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A B S T R A C T   

Many products incorporate into their design fibrous material with particular levels of permeability as a way to 
control the retention and flow of liquid. The production and experimental testing of these materials can be 
expensive and time consuming, particularly if it needs to be optimised to a desired level of absorbency. We 
consider a parametric virtual fiber model as a replacement for the real material to facilitate studying the rela
tionship between structure and properties in a cheaper and more convenient manner. 3D image data sets of a 
sample fibrous material are obtained using X-ray microtomography and the individual fibers isolated. The 
segmented fibers are used to estimate the parameters of a 3D stochastic model for generating softcore virtual 
fiber structures. We use several spatial measures to show the consistency between the real and virtual structures, 
and demonstrate with lattice Boltzmann simulations that our virtual structure has good agreement with respect 
to the permeability of the physical material.   

1. Introduction 

Many products incorporate fibrous materials with carefully chosen 
permeability and absorption levels as a way to control liquid transport 
and retention in the product. The key to understanding the flow of liquid 
through the material is knowledge of the internal microstructure and the 
geometric properties of the fibers. Analysis of the performance of such 
materials and the transport of fluid through the structure has been 
considered by a number of authors [1–3]. 

Performing such analyses of the fiber structure requires the material 
to be well imaged and visualised. X-ray microtomography is a common 
method for visualizing such fiber materials, providing high resolution 
3D image data sets that capture the geometry of the fibers within the 
structure [4]. This image data can be segmented to obtain a binary 
structure, which can be used to simulate fluid flow or other similar 

properties. A drawback of this approach, however, is that running 
simulations on different materials requires each to be imaged separately, 
which can be expensive and time consuming. This becomes more so if 
we wish to design a new material, requiring repeated production and 
imaging of different samples. 

One possible solution to this challenge is to create a stochastic model 
that generates 3D virtual fiber structures intended to mimic the prop
erties of the material in question. The advantage of a parametric model 
is that we can control the characteristics of the fibers, such as fiber 
orientation and curvature, by changing the values of the model pa
rameters. Such an approach affords significant flexibility, enabling us to 
describe a variety of different fiber structures. Stochastic modelling of 
material structures in general is an extensively researched field of study 
[5,6], and modelling of fiber structures includes methods for non-woven 
fiber materials [7,8], composite fiber materials [9,10], and hardcore 
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non-overlapping fiber structures [11]. 
To illustrate the methodology, a sample of fibrous material was 

imaged using X-ray microtomography and analysed to visualise its in
ternal structure. Within the material, fibers are bound together to a 
certain extent to stabilise the structure. We therefore consider a softcore 
fiber model where the interpenetration of fibers is intended to mimic the 
fiber-to-fiber binding points. The use of stochastically generated random 
walks to create the fiber skeleton has been considered by a number of 
authors [11,12], and we use this approach in our method to control the 
bending of the fiber. 

To fit our stochastic model to the data, we develop a method to es
timate the parameters of the model from a sample of isolated fibers, and 
test the accuracy of the method against virtual fibers with known pa
rameters. Identification of fibers in 2D images is well developed, but 
analysis of 3D structures requires greater care given the more complex 
geometry of the structure [13–16]. 

As our virtual structure is intended to mimic the physical material, 
we use three particular spatial measures to compare the two structures: 
fiber-to-fiber contact distance, the fiber K function, and intrusion 
porosimetry. We also run mass transport simulations on each structure 
using a lattice Boltzmann method [17], to demonstrate that our sto
chastically generated structure can be used to estimate the permeability 
of the real fiber material. 

2. Materials and methods 

2.1. Image acquisition – X-ray microtomography 

A sample of commercial fiber material provided by Essity (Gothen
burg, Sweden) was scanned using X-ray microtomography, a non- 
destructive 3D imaging technique capable of revealing the internal 
structure of materials. The sample in question was a highly porous 
nonwoven structure used for absorbent products. A cut 10 mm diameter 
disk of fiber material was scanned in an up-right position and in local 
geometry (i.e., only the central portion of the sample was imaged and 
reconstructed) using a ZEISS Xradia Versa XRM520 system (Carl Zeiss, 
Germany) at the 4D Imaging Lab at Lund University. Due to the sample 
being scanned in local geometry, some fibers that are primarily outside 
the FoV may still appear in the images as small, divided fibers. As the 
length of these divided fibers is small, they do not contribute to the 
estimation method we will describe below. 

The following scanning parameters were used; source-voltage: 40 
kV, source power: 3 W, exposure time per projection: 1.25 s, total 
number of projections: 1001, total sample scanning time, including 
reference and alignment images: 1 h, 4x optic with a source-to-sample 
distance: 18.48 mm and sample-to-detector distance: 31.41 mm, Field- 
of-View (FoV): 2.525× 2.525 mm2 (camera binning 4), and effective 

isotropic pixel size: 5 μm. The linear X-ray attenuation coefficient (LAC) 
[cm− 1] was reconstructed on a 32-bit grey level scale, with cubic voxels 
of dimension 5 μm, using the Zeiss reconstruction software. 

2.2. Image processing and visualisation 

The reconstructed data set was processed using standard image 
processing methods available in ImageJ/Fiji [18], including the appli
cation of a 3D median filter of pixel width 9 × 9 × 9 to remove noise and 
to facilitate the consecutive image segmentation using grey-level 
thresholding. The segmented image mask was processed using the Ori
entationJ function [19,20], which is based on evaluation of the gradient 
structure tensor and creates a colour-coded image based on the orien
tation of the fibers in 3D space. 3D renderings of the images are shown in 
Fig. 1. 

Observing the sample at different perspectives, we see that the fibers 
travel from edge to edge; we can therefore assume the fibers are infi
nitely long, and thus do not need to consider a length distribution for the 
fibers. Individual fibers tend to remain oriented in one particular planar 
direction, and the fibers also demonstrate significant degrees of curva
ture and bending, in some cases curving back on themselves or 
becoming intertwined with other fibers. 

2.3. Stochastic model 

We construct our 3D fiber structure by first generating a set of nodes 
using a random walk, through which we plot a smooth curve that 
comprises our fiber skeleton. This skeleton is then dilated at a specified 
radius to give cylindrically shaped fibers. This process of generating fi
bers is repeated until the solid volume fraction matches a target value. 

2.3.1. Random walk 
We generate our virtual structure on a three-dimensional domain of 

size LX × LY × LZ. As our virtual fibers will initially be generated in 
continuous space, the specific choice of values is primarily only 
important for the scale of the dimension dependent parameters we will 
introduce below. 

Each random walk is characterised by an initial startpoint s0 which is 
uniformly distributed in the domain. To build the fiber skeleton, we 
evolve two random walks in different directions from this startpoint 
until they hit the domain boundary. We denote the m-th point of the first 
generated random walk as sA

m and the n-th point of the second generated 
random walk as sB

n ; thus 

sA
0 = sB

0 = s0. (1)  

In defining the next (xy)-coordinate in our random walk, we use a von 
Mises distribution to sample the angle for each step [21,22], with 

Fig. 1. 3D rendering of the data set obtained via X-ray microtomography. The colour-coding is related to the fiber-orientation in 3D space. The dimension of the 
extracted volume-of-interest is 2.5 × 2.5 × 1.4 mm3. The fibers have a diameter of approximately 20 μm, which equates to 4 voxels in the 3D structure. 
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probability density function 

f (θ | μ, κ) = eκcos(θ− μ)

2πI0(κ)
, (2)  

where I0(κ) is the modified Bessel function of order 0. The parameters of 
the von Mises distribution are the mean direction μ and the concentra
tion κ, with the latter controlling the global bending tendency of the 

fiber; taking a larger value for κ will result in straighter fibers. 
To generate the first point sA

1 , since we do not have an existing di
rection to use, we assume the angle θ is uniformly distributed on the 
circle and thus take μ = 0 and κ = 0. For the remaining points in the first 
random walk, we use the specified concentration value κ and define the 
mean direction using the angle between the previous node points: 

μA = tan− 1
(Δy

Δx

)
. (3)  

We can then sample our bending angle from the density function (2) and 
calculate the step distances for the x- and y-coordinates of the next node 
point as 

xstep = rcos(θ), ystep = rsin(θ), (4)  

with given step distance r. A diagram of these steps is shown in Fig. 2. 
For the z-coordinate, we recall that we saw in our visualisation of the 
fiber sample in Fig. 1 that the fibers tend to be oriented parallel to the 
(xy)-plane, with 77% of the fibers having a total elevation change of less 
than 20◦, and thus the change in the z-coordinate of the node points 
along the curve will be minimal. We therefore sample the change in z- 
coordinate as zstep ∈ N (0,σ2), assuming a mean of zero and given vari
ance σ2. 

The generation of new node points for the first random walk is 
continued until a node is generated outside of the specified domain 
limits. For the second random walk, we calculate the mean direction for 
the first node point sB

1 using the distance between the points sA
1 and s0 

from the first random walk: 

μB = tan− 1
(

Δx
Δy

)

. (5)  

The fraction is inverted in this calculation compared to (3) since we are 
travelling from the point sA

1 to s0. We can then once again calculate the 
(xy)-step distances for the new node point. These steps are shown in 
Fig. 3. We continue to generate subsequent points as in the steps detailed 
above, thereby giving us our two branching random walks, which we 
stitch together to create a single random walk (see Fig. 4). 

2.3.2. Bézier curves 
We generate our fiber skeleton using a Bézier curve, a method for 

generating smooth parametric curves through a set of control points P0,

…,Pn, where n is the order of the curve [23,24]. The resulting curve is 
given by the equation 

B(t) =
∑n

k=0

(
n
k

)

tk(1 − t)n− kPk, t ∈ [0, 1]. (6) 

Fig. 2. We use the first pair of node points to calculate the von Mises mean 
direction μ and determine the angle of the next node point sA

2 . 

Fig. 3. In generating the von Mises angle for the first point sB
1 in the second 

random walk, we use a mean direction μ determined from the first 
random walk. 

Fig. 4. The two branches A and B are stitched together to give a single random walk {s1,…, s9} that we use to generate our fiber skeleton.  
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In our case, we will use quadratic (n = 2) Bézier curves for the first and 
last node point pairs and cubic (n = 3) Bézier curves for the inner pairs. 
Here, B(t) will be a vector of (xyz)-coordinates. The points P0 and Pn will 
be each pair of neighbouring node points from our random walk, while 
the remaining control points will be defined between these points and 
provide directional information for the curve; in the following, we will 
refer to these as support points. 

We specify the support points at each node point using the distance 
between the previous and subsequent node points; support points will 
therefore only be generated for the inner points of the random walk. This 
distance is weighted by a curvature parameter c; the smaller the 
parameter is, the less curvature our Bézier curve will have. This 
parameter therefore enables us to capture and control the local bending 
tendency of the fibers, that is the bending of the fibers between the node 
points. 

Considering the first three points (s1,s2,s3), we can calculate the two 
support points for the inner node point s2 as follows: 

s2,1 = s2 + |s1 − s3|⋅
c
2
,

s2,2 = s2 − |s1 − s3|⋅
c
2
.

(7)  

The Bézier curve for the first pair of node points (s1,s2) is thus given by 

B1(t) = (1 − t)2s1 + 2t(1 − t)s2,1 + t2s2. (8)  

Taking an example curvature value of c = 0.5, we can determine the 
support points for s2 and the resultant Bézier curve, as shown in Fig. 5. 

For the inner point s3, we can calculate the support points (s3,1,s3,2) in 
the same way as above with the inclusion of the point s4. We then have a 
set of four points, 

(P0,P1,P2,P3) = (s2, s2,2, s3,1, s3), (9)  

and hence we use a cubic Bézier curve: 

B2(t) = (1 − t)3s2 + 3(1 − t)2ts2,2 + 3(1 − t)t2s3,1 + t3s3. (10)  

Applying this method to the remaining node points, we can build the full 
fiber skeleton, as shown in Fig. 6. We note that the Bézier curve between 
the final node points (s8, s9) will be quadratic, as for the first segment. 

2.3.3. Cylindrical fibers 
In generating our cylindrical fibers, we first consider a discrete lattice 

grid with resolution nx × ny × nz and a corresponding binary matrix M 
that represents the generated structure. We discretise the points from 
our Bézier curves by first mapping the points from the original domain to 
the new ranges and then mapping these newly defined points to the 
closest grid point on the lattice. Elements of the matrix M with value 1 
then indicate the presence of a fiber at the corresponding coordinate on 
the lattice grid. 

The procedure thus far yields a fiber skeleton structure; the final step 
is to dilate the skeleton at a specified fiber radius, denoted by fr. Our 
method assumes that every element in the matrix is dilated at the same 
radius, and for simplicity we also assume that every fiber has the same 
radius. The analysis in the next section proves that this assumption is 
reasonable for the fibrous material sample we are considering. 

2.4. Isolating fibers 

To isolate the individual fibers in the material sample shown in 
Fig. 1, we first apply a skeletonisation to the segmented structure. Then, 
we define an indicator for each point on the skeleton corresponding to 
the number of fiber points in its 33 neighbourhood. We define a crossing 
or intersection point as any point on the skeleton for which the value of 
the indicator > 3, and all such identified points are then removed from 
the skeleton. From the resulting structure, the individual, non- 
intersecting fiber segments can then be identified using 26-connected 
pixel connectivity. Finally, to ensure we do not retain any artefacts of 
the skeletonisation, any segment shorter than a specified length is 
removed. 

To determine the appropriate reconnection of the isolated segments 
and rebuild the fiber structure, we follow the approach detailed in 
[13,14], in which a weighting is calculated for each proposed recon
nection based on the distance and angle between the two endpoints. We 
give a brief overview of this approach here, with a slight change made to 
the treatment of the relative angle between the endpoints. 

For a given set of isolated segments {p1,…,pn}, we want to determine 
all potential reconnections for the endpoint li of a segment pi. Since the 
point cannot be connected to itself, we consider the set of possible 
endpoints {l1,…, ln}⧹{li} and determine those within a sector of length 
lmax and angle θmax. The proposed connection between the endpoints li 
and lj is then characterised by the absolute length lij of the connecting 
segment and the angle θij between the two endpoints. For the method 
detailed in [13], this angle is calculated as the mean of the absolute 
value of the angles θ(li, lij) and θ(lij, lj) between the corresponding line 
segments; for our approach, we adjust this method and instead consider 
θij as the absolute difference between the angles θi and θj at each 
endpoint. Since the maximum difference between the two angles is π, 
our weight for the proposed connection between endpoints li and lj 
therefore becomes 

Fig. 5. We specify the support points for s2 with curvature c = 0.5 and plot the 
resulting Bézier curve through the first pair of node points. 

Fig. 6. We stitch together the individual Bézier curves through each of the node points of our random walk to build our full fiber skeleton. For our example fiber 
skeleton here, we have used a constant curvature value of c = 0.5. 
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ωij = exp

(

−
1
2

(
lij

lmax

)2
)

exp
(

−
1
2

(θij

π

)2
)

. (11)  

The change to the second component of ωij places greater weight on 
connections between closely parallel fiber segments, regardless of the 
angle of the connecting segment. 

2.5. Parameter estimation 

2.5.1. Estimating random walk nodes 
We identify the initial node point estimate of an isolated fiber 

segment using a measure of local curvature at each discretisation point. 
We fit an osculating circle to each point of the fiber following the 
approach detailed in [25] with order m, and define the local point 
curvature as the inverse of the radius. In general, m will depend on the 
step distance of the fibers (see below), but for our purposes we will 
consider a fixed order m = 20. We then take the element with the 
highest point curvature as the first node point estimate (see Fig. 7). This 
approach ensures we do not miss parts of the fiber with high bending 
tendency. 

To determine the remaining nodes, we identify points backwards and 
forwards along the fiber that are a given step distance away from the 
previous node estimate, starting from our initial node. The step distance 
is chosen based on the scale of the domain and the average length of the 
fibers. In testing the accuracy of this approach in Section 3 against vir
tual fibers with the exact step distance used to generate the fibers, it was 
found that node points would often be missed due to the discretisation of 
the fiber; therefore, in implementing the method, we label an element as 
a node point if it is within a small margin of the given step distance. 

2.5.2. Estimating fiber curvature 
We estimate the curvature of the fiber segment by fitting a series of 

Bézier curves through the identified node points for a given range of 
curvature values. We calculate the overlap of this curve with the initial 
fiber by comparing the number of points intersected by both, and then 
pick the curvature value that gives the greatest overlap. To ensure a 
better fit of our curves, we include two additional node points at the start 
and end of the fiber. Through testing against example virtual fibers, it 
was found that placing these additional nodes at the first and last fiber 
elements was sufficient. 

3. Results and discussion 

3.1. Estimation method accuracy 

The accuracy of each component of our parameter estimation 
method was tested by generating virtual fiber samples using our sto

chastic model. For each test, the value of one individual parameter was 
varied at a time within a given range while the remaining two param
eters were fixed at a default value. We also used a fixed step distance of 
r = 100. Since we know the exact parameter values used to generate the 
virtual fibers, we can directly compare the accuracy of our estimation, 
and changing just one parameter at a time ensures any effects on the 
accuracy are solely the result of the parameter we want to measure. The 
parameter ranges and default values are shown in Table 1. 

For estimating the mean and variance of the z-step, we fit a normal 
distribution to the values using the inbuilt Matlab function fitdist [26]. 
For estimating the von Mises concentration parameter κ, we follow the 
maximum likelihood approach detailed in [27]. Finally, for estimating 
the curvature c, we calculate the mean, median, and mode for each test 
value, and compare how each statistical measure performs against the 
exact value. For testing each parameter combination, we generate 1000 
virtual fibers and exclude those that are not of a suitable length to es
timate the parameters due to an insufficient number of node points; in 
our testing, around 20–25% were found to be unsuitable. The compar
isons to the exact values are shown in Figs. 8–10. 

The results for the estimation of the mean, variance, and concen
tration all compare well with the exact values, though in each case the 
accuracy of the estimation method decreases as the parameter values 
increase. This drop off is, however, within reasonable limits given the 
ranges we are considering for our test parameters. For the estimation of 
the curvature value, each of the three statistical measures we use 
accurately perform well up to around c = 0.5. However, above this point 

Fig. 7. We plot the local point curvature for an example virtual fiber in the 
region of the peak value, highlighted in red. Here, vector element refers to a 
unique point in the ordered list of grid points after the fiber has been 
discretized. 

Table 1 
Ranges for the parameters used in testing the method.  

parameter minimum step maximum default 

variance σ2  0.0 5.0 50 25 

concentration κ  0.0 1.0 8.0 1.0 
curvature c 0.0 0.1 1.0 0.5  

Fig. 8. In varying the value of the z-step variance parameter σ2, both the mean 
and variance calculated from the estimation method match well with the exact 
value, though the accuracy decreases slightly as the input variance increases. 
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the measures become significantly less accurate and also inconsistent 
with one another; the two outliers in the curvature estimation using the 
modal value are a result of the individual estimates having peaks at c =

0, which in some cases are the largest peak and thus incorrectly chosen 
as the estimate. Therefore, in running our estimation method against 
real structures, we will consider all three measures together with the full 
histogram of estimates to determine which value to use. 

3.2. Analysis of material sample 

The method detailed in Section 2.4 for isolating individual fibers was 
applied to the segmented image data sets of the fibrous material sample. 
Initial analysis identified 1655 individual segments, which, after 
reconnection, resulted in 420 individual fibers with an average length of 
190 elements and the largest of length 1558. A comparison of the 
original segmented image and the individual isolated fiber skeletons is 
shown in Fig. 11. 

An initial analysis of the structure was run using the software MIST, a 
program for the visualisation and characterisation of 3D geometries 
[28]. A pore-size distribution analysis was run on the inverted structure 
to determine an appropriate fiber radius of 2 voxels, consistent with the 
average fiber diameter, and the solid volume fraction of the fiber 
structure (after removing areas of open space at the top and bottom of 
the structure) was found to be 2.5%. The dimensions of the reduced 
structure, which were used in generating our virtual fiber structure, are 
505 × 497 × 331 voxels. 

For the estimation of the remaining model parameters, we ran the 
isolated fibers against the method detailed in Section 2.5. Given that the 
average size of the isolated fibers was 190 elements, we used a specified 
step distance r = 50, as a reasonable compromise between maximising 
the number of usable fibers and matching their relative scale. The out
puts from applying the parameter estimation method to the real struc
ture are given in Table 2. 

In total, of the 420 isolated fibers, 218 were found to be of sufficient 
length to be used for the estimation. This is less than in our simulation 

study, when around 75–80% were suitable. However, given that the 
isolated fibers are less well-defined, the number of fibers is large enough 
for our purposes. The mean value and variance for the z-step both being 
close to zero is consistent with our assumption that the fibers in the 
material stay relatively flat in the z-axis, and the value of the concen
tration κ is in the range expected for fibers with a high degree of bending 
tendency. 

For the fiber curvature, while the mean and median values were 
close to one another, the modal value was significantly different. These 
values indicate a peak at c = 0, with the remaining estimates more 
spread out among our test values. This suggests that using a single 
curvature value for all virtual fibers is inconsistent with the actual ma
terial; a potential extension would therefore be to sample the curvature 
value from a given distribution. In generating our virtual 3D fiber 
structure, we will use the mean value, and thus take c = 0.3956. A 
visualisation of the structure is shown in Fig. 12; the structure was post- 
processed after being generated to apply some smoothing to the fibers, 
though the solid volume fraction of the original structure was main
tained. The total computation time, including both generation and post- 
processing, was around 30 min locally on a personal computer. 

Fig. 9. The estimates for the von Mises concentration parameter κ match well 
with the exact values, though we see from plotting the estimate as a percentage 
of the exact value that the error increases for higher concentrations. 

Fig. 10. We consider three statistical measures for estimating the curvature 
parameter c. We see that each does well for smaller values, particularly taking 
the modal value, but there is a large drop off in accuracy for larger values. 
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3.3. Comparison of structures 

We compare our physical and virtual structures using three spatial 
measures: fiber-to-fiber contact distance, the fiber K function, and 
intrusion porosimetry. These particular measures were chosen to enable 
a comparison of a range of aspects of the structures. Since our main focus 
is on fluid flow through the structures, we also run mass transport 
simulations on each structure and compare the permeability. 

3.3.1. Fiber-to-fiber contact distance 
The fiber-to-fiber contact distance measures the distribution of dis

tances between fiber intersection points. The contact distance is a good 
spatial measure for comparison to the fibrous material sample, which 
has a high degree of intersection and layering of fibers. 

We first skeletonise the fiber structure and isolate the crossing points 
in the skeleton as we did in Section 2.4. Since there can be a cluster of 
points identified as crossings at each intersection, we calculate the 
centroid of each cluster. We then generate a network over the fiber 
skeleton, using the centroids as the nodes and where the edges of the 
network connect each node to its closest neighbour. After removing 
duplicate connections, we calculate the length of each edge and generate 
a distribution of contact distances. 

Comparison of the distribution of contact distance for the real and 
virtual fiber structures is shown in Fig. 13. We see that the measure 
compares well between the two structures, though there is a slight shift 
in the virtual structure toward longer contact distances. 

Fig. 11. Comparison between the orientation colour-coded fibers of the physical material and the corresponding skeletons of the individual fibers after they have 
been isolated and reconnected using the method presented above. The dimension of the extracted volume-of-interest is 2.5 × 2.5 × 1.4 mm3. 

Table 2 
Output values from the estimation method.  

parameter output   

z-step mean μ  − 0.13117 – – 

variance σ2  8.8598 – – 

concentration κ  1.7249 – –  

mean median mode 

curvature c 0.3956 0.36 0  

Fig. 12. Generated 3D fiber structure with model parameters estimated from 
the fibrous material sample, comprising 208 fibers with a solid volume fraction 
of 2.513% after smoothing has been applied. The structure has been coloured to 
make individual fibers more visible, with areas of red indicating the inside of 
the fiber along the domain boundary. 

Fig. 13. Comparison of fiber-to-fiber contact distances for the real (blue) and 
virtual (red) structures shows good consistency between the two structures, 
with the virtual structure having a slight shift toward longer contact distances. 
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3.3.2. Fiber K function 
Ripley’s K function [29] is a method from spatial statistics that can be 

used to determine the level of dispersion or clustering of a given point 
process. An analogous K function for fiber processes was presented in 
[30] and which we use for comparing our real and virtual fiber struc
tures. The fiber K function we use is given by 

K(h) =
|A|

Φf (A)2

∑

x∈Φf

Φf (S(x, h)), (12)  

where Φf is our fiber structure, A the domain of interest with volume |A|,

Φf (⋅) the number of fiber voxels in the given domain, and S(x, h) a sphere 
centred at x with radius h. We remove the need for edge-correction in the 
function by considering A to be a subdomain of our full structure, and we 
take a maximum distance of hmax = 80 based on the largest fiber-to-fiber 
contact distance found in our previous analysis. 

Comparison of the fiber K function for each structure is shown in 
Fig. 14. The two structures show almost identical profiles, indicating 
that our virtual structure is a good representation of the real material. 
The profile itself is also consistent with our expectation, showing greater 
clustering of fiber points at greater distances. 

3.3.3. Intrusion porosimetry 
The intrusion porosimetry measures at every point p in the pore space 

the diameter of the largest sphere that can travel to p starting from a 
given plane. The measure provides an indication of the porous nature of 
the material, which is particularly important for the structures we are 
looking at given our interest in understanding fluid flow through the 
material. The porosimetry through both structures was calculated using 
MIST, and we consider a subdomain of the real structure to ensure all 
areas of open space that can affect the analysis are removed. The domain 
for the virtual structure was similarly reduced to match the size of the 
real structure, and doing so enables the intrusion porosimetry to be 
calculated through two non-intersecting areas to see whether there is 
any variation across the structure. 

The results of the analysis are shown in Table 3 and visualised in 
Fig. 15, with points highlighted in darker blue indicating that a larger 
sphere was able to access the corresponding point p in the pore space; 
fibers are indicated in bright red. The measure shows good consistency 
between the real structure and the two samples from the virtual struc
ture, with the average and standard deviation of the pore-size both being 
close in value in each instance. Visual inspection of the results also 
shows good comparison, with areas further away from the starting plane 
at the top of the structure having a lower value (towards the redder end 
of the scale) as expected. Consistency of the analysis through the two 
samples from the virtual structure also demonstrates the homogeneous 

Fig. 14. Comparison of the estimated fiber K function for the real (blue) and 
virtual (red) structures shows near identical profiles for the two structures. 

Table 3 
Comparison of the intrusion porosimetry for each structure.  

measure real (a) virtual (b) virtual (c) 

average pore-size (voxels) 17.141 15.929 15.912 
standard deviation 13.319 12.847 13.075 
maximum value (vox.) 97.966 116.621 122.011  

Fig. 15. Comparison of the intrusion porosimetry (in voxels) for the real structure (a) and the virtual structure samples (b) and (c); areas of darker blue indicate a 
larger sphere is able to access the corresponding point p in the pore space, with redder areas indicating a smaller accessible sphere and the fibers indicated in bright 
red. The line plot in (d) shows a comparison of the accessible volume fraction for a given probe diameter for each structure. The average pore-size, standard de
viation, and maximum value for each structure is included in Table 3. 
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nature of the structure. 

3.3.4. Mass transport simulations 
Our final step is to run simulations of fluid flow through each 

structure to compute and compare the fluid permeability. These simu
lations were run using Gesualdo, an in-house software using the lattice 
Boltzmann method to compute mass transport properties of porous 
materials [1,17]. We consider a subdomain of the full structure as we did 
in calculating the intrusion porosimetry, and in each case the simula
tions were run until convergence was reached. 

Comparison of the simulation results for each structure are shown in 
Table 4, and we can see that the estimates for the permeability match 
very well across all three simulations. The porosities for the virtual 
samples are consistent with expectations given our target solid volume 
fraction of 2.5%, with the slight differences being a result of considering 
a subdomain of the full structure. 

4. Conclusion 

A stochastic model for generating 3D fiber structures was con
structed and fitted to an X-ray microtomography image data set of a 
sample of fibrous material used for absorbent products. A method for 
isolating fibers was applied to the physical structure, and the parameters 
for the model were estimated from these individual fiber segments. The 
estimation method was tested on virtual fibers with known parameters 
and shown to approximate the exact values to a reasonable degree of 
accuracy. The real and virtual fiber structures were compared using 
several measures, and the virtual structure was found to be a good 
approximation of the physical structure across every chosen measure. 
Fluid flow simulations were also run on each structure, and the 
permeability of the physical material was found to be approximated well 
by the virtual structure. 

The benefit of being able to generate 3D fiber structures with the 
stochastic model is not just to be able to approximate a real material, but 
also to generate new and interesting structures. An interesting topic for 
future research would be to generate a range of fiber structures with 
different parameter combinations and analyse the effect of changing 
these parameters on the properties of the structure. This analysis can 
then be used to inform the future design of new materials. Additionally, 
while the method as detailed was developed for the specific structure 
considered, it could also be easily extended to consider a wider range of 
similar fiber materials. Some simple adjustments to the random walk can 
be used to analyse periodic structures or those with fibers that do not 
span the boundary of the structure as with the sample materials, and a 
more localised modelling of the fiber radius could be used to analyse 
materials with defects in the fibers. 
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