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Abstract

Medical devices such as orthopedic and dental implants may get infected by bacteria,

which results in treatment using antibiotics. Since antibiotic resistance is increasing in

society there is a need of finding alternative strategies for infection control. One

potential strategy is the use of antimicrobial peptides, AMPs. In this study, we inves-

tigated the antibiofilm effect of the AMP, RRP9W4N, using a local drug-delivery sys-

tem based on mesoporous titania covered titanium implants. Biofilm formation was

studied in vitro using a safranine biofilm assay and LIVE/DEAD staining. Moreover,

we investigated what effect the AMP had on osseointegration of commercially avail-

able titanium implants in vivo, using a rabbit tibia model. The results showed a

sustained release of AMP with equal or even better antibiofilm properties than the

traditionally used antibiotic Cloxacillin. In addition, no negative effects on

osseointegration in vivo was observed. These combined results demonstrate the

potential of using mesoporous titania as an AMP delivery system and the potential

use of the AMP RRP9W4N for infection control of osseointegrating implants.

K E YWORD S
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1 | INTRODUCTION

A majority of orthopedic implant-related infections are caused by the

skin bacteria Staphylococcus epidermidis and Staphylococcus aureus.1

Despite that S. epidermidis has a low level of virulence and usually

does not cause severe infections, they give persistent low-level infec-

tions that are difficult to treat. The virulence of S. epidermidis is con-

nected to its ability to adhere to surfaces and form biofilms,2 which

can be up to 1,000 times more antibiotic resistant than their

corresponding planktonic counterparts.3 Due to their high antibiotic

tolerance, alternatives to treat these infections must be found. A

potential group of substances to eradicate biofilms are antimicrobial

peptides, AMPs. They strike widely against bacteria, fungi, parasites

and some viruses by destroying the cell membrane. The initial interac-

tion between AMP and microbe is thought to occur via electrostatic

interactions between the positively charged AMP and negatively

charged groups on the bacterial membranes, for example, lipopolysac-

charides and lipoteichoic acids.4 This interaction is followed by ruptur-

ing of the bacterial membrane resulting in cell death. Although natural

existing AMPs suffer from problems such as proteolytic degradation

and cytotoxicity, they can be improved by peptide engineering. Then,

proteolytically stable antimicrobial peptides with low toxicity for

human cells and high bactericidal effect, even against multi-resistant

bacterial strains of S. aureus, Group A streptococci, Escherichia coli and

P. aeruginosa, can be obtained.5 Engineered AMPs have also shown

antibacterial properties against other bacteria like Enterococcus

faecium, S. aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseu-

domonas aeruginosa, Enterobacter cloacae and Escherichia coli.6,7 In

addition to engineering AMPs, their stability and function may also be

improved by the mode of delivery.8
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As an alternative to administering antimicrobials systemically,

local drug-delivery systems may be used when fighting biofilms, with

benefits including high local concentrations without the risk of sys-

temic toxic concentrations and an unaffected normal bacterial flora at

uninfected areas. Some local strategies used are coatings preventing

bacterial adhesion or coatings containing or releasing antimicrobials.9

Local delivery systems of AMPs that have been evalauted include

polymer functionalized carriers,10 calcium phosphate carriers,11 silica

carriers12 and cubosomes.13 Titania surfaces can also be modified for

local AMP delivery, using for example, covalent grafting of peptides14

or nanotubes.15,16 Mesoporous titania is a potential candicate for local

delivery of AMPs, since it possess a good drug loading capacity with

controlled relase kinetics, which can be altered by changing material

properties such as pore size, surface area and surface chemistry.17 For

antimicrobial purposes, mesoporous titania coating has shown to be

efficient in releasing antibiotics for elimination of S. aureus and

P. aeruginosa.17

In this study, we investigated the antibacterial effect of the

PRELP-derived antimicrobial peptide RRPRPRPRPWWWW-NH2

(RRP9W4N) when incorporated into mesoporous titania. RRP9W4N

has shown to have good bacterial killing properties combined with

low toxicity to bone forming cells, human osteosarcoma MG63 cells,

and human mesenchymal stem cells in vitro.18 The loading and release

of peptide from mesoporous titania was investigated as was the

antibacterial effect, using a S. epidermidis biofilm safranine assay

together with LIVE/DEAD BacLight staining and confocal laser scan-

ning microscopy. The antimicrobial activity of the AMP was compared

to the clinically used antibiotic Cloxacillin. Moreover, the effect of the

AMP on the osseointegration process was evaluated in vivo using a

rabbit tibia model. This was performed to evaluate if the procedure

resulted in a selective implant, that is, high antimicrobial effect com-

bined with no negative consequences on the osseointegration. In the

in vivo study, commercially available dental titanium implants were

installed and followed at different healing times.

2 | MATERIALS AND METHODS

2.1 | Formation of mesoporous titania films

Mesoporous titania films were formed on different substrates using

the evaporation induced self-assembly method, EISA, as earlier

described.19 The block copolymer Pluronic 123 (Sigma Aldrich) was

used as template and titanium(IV)tetraethoxide (Sigma Aldrich) was

used as the inorganic precursor. The 0.5 g Pluronic 123 was dissolved

in 8.5 g ethanol (99.5%, Solveco) and stirred for 2 hrs using a magnetic

stirrer. In a separate vial, 2.1 g of titanium(IV)ethoxide and 1.6 g HCl

(37%, Sigma Aldrich) were mixed and stirred for 2 hrs using a magnetic

stirrer, before added to the Pluronic solution and stirred overnight.

The concentrations used were chosen to form a cubic mesoporous

structure.20

Mesoporous thin films were formed using spin-coating (Spin

150, SPS-Europe, 7,000 rpm, 60 s) on different substrates: cover glass

slides (VWR), QCM-D sensors (Q-sense), titanium discs (Alfa Aesar)

and commercially available threaded titanium implants with a diam-

eter of 3.5 mm and a length of 7 mm (Neodent, Curitiba, Brazil).

After spin coating, the surfaces were left overnight in room temper-

ature allowing for the self-assembly to complete and the ethanol to

evaporate. The thin films were then calcined to remove the Pluronic

template and increase titania cross-linking density through conden-

sation. The samples were heated at a rate of 1�C/min to 350�C, and

then left to dwell for 4 h before slowly cooled to room temperature.

Nonporous thin titania films were prepared using the same proce-

dure, but without addition of Pluronic 123. The implants were

immersed in 200 μM AMP for 24 h and air dried before sterilization

by gamma-radiation. This procedure gave a film thickness of

200 nm.19

2.2 | Surface characterization

Transmission electron microscopy was used to investigate the meso-

porous titania. Microscopy specimens were prepared by scraping off

mesoporous titania coated glass slides, mortaring and dispersing in

ethanol. A drop of the ethanol dispersion was placed on a holey car-

bon coated copper grid and left to dry before analysis, in a JEOL JEM

1200EX II microscope operated at 120 kV. Surface morphology was

examined with scanning electron microscopy using a Leo Ultra

55 FEG SEM operated at 4 kV. Before analysis, the samples were

sputtered with gold for 30 s. X-ray photoelectron spectroscopy (XPS)

analyses were performed on a Quantum 2000 scanning microprobe

from Physical Electronics with an Al Kα (1,486.6 eV) X-ray source. The

information depth is approximately 4–5 nm. Contact angle measure-

ments were performed on an optical tensiometer Attension Theta

instrument.

2.3 | AMP loading and release from mesoporous
titania

Titanium sensors (QSX 310, Q-Sense) were coated with mesoporous

titania as described above. Non-coated titanium disks were used as

reference. The sensors were washed as recommended by the manu-

facturer. First, sensors were treated in UV/Ozone for 20 min followed

by cleaning in 2% sodium dodecyl sulphate (SDS) for 30 min before

washing extensively with MilliQ water. Then samples were dried in

nitrogen gas before being subjected to UV/Ozone for another 10 min.

The QCM-D experiments were performed on a Q-Sense E4

instrument. Sensors were mounted in the QCM-D chamber and milliQ

water (18.2 MΩ) was used to obtain a baseline (25 μl/min, 21�C).

Then Cloxacillin sodium salt monohydrate (0.5 g/L, pH 7.5, Sigma

Aldrich) or RRP9W4N (200 μM, Biopeptide, 95%) was flowed over

the sensors (25 μl/min, 21�C) and allowed to enter the pores of the

mesoporous titania. After antimicrobial loading of the pores, (4 h for

AMP, 24 h for Cloxacillin) milliQ water was flowed over the sensors

to monitor the antimicrobial release.
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2.4 | Biofilm formation

Two bacterial strains of Staphylococcus epidermidis were used, the

fresh isolate Mia21 and the type strain CCUG 39508 (Culture Col-

lection University of Göteborg). The strains were cultured on Brain

heart infusion agar plates at 37�C. Colonies were transferred to

5 ml liquid Todd Hewitt medium and incubated overnight (37�C)

before being transferred to 100 ml fresh Todd Hewitt medium and

incubated overnight. Then, bacteria were harvested, washed by

centrifugation (2,500 rpm, 10 min) and resuspended in fresh Todd

Hewitt medium.

Heat-sterilized mesoporous titania samples were submerged into

a solution of 0.5 g/L Cloxacillin, pH 7.5 or 200 μM of the antimicrobial

peptide RRPRPRPRPWWWW-NH2 (Biopeptide, 95%, RRP9W4N)

and left to soak for 24 hrs to incorporate the antimicrobial substances

into the mesoporous film.

Freshly prepared S. epidermidis cultures (1 × 109 CFU/ml strain

Mia, 7 × 108 CFU/ml strain CCUG 39508) were allowed to grow on

the antimicrobial soaked surfaces. Mesoporous titania coated discs

without antimicrobials were used as controls.

Bacteria were cultured for 24 hrs (37�C) to allow biofilm adher-

ence and then media was discarded, fresh media was added, and bio-

film formation was allowed for another 24 hrs (37�C).

2.5 | Biofilm safranine assay

To assess the amount of biofilm formed on the mesoporous titania

samples, surfaces of the samples after bacterial culture were stained

with safranine. Each surface was rinsed in 2*0.5 ml MilliQ water and

the biofilms were fixed with 0.5 ml methanol for 10 min. Surfaces

were allowed to air dry before stained with 1 ml 0.1% safranine O

(Alfa Aeser) for 10 min and then rinsed with 4*1 ml MilliQ water. The

samples were air-dried and safranine was solubilized for 10 min in

95% ethanol. The solutions were collected, and absorbance was

recorded with UV–Vis spectroscopy (HP8453, Hewlett Packard) at

532 nm.

2.6 | Biofilm viability

To assess the bacterial viability, biofilms were stained with LIVE/

DEAD BacLight (Molecular probes, kit 7007). Samples were washed

twice in MilliQ water, and then stained by 4 μl of BacLight (2.5 μl of

sample A, 0.5 μl of sample B in 1 ml 0.85% NaCl) and left in the dark

for at least 15 min before studied with confocal microscopy using a

LSM 700 inverted confocal laser scanning microscope (Zeiss). Light

emitted below 555 nm was collected for propidium iodide and light

emitted above 560 nm was collected from Syto 9. In each experiment,

images covering a total of 1 mm2 were obtained using the tile scan

function and the surface area coverage of live and dead bacteria were

measured using the software Volocity.

2.7 | In vivo study

To assess the effect of the antimicrobial peptide (RRP9W4N) on

osseointegration and bone healing an in vivo study in rabbit tibia was

performed. Screw shaped titanium implants coated with a thin meso-

porous titania film were used as controls and the same implants

loaded with AMP were used as tests.

Ethical approval was received by the ethical committee for animal

trials of the French Ministry of Education and Research. Thirty

New Zealand White rabbits (Oryctolagus cuniculus) were used for this

animal trial at the Ecole Nationelle Veterinaire D´Alfort, Mason Alfort,

France. The animals were anesthetized with general anesthesia with

an intravenous dose of medetomidine, 250 μl/kg (Domitor, Zoetis,

France), ketamine, 20 mg/kg (Imalgène 1,000, Merial, Sanofi, France)

and diazepam, 1 mg/kg (Valium, Roche, France). In addition, local

anesthesia with Xylocain was administered in the rabbit tibia. A full-

thickness periosteal flap was elevated on the medial tibia plate and

the bone was exposed. A sequence of cylindrical drills under irrigation

of sterile saline was used to create one osteotomy on each tibia. One

test (AMP-loaded) or one control implant (native mesoporous titania)

was inserted in each tibia of the rabbits. Then, the flap was sutured

with resorbable Vycril (3.0). The rabbits were supplied with analgesic

in the form of buprenorphine (Buprécare, Animalcare, UK), and

meloxicam (Metacam, Boehringer Ingelheim Vetmedica, Inc., United

States) and with a patch of fentanyl (Duragesic, Janssen

Pharmaceutica, Beerse, Belgium) for 5 days after surgery. The animals

received oral antibiotics (enrofloxacine, 200 mg/L, Baytril, Bayer Ani-

mal Health, Germany) for 5 days.

The animals were left to heal in separate cages for 2, 4 or

12 weeks after the surgery. At each healing time, 10 rabbits were

euthanized with a lethal injection of sodium pentobarbital (Euthasol,

Virbac, Fort Worth). At the re-entries, the rabbit tibia was dissected,

and bone-implant blocks were harvested and fixed in 4% paraformal-

dehyde. Subsequently, the bone-implant samples were dehydrated in

ascending concentrations of ethanol and then infiltrated with liquid

resin (Technovit 7,200, VLC; Hereaeus Kulzer, Wehrheim, Germany).

The samples were embedded in resin through polymerization under

UV-light for 4 h.

Histological sections of 40 μm thickness were prepared along the

implant longitudinal axis by cutting-grinding technique ad modum22

and they were stained with Toluidine Blue – Pyronin G dye and then

analyzed with optical microscopy using an Eclipse ME600 microscope

(Nikon, Tokyo, Japan). Histomorphometrical parameters were

recorded for each section and included “Bone-to-Implant Contact”
(BIC%), described as the percentage of the implant surface which is in

direct contact with bone, and “New Bone Area” (NBA%), which is the

percentage of new bone that is found within the threads of the

implant. Image J software (National Institute for Health, Bethesda,

MD) was used for the histomorphometrical measurements as per-

formed on pictures of the histological slides taken with a digital cam-

era (DS-Ri2, Nikon, Japan) connected to the microscope at a

magnification between 200× to 400×.
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2.8 | Statistics

Statistical analysis of the in vitro results was performed using one-way

ANOVA or Kruskal-Wallis tests and p < 0.05 was considered statisti-

cally significant. Data are presented as mean ± SD.

In the in vivo study, the histomorphometrical results of test and

control implants at the different healing times were compared using

the non-parametric Wilcoxon Signed Rank test for depended samples

and the test and control implants on the same animal were considered

as a pair. The analysis was performed with SPSS software (IBM, Ver-

sion 23.0). Data are presented as mean ± SD.

3 | RESULTS

3.1 | Material characterization

The mesoporous titania was characterized using electron microscopy. In

TEM it was clearly observed that the titania consisted of a continuous

mesoporous network with pore-diameter of 6 nm, see micrograph in

Figure 1(a). The surface of the mesoporous network was examined using

SEM and pores present on its surface could be seen, Figure 1(b). This

indicate the possibility of loading antimicrobial substances into the meso-

porous titania.

The water wettability was examined using contact angle measure-

ments and is was shown that the mesoporous titania surfaces were

hydrophilic, as can be seen in Table 1. After loading the mesoporous

network with either AMP or Cloxacillin, the contact angles changed,

indicating the presence of antimicrobials on the surface.

To confirm the presence of antimicrobials, XPS was performed.

According to XPS, pure mesoporous titania has a surface composition

of about 18% C, 59% O and 23% Ti, whereas the AMP loaded sample

had a considerable amount of nitrogen (14% of the sample). Also, the

cloxacillin loaded sample contained nitrogen, as well as chlorine, as

expected from the compositions of the antimicrobial (Table 2). In addi-

tion, some salts were also found on the AMP loaded sample.

3.2 | Drug loading and release

To investigate how much antimicrobials that were loaded into the

mesoporous titania, QCM-D experiments were performed see Figure

2. When RRP9W4N was added to the mesoporous titania an immedi-

ate, substantial loading of the mesopores could be observed

(500 ng/cm2 within the first 30 min) and maximum loading,

650 ng/cm2, was reached already after 2.5 hrs. Upon rinsing, there

was a slow release of AMP from the surface, continuing until the

experiment was aborted at 20 hrs. Then 534 ng/cm2 of the AMP

remained in the mesopores. This is similar to the amount present after

initial loading and indicates a very slow release of AMPs. On non-

porous titania, RRP9W4N immediately adsorbed and reached its max-

imum amount of around 180 ng/cm2 in 2 hrs. This indicates the

amount of RRP9W4N that can be loaded into the mesopores is

around 470 ng/cm2. For comparison, the loading of Cloxacillin started

with an instant high absorption and then slowly increased for a day

(420 ng/cm2) until rinsing was initiated. That induced an initial burst

release followed by a continuous slow release. On non-porous titania,

only a small amount of Cloxacillin adsorbed (30 ng/cm2).

3.3 | Biofilm formation

When using the safranine assay to investigate the biofilm content

(Figure 3) there was significantly less (p < 0.05) biofilm formation on

the mesoporous surfaces loaded with antimicrobials compared to the

control mesoporous surface. Furthermore, in one strain (Mia), there

was less biofilm on the AMP loaded surface than on the Cloxacillin

loaded surface, whereas there was no difference between the antimi-

crobials for strain 39508.

Biofilm growth and bacterial viability were also investigated using

LIVE/DEAD staining and confocal microscopy. The total biofilm

F IGURE 1 Images of
mesoporous titania from (a) TEM,
scale bar 50 nm and (b) SEM, scale
bar 100 nm show a porous
network with pores extending to
the surface

TABLE 1 Contact angles for mesoporous titania and mesoporous
titania loaded with antimicrobials

Sample Contact angle

MpTiO2 21.5 ± 1.8

MpTiO2 RRP9W4N 30.0 ± 1.9

MpTiO2 Cloxacillin 15.6 ± 2.6
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coverage on mesoporous titania and non-porous titania were statisti-

cally significant from growth on antimicrobial loaded mesoporous tita-

nia, as seen in Figure 4. There was no difference between the

antibiotic Cloxacillin and the antimicrobial peptide RRP9W4N. The

amount of biofilm eliminated on the two antimicrobial surfaces was

91–94% of the control biofilm on the mesoporous titania, and most

bacteria remaining on the samples were alive. In strain Mia, 86–99%

of the bacteria were alive whereas in strain 39508, 97–99% of the

bacteria were alive.

3.4 | In vivo results

One rabbit allocated to 2 weeks of healing died during surgery, proba-

bly due to complications of the anesthesia. All other animals recov-

ered well from surgery and could walk normally during the follow up

period. One sample in the 4-week group was fractured during explan-

tation and three samples, 1 of the 2-week group and 2 of the

12-week group were lost during histological processing. Conse-

quently, the contro-lateral samples in the same animals were removed

from analysis, because they could no longer be considered a pair. As a

result, a total of eight pairs were included in the analyses at 2 and

12 weeks of healing and a total of nine pairs were included in the ana-

lyses at 4 weeks. A power analysis revealed that the sample size

obtained was sufficient to detect an effect of the surface treatment

on the histomorphometrical parameters. Representative histological

images of the test and controls samples are displayed in Figure 5.

After 2 weeks of healing, the original cortical bone was still in

contact with the tips of the implant threads, formation of new bone

had occurred in the space inside the threads, starting both from the

surfaces of the osteotomy and on the implant surfaces. This new

bone was organized in thin trabeculae, intensely stained with Tolui-

dine blue and with large osteocyte lacunae and it was extended in the

marrow area of the implant as well. No qualitative difference could be

observed between the test and the control group. The BIC% was

more than twice as high in the test group compared to the control

group (8.17% vs 3.46% for the test and control group respectively),

TABLE 2 The XPS results showed
that nitrogen was present on the
mesoporous titania loaded with AMP or
Cloxacillin

C1s O1s Ti2p N1s F1s S2p Cl2p

MpTiO2 17.7 59.0 23.3

MpTiO2 RRP9W4N 43.5 32.5 8.7 13.9 1.2 0.2

MpTiO2 Cloxacillin 26.4 53.4 18.3 1.7 0.3

Abbreviation: XPS, X-ray photoelectron spectroscopy.

F IGURE 2 (a) Loading of AMP, and (b) Cloxacillin, pH 7.5 into
mesoporous titania (MpTiO2). Non-porous titania discs were used as
controls (TiO2)
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F IGURE 3 The mean biofilm amount (±SD) on different surfaces
was assessed using safranine staining and statistical significance was
calculated using a one way ANOVA test, p < 0.05. For both strains the
amount of biofilm on the control mesoporous titania surface was
statistically significantly higher (*) compared to the Cloxacillin and
AMP loaded mesoporous titania
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F IGURE 4 The mean (± SD) biofilm surface coverage was
assessed using BacLight LIVE/DEAD staining and confocal
microscopy. Using a Kruskal Wallis test statistical significance could
be shown between MpTiO2 compared to Cloxacillin and
AMP (p < 0.01)
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but the difference did not reach a statistical level of significance

(p = 0.05). The BA% values were comparable for the test and control

implants (24.25% for the test group and 23.21 for the control group).

At week 4 of healing, the new bone had matured and formed a com-

pact and lamellar bone in intimate contact with the implant surface

and filling the threads in the cortical region of the tibia. Again, no qual-

itative differences were observed in the bone maturation between

the test and the control groups. The histomorphometrical values were

significantly increased from the 2-week observations and were com-

parable for the test and control samples (BIC%: 16.27% and 21.23%

for the test and control group respectively; BA%: 64.60 and 60.50%

for the test and control group respectively). Further bone maturation

was observed after 12 weeks of healing and the implants were all sur-

rounded by compact and lamellar bone, which extended also in the

marrow region, encapsulating large areas of the implants. The average

BIC% was 21.46% for the tests and 22.46% for the controls, while the

mean BA% was 54.66% for the tests and 52.98% for the controls. The

histomorphometrical parameters are reported in Table 3 and Figure 6.

4 | DISCUSSION

In this study, we wanted to investigate the antimicrobial behavior of

an engineered AMP, RRP9W4N, in addition to investigating its effect

on osseointegration, using commercially available implants coated

with AMP loaded mesoporous titania. This was accomplished using

both in vitro and in vivo studies, showing a greatly reduced in vitro bio-

film formation on mesoporous titania loaded with the AMP and no

negative effects on osseointegration in vivo.

The rabbit in vivo study showed that release of the AMP from the

mesoporous titania coated implants did not cause any sign of cellular

or tissue toxicity in the proximity of the implants and did not interfere

with bone healing and osseointegration of the implants. This is in

agreement with our earlier in vitro results, showing this AMP, when

covalently surface-immobilized, have no toxic effects on mammalian

cells.18 In native form however, AMPs may be toxic to eukaryotic

cells, although cytotoxicity often decreases in plasma due to binding

of plasma proteins.23 Due to their endogenous origin, AMPs also

F IGURE 5 Representative toluidine blue stained histological
images of the control (no AMP) and test (with AMP) implants at 2, 4
and 12 weeks of healing. Red scale bar: 1000 μm. Yellow scale
bar: 100 μm

TABLE 3 Histomorphometrical
results of the test and control groups 2, 4
and 12 weeks after implant placement.
SD: standard deviation; Max: maximum
value; Min: minimum value. p-value was
calculated using Wilcoxon Signed Rank
for dependent samples

2 weeks 4 weeks 12 weeks

Control Test Control Test Control Test

BIC% Mean 3.46 8.17 21.23 16.27 22.46 21.46

SD 3.49 7.04 8.49 4.94 10.08 8.61

Max 11.04 20.04 30.60 23.31 44.93 34.60

Min .31 .24 7.27 6.85 11.63 8.60

Count 8 8 9 9 8 8

p-value .07 0.09 0.48

BA% Mean 23.21 24.25 60.50 64.60 52.98 54.66

SD 8.90 12.42 8.96 8.23 13.59 18.45

Max 34.45 42.59 71.06 76.80 70.33 87.10

Min 12.06 10.44 43.47 51.92 37.38 29.53

Count 8 8 9 9 8 8

p-value .78 0.26 0.57
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suffer from proteolytic degradation in the body. However, end-

tagging of the peptides with the bulky, aromatic amino acids like tryp-

tophan or phenylalanine prevent the peptides from binding eukaryotic

cholesterol-containing membranes, resulting in decreased cytotoxic-

ity24 and by varying the end-tag length proteolytic stability can be

achieved.5 The AMP used in this study, RRP9W4N, has been

engineered according to these measures and the in vivo results

showed the AMP-releasing implants performed in a manner compara-

ble to the control implants with identical surface, but without addition

of AMP. In addition, the BIC% was more than twice as high for the

test implants than for the control implants after 2 weeks of healing.

Despite the difference was not statistically significant, this AMP might

have a mild enhancing effect in initial osseointegration. Mild, non-sig-

nificant, enhancing osseointegrative effects have also been shown for

other AMPs.11 However, more studies need to be performed to make

the statement that these AMPs improves the early stages of

osseointegration.

In addition to chemically engineered AMPs, their stability and func-

tion may also be improved by mode of delivery.8 For example, elastases

from Pseudomonas aeruginosa and human neutrophils degrades pure

AMP LL-37, but when loaded in cubosomes it can be protected against

proteolytic degradation.13 In this study, mesoporous titania coatings

were used and electron microscopy showed a porous network exten-

ding to the surface, into which antimicrobials were loaded. The cubic

mesoporous network had pore diameters of 6 nm, well above the size

of both antimicrobials used, Cloxacillin and RRP9W4N. As has been

previously shown using different sized dendrimers, the absorption into

mesoporous films is dependent on both pore size and morphology

(cubic or hexagonal) where a cubic arrangement results in an increased

absorption rate.25 The cubic mesoporous titania used in the present

study clearly facilitate AMP loading into the pores; however, the pore

size is small enough to prevent entry of most proteolytic enzymes and

other proteins, and thus the mesoporous titania may not only act as a

drug carrier but also provide somemeans of physical protection against

proteolytic degradation and other protein interactions that may inter-

fere with the antimicrobial activity. For example, mesoporous silica

have shown to prevent proteolytic degradation of a green fluorescent

protein.26 In the in vitro studies, rich growthmediumwas used, meaning

a plethora of proteins (although denatured in the autoclave) were pre-

sent during both culturing and bacterial elimination. Despite this, the

AMPwas as good a biofilm eliminator as Cloxacillin, indicating the AMP

ability to maintain its function despite potential protein binding. This is

probably due to its engineered properties to increase its proteolytic sta-

bility and the potential of physical protection of the AMPs inside the

mesopores.

The QCM-D results showed an immediate, substantial loading of

RRP9W4N into the pores and maximum charging was reached already

after 2.5 hrs. Upon rinsing, there was a slow release of the peptide,

continuing for 20 hrs until the experiment was aborted. At this point

of time, only 18% of the total amount of absorbed AMP was released,

indicating there is potential for a sustained release antimicrobial sur-

face. The results are in good agreement with the slow release, 17%

AMP delivery during the first 24 hrs, that has been shown using

mesoporous silica nanoparticles as AMP delivery systems.27 However,

F IGURE 6 Graph showing BIC% (a) and BA% (b) parameters at the different healing stages. The box-plots represent the distribution of the
data. The mid-lines of the bars and the values represent the median values
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long time release studies are needed to investigate this further. It

should also be emphasized that the drug-release in vitro is by no

means the same as in the in vivo situation, and it is challenging to

make direct comparisons. We do not claim that the release kinetics

observed here can be directly translated to a clinical situation, but still

it gives a good indication that the release is sustained and not deliv-

ered in a burst fashion, at least during the first day. In addition to

functioning as a drug-delivery system, pure mesoporous titania

coatings on implants have also shown a tendency to improve

osseointegration in vivo compared to non-porous titania.19

The major function of AMP is to eliminate microorganisms, and

both in vitro experiments in this study showed a significantly smaller

biofilm on the AMP charged mesoporous surface compared to the

non-loaded mesoporous control. The antimicrobial effect of the AMP

was comparable or better than what was found for the antibiotic

Cloxacillin. Other AMPs, both natural and synthetic, have also shown

considerable antibiofilm properties.28,29 We did not perform any in

vivo antimicrobial tests, but this AMP has shown an antibacterial

effects in human infected blood and in a pig skin wound model ex

vivo,5 indicating its potential use in future patient implants. Studying

the small proportion of bacteria that were able to adhere to the AMP

charged surface, a majority (86–99%) were alive. One hypothesis is

that bacteria may adhere to the surface, but a slow, sustained release

of AMP efficiently eliminate bacteria in due time and prevent forma-

tion of a mature biofilm. We have earlier shown this AMP to initiate

swelling and bursting of bacteria on surfaces and complete bacterial

eradication, depending on time and concentration.30

The results of this study show the combined good in vitro bacte-

rial elimination, even in presence of a high initial bacterial load, far

larger than what would be found in the clinical setting with no nega-

tive effects on in vivo osseointegration. We have earlier shown this

AMP to be efficient in killing both normal and persister bacteria of

S. epidermidis, at a concentration of 100–200 μM in vitro.30 This is an

important factor in the clinical setting where recurring infections cau-

sed by persister cells is a challenging problem.31 Although the AMP

concentration in the mesoporous titania of this study is less, it may be

modulated to create an efficient bacterial persister elimination and

sustained release of AMP.

5 | CONCLUSION

In this study, the antibacterial effect of the engineered AMP,

RRP9W4N on bacterial biofilms, and its influence on osseointegration

directly at the implant healing site were examined. The peptide was

loaded in mesoporous titania, which was coated into titanium

implants. The anti-bacterial property of the AMP was preserved, as

demonstrated by the in vitro evaluation, while it did not negatively

affect osseointegration in vivo. The potential benefits of introducing

antimicrobial substances into mesoporous titania on implant surfaces

is local delivery, facilitating high antimicrobial substance concentration

and avoiding systemic side effects. Here, we show the potential of

mesoporous titania to deliver antimicrobial peptides in a

proteinaceous environment. More than 90% of the biofilms were

eliminated in vitro, a result equal to that of the clinically used antibiotic

Cloxacillin, at the same time as ossoeintegration proceeded without

any negative observations. The combined result of this study suggests

that AMP loaded mesoporous titania may be a good candidate to

lower the risk of implant associated infections.
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