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5G Positioning and Mapping with Diffuse Multipath
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Abstract—5G mmWave communication is useful for position-
ing due to the geometric connection between the propagation
channel and the propagation environment. Channel estimation
methods can exploit the resulting sparsity to estimate parameters
(delay and angles) of each propagation path, which in turn can
be exploited for positioning and mapping. When paths exhibit
significant spread in either angle or delay, these methods break
down or lead to significant biases. We present a novel tensor-
based method for channel estimation that allows estimation of
mmWave channel parameters in a non-parametric form. The
method is able to accurately estimate the channel, even in the
absence of a specular component. This in turn enables positioning
and mapping using only diffuse multipath. Simulation results are
provided to demonstrate the efficacy of the proposed approach.

Index Terms—massive MIMO, localization, beamspace ES-
PRIT, tensor decomposition, subspace.

I. INTRODUCTION

5G mmWave signals present unique opportunities for posi-
tioning or user devices, due to their large bandwidths, arrays
with many antenna elements and favorable propagation condi-
tions [1]. 5G mmWave is currently a study item for 3GPP-R17
and has the potential not only to provide performance better
than Global Positioning System (GPS), but also enable precise
orientation estimation. Moreover, due to the high degree of
resolvability of propagation paths, multipath information can
naturally be exploited, both for positioning as well as for
mapping of the environment [2] Applications of 5G mmWave
positioning include traditional emergency call localization and
personal navigation, but also more disruptive topics such as
localization or robots and autonomous vehicles, as well as
augmented and virtual reality applications.

In order to develop a localization method, an understanding
of the mmWave channel is needed. mmWave propagation,
occurring at carrier frequencies above 24 GHz, has been
shown to be characterized by limited scattering, no diffraction
and shadowing, and the existence of only a few propagation
paths. Each of the paths is thus largely determined by the
propagation environment and characterized by channel gains,
angles of arrival, angles of departure, and delays. Propagation
paths may be of a deterministic specular nature, when the
surface on which waveforms impinge is sufficiently smooth,
or of a stochastic diffuse/scattering nature when the surface is
relatively rough, or a combination of both. Hence, in general,
each path (except the line-of-sight (LOS) path) is in fact a
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cluster of paths, with similar angles and delays [3]. When the
paths within a cluster are not resolvable in either angles or
delays, they lead to fluctuations in the received power. This is
the model typically assumed in the communication literature.
On the other hand, when intra-cluster paths are resolvable,
they should be properly estimated in order to avoid biasing
the estimation of angles and delays.

A cluster can be characterized in multiple ways. Tradition-
ally, a statistical model has been considered, whereby a cluster
is modeled though a mean and a spread in both angle and delay
domain [4]. Given such a model, there is a rich literature on
second-order estimation methods that are able to accurately
and blindly estimate the mean and spread of a cluster [5],
[6]. The models for spatially distributed sources have been
classified into two types, namely incoherently distributed (ID)
sources and coherently distributed (CD) sources. On one hand,
for ID sources, signals coming from different points of the
same distributed source can be considered as uncorrelated [7]–
[10]. On the other hand, in the scenario of CD sources, the
received signal components are delayed and scaled replicas
from different points within the same source [11]–[13]. In [14],
the performance bound is studied of the tracking accuracy in
sparse mmWave channels that includes cluster angular spreads.
However, while such subspace methods are powerful, in the
context of mmWave communication, the signal structure and
presence of dedicated pilot signals should be exploited to
develop faster methods. There is thus a lack of first-order
methods for quickly estimating channel parameters and their
spread. This explains why 5G mmWave localization has con-
sidered either only the LOS path, or treated multipath as purely
specular [15]–[17]. Standard 5G mmWave channel estimation
is based on either compressive sensing approaches [18], which
express the sparsity in an appropriate domain, or on tensor
decompositions, where the dominant higher-order singular
values can be related to the dominant signal paths [19],
[20]. A joint tensor decomposition and compressed sensing
based multidimensional channel parameter estimation method
is proposed in [21]. However, these methods do not account
for the intra-cluster spread of angles or delay. Both matrix-
based and tensor-based approaches can be applied for channel
estimation in localization. In the traditional channel estima-
tion approaches, the multi-dimensional signals are stored in
matrices by means of a stacking operation. Obviously, this
representation does not account for the R-D grid structure
inherent in the data. Hence, a more natural approach to store
and manipulate the R-D data is given by tensors, leading to
better performance than matrix-based methods.

In this paper, we propose a tensor-based method for estimat-
ing a 5G mmWave channel in terms of the angles and delays
of the individual paths within each non-line-of-sight (NLOS)
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cluster. The method makes no a priori assumption regarding
the number of paths per cluster. The problem of clustering is
not our focus, and standard clustering methods can be applied,
such as k-means and density-based spatial clustering of appli-
cations with noise (DBSCAN) [22]. Following a clustering
of paths, the statistics of each cluster can be determined,
which are finally fed to a search-free positioning and mapping
method, which operates with lower complexity than optimiza-
tion [15] or message passing methods [16], [17], designed
only for specular multipath. The proposed method is able
to determine the dominant clusters and accurately estimate
the cluster statistics, even for clusters that have no specular
component. Building on this, we present a positioning and
mapping method that accurately localizes the user and maps
the environment by exploiting the diffuse multipath, rather
than considering it as a disturbance. As an extension, [23]
provides insights into cases not covered by this paper, namely
synchronization and orientation estimation are important in
practice. Our main contributions are the following:
• We derive a novel method for estimating mmWave chan-

nels in the presence of combined specular and scattered
components, based on a tensor decomposition.

• We provide a detailed evaluation of the proposed method
in a three-dimensional propagation environment, demon-
strating its performance under varying levels of surface
roughness.

• We propose a low complexity, search-free 5G mmWave
localization and mapping method that is able to operate
in the absence of LOS and specular multipath. The
method can operate using only the diffuse multipath for
positioning and mapping.

II. TENSORS AND TENSOR OPERATIONS

A. Definitions and Notations

The tensor operations used in this paper are consistent with
[24]. An R-D tensor is denoted by A ∈ CM1×M2×···×MR ,
where Mr is the size of the rth mode of the tensor and R ≥ 3.
We use am1,m2,··· ,mR

to represent the (m1,m2, · · · ,mR)
entry.
Unfolding: The r-mode unfolding of A is written as
A(r) ∈ CMr×(M1···Mr−1Mr+1···MR) where the order of the
columns is chosen according to Definition 1 in [25].
Product: The r-mode product of a tensor A ∈
CM1×M2×···×MR and a matrix U ∈ CNr×Mr along the
rth mode is denoted as Definition 8 in [25],

B = A×r U ∈ CM1×···×Mr−1×Nr×Mr+1×···×MR . (1)

Concatenation: We use the operator [A1 tR+1 A2] ∈
CM1×M2×···×MR×2 to represent the concatenation of two
tensors A1 ∈ CM1×M2×···×MR and A2 ∈ CM1×M2×···×MR ,
along the (R+1)th mode [26].

B. Tensor Decompositions

There exist various decompositions of tensors and defini-
tions of the rank of a tensor. We consider here the CAN-
DECOMP/PARAFAC (CP) decomposition and the Tucker

decomposition.
CP decomposition decomposes an R-D tensor X as a sum of
rank-one tensors

X =

D∑
d=1

γda
(1)
d ◦ a

(2)
d . . . ◦ a

(R)
d , (2)

where ◦ denotes outer product. The rank D of a tensor
is defined as the smallest number of rank one tensors that
generate X as their sum. In other words, it is the smallest
number of components in an exact CP decomposition [27],
[28]. The r-rank of a tensor is the column rank of X(r) [29].
Tucker decomposition is a form of higher-order principal
component analysis. It decomposes a tensor into a core tensor
multiplied (or transformed) by a matrix along each mode. The
matrix can be thought of as the principal components in each
mode.

III. SYSTEM MODEL

We consider a 3-dimensional (3D) scenario with a single
5G transmitter with known location pT and orientation, a
receiver with unknown location pR, and a physical propa-
gation environment, characterized by surfaces, as depicted in
Figure 1. The transmitter and receiver both employ uniform
rectangular arrays (URAs) consist of sensors in a grid of size
MT = M1×M2 and MR = M3×M4, and exchange MIMO-
OFDM signals with M5 sub-carriers and sub-carrier spacing
∆f . The received signal on subcarrier i is of the form

Yi = HiSi + Ni ∈ CMR×T , (3)

where Si ∈ CMT×T is a known pilot signal spanning T ≥MT

OFDM symbols with orthogonality property (SiSH
i is a scaled

identity matrix) and Ni is i.i.d. Gaussian noise. Then we have

YiS
H
i = Hi + NiS

H
i . (4)

For subcarrier i, we receive YiS
H
i , which is an M3M4 ×

M1M2 matrix. Then we convert these M5 matrices YiS
H
i , i =

1, 2, · · · ,M5 (one per subcarrier) in a 5D tensor of suitable
dimension, Y ∈ CM1×M2×M3×M4×M5 . The channel matrix
Hi depends on the array structure and the propagation envi-
ronment, described next. Our aim is to determine pR and map
the propagation environment.

A. Array Steering Vector for URA

The transmit and receive arrays are planar arrays, compris-
ing omni-directional elements on a uniform grid of rectangular
shape with inter-element spacing equal to half of the signal’s
wavelength. Transmit and receive URAs consist of sensors are
indexed by (m1,m2) and (m3,m4), respectively.

The URA steering vector corresponding to the lth source
can be formed as

a (ωl,1, ωl,2) = a (ωl,1)⊗ a (ωl,2) , (5)

where ⊗ is Kronecker product, a (ωl,1) =
[a1(ωl,1) · · · am1

(ωl,1) · · · aM1
(ωl,1)]T and a(ωl,2) =

[a1(ωl,2) · · · am2(ωl,2) · · · aM2(ωl,2)]T are equivalent to the
uniform linear array steering vectors composed of M1 and
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Fig. 1. Illustration of the considered scenario with 1 LOS path and 2 NLOS
clusters (i.e., K = 3).

M2 sensors lying on y-axis and z-axis, respectively. The first
sensor is taken as the reference sensor so that (up to a global
phase)

am(ω) = ej(m−1)ω. (6)

The spatial frequencies associated with the azimuth θl and
elevation angle φl of the lth source follow as

ωl,1 = π sin(θl) sin(φl), ωl,2 = π cos(φl). (7)

B. Channel Model

We propose a generative model for simulating the diffuse
multipath of mmWave channels, based on [30], [31]. This
model starts from generating points on the surface, based on
the its roughness. Then, for each point, the channel parameters
are computed (angles, delay, gains). Finally, the model is
expressed in a tensor representation. For smooth reflective
surfaces, the model reverts to the one used in [15].

1) Surface Roughness and Scattering: The propagation
environment consists of K well-separated clusters, each cluster
k corresponds to a physical object (e.g., a wall, a ground re-
flection), described by MPCs, characterized by two parameters
[30], [31]:
• The scattering coefficient S ∈ [0, 1], which quantifies

the relative amount (with respect to absorption) of total
scattered amplitude, and was identified to be S ≥ 0.4
[31], [32].

• The directivity parameter αR ≥ 0 which describes the
width of the scattering lobe originating at the reflective
surface. At rough surfaces (in comparison to the signal’s
wavelength), the scattering power has a large intra-cluster
spread, corresponding to a small directivity αR → 0.
At smooth surfaces, the spread of scattering power is
reduced, equivalent to more directivity αR →∞. Hence,
αR may be associated to surface roughness. Typical
values are in a range of αR ∈ {1, . . . , 11} [31], [32].

Combined, αR and S can be used to determine the cluster
power and cluster spread through the joint angular delay

power spectrum (JADPS) which describes the scattered power
pDM(p) from any point p [30]. Cluster k gives rise to Lk scat-
ter points, where the total number of paths is P =

∑K
k=1 Lk.

For the LOS path, Lk = 1. Each scatter point pkl ∈ R3 lies
on the k-th surface with scatter point index 0 < l ≤ Lk.

2) Generation of Channel Parameters: Given a path be-
tween pR and pT via pkl, the path delay τkl, as well as
azimuth and elevation angles of the angle-of-departure (AOD)
(θkl, φkl) and of the angle-of-arrival (AOA) (ϑkl, ϕkl) follow
from standard geometry and can be found in the Appendix A.
Finally, each path from a scatter point has a gain γkl, which
we propose to comprise a constant amplitude per cluster and a
random phase, uniform over [0, 2π). Motivation and additional
details of this model are provided in Appendix B.

3) Tensor Formulation: Let

ωkl,1 = π sin(θkl) sin(φkl), ωkl,2 = π cos(φkl), (8)

and

ωkl,3 = π sin(ϑkl) sin(ϕkl), ωkl,4 = π cos(ϕkl), (9)

the channel response in frequency domain for sub-carrier i
with frequency fi is represented as [33]

Hi =

K∑
k=1

Lk∑
l=1

γkle
−j2πfiτklaR (ϑkl, ϕkl) aH

T (θkl, φkl) , (10)

where

aT (ωkl,1, ωkl,2) = a (ωkl,1)⊗ a (ωkl,2) ∈ CMT×1, (11)

and

aR (ωkl,3, ωkl,4) = a (ωkl,3)⊗ a (ωkl,4) ∈ CMR×1. (12)

For subcarrier i, Hi is an M3M4×M1M2 matrix. Then we
convert these M5 matrices (one per subcarrier) in a 5D tensor
of suitable dimension, H ∈ CM1×M2×M3×M4×M5 .

IV. PROPOSED METHOD

We now present our method for localizing the receiver and
the cluster locations.

A. Tensor Representation

The (m1,m2,m3,m4,m5) entry of the channel response in
frequency domain H ∈ CM1×M2×M3×M4×M5 is described as

hm1m2m3m4m5 =

K∑
k=1

Lk∑
l=1

γklam1 (ωkl,1) am2 (ωkl,2)

am3
(ωkl,3) am4

(ωkl,4) am5
(ωkl,5), (13)

where the spatial frequency ωkl,5 = 2π∆fτkl, and am(ω) is
defined in (6). The response can be described as a CP model
(sum of P rank-one tensors),

H =

P∑
p=1

γpap,1 ◦ ap,2 ◦ ap,3 ◦ ap,4 ◦ ap,5. (14)

For r = 1, 2, · · · , 5,

ap,r =
[
a1(ωp,r) a2(ωp,r) · · · aMr (ωp,r)

]T
. (15)



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, MONTH 2020 4

The array manifold for the rth dimension is defined as

Ar =
[
a1,r · · · ap,r · · · aP,r

]
∈ CMr×P . (16)

For multiple measurement scenarios, the augmented obser-
vation tensor is described as

Y =
[
H t6 · · ·H︸ ︷︷ ︸

M6

]
+N ∈ CM1×M2×M3×M4×M5×M6 , (17)

where M6 is the subsequent time instants, N is the noise
tensor.

B. Multipath Components (MPC) Parameter Estimation

1) Estimate the number of paths P : To estimate geomet-
rical parameters such as AOD, AOA and delay, the first step
is to estimate the number P̂ of signal components in (14).
In the CP model, a tensor is decomposed into a sum of
rank-one tensors, which are expressed as the outer product of
vectors. In practice, each rank-one component corresponds to a
natural source or signal. Finding the tensor rank or number of
multilinear components in the underlying CP model of noisy
tensor observations is an important research topic. Existing
approaches to CP rank estimation from noisy observations
include [28].
R-D minimum description length (MDL) [29] is utilized

for tensor rank estimation, which is proposed by stacking the
measurement tensor into a matrix with the r-mode unfolding
operation,

Y r-mode−−−−−→
unfolding

Y(r). (18)

The eigenvalue spectrum Λr obtained from the singular
value decomposition (SVD) of Y(r) and MDL are used for
r-rank P̂r estimation,

Y(r)
SVD−−→ Λr

MDL−−−→ P̂r. (19)

After obtaining r-rank, the tensor rank is estimated as

P̂ = max {P̂1, P̂2, · · · , P̂R}, (20)

to ensure a high number of estimated paths, required for cluster
mean and cluster spread estimation. In general, P̂r � P , so
the rank is always underestimated.

2) Angle and Delay Estimation: After estimating the num-
ber of resolvable signal components P̂ , an R-D subspace is
obtained via CP Decomposition [34]. For URA, tensor or N -D
ESPRIT [24], [35], [36] is applied for channel parameter es-
timation. The standard conditions for tensor ESPRIT hold for
the specular components, but not for the diffuse ones. Hence,
it is not possible to recover the dense physical scattering
points (SPs) related to diffuse multipath. Instead we recover
angles and delays from artificial resolved SPs. If the physical
environment comprised the specular paths and the artificial
SPs, again the conditions for tensor ESPRIT would hold. Let
Ur ∈ CMr×P̂ be the subspace spanned by Ar ∈ CMr×P̂ ,
which is obtained by applying CP decomposition on Y . The
main idea of tensor-ESPRIT is exploiting the multidimensional
shift invariance property of the measurements. For each dimen-
sion, the array is divided into two subarrays with same number
of elements. The subarrays may overlap and an element may

be shared by the two subarrays. For the rth dimension, we
have

Ar = UrDr, (21)

where Dr ∈ CP̂×P̂ is a non-singular matrix. We further define
two sub-matrices,

U1,r = J
(n)
1,rUr and U2,r = J

(n)
2,rUr, (22)

where J1,r and J2,r are two selection matrices,

J
(n)
1,r =

[
IMr−n 0(Mr−n)×n

]
,

J
(n)
2,r =

[
0(Mr−n)×n IMr−n

]
, (23)

where In denotes identity matrix of size n × n and 0m×n
denotes zero matrix of size m×n. For convenience, we focus
on n = 1, J

(n)
1,r and J

(n)
2,r are simplified as J1,r and J2,r. Then

we have
J1,rAr = J2,rArΦr, (24)

where

Φr = diag
[
e−jω1,r e−jω2,r · · · e−jωP̂ ,r

]
. (25)

Substituting (21) and (22) into (24), we have

U1,r = U2,rΨr, (26)

where
Ψr = DrΦrD

−1
r ∈ CP̂×P̂ . (27)

The equations in (24) are over-determined. The simplest
choice to estimate Ψr is using the least squares (LS) method
and the resulting closed-form solution is given by

Ψ̂r = (U2,r)
†
U1,r, (28)

where † denotes the Moore-Penrose matrix inverse. Let
λ1,r, λ2,r, · · · , λP̂ ,r be the eigenvalues of Ψ̂r, the mode r
frequencies are estimated by using

ωp,r = −∠ (λp,r) , p = 1, 2, · · · , P̂ , (29)

where ∠(·) denotes the argument of a complex number.

Remark 1. The method can be generalized to beam-space
tensor ESPRIT for hybrid URA structure [37] and beam-space
tensor MUSIC for a hybrid arbitrary array geometry [13].

3) Clustering the MPCs: Clustering techniques, such as k-
means are applied to group the 5-D parameters of the estimated
P̂ multi-path components ωp =

[
ωp,1 ωp,2 · · · ωp,5

]
. It

can be extended to other techniques such as connectivity-
based, distribution-based and density-based [38]. Given a
set of estimates {ωp, p = 1, 2, · · · , P̂}, our objective is to
partition the data set into K clusters, we assume that the value
of K is given or can be estimated from model order selection
techniques [39]. Recently, the challenges and opportunities in
clustering-enabled wireless channel modeling were discussed
in [40]. A framework of automatic clustering and tracking
algorithm was proposed for the MPCs in time-variant radio
channels [41].

The clustering problem can be formalized by introducing a
set of vectors {µk, k = 1, 2, · · · ,K}, in which µk ∈ RD×1
represents the center of the kth cluster. The motivation is to
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Fig. 2. The proposed method for localization and mapping. The locations
pR and pk (one for each of the P̂ estimated paths) are unknown (in orange).
The vectors fT,k and fR,k , as well as the total path length are known, based
on the measurements. The locations in grey are possible hypotheses of where
pR and pk may be, parameterized by ξk ∈ [0, 1]. Each value of ξk leads to
a point on the line shown in red. The receiver must this lie on the intersection
of these lines.

assign the data set to clusters, such that the distances of each
data to its closest cluster center is minimized. The objective
can be rewritten in terms of the total distortion

J =

P̂∑
p=1

K∑
k=1

zpk ‖ωp − µk‖2 , (30)

where zpk = 1, if data point ωp is assigned to cluster k,
otherwise zpk = 0. Each example ωp is assigned or reassigned
to its closest cluster center Ck, if

Ck = {n : k = arg min
k
‖ωp − µk‖2}. (31)

The cluster means are updated as

µk =
1

|Ck|
∑
p∈Ck

ωp, (32)

where |·| is the cardinality of a set, which measures the number
of elements of the set. The cluster spread is defined as the
standard deviation of all the ωp within the same cluster. Recall
that all paths within a cluster have the same amplitude, so
the mean and spread do not require weighting. Finally, MPC
parameter estimates of AOD (θ̂k, φ̂k), AOA (ϑ̂k, ϕ̂k) and delay
τ̂k are calculated from spatial frequencies in µk as stated in
Sec. III-B3.

C. Mapping and Localization

The localization and mapping problem can be expressed as
a maximum likelihood problem:

[p̂R, [p̂k]P̂k=1] (33)

= arg max
pR,[pk]P̂k=1

p([ωk]P̂k=1|pR, [pk]P̂k=1,pT)

= arg max
pR,[pk]P̂k=1

p([τ̂k, θ̂k, φ̂k, ϑ̂k, ϕ̂k]P̂k=1|pR, [pk]P̂k=1,pT).

To avoid a high-dimensional optimization and inference of
hidden parameters (αR and S), we propose a general search-
free method based on [42] that does not rely on knowledge
on whether or not the LOS path is present. We define

fT,k =

cos(θ̂k) sin(φ̂k)

sin(θ̂k) sin(φ̂k)

cos(φ̂k)

 , (34)

which points along the direction of departure of path k ∈
{1, . . . , P̂}; and fR,k is defined equivalently for the direction
of arrival. For each cluster k we can establish a relation to pR
according to

pR = pT + cτ̂kξkfT,k + cτ̂k(1− ξk)(−fR,k), (35)

with unknown ξk ∈ [0, 1], representing the fraction of the path
delay that is ascribed to the line from the BS to an artificial
SP. Note that for the LOS path (if it is present), the value of
ξk is arbitrary. In Fig. 2, we show the relation between the
different defined vectors and the user location. Rearranging
results in the line equation for each k as

pR = δk + ξkuk, (36)

with δk = pT − cτ̂kfR,k and uk = cτ̂k(fT,k + fR,k). The
intersection of these lines determines the estimate of pR.
Specifically, we consider the cost function

C(pR) =

P̂∑
k=1

ζk
∥∥pR − (δk + ūT

k (pR − δk)ūk
)∥∥2, (37)

as sum of distance between pR and each path (36), ζk ≥ 0
is the weight of the k-th path (e.g., dependent on the SNR
or the spread of path) and ūk = uk/‖uk‖. The least-squares
solution becomes

p̂R =

 P̂∑
k=1

ζk(I − ūkūT
k )

−1 P̂∑
k=1

ζk(I − ūkūT
k )δk. (38)

Given p̂R, we can recover the scatter point pk as inter-
section of the line equations pT + ζTfT,k, ζT ∈ R and
pR + ζRfR,k, ζR ∈ R (see Fig. 2). The least-squares solution
follows as

p̂k = (HT,k +HR,k)−1(HT,kpT +HR,kp̂R), (39)

with HT,k = I − fT,kfT
T,k, HR,k = I − fR,kfT

R,k and p̂R
from (38).

Note that the method does not require separation of specular
and diffuse paths. The cost function in (37) can be applied with
all P̂ estimated paths, or only a selected subset of paths per
cluster. In Section V-C, the performance of different options
will be compared.

In the case multiple users are to be localized simultaneously,
the proposed method can be applied independently by each
individual user, based on the received downlink signals, as is
currently done in LTE. Different levels of cooperation can be
envisioned, including map sharing [43] and exploiting inter-
user correlations [44].

Remark 2. We note that the mapping and localization method
does not require knowledge of the scattering coefficient S, the
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directivity αR, or the locations of the physical scatter points.
It is only required that the estimates ωp correspond to a 3D
location.

D. Computational complexity

The most computationally demanding part of channel pa-
rameter estimation is the CP decomposition. In general, most
CP decomposition algorithms, which factorize R-order ten-
sors, face high computational cost due to computing gradients
and (approximate) Hessians, line search and rotation. Table I
in [45] summarizes the complexities of major computations in
popular CP decomposition algorithms. For example, the alter-
nating least squares (ALS) algorithm with line search has a
complexity of order O

(
2RPJ +RP 3

)
, where J =

∏R
r=1Mr

and P denotes the total number of paths. Having P̂ multipaths,
estimation of p̂R requires a single 3 × 3 matrix inversion,
followed by P̂ + 1 matrix-vector multiplications. In addition,
each scatter point estimate demands for a single 3× 3 matrix
inversion plus three matrix-vector multiplications. Finally,
estimation of p̂R requires O(P̂ ) matrix-vector multiplications.

V. NUMERICAL RESULTS

A. Simulation Setup

We consider a carrier frequency of 28 GHz, corresponding
to λ = 1.07 cm, a total bandwidth of 20 MHz with 100
subcarriers, of which 10 equally spaced subcarriers are used
for pilots. A cyclic prefix of length 7 is used. 64 pilot OFDM
symbols are sent, for a total duration of 3.52 ms. We set the
pilots as Si = I, ∀i. The surface reflection coefficient Γ is not
specified, as we only use diffuse paths.

As shown in Fig. 3, the transmitter and receiver are located
at pT = [20, 0, 8]T and pR = [0, 0, 2]T, respectively, and are
surrounded by two surfaces: one building facade and a ground
surface. The building facade’s center is at [10, 10, 5]T with
facade length of 20 m, facade height of 10 m, and orientation
[0, 1, 0]T (x-z plane). The ground surface is at [10, 0, 0]T

with orientation [0, 0, 1]T (reflected from ground, x-y plane),
surface dimension is 20×20 m. Both surfaces are described as
rough surfaces without specular component, using Lk = 100
scatter points each. Furthermore, K = 2 is assumed for the
following simulations and all the resolved paths are utilized
for positioning and mapping, unless stated otherwise.

The transmitter is equipped with a uniform rectangular array
(URA) with (8 × 8) elements and placed along y-z plane. In
both directions, the inter-element spacing is 0.5λ. The origin
is the array reference point. The receiver is also equipped with
a URA with (8× 8) elements and placed along y-z plane.

The Matlab package Tensorlab [46] is utilized for tensor
computation, which provides several core algorithms for the
computation of the CP decomposition including optimization-
based methods such as alternating least squares (ALS), un-
constrained nonlinear optimization and nonlinear least squares
(NLS). By default, NLS is used for the CP decomposition. It
can handle the partially distinct channel parameter scenarios,
which was also validated in [47].
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Fig. 3. Simulation setup for channel estimation and positioning performance
evaluation with 2 clusters of different orientation and sizes.

TABLE I
RMSE OF CLUSTER MEAN (TOP) AND SPREAD (BOTTOM) - DENSE

COMPONENTS, FOR VARIOUS LEVELS OF SNR

RMSE SNR in dB
S = 0.8, αR = 10 -10 0 10

Delay (meter) 0.3216 0.2025 0.1587
Azimuth AOD (degree) 2.8856 2.7250 2.1715
Elevation AOD (degree) 2.6749 2.2290 3.0189
Azimuth AOA (degree) 2.0951 1.4472 1.4027
Elevation AOA (degree) 2.4903 1.5805 1.2407

RMSE SNR in dB
S = 0.8, αR = 10 -10 0 10

Delay (meter) 0.7788 0.5835 0.4250
Azimuth AOD (degree) 9.4723 6.3123 3.5078
Elevation AOD (degree) 7.4976 3.6565 2.0295
Azimuth AOA (degree) 4.0005 2.9378 1.4150
Elevation AOA (degree) 4.2699 2.1960 1.0063

B. Channel Estimation

We compare the capability of the proposed algorithm to
estimate the cluster mean and spread of the multipath param-
eters using the root-mean-square error (RMSE) for various
levels of signal-to-noise ratio (SNR), defined as SNR =
‖Y −N ‖2F /‖N ‖2F , where ‖·‖F denotes the tensor Frobenius
norm [34], and S and αR are shown in Tables I–III. The results
are obtained for 100 independent runs.

From Table I (impact of SNR), we observe that the es-
timation performance improves with SNR. The AOD has a
degradation at high SNR, which we attribute to an outlier.
The cluster spread estimation also improves with higher SNR.
In Table II (impact of S), we note that when the S parameters
increases (more diffuse scattering power), the RMSE perfor-
mance of the cluster mean and cluster spread both improve.
This can be ascribed to more power being available per cluster
for a larger value of S. Finally, Table III (impact of αR) reveals
that when αR increases (more smooth surface), the RMSE
performance of the cluster mean improves, since the paths are
more closely clustered around the mean. The cluster spread
RMSE improves somewhat, though the spread itself depends
on αR.
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TABLE II
RMSE OF CLUSTER MEAN (TOP) AND SPREAD (BOTTOM) - DENSE

COMPONENTS, FOR VARIOUS LEVELS OF SCATTER PARAMETER

RMSE Scatter Parameter S
SNR = 10 dB, αR = 10 0.4 0.6 0.8

Delay (meter) 0.6774 0.2033 0.1587
Azimuth AOD (degree) 2.7009 2.4131 2.1715
Elevation AOD (degree) 2.8291 3.0790 3.0189
Azimuth AOA (degree) 2.8190 1.5043 1.4027
Elevation AOA (degree) 1.9688 1.2875 1.2407

RMSE Scatter Parameter S
SNR = 10 dB, αR = 10 0.4 0.6 0.8

Delay (meter) 0.5078 0.4553 0.4250
Azimuth AOD (degree) 4.5017 4.9590 4.6179
Elevation AOD (degree) 2.2973 2.3543 2.1723
Azimuth AOA (degree) 4.1994 1.7163 1.7888
Elevation AOA (degree) 1.2629 1.0384 1.0303

TABLE III
RMSE OF CLUSTER MEAN (TOP) AND SPREAD (BOTTOM) - DENSE
COMPONENTS, FOR VARIOUS LEVELS OF ROUGHNESS PARAMETER

RMSE Roughness αR

SNR = 10 dB, S = 0.8 0 10 20
Delay (meter) 0.4377 0.1587 0.1224

Azimuth AOD (degree) 6.4553 2.1715 1.8097
Elevation AOD (degree) 3.1283 3.0189 2.5473
Azimuth AOA (degree) 5.2559 1.4027 0.9615
Elevation AOA (degree) 1.8629 1.2407 1.1137

RMSE Roughness αR

SNR = 10 dB, S = 0.8 0 10 20
Delay (meter) 1.0373 0.4250 0.2694

Azimuth AOD (degree) 10.8263 4.6179 3.5078
Elevation AOD (degree) 2.7932 2.1723 2.0295
Azimuth AOA (degree) 6.0143 1.7888 1.4150
Elevation AOA (degree) 1.5066 1.0303 1.0063

C. Positioning and Mapping in LOS

The setup is the same as in the Fig. 3, but now it also
includes the LOS path. Fig. 4 shows the positioning RMSE
performance for different SNR, αR and S, with weights
ζk = 1. We observe that thanks to the antenna gains, sub-meter
positioning accuracy is achieved when the SNR > −10 dB.
Lower RMSE is achieved with larger scattering parameter S.
Furthermore, positioning accuracy is sensitive to αR, with
more rough surfaces leading to larger RMSE, especially at
lower SNRs.

Fig. 5 shows the positioning performance of utilizing the
LOS path and LOS path plus four different combinations of
the diffuse paths, which is given by:

1) Mean path for each cluster (Mean)
2) Shortest delay path for each cluster (Shortest Path)
3) All paths for each cluster (All Paths)
4) First 2 paths for each cluster (First 2 Paths).

Compared with the other four algorithms, larger positioning
error occurs for the Mean algorithm. That is because just
compute the means is not a good approximation of the specular
path. Lowest RMSE is achieved by only utilizing the LOS
path. That is because when the LOS path is present, the
NLOS paths mainly create disturbances, with more diffuse
paths leading to larger RMSE.
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Fig. 4. Positioning in LOS utilizing all the resolved paths: RMSE versus
SNR (top), roughness αR (middle) and scattering parameter S (bottom).
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Fig. 5. Positioning in LOS utilizing all the resolved paths: RMSE versus SNR
for different algorithms, S = 0.6, αR = 0 (top) and αR = 10 (bottom).
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Fig. 6. Mapping in LOS utilizing all the resolved paths: RMSE of estimated
center and spread of the reflective surfaces versus SNR, αR = 10 and S =
0.6.
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Fig. 7. Mapping in LOS utilizing all the resolved paths: RMSE of estimated
center and spread of the reflective surfaces versus roughness parameter S =
0.6 and SNR = 10 dB.

The mapping performance is evaluated in terms of the
accuracy of the estimated center and spread of the reflective
surfaces (clusters). Note that mapping is performed jointly
with positioning. The center and spread are defined as the
mean and standard deviation of all the estimated p̂k within
the same cluster. RMSE of estimated center and spread of
the reflective surfaces versus SNR are shown in Fig. 6. As we
expected, high SNR is helpful for center and spread estimation.
Mapping performance versus scattering parameters are shown
in Fig. 7–8. Similar to the positioning performance in Fig. 4,
lower RMSE is achieved for larger αR and larger S.

The actual and estimated reflective surfaces projected onto
the x-y plane and x-z plane are shown in Fig. 9. There is
a good match between the actual and the estimated surface,
since both the SNR and αR value are large.
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Fig. 8. Mapping in LOS utilizing all the resolved paths: RMSE of estimated
center and spread of the reflective surfaces versus scattering parameter S,
αR = 10 and SNR = 10 dB.

Fig. 9. Mapping in LOS utilizing all the resolved paths: Comparison of the
actual and estimated reflective surfaces, projection onto the x-y plane (left)
and x-z plane (right), SNR = 10 dB, αR = 10 and S = 0.6.

D. Positioning and Mapping in NLOS

We now move on to the more challenging scenario without
LOS. The system setup is the one shown in Fig. 3 and all
the resolved paths are utilized for positioning and mapping.
Figure 10 shows the positioning RMSE performance for
different SNR and αR. Similar to LOS scenarios, high SNR
is also helpful for positioning in NLOS. Another observation
is that lower RMSE is achieved by increasing the roughness
parameter αR. Overall, performance is somewhat worse than
in LOS.

Fig. 11 shows the positioning performance in NLOS sce-
narios. The diffuse paths are helpful to improve the position
accuracy. Lower positioning error is achieved by utilizing more
diffuse paths and best performance is achieved by using all the
estimated diffuse paths. Furthermore, positioning accuracy is
sensitive to αR, with more rough surfaces leading to larger
RMSE.

To assess the mapping performance, the RMSE of estimated
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Fig. 10. Positioning in NLOS utilizing all the resolved paths: RMSE versus
SNR for different values of the scattering parameters.
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Fig. 11. Positioning in NLOS: RMSE versus SNR for different algorithms,
S = 0.6, mean or the shortest path (top) and the first two paths per cluster
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center and spread of the reflective surfaces versus SNR in
NLOS are shown in Fig. 12. Note again that mapping is
performed jointly with positioning, so the receiver’s posi-
tion is not known. From Fig. 12, we observe that there is
a performance penalty compared to the LOS case, but at
sufficiently high SNR, accurate center and spread estimates
can be obtained.

The actual and estimated reflective surfaces projected onto
the x-y plane and x-z plane in NLOS are shown in Fig. 13.
The mapping error is slightly larger when compared with the
LOS scenarios, because the estimated receiver position is more
accurate with LOS.

VI. CONCLUSION

We have studied the problem of channel estimation of
mmWave channels with diffuse scattering components, com-
bined with positioning and mapping. We proposed a novel
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Fig. 12. Mapping in NLOS utilizing all the resolved paths: RMSE of
estimated center and spread of the reflective surfaces versus SNR in NLOS,
αR = 10 and S = 0.6.

Fig. 13. Mapping in NLOS utilizing all the resolved paths: Comparison of
the actual and estimated reflective surfaces in NLOS, projection onto the x-y
plane (left) and x-z plane (right), SNR = −10 dB, αR = 0 and S = 0.6.

tensor-based method for estimation of the mmWave channel
parameters in a non-parametric form. Reflective surfaces with
different roughness and scattering parameters are considered.
The method is able to accurately estimate the channel, center
and spread of the reflective surfaces, even in the absence
of a specular component. We also propose a low complex-
ity, search-free method for localization and mapping based
on these channel estimates, and demonstrate that accurate
localization of a user and mapping of the environment is
possible, even when the LOS path is blocked and surfaces
are characterized by only diffuse scattering.

APPENDIX A
GEOMETRIC RELATIONS

The geometric relations between the location parameters are
as follows, with pT = [xT, yT, zT]T, pR = [xR, yR, zR]T,
pkl = [xkl, ykl, zkl]

T:
• TOA: τkl = ‖pkl − pT‖/c+ ‖pkl − pR‖/c
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• AOA azimuth: ϑkl = arctan 2 (ykl − yR, xkl − xR) + π.
• AOA elevation: ϕkl = arccos ((zkl − zR)/‖pkl − pR‖).
• AOD azimuth: θkl = arctan 2 (ykl − yT, xkl − xT).
• AOD elevation: φkl=arccos ((zkl − zT)/‖pkl − pT‖).

APPENDIX B
GENERATION OF SCATTER POINTS AND THEIR COMPLEX

GAINS

Clearly, pDM(p) = 0 for any p not lying on a surface.
To populate the k-th rough surface Sk with scatter points
{pkl} ⊆ Sk, 0 < l ≤ Lk, we decompose pDM(p) =∑
k pDM,k(p) where pDM,k(p) denotes the JADPS associated

to k. The JADPS is calculated as function of pT, pR, surface
location, as well as S and αR [30].

To generate the scatter points as well as the complex gains,
we consider two methods:
• Rejection sampling: We generate the scatter points pkl

such that their density on Sk is proportional to pDM,k(p).
Then, pDM,k(p) can be approximated as

∑Lk

l=1 |γkl|2δ(p−
pkl) with Dirac delta δ and pkl resulting from rejection
sampling [39]. The corresponding γkl is set equal magni-
tude |γkl| =

√
1
Lk
Pk,total, Pk,total =

∫
Sk pDM,k(p)dxdydz

and random phase, uniform over [0, 2π). This procedure
allows to describe the JADPS with a rather small Lk.

• Uniform sampling: As an alternative, pkl may be dis-
tributed uniformly onto Sk. The corresponding γkl are
sampled from a zero-mean Normal distribution with
variance pDM,k(p), i.e., γkl has a zero-mean, complex-
valued, circularly symmetric gain γkl [5] with E[|γkl|2] =
pDM(pkl) ≡ pDM(θkl, φkl, ϑkl, ϕkl, τkl).

For large surfaces, the large dynamic of the JADPS results in
almost zero gain of many pkl in the second method, while the
first method omits regions in Sk with small JADPS. Hence, we
propose the use of the first method and have used in throughout
this current work.
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and M. Fröhle, “5G mm wave downlink vehicular positioning,” in 2018
IEEE Global Communications Conference (GLOBECOM). IEEE, 2018,
pp. 206–212.

[18] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel
estimation and hybrid precoding for millimeter wave cellular systems,”
IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp.
831–846, 2014.

[19] Z. Zhou, J. Fang, L. Yang, H. Li, Z. Chen, and S. Li, “Channel estimation
for millimeter-wave multiuser MIMO systems via parafac decomposi-
tion,” IEEE Transactions on Wireless Communications, vol. 15, no. 11,
pp. 7501–7516, 2016.

[20] Z. Zhou, J. Fang, L. Yang, H. Li, Z. Chen, and R. S. Blum, “Low-
rank tensor decomposition-aided channel estimation for millimeter wave
MIMO-OFDM systems,” IEEE Journal on Selected Areas in Communi-
cations, vol. 35, no. 7, pp. 1524–1538, 2017.
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