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Electrochemical Model-Based Fast Charging:
Physical Constraint-Triggered PI Control

Yang Li, Member, IEEE, D. Mahinda Vilathgamuwa, Fellow, IEEE, Evelina Wikner, Member, IEEE,
Zhongbao Wei, Member, IEEE, Xinan Zhang, Member, IEEE, Torbjörn Thiringer, Senior Member, IEEE,

Torsten Wik, and Changfu Zou, Member, IEEE

Abstract—This paper proposes a new fast charging strategy
for lithium-ion (Li-ion) batteries. The approach relies on an
experimentally validated high-fidelity model describing battery
electrochemical and thermal dynamics that determine the fast
charging capability. Such a high-dimensional nonlinear dynamic
model can be intractable to compute in real-time if it is fused
with the extended Kalman filter or the unscented Kalman filter
that is commonly used in the community of battery management.
To significantly save computational efforts and achieve rapid
convergence, the ensemble transform Kalman filter (ETKF) is
selected and tailored to estimate the nonuniform Li-ion battery
states. Then, a health- and safety-aware charging protocol is
proposed based on successively applied proportional-integral (PI)
control actions. The controller regulates charging rates using
online battery state information and the imposed constraints, in
which each PI control action automatically comes into play when
its corresponding constraint is triggered. The proposed physical
constraint-triggered PI charging control strategy with the ETKF
is evaluated and compared with several prevalent alternatives. It
shows that the derived controller can achieve close to the optimal
solution in terms of charging time and trajectory, as determined
by a nonlinear model predictive controller, but at a drastically
reduced computational cost.

Index Terms—Electrochemical model, ensemble transform
Kalman filter (ETKF), fast charging, lithium plating, lithium-
ion (Li-ion) battery.

NOMENCLATURE

Symbol:

CT Battery thermal capacitance (J/K).
H Prediction horizon of model predictive control.
II Current due to molar flux of intercalation (A).
Iapp Applied charging current (A).
KP , KI Proportional and integral gains.
M Order of the submodel for solid-phase diffusion.
N j Number of control volumes of a domain. j ∈

{pos, sep, neg}.
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N tot = N pos + N sep + N neg. Total number of control
volumes.

Pbat Battery charging power (W).
QT Heat generation (W).
RT Battery thermal resistance (K/W).
Rcol Current collector resistance (Ω).
Rct Charge-transfer resistance (Ω).
Re, Rs Electrolyte and solid-phase resistances (Ω).
RSEI Solid-electrolyte interphase film resistance (Ω).
Sj Set of control volume indices. j ∈ {pos, sep, neg}.
SOC State of charge.
T Battery temperature (K).
Tamb Ambient temperature (K).
U ref

sr Reference voltage of the side reactions (V).
Uss Equilibrium potential of an electrode (V).
Vbat Battery terminal voltage (V).
Ve Electrolyte diffusion overpotential (V).
Φe, Φs Electrolyte and solid-phase potentials (V).
ce, cs Electrolyte and solid-phase concentrations

(mol/m3).
cs,avg Volume-averaged concentration in the solid phase

(mol/m3).
cs,max Maximum concentration in the solid phase

(mol/m3).
css Surface concentration in the solid phase (mol/m3).
e Feedback error.
jI Molar flux due to intercalation [mol/(m2· s)].
m Ensemble size.
n System order.
q Output of the integral control.
ηct Charge-transfer (intercalation) overpotential (V).
ηsr Side-reaction potential. sr ∈ {LiP,SEI} (V).
ηsr,min Minimum potential to restrain side reactions. sr ∈

{LiP,SEI} (V).
∆t Sampling time (s).
∆cs Concentration difference term in the solid-phase

(mol/m3).

Subscript:

N Control volume at electrode/separator boundary.
i Control volume index. i ∈ {1, 2, · · · , N tot}.
i± 0.5 Variable at the edges of ith control volume. i ∈

{1, 2, · · · , N tot}.
k Discrete time index. k ∈ {0, 1, · · · }.
l Index of concentration difference terms in the solid

phase. l ∈ {2, · · · ,M}.
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p Ensemble member index. p ∈ {1, 2, · · · ,m}.
q State variable index. q ∈ {1, 2, · · · , n}.
λ Charging mode. λ ∈ {1, 2, · · · }.
0 Initial value.
1 Control volume at electrode/current collector

boundary.
0% Value at SOC = 0%.
100% Value at SOC = 100%.
LiP Lithium plating.
SEI Solid-electrolyte interphase film.

Superscript:

neg Negative electrode.
pos Positive electrode.
sep Separator.
> Transpose.
+ Posterior estimate.
− Prior estimate.

I. INTRODUCTION

THANKS to its distinct advantages, including the high
power and energy densities, low self-discharge rate, fa-

vorable modularity, and rapidly declined cost in recent years,
lithium-ion (Li-ion) battery has become the major energy
storage technology to achieve transportation electrification [1].
In contrast to the fast refueling of conventional fossil-fueled
vehicles, Li-ion battery-powered electric vehicles (EVs) suffer
from the issue of long charging time. However, simply increas-
ing the battery charging current rate can unfavorably speed up
the aging, damage the batteries, and even pose serious hazards
to the vehicle users. In this regard, conservative charging
control strategies are commonly applied in practice, leading
to a significant part of battery capacity being underutilized.
The design of a safe, healthy, and efficient strategy for Li-ion
battery fast charging is thus highly desirable and has gained a
growing interest over the past decade [2], [3].

The existing battery charging strategies can be generally
divided into model-free and model-based methods. The model-
free strategies include constant-current constant-voltage (CC-
CV), constant-power CV (CP-CV), CV-CCCV [4], multistage
CC (MCC) [5], and pulse charging [6]. These approaches
can be viewed as heuristic or passive methods character-
ized by predefined profiles with constant current, voltage,
and/or power, while the internal dynamics of the battery are
completely ignored due to the lack of relevant information.
The resultant charging protocols are easy to implement but
can be accompanied with long charging time, rapid battery
degradation, and unaddressed safety issues.

In contrast, the model-based strategies adopt various dy-
namic models of the batteries to design charging algorithms.
Conventionally, lumped-parameter equivalent circuit models
(ECMs) with simple circuit structures [7] or electro-thermal
coupled circuits [8] are used. Indicators such as state-of-
charge (SOC), state-of-health, and internal temperature are
design considerations for various charging strategies based on
offline methods, such as frequency optimization [9], dynamic
programming [10], genetic algorithm [11], as well as online

methods such as fuzzy control [12] and model predictive
control (MPC) [13]. The target is usually set to achieve the
maximum charging efficiency [14] or the minimum charging
loss during fast charging [10]. Since these indicators cannot
be measured directly, state observers, such as those based on
Kalman filters [15], H-infinity observers [11], and recursive
least squares [16], are needed to estimate the internal states
and indicators online. However, as the conventional ECMs are
empirically developed based on external measurements, usu-
ally under normal operating conditions with low-to-medium
current rates, it is difficult to accurately capture the battery
characteristics and predict the battery operating limits during
fast charging in which both the current and temperature ranges
are much wider. Extrapolation of the degradation behaviors is
prone to fail due to the lack of mechanistic description of
aging phenomena such as the growth of the solid-electrolyte
interface (SEI) film and lithium plating [2].

Physics-based models have thus recently been investigated
for the design of fast charging algorithms. These models
describe electrochemical phenomena, such as ion diffusion,
intercalation kinetics, as well as heat generation/heat transfer,
and they are capable of reproducing battery dynamics with
high fidelity [17]. Based on physics-based models, optimiza-
tion problems and open-loop optimal controls have been
formulated to minimize charging duration [18]. These results
can be regarded as a first step toward the design of closed-loop
controllers that are able to compensate for model uncertainties
and disturbances. A few charging algorithms equipped with
closed-loop control algorithms based on physics-based models
were recently proposed. For instance, a fast-charging strategy
was developed utilizing an isothermal electrochemical model,
health-related constraints, and nonlinear MPC (NMPC) [19].
By incorporating thermal dynamics into a multi-physics model
described by partial-differential-algebraic equations (PDAEs),
a reference governor and one-step NMPC were proposed to
optimize charging profiles [20]. However, the applications are
potentially limited by their intractable computations associated
with nonlinear PDAE models and nonlinear online optimiza-
tion [21]. To solve the problem of low computational efficien-
cy, an NMPC was proposed based on a reduced-order model
of a Li-ion battery [21], where the distributed effect along
the electrodes of the reduced-order model was completely
ignored. However, recent evidence has shown that lumping
the behaviors in the electrode can lead to an underestimation
of Li-ion battery degradation during fast charging [22].

In this connection, it will be shown that ignoring the
nonuniform charge and mass distribution in the electrodes of
the Li-ion batteries can cause significant modeling errors and
make the designed control scheme less effective during fast
charging. This is in particular true for today’s high-energy type
battery cells with wider electrodes and high-power type battery
cells with increased rate capability. To address this problem,
we first use spatial discretization techniques to reduce a PDAE-
based multi-physics battery model into a differential-algebraic
equation system, so that the spatially distributed degradation-
and safety-related dynamics can be accurately captured. By
reformulating the reduced model next into a physics-based
equivalent circuit network with only ordinary differential e-
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quations (ODEs), the model can be efficiently solved, while
the internal dynamics can be better illustrated and explained
for researchers with electrical engineering backgrounds. To
our best knowledge, this is the first work using a spatially
discretized physics-based equivalent circuit model for Li-ion
battery charging control design [2].

In the scenario of high current-rate charging, the necessity
to adequately discretize the nonlinear PDAE-based distributed-
parameter battery model inevitably leads to a high-order
system. This creates numerical issues in stochastic state esti-
mation: It is unaffordable for many nonlinear state estimation
algorithms, such as the extended Kalman filter (EKF), the
unscented Kalman filter (UKF), a particle filter (PF), etc.,
although all of these algorithms based on the discretized bat-
tery electrochemical model have been theoretically studied for
distributed state estimation purposes, see [23]–[25]. To address
such a computational difficulty, the ensemble Kalman filter
(EnKF) was adopted in [26] and showed superior efficiency
for the high-order systems. EnKF is a sequential Monte Carlo
implementation of the Kalman filter by using low dimension
random samples (i.e., an ensemble) to represent statistics of
the model uncertainty. Nevertheless, in practice, the EnKF can
suffer from reduced accuracy and even divergence when a
relatively small set of samples are selected [27]. In order to
overcome this issue, an improved ensemble-based algorithm,
named the ensemble transfer Kalman filter (ETKF) [28],
is introduced for the first time to effectively enhance the
performance of distributed state estimation for the battery
system, and this forms the first major contribution of the
present work.

Again, due to the high-order nature of the system model,
online optimization-based control methods, such as NMPC,
are hardly implementable for battery fast charging. This is pop-
ularly known as the “curse of dimensionality”. In order to over-
come this obstacle, we design a simple fast-charging scheme
that regulates the rate-limiting constraints using proportional-
integral (PI) feedback control while maximizing the charging
speed. In this way, the objectives in terms of charging time,
degradation, and battery safety can be properly balanced. The
used battery model does not relay on the uniform distribution
hypothesis of some electrode states that commonly used in the
literature and accurately predicts internal distributed dynamics
during fast charging. The proposed optimization-free charging
forms the second major contribution.

II. PHYSICS-BASED BATTERY MODELING

The pseudo-two-dimensional model with thermal dynamics
(P2D-T) is considered to be one of the most precise mathe-
matical descriptions of Li-ion batteries, and it can accurately
exhibit the internal health- and safety-related behavior under
a wide operating range [17]. Since the P2D-T model is
a nonlinear PDAE system, model order reduction must be
carried out so that an ODE system with a finite number of state
variables is used. We resort to the finite volume method (FVM)
to retain the distributed characteristics of the cell. In contrast
to many ad-hoc methods, such a concept is mathematically
mature and applicable to any operating condition.
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Fig. 1. Equivalent circuit describing the charge transport in the solid-phase,
charge transport in the electrolyte, and the electrochemical reaction kinetics.
In the ith control volume, Ve,i is controlled by ce,i in Fig. 2(a), and Uss,i is
controlled by css,i in Fig. 2(b), respectively.
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Fig. 2. Equivalent circuit describing (a) diffusion in the electrolyte, (b)
diffusion in the solid phase in the ith control volume, and (c) thermal
dynamics. In the ith control volume, jI,i is controlled by II,i in Fig. 1.

Using the framework proposed in [17], the equations related
to charge transport phenomena can be converted into an
equivalent subcircuit as shown in Fig. 1. Here Vbat and Iapp are
the cell voltage across and charging current flowing through
the two current collectors (col) respectively. The space across
the horizontal cell thickness is divided into several control
volumes, with N pos, N sep, and N neg being the numbers of the
control volumes of the positive electrode (pos), the separator
(sep), and the negative electrode (neg), respectively. Subscript
i ∈ {1, 2, · · · , N tot = N pos +N sep +N neg} is used to indicate
the local quantity at the central node of the ith control volume,
while i ± 0.5 represents the quantity at the edges of the
control volume. For ease of notation, a local quantity Xi

in the positive electrode is denoted by Xpos
i , ∀i ∈ Spos :=

{1, · · · , N pos}. While in the negative electrode, Xi is denoted
by Xneg

N tot−i+1,∀i ∈ Sneg := {N pos + N sep + 1, · · · , N tot}. In
addition, considering that the widths of the two electrodes are
usually comparable, it is assumed that N pos = N neg = N in
this work to simplify the analysis and notation. The physical
meanings of all the symbols used in Fig. 1 and in the remaining
part of the work are given in the Nomenclature.

Mass transport phenomena are modeled by the proposed
subcircuits shown in Figs. 2(a) and (b). These two equivalent
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circuits approximate Fick’s law of diffusion equations that
govern the variations of electrolyte concentration ce,i and
solid-phase surface concentration css,i, respectively. These con-
centration states are directly analogized as capacitor voltages,
while molar fluxes jI,i (which are proportional to the branch
currents II,i in Fig. 1) are analogized as capacitor currents.
This is in contrast to using nonlinear transformations as in
[17], so that higher computation efficiency can be achieved.
Furthermore, Fig. 2(a) is obtained using FVM, whereas in
Fig. 2(b), Padé approximation is used for reduced computa-
tional burden [29]. In Fig. 2(b), cs,avg,i is the volume-averaged
solid-phase concentration, and ∆cs,l,i for l ∈ {2, · · · ,M} are
M − 1 concentration difference terms. The SOC of the cell is
associated with all cs,avg,i in the negative electrode, i.e.,

SOC(t) =

1
N neg

∑
i∈Sneg

cs,avg,i(t)− cneg
s,0%

cneg
s,100% − c

neg
s,0%

. (1)

In Fig. 1, each vertical branch has two resistances, i.e., the
SEI film resistance RSEI,i and the charge-transfer resistance
Rct,i, and they are closely related to battery degradation.
SEI film growth and lithium plating (LiP) are the two ma-
jor degradation mechanisms of Li-ion batteries during the
charging process [30], which can lead to aging phenomena
such as capacity fade and increase of internal resistance. As
identified in the literature and by experiment, both of these
two types of side reactions occur most severely at the negative
electrode/separator (neg/sep) boundary as indicated in Fig. 1.
At this boundary, the rates of the side reactions are determined
by the side-reaction potentials (SRP), i.e., ∀sr ∈ {SEI, LiP},

ηneg
sr,N (t) = U neg

ss,N (t) +Rneg
ct,NI

neg
I,N (t)− U ref

sr (2a)

where U ref
sr is the reference voltage for the side reactions. The

charge-transfer resistance Rneg
ct,N is determined by cneg

ss,N , cneg
e,N ,

as well as cell temperature T , and their relationship is [17]

Rneg
ct,N ∝ T (t)/

√
cneg
e,N (t)cneg

ss,N (t)(cneg
s,max − cneg

ss,N (t)) (2b)

where cneg
s,max is the theoretical maximum concentration in the

solid phase of the negative electrode.
To describe the temperature dynamics, the lumped thermal

circuit shown in Fig. 2(c) is adopted. Here, RT is the thermal
resistance, CT is the thermal capacitance, Tamb is the ambient
temperature, and QT is the heat source term. The thermal
model is coupled with the electrochemical models: QT is
calculated using Fig. 1 as the sum of the irreversible heat
generated by the resistances and the reversible heat generated
by the capacitances. T in Fig. 2(c), in turn, affects the
parametric values of the elements in all other subcircuits.
More details about the mathematical expressions and physical
meanings of the symbols are provided in [17], [26].

We denote the circuit model in Fig. 1 and Fig. 2 the multi-
physics circuit model (MPCM) in the latter sections of the
paper. After being discretized in the time domain, the MPCM
can be expressed in a discrete-time state-space form,

xk = F(xk−1, uk,∆t) + wk (3a)
zk = H(xk, uk) + vk (3b)
yk = G(xk, uk) (3c)

where F(·), H(·), and G(·) are nonlinear operators, u =
Iapp is the single control input, and z = [Vbat, Tamb]>

is the measurement vector. The state vector x =

[(cpos
s,avg)

>
, (cneg

s,avg)
>
, (ce)

>
, (∆cs)

>
, T ]
>
∈ Rn consists of all

the concentrations and the temperature (i.e., the voltages of
all the equivalent capacitors shown in Fig. 2), and the system
order is n = M(N pos + N neg) + N tot + 1. The uncertainties
of the process and measurements are considered in (3) by
hypothesized normally distributed error vectors w ∼ N (0,Q)
and v ∼ N (0,R), respectively. Furthermore, the output vector
y to be controlled includes variables that will be used as the
constraints in the fast charging strategy, e.g., SRPs, SOC,
temperature, and concentrations. These constraints will be
estimated using the distributed battery state estimator proposed
next.

III. DISTRIBUTED BATTERY STATE ESTIMATION

As will be presented later in Section V-A, a sufficiently large
number of control volumes are needed to accurately predict
the constraints that affect battery charging control design. In
this section, an estimator is therefore proposed to observe the
distributed states of the Li-ion batteries based on the MPCM.

Due to the fact that the MPCM possesses a much higher
order compared to the conventional ECMs, nonlinear esti-
mators based on UKF, EKF, or PF algorithms can suffer
problems of high computational overhead. This is because,
in these algorithms, both an n-dimensional mean vector and
an n-by-n error covariance matrix of the state variables need
to be evolved in real-time [27]. Instead, in ensemble-based
algorithms such as EnKF, sampled state vectors are adopted
to represent the state mean and the error covariance [28]. The
number m of the state vector samples, namely the ensemble
size, can be selected much smaller than the system order n
so that the online implementation is computationally viable.
However, as m reduces, the EnKF algorithm tends to suffer the
undersampling problem in which the error covariance will be
underestimated [27]. This issue is caused by the introduction
of the pseudo-random measurement perturbation in the update
step. In this connection, an MPCM-based battery distributed
state estimator is proposed in this section by incorporating the
deterministic ETKF algorithm introduced in [28]. An ensemble
initialization process will be proposed first for the battery state
estimator, after which the governing equations of the estimator
will be presented based on the ETKF algorithm described in
[28].

A. Ensemble Initialization

A state ensemble is an n-by-m matrix, and each column of
it is an estimate of the state vector. The ETKF-based battery
state estimator is first initialized by choosing an initial state
ensemble X̂+

0 := [x̂+
0,1, x̂

+
0,2, ..., x̂

+
0,m]. Improper setting of X̂+

0
can lead to slow initial convergence of the estimator [31]. If
no other prior statistical information is available, X̂+

0 can be
assumed to evenly cover an estimated range of SOC from
SOCmin

0 to SOCmax
0 . Accordingly, the element in the qth row

and the pth column in X̂+
0 is set to
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X̂+
0 (q, p) =


cpos
s0,p, 1 ≤ q ≤ N pos

cneg
s0,p, N pos+1 ≤ q ≤ N pos+N neg

ce0, N pos+N neg+1 ≤ q ≤ N pos+N neg+N tot

T0, q = n
0, otherwise

(4a)

where the initial solid-phase concentrations are obtained using

cpos
s0,p = (cpos

s,0% − c
pos
s,100%)SOC0,p + cpos

s,100% (4b)

cneg
s0,p = (cneg

s,100% − c
neg
s,0%)SOC0,p + cneg

s,0% (4c)

SOC0,p = SOCmin
0 +

p

m
(SOCmax

0 − SOCmin
0 ). (4d)

In (4a), the initial electrolyte concentration ce0 is a known
battery parameter determined by the material characteristics of
the electrolyte, while the initial temperature T0 is measurable
and normally close to the ambient temperature Tamb.

B. Prediction Step

The ETKF is similar to the EnKF in that they both share
the same prediction step. Based on the previous posterior
state ensemble X̂+

k−1 := [x̂+
k−1,1, x̂

+
k−1,2, ..., x̂

+
k−1,m], the new

prior state ensemble X̂−k := [x̂−k,1, x̂
−
k,2, ..., x̂

−
k,m] is obtained

according to the state equation (3a). Thus, ∀p ∈ {1, 2, · · · ,m},

x̂−k,p = F(x̂+
k−1,p, uk,∆t) + wk,p. (5a)

The prior ensemble mean x̄−k and the prior ensemble per-
turbation X̃−k are defined as

x̄−k :=
1

m

m∑
p=1

x̂−k,p (5b)

X̃−k := X̂−k −

m︷ ︸︸ ︷
[x̄−k , x̄

−
k , · · · , x̄

−
k ] . (5c)

Next, the measurement ensemble is defined as Ẑk :=
[ẑk,1, ẑk,2, ..., ẑk,m], and each column of Ẑk is obtained ac-
cording to (3b), i.e., ∀p ∈ {1, 2, · · · ,m},

ẑk,p = H(x̂−k,p, uk). (5d)

Similar to (5a) and (5b), the ensemble mean and the
ensemble perturbation of the measurements are defined by

z̄k :=
1

m

m∑
p=1

ẑk,p (5e)

Z̃k := Ẑk −
m︷ ︸︸ ︷

[z̄k, z̄k, · · · , z̄k] . (5f)

With the ensemble perturbation matrices (5c) and (5f), the
ensemble Kalman gain Ke,k can be calculated by

Ke,k =
X̃−k Z̃>k
m− 1

(
Z̃kZ̃

>
k

m− 1
+ Rk

)−1
. (5g)

C. Update Step of EnKF

The posterior state ensemble X̂+
k in the EnKF is updated

by
X̂+
k = X̂−k + Ke,k(Zk + Γk − Ẑk) (6)

where Γk is named the pseudo measurement perturbation,
and each column of Γk is normally distributed according
to N (0,Rk). By adding Γk, the posterior covariance matrix
approaches its true value as m increases [27].

D. Update Step of ETKF

Although the accuracy of the EnKF-based estimator is the-
oretically comparable to the conventional Kalman filter with a
sufficiently large ensemble size, in the present application of
battery state estimation, m needs to be much smaller than n
to increase the computational efficiency. In the case of using a
very small m, the introduction of Γk in the EnKF may lead to a
large estimation error and even cause divergence problems due
to undersampling, i.e., the ensemble generated with random
perturbation is too small to statistically represent the mean
and the covariance [28]. In the ETKF, instead, we consider
to update the ensemble mean and the ensemble perturbation
separately. The process is described below.

First, the posterior ensemble mean is obtained in a way
similar to the conventional Kalman filter, without using the
pseudo-random measurement perturbation, i.e.,

x̄+
k = x̄−k + Ke,k(zk − z̄k). (7a)

The posterior ensemble perturbation, though, is considered
to be a linear transformation of the prior ensemble perturba-
tion, i.e.,

X̃+
k = X̃−k Tk (7b)

where the transform matrix Tk is calculated by

Tk = Uk(Im + Λk)
− 1

2 U>k . (7c)

Here, Im is the identity matrix. Λk and Uk are obtained by
performing the following eigendecomposition:

(Z̃>k R−1k Z̃k)/(m− 1) = UkΛkU
>
k . (7d)

The posterior state ensemble is simply obtained by

X̂+
k =

m︷ ︸︸ ︷
[x̄+
k , x̄

+
k , · · · , x̄

+
k ] +X̃+

k . (7e)

Finally, with updated ensemble mean and the input, the
unmeasurable outputs yk can be estimated with (3c), i.e.,

ŷk = G(x̄+
k , uk). (7f)

The ETKF algorithm presented above is much more compu-
tationally efficient to implement than the nonlinear benchmark
algorithms such as EKF and UKF, especially when m � n.
This is because only an n-by-m ensemble matrix X̂+

k need
to be maintained and evolved. While for EKF and UKF,
both the mean x̄+

k of the state estimate and the n-by-n
covariance matrix P̂+

k needs to be dealt with. Also, ETKF
is advantageous over EKF as there is no need to perform
sequential linearization, in which calculating a set of n-by-n
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Jacobian matrices online can be extremely heavy for the high-
dimensional nonlinear model of the battery. Furthermore, the
update step of the ETKF differs from the EnKF as there is no
need to generate the pseudo-random measurement perturbation
Γk in (6). This increases the accuracy and improves the
numerical stability of the algorithm especially when a small
ensemble is preferable. Although additional steps (7b)–(7d)
including eigendecomposition are introduced in ETKF, the
dimensions of relevant matrices, including Tk, Im, Λk, and
Uk, are only m-by-m. The effectiveness of the ETKF for
battery electrochemical state estimation will be verified by a
comparative study in Section V-A.

IV. FAST-CHARGING STRATEGY

A. Constraints for Li-Ion Battery Charging

Many constraints have been considered to limit the charging
rate when designing a fast charging strategy for Li-ion batteries
in the literature. First, current Iapp, voltage Vbat, and terminal
power Pbat = VbatIapp of the battery are limited by the rating
of the charging devices, i.e.,

Iapp,k ≤ Imax (8a)
Vbat,k ≤ Vmax (8b)
Pbat,k ≤ Pmax. (8c)

Second, due to the limited diffusivities, the concentrations
in both the solid phase and the electrolyte can show significant
nonuniformity. As will be shown in Fig. 7 and Fig. 8, in the
negative electrode, the solid-phase and the electrolyte con-
centrations tend to saturate first at the neg/sep boundary and
at the negative electrode/current collector (neg/col) boundary,
respectively, compared to other locations during the charging
process. To avoid local overcharge and lithium depletion, it is
required to ensure

cneg
ss,N,k < cneg

s,max (8d)

−cneg
e,1,k < 0. (8e)

Third, side reactions will accelerate dramatically under
high current rates for aged batteries due to the increased
magnitude of the SRPs. To limit the side reactions, the SRP
at the neg/sep boundary should be regulated above a certain
minimum threshold ηsr,min, i.e., ∀sr ∈ {SEI, LiP},

−ηneg
sr,N,k ≤ −ηsr,min. (8f)

Finally, a large amount of heat will be generated during fast
charging, and high temperature rise due to heat accumulation
can cause safety issues such as thermal runaway. Assuming
Tmax is the maximum temperature limit for safe operation,
thus

Tk ≤ Tmax (8g)

must hold.

B. Nonlinear Model Predictive Control

Denote SOC0 the initial SOC and SOCf the fully charged
SOC. The general control objective of fast charging is
to achieve the minimum charging time tf from SOC0 to
SOCf , while the operating constraints as alluded to in Sec-
tion IV-A are not violated. For real-time charging control,
NMPC is an attractive candidate approach. NMPC repeti-
tively solves the following nonlinear optimization problem
(denoted as Problem 1) over a reduced prediction horizon
H < tf/∆t, and then only apply the first control action, i.e.,
at the time step k, determine the control sequence Iapp,k =
[Iapp,k, Iapp,k+1, · · · , Iapp,k+H ], such that

Problem 1 (General Optimal Fast Charging):

min
Iapp,k

∑k+H

i=k
(SOCi − SOCf )

2 (9)

subject to: system model (3) and state vector xk

constraints (8)

The entire charging process stops when SOCk ≥ SOCf . As
described in [20], NMPC is superior to global optimization
approaches in terms of implementability. Furthermore, the
uncertainty in the measurements and estimated states can be
taken into account by incorporating a battery state estimator.
However, existing NMPC-based fast-charging strategies rely
on simplified surrogate low-order models. As will be shown in
the next section, to accurately reflect the distributed behaviors
of the battery during fast charging and predict the operating
limits, a much higher system order is required. While the
existing model-free approaches, such as CCCV and MCC,
are not capable of fully addressing the constraints in (8), the
NMPC-based algorithms will not be implementable due to the
“curse of dimensionality” if the high-fidelity battery model (3)
presented in Section II is to be adopted.

C. General Physical Constraint-Triggered Feedback Control

As will be shown in Section V-C, the NMPC results exhibit
that although the optimized current profile is limited by various
constraints at different charging stages, only one constraint
comes into effect at a time. In this connection, a simple-to-
implement fast charging strategy is proposed based on this
fact. With a nonlinear function Gλ(·), a general output-error
injection-based control law is proposed to calculate Iapp,k+1,

Iapp,k+1 = Gλ(eλ,k) , Gλ(yλ,k − ymax,λ) (10)

where λ ∈ {1, 2, · · · } represents the index of the active
constraint or the charging mode, yλ,k is an output variable
on the LHS of (8) as well as a member of yk in (3c), while
ymax,λ is the corresponding maximum limit on the RHS of
(8). It is worth mentioning that the formulation in (10) is
essentially a governor of constraints or references if time-
varying constraints have been predefined and used in (8).
The control law is sufficiently general and can be embodied
by a number of existing output-feedback controls, such as
proportional-integral-differential and sliding mode controls.

Based on the above general physical constraint-triggered
feedback control law, as an example, we will only consider a
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subset of the presented constraints in Section IV-A during the
design of the charging strategy due to the following reasons.

1) Since most modern power electronic converters have a
wide range of current and voltage variation capability, only
the power rating Pmax in (8c) is considered to be the external
limiting factor.

2) Strictly speaking, (8d) and (8e) are descriptions of
real battery characteristics governed by physical principles,
rather than conditions to be controlled. These properties are
reflected in the P2D-T model and preserved by the MPCM, as
explained as follows. Consider the condition cneg

ss,N → cneg
s,max

or cneg
e,N → 0. According to (2b), the local charge-transfer

resistance Rneg
ct,N → ∞, the corresponding vertical branch as

shown in Fig. 1 is close to the open-circuit condition, and
this leads to Ineg

I,N → 0 and jneg
I,N → 0. Hence, according

to Figs. 2(a) and (b), the further increase in cneg
ss,N or cneg

e,N

is approaching zero. Hence, (8d) and (8e) are automatically
satisfied with the MPCM. In contrast, when designing the
charging strategy using a battery model with lumped electrode
and approximated electrolyte diffusion dynamics, such as [21],
since the simulated concentrations can violate the constraints,
(8d) and (8e) must be applied, and this can lead to a conser-
vative design outcome.

3) Existing research works have identified that lithium
plating occurs during fast charging with high current rates,
which can result in significant lithium deposition at the neg/sep
boundary. The influence on degradation due to lithium plating
is dominant and much more significant than that due to the
SEI film growth [22]. Hence, only the lithium plating is to be
considered, i.e., in (8f), sr = LiP.

A switch-over rule can be designed to actively detect the
violation of one of the constraints (8c), (8f), and (8g). If a
violation occurs, the corresponding control (10) is activated,
and the control action applies until another violation occurs.

D. Physical Constraint-Triggered PI Control

In the present work, (10) is implemented using a PI feed-
back controller with scheduled gains and a reset mechanism
as depicted in Fig. 3. A strategy is first designed to actively
switch among the three operating modes, i.e.,

Iapp,k+1

KP,λ

KI,λ

eλ,k
Σ 

1/z

+

+

qλ,k+1

qλ,k

Σ 
+

‒ 

λk = λk ‒1

λk ≠ λk ‒1

Iapp,k

λk = 1

λk = 2

λk = 3

Pbat,k‒Pmax 

λk 

λk 

Switch-

Over Rule

λk 

Li-Ion 

BatteryETKF
Tamb,k  

Vbat,k 

Iapp,k 

‒ηLiP,N,k
neg

ˆ 

Σ 
+

+
1/z

Iapp,k

Tk‒Tmax ˆ 

ˆ 

SOCˆ 

Σ 

vk

+
+

Measurements

Fig. 3. Block diagram of the proposed physical constraint-triggered PI control
for Li-ion battery fast charging.

Constant-power charging mode (λ = 1): If the estimated
power is equal to or higher than Pmax, the power PI control is
active to prevent over-loading. Here, we consider that the true
battery power is contaminated by measurement noises.

Zero-lithium-plating charging mode (λ = 2): Maintaining
LiP nonnegative can effectively restrain the occurrence of
lithium plating [22]. If the estimated LiP potential at the
neg/sep boundary reaches zero (ηLiP,min = 0), the LiP PI
control is activated to restrain battery aging.

Constant-temperature charging mode (λ = 3): If the cell
temperature has reached the predefined upper limit Tmax, the
temperature PI control is activated to avoid thermal runaway.

The PI control with the reset during the switch-over is
expressed by

Iapp,k+1 = KP,λ · eλ,k + qλ,k+1 (11a)

qλ,k+1 =

{
KI,λ · eλ,k + qλ,k, λk = λk−1
Iapp,k −KP,λ · eλ,k, λk 6= λk−1

(11b)

where KP,λ and KI,λ are the proportional and integral control
gains, respectively, and qλ is the output of the integrator. The
integral state qλ is reset when the operating mode changes
(λk 6= λk−1) to ensure that Iapp,k+1 = Iapp,k and to achieve
smooth switch-over processes. The battery SOC keeps in-
creasing in all the three modes. If the estimated SOC has
reached the predefined SOCf , the charging process terminates.
This physical constraint-triggered PI (PCT-PI) control with
particular switching rules is summarized as Algorithm 1.

The above three charging modes specifically consider the
charging speed, aging rate, and safety level. This framework
of the PCT-PI control is readily extendable to the fast charging
of a Li-ion battery with different battery parameters and/or
with other operating constraints, such as mechanical stress due
to large concentration gradients [2]. The specific priority on
the activation of different constraints and the corresponding
switch-over rules are determined by the observation of the
NMPC solution. In general, it is expected to charge with
the maximum power so that the charging time is minimum.
However, as will be shown in the latter section, the maximum
power can only be applied at the initial stage of the charging
process, before the activation of the lithium plating and the
temperature constraint.

In this work, due to the high dimensionality and nonlinearity
of the model, the PI control gains are obtained using trial-and-
error methods. More rigorous tuning methods of the control
parameters according to online estimated battery parameters
shall be our future research focus.

Furthermore, the proposed method can also readily be
extended to the conditions in which the effects of other degra-
dation mechanisms are considered non-trivial. For example,
side reactions on the positive electrode, such as decomposition
of electrolyte and salt, can exponentially increase with the
increasing voltage. The degradation rate and onset voltage
depend on the stability of the electrolyte and passivation
layer on the positive electrode. Once a suitable mathematical
description has been established to predict the aging behavior,
it can be incorporated into the presented battery model for the
design of a revised constraint-triggered PI control strategy.
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Algorithm 1 Physical Constraint-Triggered PI Control for Fast
Charging

1: At k = 0, give SOCmin
0 and SOCmax

0 .
2: Initialize the state ensemble using (4).
3: Initialize the controller, i.e., qλ,0 = 0, Iapp,0 = 0.
4: while k ≥ 1 and SÔCk−1 < SOCf do
5: Measure Vbat,k, Iapp,k, and Tamb,k.
6: Estimate the unmeasurable outputs P̂bat,k, η̂neg

LiP,N,k, T̂k,
and SÔCk using the ETKF (5) and (7), based on the
MPCM (3) of the Li-ion battery.

7: if η̂neg
LiP,N,k ≥ 0 and T̂k ≤ Tmax then

8: Mode 1: λk = 1, eλ,k = P̂bat,k−Pmax, KP,λ = KP,1,
and KI,λ = KI,1.

9: else if η̂neg
LiP,N,k < 0 then

10: Mode 2: λk = 2, eλ,k = −η̂neg
LiP,N,k, KP,λ = KP,2,

and KI,λ = KI,2.
11: else
12: Mode 3: λk = 3, eλ,k = T̂k − Tmax, KP,λ = KP,3,

and KI,λ = KI,3.
13: end if
14: Obtain Iapp,k+1 with (11).
15: end while

V. RESULTS AND DISCUSSION

A. Model Validation and Comparison

Experiments were conducted on a 3.5-Ah high-energy type
lithium nickel manganese cobalt oxide (NMC) battery cell
to validate the benchmark P2D-T model. A schematic of
the experimental platform is provided in Fig. 4, including a
BTS4000-5V6A battery tester with the maximum current of
6 A for power supply and current/voltage measurements, a
workstation for user-machine interface and data acquisition,
and a temperature aux unit with thermal resistor sensors. The
cell was charged and discharged with various constant currents
(0.17 A, 1.7 A, 5.1 A, and 6 A) between the cut-over voltage
4.2 V and the cut-off voltage 2.5 V, and the measured cell
voltage and temperature are compared in Fig. 5 with the
simulation results obtained using the P2D-T model. Here, the
PDAE-based P2D-T model was implemented in COMSOL
Multiphysics 5.3a on a PC with a processor @ 2.6 GHz and
8GB RAM. Clearly, the P2D-T model reproduces the battery
dynamics with high fidelity under a wide operating range.
More validation results of the P2D-T model using high-power
type cells can be found in various literature, such as [30].
Repetitive validation on cells with different types of chemistry
is not represented.

Since it is impossible to measure the internal variables
of the battery in real-time based on the prevailing sensor
technology, we follow the common practice in the literature
by comparing the MPCM with the validated benchmark model
[21], [30]. In the process of verification of the internal behav-
iors during fast charging, all the battery parameters are taken
from [32], corresponding to a 3-Ah high-power type lithium
cobalt oxide cell. The MPCM was implemented in MATLAB
R2016a environment with the same hardware configuration as

Workstation Battery Tester

Control Unit

Battery Cell
Temperature Aux Unit

Temperature 

Sensor

Fig. 4. Experimental platform for battery tests.
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Fig. 5. Comparison of P2D-T model with experimentally measured terminal
voltage and cell temperatures when the ambient temperature is 22◦C. (a)
Voltage during discharge. (b) Voltage during charge. (c) Temperature during
charge. (d) Temperature during discharge.

described in the previous paragraph. This configuration is also
used for the validation of the proposed state estimation and
control strategies in the next two subsections. The conventional
CCCV and MCC protocols were applied with 4.2 V maximum
terminal voltage. The simulated battery voltage, electrolyte
concentrations, solid-phase surface concentrations, and LiP
potentials are shown as functions of SOC or spatial position in
Fig. 6 to Fig. 8, and the accuracy of the MPCM is summarized
in Table I.

Unsurprisingly, it can be generally seen that, as the current
rate increases, the model accuracy decreases with the same
number of the control volumes. Fig. 6 shows that a small num-
ber of control volumes can lead to a significantly overestimated
terminal voltage, especially under high current conditions
(≥ 5C). Fig. 7(a) shows that such a low-order model can cause
underestimation of the LiP potential at the neg/sep boundary,
and the error is mainly the direct result of the underestimated
solid-phase and electrolyte concentrations at the same location,
as presented in Figs. 7(b) and (c), respectively. Fig. 7(a) also
indicates that CCCV and MCC cannot avoid lithium plating,
since there are periods with ηneg

LiP,N < 0. This will hurt battery
health and lead to premature battery degradation.
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Fig. 6. Comparison of the simulated voltage with different charging protocols.
Numbers within parentheses refer to control volumes (Npos, N sep, Nneg) of
the MPCM.

However, the accuracy of the model can always be increased
by using a higher number of control volumes, and this is
an advantage over most ad-hoc model reduction techniques
whose validity depends on various assumptions. It can also be
seen from Fig. 8 that under the extreme high current rate (9C)
conditions, the gradient of the concentration and the distributed
behaviors in the electrodes cannot be ignored, and that the
spatial distribution is less uniform especially at the end of the
charging process. Therefore, treating the profiles as uniform or
approximating the profiles by a simple function can introduce
significant errors for predicting the dynamics at the boundary.
In addition, Fig. 8 shows the solid-phase concentrations at the
pos/col boundary and the neg/sep boundary tend to approach
the corresponding maximum limits during the fast charging
process. Accordingly, accurately predicting the behaviors at
these locations is important for the design of charging control
strategies.

In addition, Fig. 7(b) and Fig. 8(a) show that the solid-
phase surface concentration is always below its theoretical
maximum value cneg

s,max. Similarly, Fig. 7(d) and Fig. 8(b)
show that the simulated electrolyte concentration will never
reach zero. These observations are in alignment with the
mathematical analysis for inequality constraints (8d) and (8e)
in Section IV-C.

TABLE I
PERFORMANCE COMPARISON OF THE MPCM

No. of
Control Volumes

(Npos, N sep, Nneg)

Terminal Voltage RMSE (%)
CCCV
(1C)

CCCV
(5C)

CCCV
(9C) MCC

(15,5,15) <0.01 <0.01 0.012 <0.01
(8,3,8) 0.021 0.025 0.03 0.024
(5,2,5) 0.085 0.10 0.25 0.09
(3,1,3) 0.12 0.39 0.88 0.32

B. Comparative Studies of Distributed State Estimators

In order to demonstrate the efficacy of the ETKF-based
distributed state estimator proposed in Section III, a modified
federal urban driving schedule (FUDS) dynamic profile was
used for its comparison with EnKF- and UKF-based algo-
rithms. The original FUDS current profile [33] is repeated
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Fig. 7. Comparison of simulation results under different charging strategies:
(a) LiP potential at the neg/sep boundary, (b) solid-phase surface concentration
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and (d) electrolyte concentration at the neg/col boundary. Legend is the same
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twice and the current amplitude is increased with a maximum
rate of 8C. The reference data are again generated by the P2D-
T model. In the test, the numbers of the control volumes
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are (N pos, N sep, N neg) = (5, 2, 5), and the ensemble size
is m = 3. The standard deviations of the voltage and the
temperature sensors are assumed to be ±10 mV and ±1 K,
respectively, and thus the measurement noise covariance is
R = diag([0.012, 12]). The initial SOC is set to 1.0 for all
cases. To test the robustness and convergence speed of the
employed estimation algorithms, a 50% initialization error
in the SOC is considered. For the EnKF- and ETKF-based
estimators, the state ensemble is initialized according to (4)
with SOCmin

0 = 0 and SOCmax
0 = 1, so that the full SOC range

is covered. Furthermore, the constraints on mass conservation
in both the electrode and the electrolyte domains are included
in the UKF algorithm to alleviate the slow divergence problem
caused by the weak observability of the P2D model [25]. The
sample time for the state estimators is chosen to be ∆t = 0.5 s.

The results of the estimated terminal voltage, SOC, and the
solid-phase concentrations in the negative electrode are shown
in Fig. 9, and performance metrics are compared in Table II.
It can be seen that both the solutions of the EnKF and the
ETKF converge rapidly towards their true values thanks to the
proposed initialization steps described in Section III-A. For the
UKF, though, Figs. 9(c) and (d) show that it takes 551 s to
reach 1% SOC estimation error, which is much slower than the
EnKF and the ETKF, even though the UKF has been enhanced
with the consideration of mass conservation. The maximum
absolute error (MAE) for SOC after convergence is 1.5% for
the EnKF and its root mean square error (RMSE) is 0.93%,
whereas for the ETKF, the MAE and RMSE are only 0.34%
and 0.13%, respectively. The estimation errors of the surface
concentrations in the negative electrode using the ETKF are
also significantly smaller than that using EnKF, which can be
observed in Fig. 9(f). Furthermore, the ETKF and the EnKF
are much more computationally efficient than the UKF, as can
be seen from Table II. The ETKF is slightly slower than the
EnKF because of the additional steps needed to perform the
eigendecomposition (7d).

TABLE II
PERFORMANCE COMPARISON OF NONLINEAR STATE ESTIMATORS

UKF EnKF ETKF
Convergence Time* (s) 551 2 2

RMSE of SOC (%) 0.41 0.93 0.13
MAE of SOC (%) 1.0 1.5 0.34

CPU Time (s) 256.4 22.6 25.1
*Time to reach 1% SOC estimation error.

C. Comparative Studies of Fast Charging Strategies

In this subsection, the fast charging strategy based on the
PCT-PI control (Alg. 1) proposed in Section IV-D is compared
with CCCV, MCC, and NMPC. The control gains for the
proposed strategy are chosen by trial-and-error to be KP,1 =
0.01,KI,1 = 0.1,KP,2 = 10,KI,2 = 100,KP,3 = 30, and
KI,3 = 0.3. Various CCCV and MCC schemes were tested, all
with a maximum voltage of 4.2 V. The results of two CCCV
schemes and an MCC scheme are presented and compared.
The current rates in the CC stage of the CCCV schemes are
6C and 9C, respectively, and the current sequence for the
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Fig. 9. Comparison of different nonlinear state estimators under a modified
FUDS current profile with a maximum current rate of 8C: (a) Battery voltage,
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boundary, and (f) solid-phase concentration estimation error.

MCC scheme is [7C, 4C, 2C, 1C, 0.5C, 0.2C, 0.1C]. Other
schemes only produce comparable performances in terms of
charging time if the constraints are not significantly violated.
For the NMPC, the prediction horizon is selected to be 5 s due
to the heavy computational burden, and Problem 1 is solved
using the fmincon function in MATLAB. The optimality can
be improved by increasing the prediction horizon, and a
similar design procedure can be carried out based on the
proposed framework. As benchmark, the states in the NMPC
are assumed perfectly measured without using an estimator,
and the sample time is 1 s for all strategies. In order to
obtain the unmeasurable internal states for online validation,
in this case, the battery dynamics are simulated using the
validated high-fidelity MPCM, which is also implemented in
the MATLAB environment described earlier in Section V-A.
Starting from time t = 0 s, the simulation results are shown in
Fig. 10, and the performance is summarized in Table III. For
the proposed strategy, as can be seen from Fig. 10(d), from
0 to 38 s the battery was first charged with the maximum
power Pmax = 120 W (Mode 1). From Fig. 10(e), it can be
observed that the estimated LiP potential drops rapidly, and
at the end of 38 s, the LiP potential reaches zero. Hence,
the charging switches to Mode 2 so that the degradation due
to lithium plating is avoided. This mode lasts about 200 s
until the cell temperature reaches the pre-set upper limit
Tmax = 43◦C at 245 s, see Fig. 10(f). The temperature PI
control is then activated (Mode 3) to limit the temperature rise
by decreasing the charging current. In this mode, it can be seen
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Fig. 10. Comparison of different fast charging strategies with the proposed
PCT-PI strategy: (a) cell voltage, (b) current rate, (c) SOC, (d) cell power, (e)
LiP potential at the neg/sep boundary, (f) cell temperature, and (g) mode of
the proposed PCT-PI control. Mode 0 means no current is applied.

from Fig. 10(e) that LiP potential increases initially, while it
starts to decline from about 265 s. At t = 391 s, the process
enters Mode 2 for the second time as the LiP potential drops
to zero again. The whole charging process ends in Mode 2
when the SOC reaches 99% at 584 s.

For the model-free charging strategies, i.e., CCCV and
MCC, it can be observed that the required charging times
are much longer than the proposed strategy. Furthermore, if
a high-rate current is applied for the CC stage of the CCCV
strategy, it may increase lithium plating and temperature rise
dramatically. For the CCCV with 6C maximum current and
the MCC strategy, although the temperature is kept below its

upper limit, the lithium plating cannot be fully restrained, as
shown in Figs. 10(e) and (f). Hence, with the proposed fast
charging strategy, the charging time is effectively shortened,
and the major limiting factors such as temperature and side
reaction are well controlled with the consideration of the
constraints. Table III also compares the charging efficiencies
of different strategies. Here the charging efficiency is defined
by [

∫ tf
0
VOC(t)Iapp(t)dt]/[

∫ tf
0
Pbat(t)dt], where tf represents

the charging time and the open-circuit voltage VOC can be
obtained as a nonlinear function of SOC. It can be seen that
although not considered in the design of the present work, the
charging efficiency of the proposed strategy is comparable to
the CCCV and MCC strategies.

Furthermore, it can be observed that results from the pro-
posed strategy are close to that obtained from the NMPC: The
charging time of the NMPC solution is 577 s, and the RMSE
of the SOC profiles is as low as 2.7%. It takes more than
1 h to obtain the optimal profile using NMPC even though
there is no state estimation, while the proposed strategy with
ETKF is considerably much more efficient (15 s). The major
performance differences of the proposed strategy compared
to the NMPC come from the transition stages from one
mode to another: As the PI feedback control does not predict
the future dynamics, there are overshoots if the constraint
is expected to be well-regulated with high control gains.
Nevertheless, the effects of the overshoot are insignificant, and
the proposed charging control is easy to implement, thanks to
its free-of-optimization strategy with a high-fidelity model-
based distributed state estimator.

TABLE III
PERFORMANCE COMPARISON OF FAST-CHARGING STRATEGIES

CCCV
(6C)

CCCV
(9C)

MCC
(7C Max.) NMPC PCT-PI

(Alg. 1)
Charging Time
(SOCf = 99%) 1056 s 965 s 1178 s 577 s 584 s

Charging Time
(SOCf = 95%) 708 s 503 s 784 s 496 s 501 s

CPU Time
(SOCf = 99%) 3.2 s 2.8 s 3.3 s > 1 h 15 s

Charging Effi.
(SOCf = 99%) 0.938 0.925 0.937 0.930 0.930

VI. CONCLUSIONS

This paper has proposed a novel distributed electrochemical
state estimation and fast-charging method for lithium-ion bat-
teries using a sophisticated physics-based model. Nonuniform
health- and safety-related behaviors and physical limitations
across the electrodes of the lithium-ion battery were accurately
predicted and taken into account for the design of a simple
feedback charging control.

The following three aspects contribute to the low compu-
tational requirement for the online implementation: 1) The
discretized and reformulated electrochemical battery model
in the circuit form is an ODE system and thus easy to
solve; 2) The ETKF is specifically suitable for the high-
order stochastic battery model by only using a small sample
to represent the statistical characteristics; 3) The charging
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strategy is designed using PI control laws without the need
of real-time optimization.

It should be pointed out that presently, the model parameters
are considered not affected by the degradation within one
charging cycle. However, some of them, such as the SEI film
resistance, can vary gradually as the battery ages. Therefore,
online tracking of these parameters is essential and will be
incorporated into the proposed fast-charging control algorithm
in the future.
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“A Padé approximate model of lithium ion batteries,” J. Electrochem.
Soc., vol. 165, no. 7, pp. A1409–A1421, May 2018.

[30] Y. Ji, Y. Zhang, and C.-Y. Wang, “Li-ion cell operation at low tem-
peratures,” J. Electrochem. Soc., vol. 160, no. 4, pp. A636–A649, Feb.
2013.

[31] F. Zhang, C. Snyder, and J. Sun, “Impacts of initial estimate and
observation availability on convective-scale data assimilation with an
ensemble Kalman filter,” Mon. Weather Rev., vol. 132, no. 5, pp. 1238–
1253, May 2004.

[32] S. Moura, “Fast Doyle-Fuller-Newman (DFN) electrochemical-
thermal battery model simulator,” 2018. [Online]. Available:
https://github.com/scott-moura/fastDFN

[33] “USABC electric vehicle battery test procedures manual. revision 2,”
USABC, Idaho Falls, ID, USA, Tech. Rep. DOE/ID-10479-Rev.2 ON:
DE96009671, Jan. 1996.

Yang Li (Member, IEEE) received the B.E. degree
in electrical engineering from Wuhan University,
Wuhan, China, in 2007, and the M.Sc. and Ph.D.
degrees in power engineering from Nanyang Tech-
nological University (NTU), Singapore, in 2008 and
2015, respectively. From 2015 to 2018, he was a
Research Fellow with the Energy Research Institute,
NTU and the School of Electrical Engineering and
Computer Science, Queensland University of Tech-
nology, Brisbane, QLD, Australia. Since 2019, he
has been with the School of Automation, Wuhan

University of Technology, Wuhan. He is currently a Researcher with the
Department of Electrical Engineering, Chalmers University of Technology,
Gothenburg, Sweden. His research interests include modeling and control of
energy storage systems in power grid and transport sectors.

Dr. Li was a recipient of the EU Marie Skłodowska-Curie Action Individual
Fellowship in 2020.



LI et al.: ELECTROCHEMICAL MODEL-BASED FAST CHARGING: PHYSICAL CONSTRAINT-TRIGGERED PI CONTROL 13

D. Mahinda Vilathgamuwa (Fellow, IEEE) re-
ceived the B.Sc. degree from the University of
Moratuwa, Sri Lanka, in 1985, and the Ph.D. degree
from Cambridge University, Cambridge, U.K., in
1993, both in electrical engineering. In 1993, he
joined the School of Electrical and Electronic En-
gineering, Nanyang Technological University, Sin-
gapore, where he had been a Faculty Member until
2013. He is currently a Professor of power engi-
neering with Queensland University of Technology,
Brisbane, Australia.

His research interests include wireless power, battery storage, power elec-
tronic converters, electrical drives, and electromobility.

Evelina Wikner (Member, IEEE) received the B.Sc.
degree in chemical engineering and engineering
physics and the M.Sc. degree in nanoscience and
nanotechnology from Chalmers University of Tech-
nology, Gothenburg, Sweden. She is a postdoctoral
researcher with the Department of Electrical Engi-
neering, Chalmers University of Technology, where
she also earned her Ph.D. degree in 2019.

Her research interest is in Li-ion batteries, op-
timizing utilization and lifetime in stationary and
automotive applications. Her main area of expertise

is in testing and physics-based modeling of Li-ion batteries. In her current
research project, different automotive driver behaviors are analyzed and how
the different driver behaviors affect the battery aging is investigated through
testing and physics-based modeling.

Zhongbao Wei (Member, IEEE) received the B.Eng.
and M.Sc. degrees in instrumental science and tech-
nology from Beihang University, Beijing, China, in
2010 and 2013, respectively, and the Ph.D. degree
in power engineering from Nanyang Technological
University, Singapore, in 2017. He was a Research
Fellow with the Energy Research Institute, Nanyang
Technological University, from 2016 to 2018. He is
currently a Professor of vehicle engineering with Na-
tional Engineering Laboratory for Electric Vehicles,
School of Mechanical Engineering, Beijing Institute

of Technology, Beijing. He has authored more than 40 peer-reviewed articles.
His research interests include battery modeling, identification, state estimation,
diagnostic, and thermal management, with applications to renewable energy
systems such as lithium-ion battery and vanadium redox flow battery.

Xinan Zhang (Member, IEEE) received the B.E.
degree in electrical engineering and automation from
Fudan University, China, in 2008. He received the
Ph.D. degree from Nanyang Technological Univer-
sity (NTU), Singapore, in 2014. Then, he worked as
a postdoc researcher in NTU and the University of
New South Wales from 2014 to 2017. He worked
as a Lecturer in NTU from June 2017 to September
2019. In September 2019, he joined the University of
Western Australia as a Senior Lecturer. His research
interests include electrical machine drives, control

and modulation of power electronic converters and management of hybrid
energy storage systems.

Torbjörn Thiringer (Senior Member, IEEE) works
at Chalmers university of Technology, Gothenborg,
Sweden, as a professor in applied power electronics.
He took his M.Sc. and Ph.D. degrees at Chalmers
University of technology in 1989 and 1996 respec-
tively. His areas of interest include the modeling,
control and grid integration of wind energy con-
verters into power grids, battery technology from
detailed cell modelling to system aspects, as well
as power electronics and drives for other types of
applications, such as electrified vehicles, buildings

and industrial applications.

Torsten Wik received the M.Sc. degree in chemi-
cal engineering (major in applied mathematics), the
Licentiate of Engineering degree in control engineer-
ing, the Ph.D. degree in environmental sciences (ma-
jor in automatic control), and the Docent degree in
electrical engineering from the Chalmers University
of Technology, Gothenburg, Sweden, in 1994, 1996,
1999, and 2004, respectively. From 2005 to 2007,
he was a Senior Researcher with Volvo Technology,
Gothenburg, researching on control system design
for combustion engine test cells, and combined

reformer and fuel cells. He is a Professor and the Head of the Automatic
Control Group, Department of Electrical Engineering, Chalmers University
of Technology.

His current research interests include optimal control, model reduction,
and systems with model uncertainties, with applications to energy storage,
environmental, and biological systems.

Changfu Zou (Member, IEEE) received the Ph.D.
degree in automation and control engineering from
the Department of Mechanical Engineering, Uni-
versity of Melbourne, VIC, Australia, in 2017. He
was a Postdoctoral Researcher with the Chalmer-
s University of Technology, Gothenburg, Sweden,
where he is currently an Assistant Professor with the
Automatic Control Group, Department of Electrical
Engineering.

His current research interests include modeling
and control of energy storage systems for automotive

and power grid applications.
Dr. Zou was a recipient of the Swedish Research Council Starting Grant,

Marie Skłodowska-Curie Fellowship, and a number of grants funded by, e.g.,
the Swedish Energy Agency and Innovation Agency. He serves as an associate
editor for IEEE Transactions on Transportation Electrification.


