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ABSTRACT

The mathematical model and efficient algorithm for
designing the energy-optimal controlled processes of a
human leg in the swing phase are proposed. This algorithm
is based. on special conversion of the optimal control
problem for nonlinear dynamical system model of a human leg
into a standard nonlinear programming problem. The
objective function for the optimization algorithm is the
integral over swing phase’s time from the sum of the
mechanical power absolute values for all controlling
stimuli. A number of the energy-optimal controlled
processes of a human leg wunder different boundary
conditiéﬁs and restrictions on phase coordinates have been
obtained. The kinematical and dynamical characteristics of
obtained optimal controlled processes are compared with
respective characteristics of a human leg’s swing phase

during normal gait.

INTRODUCTION

To understand how inertial interaction between body
segments and musculotendon dynamics coordinates a human
movement it 1is very usefull to solve the modelling and
optimization problems of controlled motions of a human
locomotor system or some of its parts. -[1-8)]. At present
the neuro system’s laws which control human motions are not
completely recognized. It is important to study the types
of optimal control problems which, probably, are solved by
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a human neuro system and to find the histories of optimal
controlling forces, angular displacements, etc.
Above-mentioned is one of the reasons for the attempts to
solve the different optimization problems for biodynamical
systems [5, 9-13].

In this paper the energy-optimal control problem for
human leg in swing phase is considered. The controlled
motions are investigated within the frame of mechanical
model for dynamical system of two rigid bodies moving in
the vertical plane. In contradistinction [9] the
optimization procedure in the phase space is used to obtain
the energy-optimal controlled processes. The objective
function for the optimization problem takes into account
not only mechanical work of the hip and knee controlling
forces but also mechanical work of the principal vector of
forces acting at the hip joint during swing phase of a
human leg. It is assumed that on the initial and final
instants only geometrical states of a human leg are given
in advance. The velocities of a human leg on
above-mentioned instants are determined by optimization
procedure. Results are presented in the form of control

laws and angular displacements histories during the motion.

STATEMENT OF THE PROBLEM

The system under consideration is the 1lower 1limb
consisting of two rigid bodies: the thigh HK and shank with
foot KA. This system is depicted diagrammatically in Fig.
1. The bodies HK and KA are connected by ideal cylindrical
hinge with the centre at point K. On mechanical system
considered the gravitational forces, external force R and
controlling moments p,(t) and p,(t) are acting. The force R
and moment u,(t) are, respectively, the principal vector
and principal moment of the reaction forces of human body,
refered to the point of the hip joint H. Control moment
Hp(t) acts at the knee joint and is treated as internal
stimulus. The muscles dynamics is not taken into account in
this paper. The different models of the muscle dynamics can
be found in (3, 5, 10, 11, 13-15].
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The average weight of the foot is about 1%-1,5% of the
body and its dimensions are also small compared to the
thigh or the shank. In swing phase the foot is locked with
the shank at an approximately constant angle [10]. Hence,
the inertial and gravitational effects of the foot during
swing phase are small in comparison with those of the shank
or the thigh and in this study they will be neglected.

All movement of the lower limb is restricted to the
sagittal plane NXY of a fixed rectangular Cartesian

coordinate system NXYZ (Fig. 1).
The equations of motion for the controlled mechanical

system in question, written in the form of Lagrange
equations of the second kind, are as follows:
Hk.+K;(@,cos wl)'+K5(¢2cos wz)'=Rx(t), (1)

M(y +g)+K, (p;sin @;) 4K, (p,sin @3) =R, (t), (2)

Jap1+K,[X cos ¢ +(y +g)sin ¢,]+
(3)

+J, [P2c0s (9,-92) +¢§sin(w,-wz)j] =, (t)-uy(t),

lJ3¢;+K5[k'cos ¢2+(9.+g)sin ¢z]+

(4)
+J, [@1COS (91-05) —pSin (9, -9,) ] =u, (L),
where
K,=myri+myl,, K,=rpm;, M=y g,
J=J,+my13, Jy=1,K,.
In equations (1)-(4): x and y are the Cartesian

coordinates of the hip joint H; ¢,, ¢, are the angles that
specify the position of the thigh and shank relative to the
vertical (Fig. 1); m, are the masses, 1, are the lengths,

r, are the distances of the centres of mass from the
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proximal joint and J, are the moments of the inertia of
thigh (i=1) and shank with foot (i=2), respectively; R,(t),
R,(t) are the horizontal and vertical components of the
principal vector of the reaction forces at the Hip'jqint;

and g is the acceleration due to gravity.

Let z(t)={x, X, ¥, ¥, ©i., ®1, ®2, ¢} be a vector of
the phase state, u(t)={R,, Ry, M,;, M} be a vector of the
controlling stimuli of human leg, and T be the duration of
swing phase.

Consider the next optimal control problem.

Problem 1. It is required to determine the controlled
process {z(t), u(t)}, te(0,T], which satisfies the

equations of motions (1)-(4), boundary conditions
X3(0)=Xga, X2(T)=Xrz, (5)

Y2(0)=Yo2, Y2(T)=Yza, (6)

given restrictions on the phase coordinates

x(t)=xx(t), y(t)=yu(t), te[O0,T], (7)
P (t)zp, (L), te(o,t], (8)

y2(t)=0, te(0,1], (9)
(x-%,) 2+ (y-y2) 2=(1,+1,) %, te[o0,T], (10)

and reaches minima of the functional

T
E(z(-), u(-)1=S[|R (t)x(t)|+|Ry(t)y(L) |+
0
(11)

+]1, (€)@, (£) | +|1a(t) (9y-02) |]dE.

In expressions (5)-(10): x,(t), ya(t) are the
Ccartesian coordinates of the ankle joint (point A); xy(t),
yu(t) are the Cartesian coordinates of the hip joint given
from the experimental data of human locomotion ([13, 16];
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Xo2, Yoz and Xx¢,, Y, are given parameters determining the
position of the point A on the initial t=0 and final t=t
instants, respectively. In functional (11) the absolute
values are used for the integrands since they represent

effort that is not recoverable.

METHOD
Central in the approach proposed for solving the

problem 1 is the idea that any optimal control problem can
be converted into a standard nonlinear programming problem
by parameterizing each of the free variable functions. A
key feature of the method is that it dispenses with the
need to solve the two-point, boundary-value problem derived
from the necessary conditions of optimal control theory. We
shall use an inverse-dynamics approach for converting the
problem 1 into the corresponding nonlinear programming
problem. An important advantage of the inverse-dynamics
formulation is that it does not require the system of
differential equations to be numerically integrated.

From analysis of equations (1)-(4) and constraints (7)
it follows that there are only two independently variable
functions in problem 1. Taking into account the boundary
conditions (5), (6) and the‘ restrictions (8), (9), the
functions x,(t), Yy,(t) will be chosen as independently

variable functions.
We have the next kinematical constraints (see Fig. 1):
x5, (t)=x,(t)+l;sin ¢;+1,sin ¢,,
(12)

Y2(t)=yy(t)-1,cos ¢,-1,cos ¢2-

If functions x,(t), y,(t), x4(t), ys(t) are given then

from (12) next expressions can be obtained:

2,2

2,2, 2

411(81-0-92) 172

= = -1 (13)
(61+65+17-153) ,

(]
w,(t)=arctq[ = ]+arctg[
6,
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2,.2,.2

e 415 (87+63) 1/2
wz(t)=arctg{ — J—arctg[. 5 2: ‘2 22 5~ 1 }
8, (61+65+15-17) ’

where
6, (t)=yu(t)-ya(t),

62 (t)=x,(t)-xy(L).

Hence the state vector z(t) is known and from
equations (1)-(4) the control histories can be computed.

The function x,(t) is approximated by the sum of a
finite number of terms defining a Fourier-type series

N
x,(t)=a,/2 + ¥ (a,cos kwt+b,sin kowt), (14)
k=1 '

where w=2n/T, T is the duration of human double step, ag,
a,, b, (k=1,...,N) are parameters.

Taking into account the boundary conditions (6) and
restrictions (9), the independently variable function y, is
parameterized by introducing a number of nodal points

¥2(ty), ¥a(ty), (j=0,...,N1; t,=0, ty,=t) in the interval
[o,t].

The function y,(t) is reconstructed at points ya2(ty),
y;(tj) using the third-order spline approximation.

Therefore, choosing the functions x,(t) and y,(t) as
the independently variable functions and using the Fourier
and spline approximations the continual energy-optimal
control problem of a human leg (problem 1) can be converted

into the following parameter optimization problem.

Problem 2. Find the parameters

C={ag, a,, b, ¥a(t;), ¥2(t))},

k=1,...,N; j=0,1,...,N1,
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which minimize the performance criterion
E=Q(C), (15)

subject both to the equality constraints

f,(C)=0, i=1,2,3,4, (16)
and to the inequality constraints
g.(C)z0, m=1,2. (17)

In expressions (15)-(17) the functions g, f, and g,
are determined by means of formula (11), the boundary
conditions (5), (6) and restrictions (9) and (10).

RESULTS AND DISCUSSION

To solve the above parameter optimization problem
(problem 1) the computational algorithm based on
Rosenbrock’s method [17] has been devised. Using this
algorithm the computer programme has been composed in
C-language. The computer programme developed makes it
possible to simulate a human leg’s motion in swing phase
and to determine the near-energy-optimal control of the
considered motion. A number of energy-optimal controlled
processes of a human leg for different boundary conditions
and restrictions on phase coordinates and controlling
forces have been obtained.

Let us describe some numerical results of solutions of
the problem 1.

In the model a subject height of 1.76 m, mass of 73.2
kg and next parameters of the Limb: m=7.08 kg, 1,=0.41 m,
ry=0.16 m, J;=0.082 kg-m?, my=5.04 kg, 1,=0.5 m,
J;=0.053 kg-m?, r,=0.203 m are assumed [1].

Following the works [10, 13], the pelvis is assumed to
progress forwards (in the x-direction) at constant velocity
V during swing phase. The vertical. motion (in the
y-direction) is modelled as a sinusoidal movement. Hence,

the functions xu(t) and yy(t) in restrictions (7) are
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specified in the next form:
xy(t)=Vt, yy(t)=h+Bsin(4mt+B), (18)

where Vv, h, B, B are parameters.
For the swing phase of normal gait the amplitude B is
of order 0.0254 m, the phase B8 is equal to 0.1 rad. [1,13].
Three examples of solution of the problem 1 for the
gaits with slow, natural and fast cadences are represented
below. The input data are given by Table 1 (cadence in
step/min, the others in SI units). In examples the duration

of swing phase is determined by formula T=0.4T [16].

Table 1
Example 1 Example 2 Example 3
Cadence 86.8 105.3 123.3
} { f i 1‘
T 1.383 1.1396 0.9733
1 ! 1 1 |
| 1 1 1 1
|4 0.998 1.325 1.685
; ; % | |
h 0.85 0.85 0.85
l ] ] | |
[ T T T |
X -0.4 -0.4 -0.4
l l 1 ] |
r T i T 1
X2 1.03 1.122 1.2
l ] ] ! |
[ | 1 T 1
Yoz 0.1 0.1 0.1
| ] ] ] ]
[ T T 1 1
Y2 0.096 0.0949 0.1

L 1 1 1 |

Solution of problem 1 yielded energetically optimal
laws of motion of ankle joint of a human leg in the swing
phase. These laws of motion are specified by formula (14)
and the values of free parameters in Table 2 and by the
function y,(t) which is reconstructed using the third-order

spline approximation at nodal points y,(t,), }Z(CJ) (ty=jt,
j=0,1,2,3,4). All values in Table 2 are given in SI units.
Some results of the obtained energetically optimal
motions of a human leg in the swing phase are also
represented in Fig. 2 -Fig. 8 (curves 1, 2 and 3 correspond

to slow, natural and fast cadence, respectively).
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Table 2
Example 1 Example 2 Example 3
a, -0.305656 1.107789 0.740580

— | ] | ]

r T ] 1 —1
a, -0.709509 =0.921005 -0.763508

i ; | | —
a, 0.493035 -0.050685 0.030840

1 ] ] l 1

I ] T 1 —1
a, 0.025509 0.015340 -0.031458

— ; ; ; !
a, -0.022945 -0.000832 -0.011800

[ l ] | ]

[ T 1 1 — 1
as -0.033263 0.003287 0.005636

l ] ] l ]

I | 1 T — 1
b, 0.906408 -0.090967 0.199931

} % : % ]'
b, 0.011020 0.153752 -0.037729

— % % % !
b, -0.102752 0.025650 0.039181

: % % = |
b, -0.066881 -0.007999 -0.012714

| l ] l ]

{ 1 1 { 1
by 0.006433 0.003614 0.014439

— ] ] ] |

| 1 1 I 1

x5 (0) 1.748345 1.541342 1.70075

I I | ] |

r 1 1 T 1
X5 (T) 2.979572 3.501934 3.468549

t i } } -
Y5 (0). -0.043187 1.571520 1.589000

1 ] ] ! |

I 1 T 1 1
Ya2(ty) 0.082853 0.144629 0.124435

f f % } —
Ya(ty) -0.192005 -0.429568 -0.692177

|- l ! ] I

r 1 ] 1 1
Ya(ts) 0.084807 0.083680 0.043989

1

| } | ; —
yi(ts) -0.023957 -0.427519 -0.647529

: | { % —
Ya(t;) 0.015845 0.036819 0.026243

I ] 1 ] |

r I T T —
Yal(ts) -0.244236 -0.164971 0.101602

|

| | | — -
Y> (T) 1.131966 1.399498 1.088870
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Let wus describe in more detail the obtained
energetically optimal swing motions of a human leg.

Figure 2 shows the displacements of the ankle joint of
a leg along the direction of motion. It can be seen that

horizontal motions are almost uniform (e.g. curve 2 for

natural cadence) and without reversing cycles (kz(t)>0,
te[o0,T]).

The vertical displacements of the ankle joint of lower
limb for energetically optimal swing phase are shown in
Fig. 3. It can be seen that in all examples 1-3 the phase
restriction given by formula (9) is satisfied. Figures 2
and 3 show that except near initial and final instants the
velocities of horizontal motions of the ankle joint of a
leg are an order of magnitude greater than the velocities
of the vertical motions.

The variations in the angular coordinates
characterizing the position of elements of a leg over the
swing phase are shown in Fig. 4 and Fig. 5. The following
notations are employed: ¢,(t) is the hip angle specifying
the mutual position of the pelvis and thigh; ¢,(t)-¢,(t) is
the knee angle specifying the mutual position of the thigh
and shank.

It can be seen from Fig. 5 that the phase restriction
given by formula (8) is satisfied for all found
energy-optimal controlling processes.

Figure 6 and Figure 7 show graphs of the control
moments in the joints for the obtained energetically
optimal laws of motions of a 1leg in the swing phase
(£, (t)/M is the hip moment; p,(t)/M is the knee moment,
where M is the total mass of human body).

The way in which the function
Rh=[F2(t)+F(t)]"? /Mg
varies (Fig. 8) indicates that the magnitude of the

principal vector of the reaction forces acting at hip joint
has an order of the total weight of human body (dashed
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curve in Fig. 8) and differs from the weight of the body by
no more than 45%.

In Fig.4 -7, for comparison purposes, the hip and knee
angles and moments obtained from experiments for a human
gait with natural cadence are shown (dashed curves) [16].

Comparison of these experimental curves with modelling

obtained near-energy-optimal

results indicates that
characteristics are within reasonable proximity to the
corresponding characteristics of the motion of a human leg
in the swing phase during gait with natural cadence.

A number of energetical characteristics of the
obtained optimal controlled processes of a human leg in the
swing phase are represented in Table 3 (in J/m). There are

next notations in Table 3:

Es=E/L, (19)
r . -
EH:[E‘IIUz(t) (py=95) Idt]/L, (20)
(o]
1t : .o
EU== 5 [l (£) 0y (8) |+ Kz (91-02) |]dt. (21)
(o]

In..expressions (19)-(21) E is a performance index
given by formula (11), L=xgy-X,, is the stride length which

is equal to the sum of two steps’ lengths.

Table 3

Example 1 Example 2 Example 3
ES 70 56 67
EH 64 50 54
EU 9 8 20

The functional (20) estimates all energy expenditure
per unit of distance travelled only ‘at hip joint of the
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lower 1limb. The functional (21) estimates the energy
expenditure per unit of distance travelled only of
oscillation of human lower extremity during swing phase.

The analysis of data of the Table 3 shows that for any
of the functionals (19)-(21) the natural cadence of gait
(Example 2) gives a minimum of the energy expended per unit
of distance travelled. This result is in agreement with the
conclusion that there is an ideal cadence for an individual
that will give minimum energy expended per unit of distance
travelled [9].

Comparison of the values EH and EU (Table 3) indicates
that the energy expenditure at hip joint is approximately
3-7 times greater than that of oscillation of a human lower

extremity during the swing phase.

CONCLUSION

In this paper the analysis of a human leg motions in
the swing phase is based on solution of energy-optimal
control problems for the plane mechanical system of two
rigid bodies connected by ideal cylindrical hinge. The
performance index used is the mechanical work spent to
transfer a human leg from the initial position intoc the
final one over the given time.

To solve the arisen nonlinear optimal control problem
under given boundary conditions and restrictions on the
phase coordinates the parameter optimization method has
been proposed.

This method is based on Fourier and spline
approximations of the independently variable functions and
inverse-dynamics approach. The method proposed makes it
possible to satisfy the boundary conditions and some of
equality and inequality constraints on the phase
coordinates automatically and accurately.

It is expected that the result derived for human legs’
swing phase using parameter optimization method represents
the global optima since the algorithm converged to the same
solution irrespective of the initial quess.

One of the important possible practical applications
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of the results of the present study may be the optimal
design of artificial lower limbs.
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