Sustainable and Resilient Transport Infrastructure

Citation for the original published paper (version of record):
Moridpour, S., Qu, X., Shiwakoti, N. et al (2021)
Sustainable and Resilient Transport Infrastructure
Journal of Advanced Transportation, 2021
http://dx.doi.org/10.1155/2021/1576315

N.B. When citing this work, cite the original published paper.
Editorial
Sustainable and Resilient Transport Infrastructure

Sara Moridpour,1 Xiaobo Qu,2 Nirajan Shiwakoti,3 and Samiul Hasan4

1Civil and Infrastructure Engineering Discipline, School of Engineering, RMIT University, GPO Box 2476, Melbourne 3001, Australia
2Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
3Manufacturing, Materials and Mechatronics Discipline, School of Engineering, RMIT University, GPO Box 2476, Melbourne 3001, Australia
4Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA

Correspondence should be addressed to Sara Moridpour; sara.moridpour@rmit.edu.au

Received 3 December 2018; Accepted 2 March 2021; Published 16 March 2021

Transport infrastructure is the lifeline of modern economy and significantly contributes to economic growth and our well-being. Transport infrastructure is not just about moving people and goods, but it is also an essential part of the continued economic growth and social development of countries. Our transport infrastructure is also increasingly complex and subject to a range of hazards or failures. A sustainable and resilient transport infrastructure provides access to jobs and other services with minimum environmental impacts and is able to withstand disruption and absorb disturbance by adapting to changing conditions, including climate change. This special issue aims at identifying and discussing a range of challenges that are faced in delivering safe, sustainable, and smart transport infrastructure as well as introducing innovative approaches to resolve these problems and challenges. We hope that this special issue would attract a major attention of the peers. 25 papers were submitted to this special issue, 8 of which were accepted for publication. As the guest editors of this special issue, we would like to summarize the 8 accepted papers as follows.

A review paper by X. Shi et al. [2] focuses on examining the challenges and opportunities for empirical studies on the pedestrian’s complex movements. This paper presents a systematic review on the empirical data collection for multidirectional crowd complex movements.

A paper authored by X. Ma et al. [3] explores the risk factors that influence road accidents involving hazardous materials. For this purpose, the paper presents a Bayesian network structure using Dempster–Shafer evidence theory. The Bayesian network model is capable of exploring the most probable factor or combination leading to accident, and it can predict the occurrence of the accident by setting the influence degree of a specific factor.

A paper authored by M. Rojo et al. [4] presents an economic analysis and evaluates the impact of budget reductions on increased accident rates. This paper focuses on the road safety indexes in Spain as a case study. The risk of accident, accident severity, and fatalities are considered in evaluating the road safety index. Linear regression technique is used in this paper to identify the relation between lower budget and higher road safety indices.

A paper authored by M. Contreras-Jara et al., [5] one paper proposes a procedure to estimate the traffic interruption probability caused by floods (still water regime) in roads. The procedure uses the first-order reliability method to estimate traffic interruption probabilities, based on the difference between the probability density functions of still water depth and vehicle wading height. The vehicle wading height based
on the geometric characteristics of light and heavy vehicles was developed.

S. Chang et al. [6] present a framework to minimise the faulty bike-sharing recycling. The framework minimizes the total recycling costs by taking the route optimization and loading capacity ratio as constraints. In this paper, an area in Beijing, China, has been used as a case study to validate the accuracy and performance of the proposed framework.

Z. Duan et al. [7] propose a multilevel matching method for traffic information services based on semantic technology. The similarity at the function level between services is computed by grouping the connections between the services into inheritance and noninheritance relationships. The paper also presents a three-layer framework with a semantic similarity measure that requires less time and space cost than the existing methods since the scale of candidate services is significantly smaller than the whole transportation network.

H. Wang et al. [8] present a bilevel optimization model to design the transport network with stochastic demands and emergency vehicle lanes. Two groups of users including passenger car users and emergency vehicle travellers have been considered in this paper. The bilevel optimization model has been formulated, where the upper level model aims to determine the optimal design of emergency vehicle lanes and the lower level model uses the user equilibrium principle to forecast the route choice of road users. A simulation-based genetic algorithm is proposed to solve the model.

Conflicts of Interest

The editors declare that there are no conflicts of interest regarding the publication of this editorial.

Acknowledgments

The guest editors would like to express their appreciation to all authors, reviewers, editorial team, Journal of Advanced Transportation team, and Hindawi for great support to make this special issue possible.

Sara Moridpour
Xiaobo Qu
Nirajan Shiwakoti
Samiul Hasan

References