZ
3.6 14.7 16.5 75.5 76.9 1.1

Table 2: Correlation coefficients for pairs of potential predictors.

Correllation Coefficient

SPE C.FZ C.CD R.FZ R.CD In.CFZ
SPE 1 0.35 0.43 0.67 0.67 −0.13
C.FZ 1 0.96 −0.18 −0.19 −0.24
C.CD 1 −0.12 −0.13 −0.25
R.FZ 1 0.99 0.09
R.CD 1 0.07
In.CFZ 1

Results and discussions
Using the VIF as described above, it is obvious that there
is considerable interdependency for the fiber residence
times and consistencies in our data set, see Table 1. Spe-
cific energy and FZ inlet consistency both have a VIF be-
low 4which indicates that the interdependencies aremost
likely not problematic.

If we further evaluate the results in Table 1 by look-
ing at the Pearson’s correlation coefficient, which evalu-
ates linear interdependency between pairs of parameters,
a broader picture is recieved, see Table 2. As seen in Ta-
ble 2 the main interdependencies are between the mea-
surements in the flat and conical zones which is expected
as the process is serially linked. There is also some interde-
pendency between specific energy and the fiber residence
times, due to the fact that fiber residence times are linked
to the production and the plate gaps, which both affect the
specific energy.

The very high linear correlation between the different
fiber residence times indicate that one of them should be
discarded. However when doing that, the resulting mod-
els become considerably worse. The fiber residence times
are partly influenced by the plate gaps of the individual
zones. As these can be set individually, changes here will
differ between the zones and thereby influence the pulp
properties. To take this into account both fiber residence
times may need to be included.

As a large amount of data is available, there is some
flexibility when including several predictors as the risk for
overfitting is relatively low. It should, however, be noted
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Figure 3: The predictions of shives width from models based on 4 different sets of predictors compared to the measured values on validation
data.

that the high cross correlation of the fiber residence times
and also the consistencies will make inference of the im-
pact of the individual fiber residence times and consis-
tencies difficult. If inference is an important aspect of the
model, then the plate gap measurements can be used di-
rectly.

Models for shives width
Static models

To evaluate the models the data is split into two equally
large sets: a training set and a validation set. The training
set is used to design the model, while the validation set is
used to evaluate the model. The evaluation is performed
by examining the R2 of the models, calculated using the
validation set. To analyze the linear fit, all possible com-
binations of the inputs were considered when the models
were designed, see Table A1 in Appendix. In Figure 3, the
R2 aswell as the predictions are shown for some of the best
and most interesting combination of inputs.

There are a few conclusions that can be drawn from
Figure 3, firstly that the contribution of the consistencies
tomodel quality seem to bemarginal compared to amodel
with only specific energy, fiber residence times and FZ in-
let consistency. The R2 of the different models are all quite
poor,which canbedue to the considerable amount ofmea-
surement noise. This noise also makes visualisation of the
models difficult and makes it hard to visually judge how
well they predict shives width. To alleviate this, impact of

high frequency noise is reduced by smoothing the inputs
and outputs with a size 50 moving average filter.

From Figure 4, which shows our models implemented
on filtered data, it can be seen that with the models no
longer trying to follow high frequency noise, the R2 is con-
siderably higher for all the models. We also see that our
models can generally follow the major changes in shives
width.

It is noteworthy that it seems tobe sufficient touse spe-
cific energy and FZ inlet consistency as predictors to ex-
plain most of the variations. This, as the general shape of
our model based on these two parameters follow the mea-
sured values quite well. One possible reason for this is that
the residence times and consistencies influence specific
energy to a certain degree, thus including them may not
yield significant new information. However, it still seems
to be beneficial to include residence time in ourmodels, as
this improves the model quality considerably.

Regarding the consistencies of each zone, it is worth
mentioning that their impact on the models seems to
be detrimental, which would imply that their influence
on shives width seems to be marginal. This could be a
consequence of the fact that the consistencies were con-
trolled during the time the measurements were taken
which means that the consistencies did not change very
much during the test period. As the measurements were
taken during normal operating conditions, this is a quite
important conclusion as it implies that if consistency con-
trol is utilized then the shifts in consistency are so small
that they will not significantly influence shives width.
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Figure 4: The predictions from models based on 4 different sets of predictors compared to the measured values on validation data with fil-
tered inputs and outputs.

Dynamic models

An alternative to the static models are dynamic or recur-
sive models which change over time, as described previ-
ously.Whendesigningour recursivemodels itwasdecided
to use the set of parameters that our best static models
used, that is, specific energy, fiber residence times and FZ
inlet consistency. Thereafter, models with different win-
dow lengths and prediction horizons were implemented
(note that the maximum window length is 7225 so a win-
dow length of that length would mean using all available
data). In Table 3, the R2s for the recursive models are pre-
sented with different window sizes and prediction hori-
zons.

From Table 3 we can see that (with the exception of
when the prediction horizon is very low), the largest win-
dow always yields the best result. In general this implies
that there is little benefit to be extracted from discarding
old data, which in turn can be seen as a indicator that the
process did not change significantly during the measure-
ment period.

ARX models

As discussed previously an alternative are ARX models
which can also model the system dynamics. If we imple-
ment the ARXmodels using different values of n and com-
pare it to static linear regression models we get the result
shown in Table 4.

Table 3: R2 for different window sizes and prediction horizons for
recursive models.

Size of window
10 100 500 4000 7225

Prediction
Horizon (min)

0.5 0.96 0.93 0.84 0.85 0.87
5 0.25 0.61 0.72 0.84 0.87

10 −0.19 0.36 0.62 0.84 0.86
50 −2.20 −0.29 0.64 0.85 0.87

200 −0.86 −1.22 0.58 0.83 0.85

Table 4: A comparison between the R2 for ARX and static linear re-
gression models for shives width.

Model SPE, R.FZ, R.CD, In.CFZ SPE, In.CFZ

Linear 0.74 0.63
ARX n = 1 0.66 0.67
ARX n = 3 0.69 0.64
ARX n = 5 0.63 0.64

As can be seen from Table 4 the ARX models do not
yield a substantial improvement compared to static lin-
ear models, with considerably worse models when uti-
lizing specific energy, FZ inlet consistency and fiber resi-
dence times, while being marginally better when only us-
ing specific energy and FZ inlet consistency. If we graphi-
cally compare the best models in Figure 5 we see that the
resulting models are quite similar with only minor differ-
ences. Note that the R2 for static linear models in Table 4
do not perfectlymatch those in Figure 4. AswithARXmod-
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Figure 5: A comparision between the best ARX and static models for
shives width.

els we are interested in the dynamics we chose to split the
training and validation data sets so that the data covers
an equal amount of time of data in the training and val-
idation sets, while previously we split it so there was an
equal amount of output measurements in the training and
validation data sets.

As our ARX models do not yield an improved result
compared to static linear models it seems to indicate that
it is difficult to model the system dynamics from this data.
This is, however not, very surprising as output data is only
available at intervals of 10–30minutes, while the expected
dynamics of the system are considerably faster then this.

Parameter values

The parameters values for the predictor for our different
models are presented in Table 5. Themore complex nature
of theARXmodelsmeans that their parameters donot lend
themselves to an easy interpretation. However the static
gain for each predictor can be examined. This is similar to
that of the parameters in the linearmodels in that it shows
the amplification of low frequencies.

As can be seen from Table 5, the parameter values for
filtered and unfiltered data are quite similar, which indi-
cates that not much information was lost when applying
the moving average filter. This is probably because that
even with unfiltered data we are unable to model the high
frequency dynamics.

Furthermore, we can see that an increase in FZ inlet
consistency corresponds to an increase in shives width,
while an increase in specific energy naturally causes
shiveswidth to decrease. From themodel it is seen that the
residence time in the flat zone adversely affects the shives
width, however, as previously mentioned there is a very
high linear dependency between the fiber residence times
in the different zones. This means that it is unlikely that
there is sufficient excitation of the different fiber residence
times to accurately gauge their separate impact.

Table 5: Parameter values for different predictors for shives width.

Model Unfiltered Data Filtered data ARX static gain

SPE (kWh/T) −0.53 −0.56 −0.48
R.FZ (s) −336.55 −326.99 −87
R.CD (s) 2193.82 2169.07 526
In.CFZ (%) 49.75 48.94 55

The static gain of the ARX model is also quite similar
to the parameters of the static linear model except is for
the residence times. However, as these residence times are
highly correlated the individual parameter values are dif-
ficult to interpret. The similarity in parameter values be-
tween the models is expected as they are both linear mod-
els based on the same data set.

Models for fiber length

If we repeat the modeling procedure described previously
but for fiber length, a corresponding analysis can bemade
to yield a set of viable models. Table A1 in Appendix has
the result for all the different combinations, and Figure 6
shows some of the more interesting results from the dif-
ferent combinations. From Figure 6 it is seen that the best
combination seems to be when using specific energy and
the fiber residence times in both refining zones. However
this is somewhat misleading as visual inspection of the
graphs shows that using more predictors will yield con-
siderably improved results over nearly the entire data set,
with the exception of the first 200 hours of the data set,
where more predictors led to a very large overshoot. Fur-
ther investigations indicate that this overshoot seems to
be caused by high residence times. It is unclear whether
this is due to measurement errors, non-linear dynamics
or anomalous process conditions. However a single over-
shoot is not sufficient to disregard a model and thus we
remove the first 200hours of the validation data and inves-
tigate the remaining data. The results for this are shown in
Figure 7 and in Table A1 in Appendix.

From Figure 7 we can see that without the first 200
hours considerable benefits can be obtained fromutilizing
more predictors. The best model utilizes specific energy,
fiber residence times, FZ inlet consistency and the consis-
tency in the conical zone. While this may seem similar to
the results for shives width it differs in a few key aspects.
Firstly the consistency of the conical zone seems to have
a noteworthy effect on fiber length, considerably improv-
ing the model. While it is hard to gauge the exact impact
(especially as we noted previously the consistencies were
not individually exited to a particular degree) it seems to
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Figure 6: The predictions of fiber length from models based on 6 different sets of predictors compared to the measured values on validation
data with filtered inputs and outputs.

Figure 7: The predictions of fiber length from models based on 6 different sets of predictors compared to the measured values on validation
data with filtered inputs and outputs without the first 200 hours of validation data.

contribute to a notable improvement of model quality. It
is also noteworthy that the effect of residence time on fiber
length seems to be considerablymore pronounced than on
shives width. For shives width specific energy and FZ inlet
consistency were sufficient to accurately predict when the
major shifts would occur, while for fiber length it is appar-
ent from Figure 7 that residence times are also needed in
order to do the same.

If we also implement ARX models for fiber length and
compare them to the static linear model we get the re-
sults portrayed in Table 6. From here we can see that the
ARXmodel outperforms the static linear model somewhat
when it comes to R2. This may be seen to imply that there
may be slow dynamics affecting the fiber length that our
ARX models can detect. However if we compare our best
ARX and linear models graphically in Figure 8 we see that
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Table 6: A comparison between the R2 for ARX and static linear re-
gression models for fiber length.

Model SPE, R.FZ, R.CD, In.CFZ SPE, C.CD, R.FZ, R.CD, In.CFZ

Linear 0.41 0.67
ARX n = 1 0.69 0.75
ARX n = 3 0.67 0.74
ARX n = 5 0.66 0.75

Figure 8: A comparision between the best ARX and linear models for
fiber length.

they are quite similar with only minor differences in be-
haviour.

From these results we propose amodel of fiber length,
utilizing specific energy, fiber residence times, consistency
in the conical zone and FZ inlet consistency. The parame-
ters of this model are presented in Table 7. We also present
the static gain for the best ARX models (utilizing specific
energy, fiber residence times and FZ inlet consistency).

As can be seen from the parameters in Table 7, they
differ somewhat compared with those for shives width in
Table 5. Inlet consistency seems to have a detrimental im-
pact onfiber length,while it increased shiveswidth. This is
not unexpected as high inlet consistencies are due to low
amount of sawmill chips, which tend to have longer fibers.
Moreover the regression analysis indicates that increasing
specific energy decreases fiber length, whichmatches well
with previous results (Lecourt et al. 2006).

Models for freeness
Repeating the same procedure for freeness gives the re-
sults shown in Table A1. As seen in Table A1 no combina-
tions of inputs has a positive R2. This means that no mod-
els yield abetter result thanahorizontal line,which in turn
implies that there is no clear linear relationship between
freeness and the tested inputs.

If we examine some of the models more closely in Fig-
ure 9, it is seen that themajor changes in freeness is caused
by something other than the predictors used. Even disre-

Table 7: Parameter values for different predictors for fiber length.

Model Unfiltered Data Filtered data ARX Static gain

SPE (kWh/T) −0.0011 −0.0013 −0.0012
Cons. CD (%) 0.0031 0.0052 0.0044
Res.FZ (s) −2.16 −2.22 −2.45
Res.CD (s) 13.88 14.49 16.2
In.CFZ (%) −0.085 −0.088 −0.11
garding this, it is apparent that the models predict free-
ness very poorly inmost cases. There are some indications
that our models shape follow the freeness somewhat at
certain places in the validation data. For instance some
models predict the general shape to some extent for the
last 200 hours of the validation data, whichmight indicate
some correlation between the inputs and outputs. This in-
dicates that to properly model freeness other predictors
are required, or possibly more complex non-linear mod-
els should be used to handle freeness estimations. These
results correspond well to those presented by Luukkonen
et al. (2012), who found the relationship between freeness
and refiner properties to be highly non-linear.

Parameter convergence
Another element that can be investigated is how fast the
parameters converge to their final values, as this can give
a indication of how much data is required to derive mod-
els, as well as an idea of how much the model is likely to
change with the addition of new data. Therefore models
are derived using different amounts of data. The parame-
ters are analyzed and visually it is seen how they converge
to the final values for shives width in Figure 10.

As can be seen from Figure 8 the parameters for res-
idence time seem to converge after approximately 1800
hours,with specific energy convergingafter approximately
1400 hours of data. The FZ inlet consistency’s parameter
converges already after 500 hours of data. It is interesting
that the fiber residence times converge around 1800 hours
as this is after approximately half the data. As two ap-
proximately equally sized data sets were used this means
that the fiber residence times convergewhen data from the
other data set started to be used. To further explore this we
plot the parameter convergence when only using the sec-
ond data set in Figure 11.

As can be seen from Figure 11 when using only the sec-
ond data set the parameters converge around 700 hours of
data. So considerably less data is required here. This may
be indicative that the data of the second set may be more
useful from amodelling perspective, which in turnmay be
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Figure 9: The predictions of freeness from models based on 6 different sets of predictors compared to the measured values on validation
data with filtered inputs and outputs.

Figure 10: Parameter convergence as percentage of final value for shives width, using both data sets.

construed to indicate that fewer disturbanceswere present
during the time this data set. Alternatively this can be seen
to indicate that the excitation of the predictors was more
pronounced for the second data set than for the first.

Ultimately this highlights the problem with determin-
ing the amount of data required to derive reliable models,
as it is highly dependent on the quality of the data avail-
able. In our case as much as 1800 hours or as little as 700
hours of data could be enough for the parameters to con-

verge. However, even with the data from the first set good
quality models could be acquired, as demonstrated when
we designedmodels using training and validation data (as
the data setswere appended to each other chronologically,
the training data consisted nearly exclusively of the data of
the first data set).

If we repeat the same investigations for fiber length
(figures shown in Appendix) we see that the results differ
somewhat from shives width. Thoughwe still need around
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Figure 11: Parameter convergence as percentage of final value for shives width using only the second data set.

1500 hours of data for the parameters to convergewhenwe
look at the entire data set. For the case when using only
the second data set the parameter for specific energy con-
verges quite quickly, but for FZ inlet consistency and fiber
residence times nearly the entire data set is required for
convergence.

Conclusion
In this paper, models for shives width, fiber length and
freeness (outputs) have been designed using a set of exter-
nal and internal variables (inputs). For shives width and
fiber length models capable of predicting most of the ma-
jor variations can be derived. For freeness, no good lin-
ear models could be derived, implying either highly non-
linear relationships between the inputs and outputs or, al-
ternatively, that the main factors affecting freeness could
not be derived from the inputs we used.

When estimating shives width the inputs specific en-
ergy, FZ inlet consistency and fiber residence times were
the inputs with the most pronounced effect. Generally, FZ
inlet consistency and especially specific energy seem to
be the most influential inputs. For fiber length we found
that a similar set of inputs resulted in the best models,
with the addition of the consistency in the conical zone.
Fiber residence times however had a considerably more
pronounced impact onfiber length then theyhadon shives
width.

A limitation regarding the measurements taken from
normal process conditions, was that the inputs were not

exited to the extent that would be ideal from a modelling
perspective. Due to colinearities in the inputs this made it
somewhat difficult to distinguish the impact of individual
inputs. This was particularly problematic for the fiber res-
idence times, as they were barely exited separately at all.
Further experiments with deliberately changing the resi-
dence time in only one zonemay allow one to better assess
the impact of the residence time. It is important tonote that
many of the parameter used, such as the residence times
and consistencies,were derived from internal and external
measurements of the refining process. Thus, by examining
these non-linear models, it may be possible to anticipate
the colinearities, and find new, less co-linear parameters.

Thehighnoise level in the outputsmeant that only low
frequency dynamics were examined. Better and more fre-
quent outputmeasurements would have allowed us to fur-
ther explore the high frequency dynamics. More frequent
output measurements would also allow for model struc-
tures capable of capturing the noise dynamics, such asAR-
MAX and Box-Jenkins models.

Finally, the poor estimate of freeness can also be in-
terpreted in other ways as it indicates that freeness should
be avoided when it comes to pulp property control, even
though it is still ameasure commonly used in the pulp and
paper industry.
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Appendix

Table A1: R2 for different inputs and outputs on filtered and unfiltered data. A one denotes that this output was used and a zero denotes it
was not utilized.

Predictors Shives width Fiber length Freeness
SPE C.FZ C.CD R.FZ R.CD In.CFZ Unfiltered Filtered Unfiltered Filtered Filtered,

reduced
data set

Unfiltered Filtered

1 0 0 0 0 0 0.15 0.37 0.03 0.14 0.18 −0.11 −0.22
0 1 0 0 0 0 −0.12 −0.09 −0.17 −0.40 −0.40 −0.42 −0.59
0 0 1 0 0 0 −0.08 −0.01 −0.21 −0.55 −0.58 −0.48 −0.74
0 0 0 1 0 0 −0.17 −0.54 −0.02 −0.02 −0.02 −0.02 −0.03
0 0 0 0 1 0 −0.18 −0.58 −0.03 −0.05 −0.05 −0.04 −0.06
0 0 0 0 0 1 −0.10 −0.31 0.07 0.12 0.11 −0.07 −0.09
1 1 0 0 0 0 0.13 0.35 −0.13 −0.21 −0.12 −0.42 −0.66
1 0 1 0 0 0 0.13 0.32 −0.19 −0.39 −0.33 −0.47 −0.77
1 0 0 1 0 0 0.15 0.41 0.04 0.12 0.15 −0.14 −0.25
1 0 0 0 1 0 0.16 0.44 0.06 0.17 0.20 −0.14 −0.26
1 0 0 0 0 1 0.23 0.58 0.11 0.31 0.32 −0.13 −0.26
0 1 1 0 0 0 −0.06 0.01 −0.22 −0.65 −0.69 −0.48 −0.75
0 1 0 1 0 0 −0.39 −0.95 −0.06 −0.12 −0.12 −0.41 −0.73
0 1 0 0 1 0 −0.31 −0.72 −0.10 −0.23 −0.24 −0.46 −0.81
0 1 0 0 0 1 0.01 0.07 −0.02 −0.11 −0.13 −0.60 −0.92
0 0 1 1 0 0 −0.40 −1.12 −0.10 −0.24 −0.26 −0.46 −0.87
0 0 1 0 1 0 −0.31 −0.80 −0.14 −0.37 −0.39 −0.51 −0.93
0 0 1 0 0 1 0.06 0.19 −0.04 −0.25 −0.29 −0.79 −1.35
0 0 0 1 1 0 −0.17 −0.58 0.19 0.49 0.54 −0.19 −0.31
0 0 0 1 0 1 −0.04 −0.17 0.04 0.10 0.08 −0.02 −0.03
0 0 0 0 1 1 −0.09 −0.31 0.04 0.09 0.07 −0.04 −0.06
1 1 1 0 0 0 0.13 0.35 −0.20 −0.50 −0.48 −0.47 −0.78
1 1 0 1 0 0 0.06 0.23 −0.24 −0.67 −0.51 −0.33 −0.55
1 1 0 0 1 0 0.11 0.34 −0.31 −0.91 −0.68 −0.44 −0.73
1 1 0 0 0 1 0.24 0.59 0.01 0.05 0.07 −0.62 −1.02
1 0 1 1 0 0 0.05 0.19 −0.49 −1.63 −1.56 −0.37 −0.69
1 0 1 0 1 0 0.11 0.33 −0.55 −1.78 −1.70 −0.50 −0.90
1 0 1 0 0 1 0.23 0.54 −0.04 −0.18 −0.16 −0.79 −1.37
1 0 0 1 1 0 0.16 0.40 0.23 0.54 0.61 −0.19 −0.33
1 0 0 1 0 1 0.22 0.54 0.14 0.34 0.34 −0.17 −0.29
1 0 0 0 1 1 0.23 0.55 0.17 0.43 0.43 −0.18 −0.31
0 1 1 1 0 0 −0.42 −1.13 −0.11 −0.33 −0.35 −0.46 −0.87
0 1 1 0 1 0 −0.33 −0.81 −0.15 −0.45 −0.49 −0.51 −0.93
0 1 1 0 0 1 0.07 0.23 −0.05 −0.34 −0.38 −0.79 −1.44
0 1 0 1 1 0 −0.53 −1.36 0.19 0.46 0.51 −0.29 −0.53
0 1 0 1 0 1 −0.06 −0.14 0.05 0.11 0.08 −0.67 −1.22
0 1 0 0 1 1 −0.05 −0.10 0.02 0.00 −0.02 −0.71 −1.25
0 0 1 1 1 0 −0.70 −2.05 0.19 0.46 0.51 −0.28 −0.54
0 0 1 1 0 1 −0.03 −0.14 0.03 0.00 −0.03 −0.84 −1.65
0 0 1 0 1 1 0.00 −0.03 −0.01 −0.12 −0.15 −0.86 −1.64
0 0 0 1 1 1 −0.12 −0.44 0.18 0.43 0.59 −0.14 −0.27
1 1 1 1 0 0 0.05 0.21 −0.48 −1.71 −1.73 −0.37 −0.69
1 1 1 0 1 0 0.11 0.35 −0.54 −1.83 −1.83 −0.50 −0.90
1 1 1 0 0 1 0.22 0.49 −0.05 −0.31 −0.32 −0.78 −1.44
1 1 0 1 1 0 −0.03 0.01 0.17 0.41 0.62 −0.26 −0.46
1 1 0 1 0 1 0.22 0.55 −0.09 −0.37 −0.29 −0.56 −0.98
1 1 0 0 1 1 0.23 0.57 −0.16 −0.58 −0.44 −0.66 −1.14
1 0 1 1 1 0 −0.11 −0.27 0.13 0.23 0.37 −0.24 −0.45
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Table A1: (continued)

Predictors Shives width Fiber length Freeness
SPE C.FZ C.CD R.FZ R.CD In.CFZ Unfiltered Filtered Unfiltered Filtered Filtered,

reduced
data set

Unfiltered Filtered

1 0 1 1 0 1 0.23 0.53 −0.32 −1.47 −1.45 −0.76 −1.52
1 0 1 0 1 1 0.23 0.54 −0.38 −1.57 −1.53 −0.87 −1.65
1 0 0 1 1 1 0.28 0.70 0.13 0.16 0.44 −0.14 −0.25
0 1 1 1 1 0 −0.70 −2.07 0.19 0.46 0.51 −0.29 −0.54
0 1 1 1 0 1 −0.06 −0.17 0.02 −0.08 −0.11 −0.84 −1.67
0 1 1 0 1 1 −0.04 −0.09 −0.01 −0.20 −0.24 −0.86 −1.66
0 1 0 1 1 1 −0.07 −0.20 0.06 −0.12 0.12 −0.36 −0.70
0 0 1 1 1 1 −0.10 −0.46 −0.06 −0.65 −0.39 −0.42 −0.94
1 1 1 1 1 0 −0.11 −0.25 0.13 0.22 0.34 −0.25 −0.44
1 1 1 1 0 1 0.21 0.46 −0.32 −1.64 −1.69 −0.76 −1.55
1 1 1 0 1 1 0.22 0.47 −0.38 −1.67 −1.70 −0.87 −1.67
1 1 0 1 1 1 0.26 0.66 0.15 0.30 0.61 −0.32 −0.60
1 0 1 1 1 1 0.28 0.71 0.18 0.41 0.70 −0.37 −0.83
0 1 1 1 1 1 −0.11 −0.41 −0.07 −0.80 −0.53 −0.41 −0.91
1 1 1 1 1 1 0.27 0.67 0.17 0.37 0.67 −0.36 −0.79

Figure A1: Parameter convergence as percentage of final value for fiberlength.
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Figure A2: Parameter convergence as percentage of final value for fiber length using only the second data set. Note that missing data is due
to it being of a negative sign which cannot be portrayed with a logarithmic axis.
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